Subject Description Form

Subject Code	ABCT5037			
Subject Title	Green Chemistry for Sustainable Products Development			
Credit Value	3			
Level	5			
Pre-requisite/ Co-requisite/ Exclusion	Nil			
Objectives	This subject aims to introduce the principles and the application of green chemistry for developing eco-friendly and safe chemical products. Students will learn to identify major environmental challenges associated with chemical industries. Students will be equipped with tools available to scientists and engineers to practice green, energy-efficient and safe chemistry. This subject will also provide students with updated development of selected emerging technologies for sustainable chemical synthesis.			
Intended Learning Outcomes	 Upon the successful completion of this subject, students will be able to: a) identify common environmental sustainability issues associated with chemical processes; b) apply the concepts and principles of green chemistry to develop sustainable chemical processes and products; c) analyze the efficiencies and limitations of different green chemistry tools for designing sustainable processes and products; d) recognize some latest developments in new chemical processes and technologies to develop greener products. 			
Subject Synopsis/ Indicative Syllabus	 Green chemistry and processes in the context of sustainability: Environmental, health and safety issues Principles of green chemistry for sustainable development Strategies and principles for developing sustainable processes: Waste minimization and atom economy Reduction of materials use (catalytic reactions; reduction of non-renewable feedstocks or starting materials) Reduction of energy requirement (energy efficiency improvement; alternative energy sources) 			

	• Reduction of risk and hazard (safe product design;						
	alternative solvents)						
	3. Measuring and controlling environmental performances						
	 Evaluating the effects of chemicals on human, wildlife and local environment Introduction of Life Cycle Assessment (LCA) methodology and framework Product- and process-oriented LCA Evaluating methods to design safer chemicals 						
	4. Catalysis and green chemistry						
	 Introduction to catalysis Heterogeneous and homogeneous catalysts for bulk and fine chemical industries Catalytic oxidation using hydrogen peroxide Biocatalysis 						
	5. Organic solvents						
	 Organic solvents and volatile organic compounds Solvent-free systems Supercritical CO₂ as the solvent Ionic liquids and fluorous biphasic solvents Comparing of green-ness of solvents 						
	6. Renewable feedstocks and starting materials						
	 Chemicals from fatty acids Polymers from renewable feedstocks Conversion of biomass to some other chemicals Catalysts from chemical wastes 						
	7. Emerging green technologies for green chemical processes						
	 Design processes for energy and atom-efficiency Photochemical reactions Chemistry with microwaves Sonochemistry Electrochemical synthesis 						
Teaching/Learning Methodology	Lecture : basic concepts and working principles will be introduced and discussed with particular emphasis on the latest applications. Examples will be used to illustrate the applications of various methods and techniques. Tutorial sessions will be used to consolidate the contents of lectures and guide the students in problem solving and discussion.						

	Presentation and written essay: The class will be divided into groups with 2~3 students per group, and various topics of the subject will be assigned to each group. Students will conduct literature research on the topic, present it in the class, and submit an individual written essay.						of the onduct	
Assessment Methods in Alignment with Intended Learning Outcomes	Specific assessment methods/tasks	% weighting	Intended subject learning outcomes to be assessed (Please tick as appropriate) a b c d)
	1. Presentation	30%	✓	~	~	~		
	2. Written essay	20%	~	~	~	✓		
	3. Examination	50 %	~	~	~	✓		
	Total	100%					1	
	 Explanation of the appropriateness of the assessment measures assessing the intended learning outcomes: Presentation: Students are required to prepare an oral p on assigned topics related to the emerging technol sustainable chemical synthesis. They will work in a small literature searching, discussion, and preparation of sl written report. Understanding of the topic, communic and critical/creative thinking will be assessed. 							tation es for up for and a
	Written essay: Students need to analyse at least one cas to green chemistry and processes. The assigned case que be sent to students one week in advance. Students need an analysis report before the in-class group presentat objective of the written essay is to assess students' unde of the principle and application of green chemistry and tech for developing greener products.						testion to station tersta	n will ubmit . The inding
	Examination is a major assessment component of the subject, which will be conducted as a closed-book examination. This will be used to test the students' overall understanding of all intended learning outcomes and problem-solving skills.							

Student Study Effort Expected	Class contact:	
	• Lecture	33 Hrs.
	Presentation	6 Hrs.

	Other student study effort:				
	 Self-study and group work 	81 Hrs.			
	Total student study effort	120 Hrs.			
Reading List and References	Anne E. Marteel-Parrish, Martin A. Abraham, Green and Engineering: A pathway to sustainability, Wiley				
	Paul T. Anastas, John Charles Warner, <u>Green Chemistry: Theory</u> and Practice, Oxford University Press, 1998.				
	Davor Margetic, Vjekoslav Štrukil, <u>Mechanochemical Organic</u> <u>Synthesis</u> , Elsevier, 2016				
	J. L. Luche, <u>Synthetic Organic Sonochemistry</u> , Plenum Press, 2001				
	Jean-Marc Lévêque, Giancarlo Cravotto, François Delattre, Pedro Cintas, <u>Organic Sonochemistry: Challenges and Perspectives for</u> <u>the 21st Century</u> , Springer, 2018				
	Georgios Stefanidis, Andrzej Stankiewicz, <u>Alternative Energy</u> <u>Sources for Green Chemistry</u> , RSC publication, 2016				
	Cheanyeh Cheng, Enzyme-Based Organic Synthesis	<u>s</u> , Wiley, 2022			
	Andreas Sebastian Bommarius, Bettina R. Riebel, <u>B</u> Wiley, 2004	<u>Biocatalysis</u> ,			