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A MARKOV CHAIN MODEL FOR VALUING CREDIT
RISK

Shih-chuan Tsai!

ABSTRACT

The purpose of this paper is to extend Jarrow et al.’s (1997) model to include stochastic
default-free interest rates and stochastic credit spreads. Credit spread processes are not iden-
tified directly by the assumptions of some well-known dynamic but through the specifica-
tion on the stochastic process of risk premium adjustment. By taking into account the
stochastic credit spread in each credit rating in addition to credit rating changes, the model
is able to consider both continuous and jump components of credit spread curves. In this
model, the credit spread is allowed to change even if the credit rating remains the same.
There are four distinctive features of the model. First, the credit spreads and equivalent
martingale transition matrix (including risk-neutral default probabilities) are determined by
both the current credit rating and by other state variables that generate the stochastic processes.
Second, under the no-arbitrage condition, the recursive representations of risk-neutral drift
in the forward rate process are derived, and the implicit form of the default-risky term struc-
ture can be obtained by combining the forward rate process and the indirect form of the
credit spread process. Furthermore, the model facilitates the pricing of different kinds of
credit derivatives and utilises historical data on information from credit rating changes and
defaults. Finally, the model can easily be developed into a continuous model and different
processes of risk premium adjustment can be incorporated.

Keywords: Credit Spread, Transition Matrix, Credit Spread Option, Credit Swap

I. INTRODUCTION

Valuation models of financial securities often assume that the contractual obliga-
tions will be fulfilled. However, it is possible in practice that one party of a contract
may default on its obligations. The pricing of corporate default risk has recently
been receiving increasing attention in financial research. Moreover, credit deriva-
tive markets have been growing rapidly during this time. A variety of models are
developed to determine the premium of credit derivatives and to describe the term
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structures of default-risky corporate bonds. The models that generalised and ex-
tended the original Merton’s (1974) model are called “structural models of credit
risk™ because their assumptions are applied to the firm’s structure. An alternative
approach uses “reduced-form models”, which deal directly with corporate bond
term structures that can be deduced from the structural models.

The pricing of credit derivatives requires credit risk information because such
products are highly sensitive to a firm’s credit quality. A default-risky bond can
undergo several credit rating changes before it actually defaults, and the market
prices those changes. The information from past credit rating changes and defaults
is therefore useful in pricing default-risky corporate bonds and credit derivatives.
Jarrow er al. (1997) develop a Markov chain model to incorporate the credit rating
as an indicator of the likelihood of default to describe the term structure of credit
risk spreads.

Credit risk is both similar to and different from other risks such as interest rate
risk or equity risk. Credit risk can be traded just as interest rate risk may be traded.
Credit risk, however, is much less liquid than interest rate risk due in part to the size
of the credit market. A second difference between interest rate risk and credit risk is
that changes in credit risk often trigger the associated credit spread to “jump”, par-
ticularly when the changes are caused by default. Duffee (1999) applies macroeco-
nomic changes to describe the dynamics of credit spreads. Elton er al. (2001) exam-
ine corporate bond spreads empirically and measure credit spreads as a function of
taxes, default risk, and systematic risk factors. Huang and Kong (2003) explore the
impacts of five sets of explanatory variables (default rates, interest rate variables,
equity market factors, liquidity indicators, and macroeconomic indicators) on changes
in credit spreads and provide evidence that credit risk models may need to incorpo-
rate macroeconomic variables to describe the dynamics of credit spreads. The fact
that creditworthiness and market risk aversion evolve over time indicates the neces-
sity of modelling credit risk dynamics as a stochastic process.

The purpose of this paper is to extend Jarrow er al.’s (1997) model to include
stochastic default-free interest rates and stochastic credit spreads. Credit spread pro-
cesses are not identified directly by the assumptions of some well-known dynamic
but through the specification on the stochastic process of risk premium adjustment.
By taking into account the stochastic credit spread in each credit rating in addition
to credit rating changes, the model is able to consider both continuous and jump
components of credit spread curves. In this model, the credit spread is allowed to
change even if the credit rating remains the same. There are four distinctive features
of the model. First, the credit spreads and equivalent martingale transition matrix
(including risk-neutral default probabilities) are determined by both the current credit
rating and by other state variables that generate the stochastic processes. Second,
under a no-arbitrage condition, the recursive representations of risk-neutral drift in
the forward rate process are derived, and the implicit form of the default-risky term
structure can be obtained by combining the forward rate process and the indirect
form of the credit spread process. Furthermore, the model facilitates the pricing of
different kinds of credit derivatives and utilises historical data on information from
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credit rating changes and defaults. Finally, the model can be easily developed into a
continuous model and different processes of risk premium adjustment can be
incorporated.

The remainder of this paper is organised as follows. Section 2 compares different
approaches to credit risk and reviews several models in the literature. Section 3
describes the forward rate process and the equivalent martingale transition matrix,
and specifies the settings of the model. Section 4 discusses issues on the implemen-
tation of the model and the set up of the double binomial tree evolving over time.
Section 5 applies the model to determine the value of credit spread options and
credit default swaps as examples of pricing credit derivatives. Section 6 concludes
the article.

ll. LITERATURE REVIEW

Default risk can be decomposed into two elements: the default probability and the
recovery rate. The default probability is the likelihood of a default event occurring
in a given period, and the recovery rate is the proportion of payment of the bond in
default. Different treatments of these two elements, together with the interaction of
the default risk and the interest rate risk, stimulate different studies. Two distinct
approaches to the modelling of the default risk are identifiable in the literature:
structural models and reduced-form models.

2.1 Structural Models

Merton (1974) explicitly values default-risky bonds by assuming a firm has only
one class of pure discount bond, and that the firm value follows a diffusion process.
He views equity as a call option on the firm value and considers that the bond value
is the difference between the firm value and equity value, and derives the prices of
default-risky bonds using the principles of option pricing developed by Black and
Scholes (1973) and Merton (1973). The valuation formula requires five inputs: the
value of the firm, the face amount of the debt, the volatility of the firm’s value, the
yield on a default-free bond that matures at the same time, and the time to maturity
of the bond. Despite its simplicity and intuitive appeal, Merton’s model has many
limitations. First, he assumes default occurs only at maturity of the debt, which is
clearly unrealistic. Second, default is assumed to occur only when the firm exhausts
its assets. Since firms usually default long before the firm’s assets are exhausted, the
scenario is at odds with reality. Jones et al. (1984) and Franks and Torous (1989)
show that the assumption induces credit spreads that are much smaller than actual
credit spreads. Third, there is always more than one class of debt in a firm’s capital
structure, so the priority structures of various debts have to be specified. Also, the
framework assumes the absolute-priority rule applies to allocate assets among
corporate claimants. Yet another problem for the model is that the underlying assets
are often not tradable and therefore their values are not observable, which makes
the application of the theory and the estimation of the relevant parameters
problematic.
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Geske (1977) extends the analysis of Merton (1974) to risky coupon bonds that
have a finite time to maturity and discrete coupon payments. Black and Cox (1976)
extend Merton’s (1974) analysis to the study of safety covenants, subordination
arrangements, and limits on financing. They relax the assumption that default oc-
curs only when the firm exhausts its assets and allow default to occur when the
value of the firm reaches some low threshold. Their model is more realistic in that it
is consistent with either net worth or cash-flow-based insolvency. They also con-
sider the possibility that default occurs before the maturity. Their model, therefore,
is able to generate credit spreads that are more consistent with those observed in
corporate debt markets. The Black and Cox model, however, still has some of the
other limitations of the traditional Black-Scholes-Merton framework for valuing
risky debt. They assume the interest rates are constant, which is difficult to justify in
a valuation model for risky fixed-income securities. They also assume the absolute-
priority rule applies to allocate assets among corporate claimants. However, recent
evidence by Franks and Torous (1989, 1994); Eberhart et al. (1990); LoPucki and
Whitford (1990); Weiss (1990); Betker (1995); and others shows that strict absolute
priority is rarely upheld in distressed reorganisations.

Turnbull (1979) generalises Merton’s model to include corporate tax and bank-
ruptcy costs, and derives close-form solutions for a firm’s common stock and pure
discount bonds. Bhattacharya and Mason (1981) extend Merton’s analysis to firm
value that follows a discontinuous process and to more complex boundary conditions.
Kim er al. (1987) develop contingent claims valuation models for corporate bonds
that are capable of generating default premiums consistent with the levels observed
in practice. They assume the default-free interest rate follows the process described
in Vasicek (1977) and is correlated with the firm value process. They study the
default risk of coupons in the presence of dividends and interest rate uncertainty,
and the interaction of interest rate risk and default risk. They demonstrate that de-
fault premiums are sensitive to interest rate expectations but not to the volatility of
the interest rates. They also show that the call provision has a differential effect on
Treasury issues relative to corporate issues. Leland (1994) derives closed-form re-
sults for the long-term risky debt, yield spreads, and optimal capital siructure, when
firm asset value follows a diffusion process with constant volatility. He explicitly
links the debt values and optimal leverage to firm risk, taxes, bankruptcy costs,
default-free interest rates, payout rates, and bond covenants. The results explain the
different behaviour of junk bonds versus investment-grade bonds, and aspects of
asset substitution, debt repurchase, and debt renegotiations.

Longstaff and Schwartz (1995) combine many distinctive features of the previ-
ous studies in a single model. Like Merton (1974), they assume firm value follows
a diffusion process. As in Black and Cox (1976), they allow risky debt to default
before maturity date. Default happens when the firm value process reaches some
low boundary from above. As in Kim et al. (1987), the default-free interest rate is
assumed to follow the Vasicek (1977) process, and to be correlated with the firm
value process. Their model assumes that a firm’s capital structure is irrelevant to
firm value and allows the capital structure of the firm to consist of a variety of risky
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contingent claims including bonds with different coupon payments, priorities, and
maturity dates. They apply their framework to value-risky discount and coupon
bonds, and derive closed-form expressions for the value of risky floating-rate debt.
They show that the credit spreads implied by the model are consistent with many
properties of actual credit spreads. An important finding is that credit spreads for
firms with similar default risk can vary significantly if the assets of the firms have
different correlations with changes in interest rates. They also show that the proper-
ties of high-yield bonds can be very different form those of less risky debt. They
claim that their model can easily be extended to allow for the deviations from the
absolute priority rule by including unsystematic stochastic recovery rates that are
uncorrelated with both business risk and interest rate risk. Pierides (1997) considers
the pricing of derivatives that protect holders of corporate bonds from a reduction
in their value because of deterioration in their credit quality. He structures these
derivatives as either puts on the bond price or calls on the bond spread in the context
of the models developed by Merton (1974) and Black and Cox (1976). He derives
pricing properties of these options by both analytical and numerical methods.

2.2 Reduced-form Models

Reduced-form models do not condition default explicitly on the value of the firm
and parameters related to firm value are not required to implement the model. They
deal directly with the default process and combine this with the term-structure model
and assumptions concerning the recovery rate in default to value risky debts. They
are more general than the structural models because they can accommodate differ-
ent kinds of defaults.

Duffee (1999) models a firm’s instantaneous probability of default as a square-
root diffusion process. The parameters of these processes are estimated by both
time series and cross-sectional properties of the individual firm’s bond prices. The
results indicate that single-factor models of instantaneous default risk have diffi-
culty matching all the important features of actual corporate bond yield spreads,
especially for both relatively flat yield spreads and steeper yield spreads. Such models
cannot explain the observed term structure of credit spreads across firms of differ-
ent credit qualities, which might arise from incorrect statistical specifications of
default probabilities and interest rates or from the model’s inability to incorporate
some of the features of default. Duffie and Huang (1996) employ the reduced-form
approach to value default-risky swaps in which the credit qualities of a swap’s two
parties can be asymmetric. Their model also incorporates features of settlement
payments upon default under some of the International Swaps and Derivatives As-
sociation (ISDA). They show that the degree of asymmetry in the default character-
istics of the two parties in a plain vanilla interest rate swap is not very important in
determining the swap rate and that the impact of the asymmetry in the credit risk is
somewhat higher in a currency swap involving fixed-for-fixed payments in which
an exchange of principals take place. Jarrow et al. (1997) propose a Markov chain
model for valuing risky debt that explicitly incorporates a firm’s credit rating as an
indicator of the likelihood of default. The model provides the evolution of an arbi-
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trage-free term structure of credit risk spreads, and is most appropriate for the pric-
ing and hedging of credit derivatives. They show the way to use the probabilities of
credit rating changes and defaults computed from historical data to price default-
risky bonds. The parameters of the model are easily estimated using observed data
available in credit reports, such as Moody’s Special Report or Standard and Poor’s
Credit Review. They match the observed prices of default-free and default-risky
bonds and use the historical probabilities of migration to other credit ratings at the
same time. The risk-neutral probabilities of default or credit-rating changes are then
computed by multiplying the historical probabilities by a factor that can be inter-
preted as a default risk premium. Equipped with those risk-neutral probabilities,
one can value other default-risky financial instruments of the firm, such as credit
spread options and credit default swaps. They assume that the default risk premium
in moving to different credit ratings is the same, and that credit spreads change only
when credit ratings change. In addition, the correlation between default probabili-
ties and the level of interest rates is not allowed in their model. Lando (1998) incor-
porates the correlation between default probabilities and the level of interest rates,
and allows many existing term structures embedded in the valuation framework.
However, historical probabilities of defaults and credit rating changes are used on
the assumption that the risk premiums due to defaults and rating changes are zero.
Duffie and Singleton (1999) model the default process without reference to a credit
rating scheme. They assume that default is governed by the Poisson process and the
probability of default over a small time interval is proportional to the default intensity.
The probability of default could be time-varying and depend on the level of interest
rates, and the recovery rate could be random and depend on the market value of
zero-coupon risky bonds. In their empirical work, they assume that the default-
adjusted interest rate follows the square root process (Cox et al., 1985) and find that
their model fits the interest rate swap data very well. Their model can accommodate
different default-free term structure models and thus use the valuation results of
those models. Kijima (1998) explains how the Markov chain model leads to the
known empirical findings such that prior rating changes carry predictive power for
the direction of future rating changes and that a firm with low (high) credit rating is
more likely to be upgraded (downgraded) conditional on survival as the time hori-
zon lengthens. His model also explains in a practical way plausible statements such
as that bond prices as well as credit risk spreads would be ordered according to their
credit qualities. Kijima and Komoribayashi (1998) propose a new risk premium
adjustment to the numerical problems owing to the fact that highly rated bonds have
low default probabilities within a period of time. In extensive numerical experiments,
they show that their model is robust with respect to the recovery rate, especially for
highly rated bonds. Arvanitis et al. (1999) extend Jarrow et al. (1997) and develop
a credit spread model that takes into account both the jump and continuous
components. They also incorporate some features of Longstaff and Schwartz (1995)
in that credit spreads may follow a mean-reverting diffusion process. They allow
transition probabilities from one credit rating to another to depend on some state
variables and consider special kinds of dependence that maintain explicit computa-
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tion of credit spreads. They provide some examples of fitted curves using real data
and show the evolution of these curves with time. They show how the memory in
credit rating changes can be incorporated into the calibration, and illustrate how
this can provide a better fit to market prices. They also extend the model using
stochastic credit spreads, and test the fundamental assumption that the eigenvectors
of the transition matrices are constant with time and estimate the dimensionality
required to model the credit spread.

Comparison of Various Models

term structure models.

Model Advantages Drawbacks
Merton (1974) 1. Simple and intuitive. 1. Default occurs only at the ma-
turity of the debt.

2. Default occurs only when the firm
exhausts its assets.

3. Information on the historical
credit-rating changes and defaults
cannot be used.

4. Require the firm value as input.

5. Assume interest rate is constant.

6. Absolute-priority rule applies to
allocate assets.

Black and Cox Consistent with either net-worth or cash- | Same as above except 2.
(1976) flow-based insolvency.
Longstaff and 1. Incorporate both default risk and interest | Same as 3, 4, and 6 above.
Schwartz (1995) rate risk, and allow for stochastic term

structure. .

2. Can be extended to include stochastic

recovery rate, which allows for the

deviations from strict absolute priority.

Jarrow et al. 1. Exactly match the observed prices of | 1. Risk premium in moving to
(1997) default-free and risky bonds and use the different credit ratings is assumed
historical probabilities of migration to the same.

other credit ratings to get risk-neutral | 2. No correlation between default
probabilities. probabilities and interest rates.
2. Appropriate for the pricing and hedging | 3. No credit spread change in the
of credit derivatives. same rating.
Duffie and 1. Allow correlation between default | 1. Information on the historical
Singleton (1999) probabilities and interest rates. credit-rating changes and defaults
2. Recovery rate can be random. cannot be used.
3. Can accommodate different default-free
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lll. MODEL SPECIFICATION

I develop the model in discrete time and consider an economy on a finite time inter-
val [0, T*]. The length of the period is % > 0, and any time-point t has the form k*h
for some integral k. I assume that there is a full range of default-free and default-
risky zero-coupon bonds traded on the markets and that the markets are free of
arbitrage.

3.1 Forward Rate Process
Let f{t, T) denote the forward rate on the default-free bonds applicable to the period
(T, T+h), where 0 = t = T = T*-h for all ¢, T. In particular, when ¢ = T, the rate
A, 1) is called the “spot rate” or “short rate”, and denoted by r(¢). The forward rate
curve is assumed to evolve following the process:

f(t+h,T)= f(t, T) = alt, T)h + b(t, T)xVh

where a(z, T) is the drift and b(z, T) is the volatility of the process; and x is a random
variable. a(t, T) and b(¢, T) may depend on the information available at z.

Let V (1, T) denote the price of a default-free zero coupon bond of maturity T at
time £

T

Vo(t, T) =exp hz:f(t, kh)-hy.

k=-t—
h

Define B(¢) as the value of “money market account” at time ¢, which means using
a $1 initial investment and rolling over at the default-free short rate:

t
1,
h
B(t)=exp Zr(kh) “ht.
k=0

In a risk-neutral world, the equivalent martingale measure is defined with respect to
B(?) so that all asset prices discounted by B(#) will be martingale:

B {Vo(t +h, T)} _W(T) g { Vot + 1, T) B(r) }
B(t+h) B(1) B(t+h) V(2,T)
From the definition of V (¢, T) and B(),  have

T

Vot +h,T) | P _ . |
————“%(t’ ) =exp E’ [f(t+ B, kh)— f(t, kh)]-h |+ f(t, 1) h
..I_,+|
B(r)

B+ h) =exp{—f(t, 1) h}.
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The martingale condition, therefore, is

T

—}

Elexpl~ S 17t +h, ki)~ (&, k)] - | =1.

k=fii
I

Substituting the process of default-free forward rate into f{t + h, kh) — f(t, kh), the
martingale condition becomes

r
L
h 3
E'iexp| - 3, [a(h kh) - 1> + b(t, kh)-x-h/z] =1
k=541
h
T T
7! 1 ! ,
Z a(t, kh)=;l-2-ln E'lexp| - z b(t, kh)- x - h72
K=ty e
h n

A recursive relation between risk-neutral drift a and volatility b is thus derived.

3.2 Transition Matrix
Assume there are K possible ratings and being in a given rating gives all the infor-
mation relevant to the pricing structures involving credit risk. A Markov chain can
now represent the credit rating dynamics. State 1 represents the highest credit class,
state 2 represents the second highest, state X the lowest credit class, and state K+ 1
designates default. In Moody’s ratings, for example, state 1 represents Aaa and state
K represents Caa. In the model, the probabilities of credit rating changes depend on
the two credit ratings and the length of the time (time-homogeneous Markov chain),
as introduced by Jarrow et al. (1997). Assume also the default state K + 1 is absorb-
ing for the sake of simplicity.

Letp,(t, T) denote the actual probability of going from state i at time ¢ to state j at
time 7. The K + 1 X K + 1 transition matrix of the Markov chain from time ¢ to time
t+ his given by P

e+

[pu(t.t+h) polt.t+h) ... pi(tst+h)  puga(tt+h)]
pa(t,t+h) pu(tt+h) ... pa(tit+h)  pogu(t,t+h)
PI.H-II =
prit,t+h) pa(t,t+h) ... prx(t,t +h)  prgu(t.t+h)
L 0 o  ..... 0 1 i

where pij(t, t+h)=0foralli,j, i+, and forall {

K
Pixn(t, 1+ h)=1- ZFI pi(t, t+h)
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This ensures that the probabilities of possible state transitions add up to one.
Notice that the assumption of the default state K + 1 being absorbing implies that
once a firm reaches the default state K + 1, the probability of the firm’s staying in the
same state equals one (e.g. the probability of the firm transiting to any other state
equals zero).

Let q; (¢, T) be the risk-neutral counterpart of p, (t T). Under a risk-neutral prob-
ability measure the corresponding equivalent martmoale transition matrix from time
tto time ¢ + £ is given by:

Cqu(t,t+h)  qo(tt+h) ... qix(t, 1+ 1) qra(t,t+h)]
gu(t,t+h) gu(t,t+h) ..... Gax(t,t+h)  Gugn(t, t+h)
Orisn = : : : :
gritst+h) qraft,t+h) ... grx(t, 1+ 1) gra(t,t+h)
L 0 o ... 0 1 3

where qij(t, t+h)=0foralli,j, i # j,and foralli

Gixa(t,t +h)=1- Zi gs(t.t +h)

And p, (t t+ h) >0 if and only if q; (¢, t+ ) > 0. To impose more structure on these
probab111t1es I assume the risk premlum adjustments, 6(f), are such that the credit
rating process under the martingale probabilities satlsﬁeS'

0:(t)py(t,t + h) jEK+1

(L t+h)= .
% ) {1 ~ 01— pixalt,t+ 1)) j=K+1

The risk premium adjustment is proposed by Kijima and Komoribayashi (1998) to
overcome the drawback of the premium adjustment in Jarrow et al. (1997) due to
the small default probability p,, K + 1 in the denominator.?

2 The sum of the risk-neutral probability is equal to 1.

q,,(r t+h)= z 0.(t) - pyt, 1 + h) + quguat, t + 1)

w K+
= ei(f) L= pika(t, t + )]+ Gigu(t, £ + h)=1

3 In Jarrow et al. (1997), the risk premium adjustment is given by 7 such that g, (¢, # + h) =
Jr(t)p forall i, j, i # j where m(r) is a deterministic function of time and qij(t, t+h) = 0for

all i, j, i # j, and 2 et jui git,t+ M)l fori=1, , K + 1, the risk premium adjustment

() has to satisfy the condition: 0 < () = 1/(1 —¢,) for i = j. On the other hand, 7(f) = [V,

(t t+hy -Vt + DV = &) V(t, t+ 1) q,,,)- When Grin is sufficiently small, which is

always true in empirical research espec1ally for high credit ratings, compared to V,(z, t + 1)
~ Vi(t, 1+ h), the condition would be violated.
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In both Jarrow et al. (1997) and Kijima and Komoribayashi (1998), the risk pre-
mium adjustment is assumed to be deterministic. This means that the probabilities
of going from one credit rating to another are deterministic. Facing the ever-
changing market condition, market participants may require different compensa-
tion over time in order to bear the default risk. An intuitive way to deal with it is to
make the risk premium adjustment stochastic and thus risk-neutral default prob-
abilities may depend on some stochastic state variables. Since short-term risk-neu-
tral default probabilities are closely related to short-term credit spreads (the relation
will be derived later in this section), stochastic risk premium adjustments also allow
for more realistic patterns* for credit spreads than in Jarrow ez al. (1997) or other
studies. This allows changes in credit spreads even if the credit rating does not
change. The continuous changes in credit spreads may be due to variations in risk
premiums and liquidity effects.

3.3 Risk Premium Adjustment Process

It is natural to extend Jarrow et al.’s (1997) model, where the credit spreads for a
given rating are constant, to take into account both the jump and continuous changes
in credit spreads. Credit spreads and risk-neutral probabilities, therefore, are deter-
mined by the current credit rating and by some other state variables. Assume the
risk premium adjustment of a default-risky bond with credit rating i and maturity 7
at time ¢ evolves following the process

0t +h, T) - 6t, T) =t T)- h+ oi(t, T) - y - Vh,

where (¢, T) is the drift and o, T) is the volatility of the process; and yis a
random variable. &(z, T) and oz, T) may depend on the information available at ¢.
The correlation coefficient between x and y is p. Different specifications of oft, T)
and o(t, T) allow us to formulate various risk premium adjustment processes that
can in turn provide us with the most appropriate model for credit spreads in practice.

Because all the probabilities are larger than or equal to zero, and smaller than or
equal to 1, 6(f) must satisfy the condition

1

0<e(t) g —m———r.
( ) 1" p,“](+[(z, t+h)

However, I exclude the situation that 6(t) =0.
Let 7(t, T) denote the forward rate on defauli-risky bonds of credit rating i im-
plied from the spot yield curve, and s(z, T) denote the forward credit spread be-

tween f(¢, T) and 11 (z, T). s, )= n(, T) - f, 7). Let v ) denote the price of a
default-risky zero coupon bond of credit rating i and maturity T at time £

4+ From the empirical research on credit spread behaviour, the credit spread for a specific
risky bond typically exhibits both a jump and a continuous change. The jump part may
reflect credit migration and default, which is a discontinuous change of credit quality. On
the other hand, the continuous part indicates that the credit spread on a bond of a given
credit rating may change even if the defanlt-free interest rates remain constant.

5 The forward rate process on risky bonds can be calculated by n,(¢, T) = fir, T) + s{z, T).
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T

—1
It
Vi1, T) =expq > 1z, kh) - h{.
p=l
h
In the risk-neutral world, similar to what is derived for the default-free bonds, the
equivalent martingale measure is defined so that all asset prices discounted by B(?)
will be martingale:

JVit+hT)| _ Vi T)
E{ B(r+h) }_ B(t)

o, can be derived as a function of 0, and b, the diffusion terms of the risk premium
adjustment process and the default-free forward rate process.

Besides default probability, there is one more important component in determin-
ing the forward credit spread: the recovery rate. The recovery rate is the fraction of
market value that zero-coupon default-risky bonds would pay their claimholders in
the event of default.® Let §(r) denote the recovery rate of default risky bonds with
credit rating i at time . §(r) may include all information in the model up to and
including period z.

A one-period investment in the default-risky bond with credit rating i pays $1 at
time ¢+ /i if there is no default at ¢ + %, and $5i(t) if there is a default. In the risk-
neutral world, the expected cash flow discounting at the default-free rate must equal
the initial value of the investment, the price of the default-risky bond at time ¢. The
no-arbitrage condition is

Vit 1+ h) = Vo(t, £+ )1 = gy (. £+ 1) + 8(2) - G (2, £ + B)]
=exp(—f(t. 1) B)[1 ~ qixur(t, t + 1) + 8(t) - g (2, 1 + h)].
By the definition of the default-risky bond price, the price of a default-risky bond
at time ¢ with credit rating i maturing at 7 + 4 would be
Vi(t, t + h) = exp{~(f(t, 1) + 5z, 1)) - h}.

The relation between the forward credit spread for credit rating i and the risk-
neutra] default probability can be derived as

s(t,1) = ——Ilgln{l — Gugnlts 1+ ) + oty £+ B) - S0}

To link the risk premium adjustment to the prices of default-free and default-
risky bonds, it will be recalled that the transformation of the actual default probabil-
ity to risk-neutral one is

% Here, I use the assumption of “Recovery of Market Value” (RMV) in Duffie and Singleton
(1999) instead of the assumption of “Recovery of Treasury” (the terminology is from Duffie
and Singleton) that a zero-coupon risky bond trades for the same price as the fraction () of
a default-free zero coupon bond with the same maturity in the event of default.
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qi,K«H(t’ r+ h) = ]. - 6,(t)(1 and pi,K+l(t9 r+ h)).
On the other hand, from the no-arbitrage condition, I have

Vol(t, t + h) = Vi(t, t + h)
Vo(t, 1+ h)-(1=68(1))

Gixn(t, 1 +h)=

The risk premium adjustment 6(f) can be obtained by the following:

_ 1 _ Wt 1+ h) -Vt t + h)
6(1)= 1= piga(t,t+ 1) { Vo(t, 1+ h)- (1= 8(2)) }

3.4 Extension
The setup can be easily extended to the continuous-time model by specifying the
K+ 1 x K + 1 generator matrix for a time-homogeneous transition Markov chain:’

[Au(t,t+h)  An(t,t+h) ... Aix(t,t+h)  Aga(t.t+h)]
Au(t,t+h) Ap(t,t+h) ... Lox(t,t +h)  Apgaltit+h)
Ao = : : : : s
At t+h) Aga(t,t+h) ... At t +h)  Agxa(t,t+h)
L 0 o ... 0 0 i

where l,.j(t, t+h)=0foralli,j,and forall i

Aiga(t,t +h)=— Z; Ayt t + h).

The K+ 1 X K+ 1 t-period probability transition matrix is given by

P(t)=exp(t-A)= igk/’\_)

The continuous-time model can thus be developed following steps in Jarrow
et al. (1997) and including a stochastic term U(#).

In addition, the setup can be extended easily to different stochastic risk premium
adjustment processes. Following the same steps, one can include mean-reversion or
other features in the model.

IV. MODEL IMPLEMENTATION

The empirical transition matrix P can be easily obtained from past observations of
credit rating changes and defaults in rating agencies’ reports, Moody’s Special Report,

7 For more detail, see Jarrow et al. (1997).
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and Standard & Poor’s Credit Review, for example. The recovery rate can also be
obtained from historical data in those rating agencies’ reports. &) may change with
time or depend on some state variables so that it may have different values in each
period.

The standard discrete-time assumption® applied to stochastic process variables, x
and y, is that they are binomial random variables and that each variable takes the
values of either +1 or —1 with probability 1/2. The correlation p between two vari-
ables is allowed in the model, so the assumed joint distribution of x and y is

[(+1,+1),  with prob (1+p%
(-1,—1), with prob (1+P%
(+1,=1), with prob (l—p%'
(=1,+1), with prob (1'-9%

In general, p may not be equal to zero or may even be constant over the binomial
tree. One may apply in each period with a different value of p and allow p to change
with time or depend on some state variables. p can be estimated by historical data of
forward interest rate and risk premium adjustment.

Once the parameters of the two processes, risk-neutral drifts a and o, as well as
volatility b and o, are computed at any time ¢, a double-binomial model can be
constructed with four branches of possible values of forward interest rates and risk
premium adjustment emanating from each node. The risk premium adjustment can
be inferred from the zero-coupon bond prices by the following formula (See appen-
dix for the multi-period extension):

B 1 _ Vot t+h) =Vt t+ h)
bi) = 1— pign(t, 1+ h) {1 Vo(t,t + k) - (1= 6,2)) }

(x, y)=1

Moreover, given forward interest rates, risk premium adjustment, and empirical
transition matrix, one can obtain the equivalent martingale transition matrix
(including risk-neutral default probabilities) and forward credit spread by the fol-
lowing formula®:

0:(2)py(t, t + h) j#K+1

et +h) =
ail ) {1 —0:(t)1 — pixn(t, t + h)) j=K+1

s{t, )= ~711-In{1 = Gixna(t, t+ 1)+ G gu(t, £+ ) - 8:(2)}

8
9

The same implementation is also used in Das and Sundaram (2000).
See appendix for the matrix form of computing equivalent martingale transition matrix by
empirical transition matrix and risk premium adjustment matrix.
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All the information relating to the three key factors (interest rate, default

probabilities, and recovery rate) involved in the valuation of risky debt is therefore
obtained and the double-binomial tree evolves as follows:

m=

m [E,, 6, QO]
F.6.0.9 n [Fys 6 Qu 64l
n I:F;d’ 9u’ Qdu’ 6du:|
m [Fd’ ed’ Qdd’ 6dd]

1tp and n=-1-:—l—)-.
4 4

Incorporating the forward credit spread, the double binomial tree involves all the

necessary information for pricing a range of credit derivatives. The notation is ex-
plained as the following:

1. F, and F refer, respectively, to the forward interest rates that result from F if
x=+1 and —1.

2. 6, and 6, refer, respectively, to the risk premium adjustment that results from
9if y = +1 and —1 for the whole range of credit ratings."

3. Q,, refers to the equivalent martingale transition matrix (1nc1ud1n0 risk-
neutral default probabilities) given (F, 6)) for the whole range of credit ratings;
Q,» Q,.and Q,,, are defined analogously.

4. &, refers to the recovery rate given (F,, 6,) for the whole range of credit rat-
mbs (,,); 0, 6,,and §,,, are defined analooously

’uu ud? dd’

V. APPLICATION"

The model presented in the previous section can be applied to different fields of
academic research and practical use. The most straightforward application is prob-
ably the pricing of credit-related derivatives. Two examples, credit spread options
and credit swaps, are analysed in this section. In addition to credit derivative pricing,
the model draws important implications with regard to the valuation of near-default
firms and to the computation of value of risk (VAR).

5.

1 Credit Spread Option

A credit spread option is a credit derivative that is written on an underlying credit
spread. Consider a European call option written on the forward credit spread of a

HY

The up state and down state of 8, for all credit rating i. Although risk premium adjustment
processes of default-risky bonds with different credit ratings are generated by the same state
variable (the same diffusion process), different parameters estimated from historical prices
of default-risky zero-coupon bonds with different credit ratings would produce different
risk premium adjustments (scaling effect) for different credit ratings in each state.

The applications are modified from Das and Sundaram (1998).
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default-risky bond with credit rating i at time ¢. The call option is defined as a con-
tract that pays off at maturity date 7T if the spread is trading above an exercise price
X. This derivative may be used to insure a bond portfolio against declines in credit
quality. It is also valuable for option writers since credit spreads tend to be more
volatile than interest rates, resulting in large option premiums. Furthermore, Das
(1995) indicates that spread volatility declines rapidly towards bond maturity, mak-
ing time decay an attractive feature for spread option writers. The payoff of the
contract is

Max([0, 57,(T, T) — X]| ={s,(T, T) - X},

where z, and z, represent the credit rating at time ¢ and T respectively. In this case,
z, =1L
The value (the premium) of the option at time ¢ is given by

T

]

h
IL(t, T) = Efyexpl Y. f(t, kh) - h{- Ef{s;,(T,T)~ X}, },

where E? denotes the expectation operator at time ¢ with risk-neutral probabilities m
and n in the double-binomial tree, and E2 denotes the expectation operator at time T
conditional on z, = i with the equivalent martingale transition matrix 0, ; (including
risk-neutral default probabilities) on each lattice.

From the definition of the expectation operator E2 and the relation between the
credit spread and risk-neutral default probabilities, E2{s, (T, T) - K} can be further
simplified:

K+1

Ef{s;(T,T)- X}, = Z,Qij(f’ TWHs{(T,T)~ X},

K+l ) 1
= zq'](t’ T){_Zln{l - qj,K-H(T: T + h) + qj.KH(Ts T + h) . 6J(T)} - X}
=

+
Pricing this derivative is not difficult. Terminal payoffs E2(s, (T, T) — K} are gener-
ated on the lattice by taking the expectation of the positive difference between the
spot spread at that time and the exercise price of the option. Discounting these
payoffs back appropriately gives the option premium.

5.2 Credit Swap

Credit swaps pay the buyer a given contingent amount at the time of a given credit
event, such as a default. The contingent amount is often the difference between the
face value of a bond and its market value on the credit event, and is paid at the time
the credit event occurs. The buyer usually pays an annuity premium until the time
of credit event or the maturity date of the credit swap, whichever comes first. The
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setting in this paper can easily handle different credit events such as credit rating
changes.'? Here, a credit default swap is ‘considered as an example. Assume, for the
sake of simplicity and illustration, a single lump-sum payment is made to purchase
a default insurance for a default-risky bond with credit rating i and maturity 7* in
the credit default swap contract maturing at time 7' (T* > T). The payoff on default
is the loss in the value on the bond. If there are (T — £)/h periods before the underly-
ing bond matures, then the default may happen in any of the periods. The payoffs of
the credit default swap are 1 — &) at all points on the sample path. These payoffs
are multiplied by the “first-passage” (the terminology is used in the Das (1995))
default probability, which is the probability of default conditional on no prior default.
The value of the credit default swap is given by

E,Q{exp[—— ft, 1) h)- Gunltst+h)-{1—- 6t + h)} +
exp[—zzzof(t, t+ kh)- h] . {i gt t+h)- qjxu(t +ht+28)-{1-6,(t + 211)}} +

exp[ z St 1+ 1) - h] {Zq,l(t t+2h)- qjxa(t +2h,t +3h)-{1- 5(t+3h)}}

j=1

. +exp[ 24 f(t kh) - h] {Zq,.'j(z,:r—h)-qj,m(T ~h, T)-{1~5,-(T)}H

=

where E 2, as above, denotes the expectation operator at time ¢ with risk-neutral
probablhtles m and n in the double-binomial tree. It is not difficult to extend the
pricing model to determine the values of different credit swaps.

V1. CONCLUDING REMARKS

This paper extends Jarrow et al. (1997) to include both the stochastic forward inter-
est rate and the stochastic risk premium adjustment. The model is expected to better
describe the dynamics of credit spreads and utilise historical information. By allow-
ing for more variables and skipping unnecessary assumptions, the model is designed
to price default-risky corporate bonds and credit derivatives more accurately and
efficiently. However, there is still a lot of empirical research to be done to under-
stand the performance of the model and the comparison to existing models.

There are some other problems that need to be solved in the future modelling of
credit risk. Financial restructuring that often occurs upon defaults, such as the rene-
gotiation of the terms of the debt contract, including the extension of the maturity,

12 There are credit derivatives such as credit-sensitive notes and certain types of swaps (with
credit triggers) whose payoffs explicitly depend on the occurrence of particular credit events,
such as credit rating changes.
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the reduction or delay of due payments, the change of debt form, and so on, ought to
be considered in credit risk models. In practice, the market would price the anti-
cipated debt restructuring into the value of a default-risky bond in one way or another.
Moreover, unlike government bonds, some default-risky corporate bonds are thinly
traded. A liquidity premium should therefore be incorporated into the pricing model
of these securities.

APPENDIX

The empirical transition matrix P and the equivalent martingale transition matrix Q
is

[pu(t.t+h)  pa(t,t+h) ... pix(t,t+h)  prga(t.t+h)]
pa(t,t+h) pu(t,t+h) ..... Pax(t,t+h)  pogn(t,t+h)
B = : : : :
Prit,t+h) peo(t,t+h) ... Prxlt,t+h)  prgalt,t +h)
0 o ... 0 1 E
gt t+h)  qut,t+h) ... gkt t+h)  qga(tt+h)]
gn(t,t+h) gun(t,t+h) ... Gkt t+h)  gogn(t,t+h)
O isn = : : : :
gt t+h) qra(t,t+h) ... grx(t, 1+ h) g ga(t,t+ 1)
. 0 o ... 0 1 i

It can be written in the form of A, B, and O as follows:

Afen Bl A2 po
B :( £+h ¥t I) and O :( 11+ r1+h ’
0 1 0o 1

where A? and A? are the sub-matrix defined on the non-absorbing states, B and B2
are the column vecFors respectively with default probability Pixn and g, .. as
components, and O is the zero row vector.

[ pu(t,t+h)  pu(tt+h) ... Pkt t+h)  pig(tt+h) ]
palt,t +h) pu(t,t+h) ... Dax(t, 1+ h) hx(t t+h)
AP = : : : :
rath . - M :
Pt it +h) praa(tt+h) ... Prx-(t, 1+ h)  prok(t,t+h)
L pxa(t, 0+ 1) pra(t,t+h) ... Prx-{tt+h)  prklt,t+h) ]
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[ qu(t,t+h)  qu(tr+h) ..l Qi t+h)  quilt,t+h) ]
qu(t, t+h) gu(t,t+h) ... Gra(t:t+h) gkt t+h)
A2 = . : . H
1+l . . ) . . H
Gr-i(t, 1+ h) ggoo(t,t+h) ... Gkt t+h) gkt t+h)
gt t+h)  qat,t+h) ... grx(t.t+h)  qrklt, t+h) ]

¥ (#) is denoted to be the diagonal matrix with the risk premium adjustments 6, as
diagonal components, and E the column vector with 1 as components.

A,‘?,;,;, = ‘PD(t) : Ar5+lx and Bg+/x =E- ‘PD(t) : BI[.,HIJ -E

Following the steps in Kijima and Komoribayashi (1998), if A2 is invertible, multi-
period risk premium adjustments can be derived as follows:

A(%Hh = A(% : ‘PD(I) : A15+h

Wo(t)- Afew - E= A(gz:—l “Af E

B, is denoted to be the diagonal matrix with diagonal components 1-q,,,>0and
() =Y (1) E. So that

‘P(t) = BBI : A(gzl_l ’ %+Ix -E

q;‘(O, 1) is denoted to be the components of A2 and writing in terms of components,

1 i o V(0,1 + 1)~ §(t + h)V(0, - h)

q;7'(0,1)

0f) = —
@ 1— pigalt,t +h) 535 [1—6;(t + m)]V(0, t + 1)

with A%' , = I, the identity matrix.
In particular, when t=0and & = 1,

1 v(0,1)-5{()Vi(0,1)
- Pi.K+l(0’ 1) [1 - 5;‘(1)]‘/0(0’ 1)

8,(0)=
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