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Abstract

We consider a class of mathematical programs with complementarity constraints (M-
PCC) where the objective function involves a non-Lipschitz sparsity-inducing term. Due
to the existence of the non-Lipschitz term, existing constraint qualifications for locally
Lipschitz MPCC cannot ensure that necessary optimality conditions hold at a local mini-
mizer. In this paper, we present necessary optimality conditions and MPCC-tailed qualifi-
cations for the non-Lipschitz MPCC. The qualifications are related to the constraints and
non-Lipschitz term, which ensure that local minimizers satisfy these necessary optimality
conditions. Moreover, we present an approximation method for solving the non-Lipschitz
MPCC and establish its convergence. Finally, we use numerical examples of sparse so-
lutions of linear complementarity problems and the second-best road pricing problem
in transportation science to illustrate the effectiveness of our approximation method for
solving the non-Lipschitz MPCC.
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1 Introduction

Sparse solutions of systems of equalities and inequalities have been extensively studied for

many important problems in signal processing, image science, statistical and machine leaning

[2,4–7,9,10,12,14,15,19,33,41,42,49]. In this paper, we are interested in sparse solutions of

complementarity problems that is a system of inequalities with a complementarity equality.

Sparse solutions of linear complementarity problems (LCP) are solutions of the following

problem [13]:
min ‖x‖0
s.t. x ≥ 0, Mx+ q ≥ 0, xT (Mx+ q) = 0,

(1.1)
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where M ∈ IRn×n, q ∈ IRn, and ‖x‖0 denotes the number of nonzero entries in x.

The non-Lipschitz function ‖x‖pp :=
∑n

i=1 |xi|p (0 < p < 1) has been used as a continuous

approximation of ‖x‖0. In particular, it has been shown that there is p̄ ∈ (0, 1) such that

solutions of the following problem

min ‖x‖pp
s.t. x ≥ 0, Mx+ q ≥ 0, xT (Mx+ q) = 0

(1.2)

with any p ∈ [0, p̄] are solutions of problem (1.1) in [13]. Since LCP can characterize the

optimality conditions of linear and convex quadratic programming, problem (1.2) can be used

to find sparse solutions of linear and convex quadratic programming problems.

In this paper, we consider the following problem:

min F (x) := f(x) + ‖Dx‖pp
s.t. G(x) ≥ 0, H(x) ≥ 0, G(x)TH(x) = 0,

(1.3)

where p ∈ (0, 1), D ∈ IRr×n, and f : IRn → IR, G,H : IRn → IRm are continuously

differentiable. The feasible region of problem (1.3) can characterize optimal solutions of

convex programming problems or equilibria of equilibrium systems [34].

Problem (1.3) is a class of mathematical programs with complementarity constraints

(MPCC), which has numerous applications in economics and engineering [34]. However, all

existing results in the MPCC literature assume local Lipschitz continuity of functions, which

are not applicable to problem (1.3) due to the existence of non-Lipschitz term ‖Dx‖pp. The

research in theoretical and numerical treatments for locally Lipschitz MPCC focuses mainly

on the difficulty that Mangasarian-Fromovitz constraint qualification (MFCQ) is violated at

every feasible point; see [39, 47]. Several stationarity concepts such as Clarke stationarity,

Mordukhovich stationarity, and strong stationarity, and associated MPCC-tailed constraint

qualifications, and perturbation analysis for parametric MPCC have been studied; see, e.g.,

[21–23, 28, 37, 39, 46, 47] and the references therein for more discussions. Moreover, many

numerical methods have been proposed to solve locally Lipschitz MPCC such as regularization

(or relaxation) methods [24,40], sequential quadratic programming methods [18], augmented

Lagrangian methods [27], interior point methods [32], active set methods [20,26], and penalty

function methods [25].

Optimization problems involving the non-Lipschitz term ‖ · ‖pp (0 < p < 1) and linear

constraints or box constrains have been widely used to induce a sparse solution in regression,

feature selection in machine learning, edge preserving image restoration, compressed sensing

in signal processing, and Markowitz portfolios [4–6]. Optimality conditions and lower bound

theory have been established for these problems [14]. Moreover, smoothing regularization

methods [4], smoothing trust region methods [12], smoothing SQP methods [30], iteratively

re-weighted minimization methods [8, 10, 15, 33, 49], and penalty function methods [11] are

proposed for solving these problems, in which ‖ ·‖pp is approximated by locally Lipschitz func-

tions. However, existing theory and algorithms for convexly-constrained optimization with a

non-Lipschitz objective function are not applicable to problem (1.3) due to the existence of

complementarity constraints.
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The smoothly clipped absolute deviation (SCAD) [17] is often used as a sparsity-inducing

function in the literature. It has been shown that the SCAD function may be seen as a

surrogate for `0 quasi-norm under two conditions ( [31, Theorem 3.2 and Corollary 3.2]).

However, the conditions are difficult to hold for problem (1.1). On the other hand, we have

the existence of p̄ ∈ (0, 1) such that the solution set of problem (1.2) with p ∈ (0, p̄) is

contained in the solution set of problem (1.1) without conditions.

This paper aims to derive necessary optimality conditions of problem (1.3) and propose

associated qualifications, and develop an approximation method for finding points satisfying

these necessary optimality conditions. Our main contributions are summarized as follows.

• We investigate the applicability of the basic qualification (BQ) at x∗ ∈ F :

−∂∞F (x∗) ∩NF (x∗) = {0}, (1.4)

where F := {x ∈ IRn : G(x) ≥ 0, H(x) ≥ 0, G(x)TH(x) = 0} is the feasible region

of problem (1.3), ∂∞F (x∗) is the horizon subdifferential of F at x∗, and NF (x∗) is

the limiting normal cone to F at x∗. The BQ ensures the validity of the sum rule

of the subdifferentials of the objective function F and the indicator function δF (e.g.,

[38, Corollary 10.9]), which plays an important role in developing necessary optimality

conditions for problem (1.3) as shown in Section 2. We provide conditions that imply

the failure of the BQ due to the existence of the non-Lipschitz term. In particular, the

conditions imply that the BQ fails at any feasible point x with zero components for

problem (1.2).

• Motivated by the stationarity concepts of locally Lipschitz MPCC, we present the

Clarke (C-), Mordukhovich (M-), and strong (S-) stationarity conditions for problem

(1.3). Moreover, we propose two MPCC-tailed qualifications which guarantee that

M-stationarity and S-stationarity are necessary for local optimality of problem (1.3),

respectively. To the best of our knowledge, there are no necessary optimality conditions

for non-Lipschitz MPCC in the literature.

• We propose an approximation method for solving problem (1.3). At each step of the

method, the non-Lipschitz term is approximated by a locally Lipschitz function and

the complementarity constraints are relaxed such that certain constraint qualifications

hold. We show in Theorem 4.1 that any accumulation point of the sequence generated

by our method is C-stationary under MPCC linear independence (LI) qualification.

Moreover, we present weak second-order necessary conditions (WSONC) for the ap-

proximation problems, and show in Theorem 4.2 that the accumulation point is also

M-stationary (stronger than C-stationary) if MPCC-LI qualification holds and the ap-

proximation problems satisfy WSONC. We also provide a sufficient condition such that

the accumulation point is S-stationary (stronger than M-stationary) in Theorem 4.3.

The rest of the paper is organized as follows. In Section 2, we study the applicability

of the BQ and derive necessary optimality conditions for problem (1.3). In Section 3, we
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introduce the approximation problems of problem (1.3) and present second-order necessary

conditions for these approximation problems. In Section 4, we propose an approximation

method for solving problem (1.3) and establish its convergence. In Section 5, we present

numerical results of our approximation method for solving problem (1.2) and a second-best

road pricing problem in transportation science.

1.1 Notation and terminology

The following notation will be used throughout this paper. For any given x ∈ IRn, ‖x‖
denotes the Euclidean norm of x and Diag(x) the diagonal matrix whose ith diagonal entry

is xi. We let Bδ(x) denote an open ball centered at x with positive radius δ and |J | the

number of elements of a finite set J . We let e denote a vector of all ones and ei a unit vector

whose i-th component is 1 with approximate dimension, and let Ir×r be a r × r identity

matrix. We let ∇F (x) stand for the transposed Jacobian of a smooth function F at x. Given

a matrix A ∈ IRr×l and an index i ∈ {1, . . . , r}, Ai denotes the transpose of the ith row of

A. For any θ ∈ IR, we let

sign θ =


1 if θ > 0,

[−1, 1] if θ = 0,
−1 if θ < 0.

The feasible region of problem (1.3) is assumed to be nonempty and can be rewritten as

F = {x ∈ IRn : (G(x), H(x)) ∈ Cm }, (1.5)

where Cm := {(a, b) ∈ IRm × IRm : a ≥ 0, b ≥ 0, aT b = 0} and we write C instead of C1. For a

given x ∈ F , we define the following index sets:

I0(x) := {i = 1, . . . , r : DT
i x = 0}, I6=(x) := {i = 1, . . . , r : DT

i x 6= 0},
IG(x) := {i = 1, . . . ,m : Gi(x) = 0}, IH(x) := {i = 1, . . . ,m : Hi(x) = 0},
I+0(x) := IH(x)\IG(x), I00(x) := IG(x) ∩ IH(x), I0+(x) := IG(x)\IH(x).

It is obvious that {I+0(x), I00(x), I0+(x)} is a partition of {1, . . . ,m}.
Given a closed set Ω and a point x∗ ∈ Ω, the regular normal cone of Ω at x∗ is a closed

and convex cone defined as

N̂Ω(x∗) := {d : dT (x− x∗) ≤ o(‖x− x∗‖) ∀x ∈ Ω},

where o(·) means that o(α)/α→ 0 as α ∈ IR+ → 0, which is actually the polar of the tangent

cone of Ω at x∗, and the limiting normal cone of Ω at x∗ is a closed cone defined as

NΩ(x∗) := {d : ∃xk ∈ Ω, xk → x∗,∃dk ∈ N̂Ω(xk) s.t. dk → d}.

For a continuous function ϕ : IRd → IR and a point x∗ ∈ IRd, the regular subdifferential of ϕ

at x∗ is defined as

∂̂ϕ(x∗) := {v : ϕ(x) ≥ ϕ(x∗) + vT (x− x∗) + o(‖x− x∗‖) ∀x ∈ IRd},

4



the limiting subdifferential of ϕ at x∗ is defined as

∂ϕ(x∗) := {v : ∃xk → x∗, vk ∈ ∂̂ϕ(xk) s.t. vk → v},

and the horizon subdifferential of ϕ at x∗ is defined as

∂∞ϕ(x∗) := {v : ∃xk → x∗, vk ∈ ∂̂ϕ(xk) and tk → 0 with tk ≥ 0 s.t. tkv
k → v}.

It is well-known that when ϕ is continuously differentiable at x∗, then ∂ϕ(x∗) = {∇ϕ(x∗)};
see, e.g., [38, Exercise 8.8], and moreover, ϕ is Lipschitz around x∗ if and only if ∂∞ϕ(x∗) =

{0} by [38, Theorem 9.13].

The following lemma will be employed in Section 2.

Lemma 1.1 Let x ∈ F . Then for any (u, v) ∈ IRm× IRm with ui = 0 i ∈ I+0(x), vi = 0 i ∈
I0+(x), ui ≥ 0, vi ≥ 0 i ∈ I00(x), we have that

−∇G(x)u−∇H(x)v ∈ NF (x).

Proof. It follows from [38, Theorem 6.14] and the definition of normal cones that

(∇G(x),∇H(x))N̂Cm(G(x), H(x)) ⊆ N̂F (x) ⊆ NF (x).

By [38, Proposition 6.41], it is easy to see that

N̂Cm(G(x), H(x)) = N̂C(G1(x), H1(x))× . . .× N̂C(Gm(x), Hm(x)),

where the regular normal cone N̂C(Gi(x), Hi(x)) can be directly calculated as (e.g., [45,

Proposition 2.7])

N̂C(Gi(x), Hi(x)) =

(ui, vi) :
ui ∈ IR, vi = 0 if Gi(x) = 0 < Hi(x)
ui = 0, vi ∈ IR if Gi(x) > 0 = Hi(x)
ui ≤ 0, vi ≤ 0 if Gi(x) = Hi(x) = 0

 .

Then the desired result follows immediately from the above three formulas.

2 Necessary optimality conditions

To the best of our knowledge, the developed necessary optimality conditions for MPCC in

the literature assume local Lipschitz continuity and even continuous differentiability of all

involved functions. Since the objective function of problem (1.3) is not locally Lipschitz, all

the existing results are not applicable. In this section, we will develop necessary optimality

conditions for problem (1.3).

Clearly we can equivalently rewrite problem (1.3) as “ min F (x) + δF (x)”, where δF is

the indicator function of F . By Fermat’s rule (e.g., [38, Theorem 10.1]), the most general

stationarity, 0 ∈ ∂(F + δF )(x∗), holds at a local minimizer x∗ of problem (1.3) without
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requiring any condition. A sufficient condition for a more explicit and useful stationarity,

0 ∈ ∂F (x∗) +NF (x∗), to hold is the BQ (1.4) at x∗.

We now investigate the applicability of the BQ for problem (1.3). Consider a special case

of problem (1.3)
min ‖Dx‖pp
s.t. x ≥ 0, Mx+ q ≥ 0, xT (Mx+ q) = 0,

(2.1)

where D = [Ir×r, 0r×r2 ] ∈ IRr×n with n = r+ r2. Problem (2.1) is more general than problem

(1.2) since these two problems are the same when r2 = 0. Let y := Dx. It is clear that when

y > 0, the objective function φ(·) := ‖ · ‖pp is Lipschitz around x since ∂∞φ(y) = {0}, and

thus the BQ holds since 0 ∈ NF (x). On the other hand, φ is not Lipschitz around x since

∂∞φ(y) 66= {0} when y 6> 0. In this case, the BQ fails as shown in the following.

Proposition 2.1 For problem (2.1), the BQ fails at all feasible point x with zero components

in {1, . . . , r}.

Proof. Let y := Dx and recall the definition of D in problem (2.1). The horizon subdiffer-

ential of φ at x can be easily derived as follows

∂∞φ(y) = {(a, b) ∈ IRr × IRr2 : ai = 0 if yi > 0, b = 0}. (2.2)

Applying Lemma 1.1 to the reformulation F = {x : (x,Mx+ q) ∈ Cn} implies that

S :=

{
−u−MT v :

ui = 0 i ∈ I+0(x), vi = 0 i ∈ I0+(x)

ui ≥ 0, vi ≥ 0 i ∈ I00(x)

}
⊆ NF (x).

Then to get the desired result that−∂∞φ(y)∩NF (x) 6= {0}, it suffices to show that−∂∞φ(y)∩
S 6= {0}. Let i0 ∈ {1, . . . , r} be an index such that yi0 = xi0 = 0 and ei0 ∈ IRn. It is clear

that ei0 ∈ ∂∞φ(y) by (2.2). On the other hand, it is easy to see that −ei0 = −u − v, with

u = ei0 and v = 0, belongs to S. Thus we have 0 6= −ei0 ∈ −∂∞φ(y) ∩ S. The proof is

complete.

From Proposition 2.1, it is reasonable to infer that the BQ is difficult to hold for problem

(1.3). We next investigate how the BQ works for problem (1.3). When D is of full row rank,

we have the following result.

Proposition 2.2 Let x∗ ∈ F and I∗0 := I0(x∗) 6= ∅. Assume that D is of full row rank. If

there exists a vector (λ, u, v) ∈ IR|I
∗
0 | × IRm × IRm such that

−∇G(x∗)u−∇H(x∗)v +
∑
i∈I∗0

λiDi = 0, λ 6= 0,

ui = 0 i ∈ I+0(x∗), vi = 0 i ∈ I0+(x∗), ui ≥ 0, vi ≥ 0 i ∈ I00(x∗),
(2.3)

then the BQ fails at x∗ for problem (1.3).
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Proof. Using the reformulation (1.5) and Lemma 1.1, it follows that for all (u, v) with

µi = 0 i ∈ I+0(x∗), νi = 0 i ∈ I0+(x∗), µi ≥ 0, νi ≥ 0 i ∈ I00(x∗), we have that

−∇G(x∗)u−∇H(x∗)v ∈ NF (x∗).

This together with the assumption implies that there is λ 6= 0 such that

−
∑
i∈I∗0

λiDi ∈ NF (x∗). (2.4)

Since D is of full row rank, it is clear that
∑
i∈I∗0

λiDi 6= 0 and moreover, by [38, Exercise 10.7

and Corollary 10.9], it follows that∑
i∈I∗0

λiDi ∈ ∂∞F (x∗) =
{∑
i∈I∗0

µiDi : µi ∈ IR i ∈ I∗0
}
.

These and (2.4) imply that

0 6= −
∑
i∈I∗0

λiDi ∈ −∂∞F (x∗) ∩NF (x∗).

Thus the BQ fails at x∗ and the proof is complete.

For an arbitrary matrix D ∈ IRr×n, one can introduce a variable z = Dx and make the

non-Lipschitz term separable, that is, reformulating problem (1.3) as

min Ψ(x, z) := f(x) + ‖z‖pp
s.t. Dx− z = 0,

G(x) ≥ 0, H(x) ≥ 0, G(x)TH(x) = 0.

(2.5)

It is not difficult to verify that problem (1.3) and problem (2.5) are equivalent in the sense

that x∗ is a local minimizer of problem (1.3) if and only if (x∗, Dx∗) is a local minimizer

of problem (2.5). Using the same proof technique as in Proposition 2.2, the following result

follows immediately.

Proposition 2.3 Let x∗ ∈ F and I∗0 := I0(x∗) 6= ∅. If there exists a vector (λ, u, v) ∈
IR|I

∗
0 | × IRm × IRm such that (2.3) holds, then the BQ fails at (x∗, Dx∗) for problem (2.5).

As shown in Propositions 2.1, 2.2, and 2.3, it is very likely that the BQ fails at a local

minimizer of problem (1.3). However, it should be noted that if MPCC-LI qualification as

defined in the following holds, then condition (2.3) never hold. This fact motivates us to define

the following qualifications. These qualifications are actually the standard MPCC-LICQ and

MPCC-RCPLD in the literature ( [21,40]) for the system

{x ∈ IRd : DT
i x = 0 i ∈ I0(x∗), (G(x), H(x)) ∈ Cm}.

Since these conditions are not only related to the constraints but also the objective function,

we call them qualifications.
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Definition 2.1 Let x∗ ∈ F . (i) We say that MPCC-LI qualification holds at x∗ for problem

(1.3) if the following family of gradients is linearly independent:{
∇Gi(x∗) : i ∈ IG(x∗)

}
∪
{
∇Hi(x

∗) : i ∈ IH(x∗)
}
∪
{
Di : i ∈ I0(x∗)

}
.

(ii) Let I1 ⊆ I0(x∗), I2 ⊆ I0+(x∗), and I3 ⊆ I+0(x∗) be such that G(x∗, I1, I2, I3) is a

basis for spanG(x∗, I0(x∗), I0+(x∗), I+0(x∗)). We say that MPCC relaxed constant positive

linear dependence (RCPLD) qualification holds at x∗ if there exists δ > 0 such that

• G(x∗, I0(x∗), I0+(x∗), I+0(x∗)) has the same rank for all x ∈ Bδ(x∗);

• for any I4, I5 ⊆ I00(x∗), if there exist λ ∈ IR|I1|, u ∈ IR|I2∪I4|, and v ∈ IR|I3∪I5| such

that (λ, u, v) 6= 0, uivi = 0 or ui > 0, vi > 0 for any i ∈ I00(x∗), and∑
i∈I1

λiDi −
∑

i∈I2∪I4

ui∇Gi(x∗)−
∑

i∈I3∪I5

vi∇Hi(x
∗) = 0

then for any x ∈ Bδ(x∗), the following family of gradients is linearly dependent:

{Di : i ∈ I1} ∪ {∇Gi(x) : i ∈ I2 ∪ I4} ∪ {∇Hi(x) : i ∈ I3 ∪ I5},

where G(x, I1, I2, I3) := {Di : i ∈ I1} ∪ {∇Gi(x) : i ∈ I2} ∪ {∇Hi(x) : i ∈ I3}.

Throughout this paper, we call these two conditions in Definition 2.1 MPCC-LI qual-

ification and MPCC-RCPLD qualification respectively in contrast with MPCC-LICQ and

MPCC-RCPLD for locally Lipschitz MPCC in the literature.

Motivated by the stationarity concepts for locally Lipschitz MPCC (see, e.g., [39,47]), we

define the stationarity conditions for problem (1.3) as follows.

Definition 2.2 Let x∗ ∈ F . (i) We say that x∗ is a weakly (W-) stationary point of problem

(1.3) if there exist λ ∈ IRr, µ ∈ IRm, and ν ∈ IRm such that

∇f(x∗) +DTλ−∇G(x∗)µ−∇H(x∗)ν = 0,

λi = p|DT
i x
∗|p−1sign (DT

i x
∗) i ∈ I6=(x∗),

µi = 0 i ∈ I+0(x∗), νi = 0 i ∈ I0+(x∗).

(2.6)

(ii) We say that x∗ is a C-stationary point of problem (1.3) if there exist λ ∈ IRr, µ ∈ IRm,

and ν ∈ IRm satisfying (2.6) and

µiνi ≥ 0 i ∈ I00(x∗).

(iii) We say that x∗ is an M-stationary point of problem (1.3) if there exist λ ∈ IRr,

µ ∈ IRm, and ν ∈ IRm satisfying (2.6) and

µi > 0, νi > 0 or µiνi = 0 i ∈ I00(x∗).

(iv) We say that x∗ is an S-stationary point of problem (1.3) if there exist λ ∈ IRr,

µ ∈ IRm, and ν ∈ IRm satisfying (2.6) and

µi ≥ 0, νi ≥ 0 i ∈ I00(x∗).
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A W-stationary point x∗ is said to satisfy upper lever strict complementarity (ULSC) if

there exist λ ∈ IRr, µ ∈ IRm, and ν ∈ IRm satisfying (2.6) and µiνi 6= 0 for all i ∈ I00(x∗).

We now give some comments on these stationarity conditions in Definition 2.2. One can

easily see that the following relations hold:

S-stationarity ⇒ M-stationarity ⇒ C-stationarity ⇒ W-stationarity.

It should be also pointed out that these stationarity conditions in Definition 2.2 are actually

the same as those of applying directly the stationarity conditions for locally Lipschitz MPCC

to problem (1.3). Take the W-stationarity for an example. The standard W-stationarity

for locally Lipschitz MPCC (see, e.g., [39]) at x∗ says that there exist multipliers (µ, ν) ∈
IRm × IRm such that

0 ∈ ∇f(x∗) +
r∑
i=1

∂(| · |p)(DT
i x
∗)Di −∇G(x∗)µ−∇H(x∗)ν,

µi = 0 i ∈ I+0(x∗), νi = 0 i ∈ I0+(x∗),

which are the same as (2.6) as long as we note that the limiting subdifferential of the function

|t|p is IR at t = 0 and {p|t|p−1sign (t)} otherwise.

Now we are ready to establish necessary optimality for problem (1.3).

Theorem 2.1 Let x∗ ∈ F be a local minimizer of problem (1.3). (i) If MPCC-RCPLD

qualification holds at x∗, then x∗ is an M-stationary point of problem (1.3). (ii) If MPCC-LI

qualification holds at x∗, then x∗ is an S-stationary point of problem (1.3).

Proof. As discussed before Proposition 2.3, (x∗, z∗) with z∗ := Dx∗ is a local minimizer of

problem (2.5). Let I∗0 := I0(x∗) and I∗6= := I6=(x∗). Then it is easy to verify that (x∗, z∗I∗6=
) is

a local minimizer of the restricted problem

min f(x) +
∑
i∈I∗6=
|zi|p

s.t. DT
i x− zi = 0 i ∈ I∗6=, DT

i x = 0 i ∈ I∗0 ,
(G(x), H(x)) ∈ Cm.

(2.7)

Denote by Ξ the feasible region of problem (2.7). Since z∗i 6= 0 for all i ∈ I∗6=, it is easy to see

that the objective function of problem (2.7) is continuously differentiable at (x∗, z∗I∗6=
). Then

problem (2.7) is a smooth MPCC.

(i) When MPCC-RCPLD qualification holds at x∗, it is not difficult to verify that MPCC-

RCPLD holds at (x∗, z∗I∗6=
) ∈ Ξ. Then (x∗, z∗I∗6=

) is an M-stationary point of problem (2.7)

by [21, Corollary 4.1]. The desired M-stationarity of x∗ for problem (1.3) follows immediately.

(ii) When MPCC-LI qualification holds at x∗, it is not difficult to verify that MPCC-

LICQ holds at (x∗, z∗I∗6=
) ∈ Ξ. Then (x∗, z∗I∗6=

) is an S-stationary point of problem (2.7)

by [39, Theorem 2]. The desired S-stationarity of x∗ for problem (1.3) follows immediately.

The proof is complete.
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3 Approximation problems

The non-Lipschitz term and complementarity constraints make problem (1.3) difficult to

solve. In this section, we propose an approximation to problem (1.3) as follows

(Pε,σ)
min Fε(x) := f(x) + ϕε(x)

s.t. G(x) ≥ 0, H(x) ≥ 0, G(x)TH(x) ≤ σ.

Here the non-Lipschitz function ‖Dx‖pp is approximated by a locally Lipschitz function

ϕε(x) :=

r∑
i=1

(|DT
i x|+ εi)

p,

where εi > 0 i = 1, . . . , r; see, e.g., [33, 49], and the feasible region F is approximated by

Fσ := {x ∈ IRn : G(x) ≥ 0, H(x) ≥ 0, G(x)TH(x) ≤ σ},

where σ > 0. The set Fσ is the so-called Scholtes’ relaxation or regularization of F [40],

and has good numerical approximation properties [24] in which numerical comparison of

several relaxation methods was investigated. The kind of Scholtes’ relaxation was also used

for solving mathematical programs with vanishing constraints [1]. As shown in Proposition

3.1, problem (Pε,σ) is easier to satisfy some constraint qualifications compared with problem

(1.3).

Recall that MPCC-LI qualification is actually the standard MPCC-LICQ for the following

mixed complementarity system:{
x : DT

i x = 0 i ∈ I0(x∗), G(x) ≥ 0, H(x) ≥ 0, G(x)TH(x) = 0
}
.

Then the following result follows directly from [40, Lemma 2.1].

Proposition 3.1 Let MPCC-LI qualification hold at x∗ ∈ F . Then there exist σ0 > 0 and

δ0 > 0 such that for any σ ∈ (0, σ0] and x ∈ Bδ0(x∗), the standard LICQ holds at x for the

following system{
x : DT

i x = 0 i ∈ I0(x∗), G(x) ≥ 0, H(x) ≥ 0, G(x)TH(x) ≤ σ
}
.

In particular, the standard LICQ holds at x ∈ Fσ ∩ Bδ0(x∗) with σ ∈ (0, σ0].

In the following, we will study the distance between optimal solution sets of problem (1.3)

and problem (Pε,σ).

The following simple example shows that for any given σ > 0 and ε > 0, optimal solutions

of problem (Pε,σ) are different from those of problem (1.3). But we observe that optimal

solutions of problem (Pε,σ) tend to those of problem (1.3) as σ ↓ 0 and ε ↓ 0.
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Example 3.1 Consider a non-Lipschitz MPCC in IR2: p = 0.5, f(x) ≡ 0, D = I2×2,

G(x) = 1 − x1 and H(x) = 1 − x2. Direct calculation implies that the feasible region of

problem (1.3) is {
x ∈ IR2 : x1 ≤ 1, x2 = 1 or x2 ≤ 1, x1 = 1

}
.

Then it is easy to see that the solution set of problem (1.3) is S = {(0, 1)T , (1, 0)T }. Moreover,

the feasible region of problem (Pε,σ) with 0 < σ < 1 and ε > 0 is{
x ∈ IR2 : x1 ≤ 1, x2 ≤ 1, (1− x1)(1− x2) ≤ σ

}
.

It is not difficult to verify that the solution set of problem (Pε,σ) is

Sε,σ =


{(0, 1− σ)T } if ε1 < ε2,

{(0, 1− σ)T , (1− σ, 0)T } if ε1 = ε2,

{(1− σ, 0)T } if ε1 > ε2.

It is clear that the Pompeiu-Hausdorff distance between Sε,σ and S is positive but it converges

to 0 as σ ↓ 0 and ε ↓ 0. Here the Pompeiu-Hausdorff distance between X and Y is defined as

max{sup
x∈X

inf
y∈Y
‖x− y‖, sup

y∈X
inf
x∈Y
‖x− y‖}.

As shown in the following result, optimal solutions of problem (Pε,σ) approach to those

of problem (1.3) as σ ↓ 0 and ε ↓ 0.

Theorem 3.1 Let xε,σ be an optimal solution of problem (Pε,σ) for any σ > 0 and ε > 0,

and let x∗ be an arbitrary accumulation point of {xε,σ} as σ ↓ 0 and ε ↓ 0. Then x∗ is an

optimal solution of problem (1.3).

Proof. First it is easy to show that x∗ ∈ F . Since F ⊆ Fσ for any σ > 0, then by the

optimality of xε,σ, we have that

f(xε,σ) +
r∑
i=1

(|DT
i xε,σ|+ εi)

p ≤ f(x) +
r∑
i=1

(|DT
i x|+ εi)

p ∀x ∈ F .

Upon taking limits on both sides of the above inequality as σ ↓ 0 and ε ↓ 0, we have that

f(x∗) + ‖Dx∗‖pp ≤ f(x) + ‖Dx‖pp for any x ∈ F . This proof is complete.

3.1 Second-order necessary optimality conditions for problem (Pε,σ)

The convergence analysis in Section 4 requires second-order necessary conditions for approx-

imation problems. Thus in this subsection, we develop the second-order necessary optimality

for problem (Pε,σ), in which f,G,H are all assumed to be twice continuously differentiable.

By Fermat’s rule (e.g., [38, Theorem 10.1]), it is easy to see that any local minimizer x∗ of

problem (Pε,σ) satisfies the first-order necessary optimality conditions:

0 ∈ ∇f(x∗) + p

r∑
i=1

Di(|DT
i x
∗|+ εi)

p−1sign (DT
i x
∗) +NFσ(x∗).

11



Note that in problem (Pε,σ), (|DT
i x| + εi)

p i = 1, . . . , r, are not continuously differentiable.

This makes the chain rule of (second-order) subdifferentials fail. Thus, second-order necessary

optimality conditions of problem (3.1) cannot be obtained by directly employing the existing

results in the literature. In what follows, we investigate how to develop second-order necessary

optimality of problem (3.1) by utilizing the characterization of function Fε(x). For simplicity

of notation, in this subsection we consider problem (Pε,σ) in the following form:

min Fε(x)

s.t. gσ(x) ≤ 0,
(3.1)

where gσ : IRn → IR2m+1 is a twice continuously differentiable function with the form

gσ(x) := (−G(x)T ,−H(x)T , G(x)TH(x)− σ)T . (3.2)

Proposition 3.2 Assume that x∗ is a local minimizer of problem (3.1). If the gradients

{∇gσi (x∗), Dj : i ∈ I∗g , j ∈ I∗0}

are linearly independent where I∗gσ := {i : gσi (x∗) = 0}, I∗0 := I0(x∗), then x∗ is a KKT point,

i.e., there exists a unique nonnegative multiplier µ ∈ IR|I
∗
gσ | such that

0 ∈ ∇f(x∗) + p
r∑
i=1

Di(|DT
i x
∗|+ εi)

p−1sign (DT
i x
∗) +

∑
i∈I∗gσ

µi∇gσi (x∗), (3.3)

and weak second-order necessary condition (WSONC) holds at x∗, i.e.,

dT
[
∇2f(x∗) +

∑
i∈I∗gσ

µi∇2gσi (x∗) + p(p− 1)

r∑
i=1

(|DT
i x
∗|+ εi)

p−2DiD
T
i

]
d ≥ 0 ∀d ∈ Cw(x∗),

(3.4)

where Cw(x∗) is the critical subspace of problem (3.1) defined as

Cw(x∗) :=
{
d ∈ IRn : DT

i d = 0 i ∈ I∗0 , ∇gσj (x∗)Td = 0 j ∈ I∗gσ
}
.

Proof. First we observe that (x∗, t∗) with t∗i := |DT
i x
∗|, i = 1, . . . , r is a local minimizer of

the following problem

min
x,t

f(x) +
r∑
i=1

(ti + εi)
p

s.t. gσ(x) ≤ 0,

Dx− t ≤ 0, −Dx− t ≤ 0,

(3.5)

where all the involved functions are twice continuously differentiable. We next show that

LICQ holds at (x∗, t∗) for problem (3.5). Let I∗6= := I6=(x∗) and

∑
i∈I∗gσ

µi

(
∇gσi (x∗)

0

)
+
∑
i∈I∗0

ui

(
Di

−ei

)
−
∑
i∈I∗0

vi

(
Di

ei

)
+
∑
i∈I∗6=

λi

(
Disign(DT

i x
∗)

−ei

)
= 0.

(3.6)
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Since I∗0 ∩ I∗6= = ∅, it is easy to see that λi = 0 for all i ∈ I∗6=. Thus, (3.6) simplifies to∑
i∈I∗gσ

µi∇gσi (x∗) +
∑
i∈I∗0

(ui − vi)Di = 0, (3.7)

∑
i∈I∗0

(ui + vi)ei = 0. (3.8)

Since {∇gσi (x∗), Dj : i ∈ I∗gσ , j ∈ I∗0} are linearly independent, by (3.7) it follows that µi = 0

for all i ∈ I∗gσ and ui = vi for all i ∈ I∗0 . This together with (3.8) implies that ui = vi = 0 for

all i ∈ I∗0 . Thus, all the coefficients (µi : i ∈ I∗gσ), (ui, vi : i ∈ I∗0 ), and (λi : i ∈ I∗6=) are equal

to zero. Thus LICQ holds at (x∗, t∗) for problem (3.5). Then, WSONC of problem (3.5)

are satisfied at (x∗, t∗) (see, e.g., [35, Theorem 4]), i.e., there exists a unique nonnegative

multiplier vector (µ, u, v) such that

∇f(x∗) +

r∑
i=1

(ui − vi)Di +
∑
i∈I∗gσ

µi∇g(x∗) = 0, (3.9)

p(t∗i + εi)
p−1 − (ui + vi) = 0 i = 1, . . . , r, (3.10)

(t∗i −DT
i x
∗)ui = 0, (t∗i +DT

i x
∗)vi = 0 i = 1, . . . , r, (3.11)

and

(dT , hT )

 ∇2f(x∗) +
∑
i∈I∗gσ

µi∇2gσi (x∗) 0

0 Diag (T ∗)

( d
h

)
≥ 0 ∀

(
d
h

)
∈ Cw(x∗, t∗),

(3.12)

where T ∗ := p(p− 1)
(
(|DT

i x
∗|+ εi)

p−2 : i = 1, . . . , r
)

and

Cw(x∗, t∗) :=


(
d
h

)
∈ IRn × IRr :

∇gσi (x∗)Td = 0 i ∈ I∗gσ
DT
i d = hi = 0 i ∈ I∗0

sign (DT
i x
∗)DT

i d− hi = 0 i ∈ I∗6=

 . (3.13)

It follows from (3.10) and the nonnegtiveness of multipliers u, v that

ui − vi ∈ p(|DT
i x
∗|+ εi)

p−1[−1, 1] i ∈ I∗0 .

Moreover, by (3.10) and (3.11), it is not difficult to verify that

ui − vi = p(|DT
i x
∗|+ εi)

p−1sign (DT
i x
∗) i ∈ I∗6=.

These last two relations and the definition of sign(·) imply that

ui − vi ∈ p(|DT
i x
∗|+ εi)

p−1sign (DT
i x
∗) i = 1, . . . , r.

Then (3.3) follows immediately from (3.9) and the above relation. Moreover, it follows from

(3.12) that

dT [∇2f(x∗)+
∑
i∈I∗gσ

µi∇2gσi (x∗)]d+p(p−1)
r∑
i=1

(|DT
i x
∗|+εi)p−2(hi)

2 ≥ 0 ∀
(
d
h

)
∈ Cw(x∗, t∗).

(3.14)
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By (3.13), any direction

(
d
h

)
∈ Cw(x∗, t∗) satisfies

DT
i d = hi = 0 i ∈ I∗0 , sign (DT

i x
∗)DT

i d− hi = 0 i ∈ I∗6=,

which together with (3.14) implies (3.4) immediately. The proof is complete.

The following theorem can be obtained by applying Propositions 3.1 and 3.2 to problem

(Pε,σ). For simplicity of notation, we let ψσ(x) := G(x)TH(x)− σ.

Theorem 3.2 Let ε > 0. Let xσ be a local minimizer of problem (Pε,σ) for any σ > 0.

Assume that MPCC-LI qualification holds at x∗ ∈ F . Then there exist δ̄ > 0 and σ̄ > 0 such

that if xσ ∈ Bδ̄(x∗) and σ ∈ (0, σ̄), then xσ is a KKT point of problem (Pε,σ), i.e., there exist

α ∈ IRm, β ∈ IRm, and γ ∈ IR such that

0 ∈ ∇f(xσ) + p
r∑
i=1

(|DT
i x

σ|+ εi)
p−1sign (DT

i x
σ)Di

−∇G(xσ)α−∇H(xσ)β + [∇G(xσ)H(xσ) +∇H(xσ)G(xσ)]γ,

α ≥ 0, G(xσ)Tα = 0, β ≥ 0, H(xσ)Tβ = 0, γ ≥ 0, ψσ(xσ)γ = 0,

and moreover, the WSONC holds at xσ, i.e,

dT (Φσ +Mσ)d ≥ 0 ∀d ∈ Cw(xσ),

where

Φσ := ∇2f(xσ) + p(p− 1)
r∑
i=1

(|DT
i x

σ|+ εi)
p−2DiD

T
i , (3.15)

Mσ := −
m∑
i=1

αi∇2Gi(x
σ)−

m∑
i=1

βi∇2Hi(x
σ) + γ

m∑
i=1

[Gi(x
σ)∇2Hi(x

σ) +Hi(x
σ)∇2Gi(x

σ)]

+γ
m∑
i=1

[∇Gi(xσ)∇Hi(x
σ)T +∇Hi(x

σ)∇Gi(xσ)T ],

(3.16)

and

Cw(xσ) :=

d ∈ IRn :

∇Gi(xσ)Td = 0 i ∈ IG(xσ)

∇Hi(x
σ)Td = 0 i ∈ IH(xσ)

∇ψσ(xσ)Td = 0 if ψσ(xσ) = 0

 . (3.17)

Proof. First we may choose δ0 > 0 such that I0(xσ) ⊆ I0(x∗) for all xσ ∈ Bδ0(x∗). Then by

Proposition 3.1, there exist σ̄ ∈ (0,∞) and δ̄ ∈ (0, δ0) such that if xσ ∈ Bδ̄(x∗) and σ ∈ (0, σ̄],

LICQ holds at xσ for the following system{
x ∈ Fσ : DT

i x = 0 i ∈ I0(xσ)
}
.

Then the desired results follow directly from Proposition 3.2 by setting g(x) as in (3.2).
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4 Convergence of an approximation method

In Section 3, we have shown that optimal solutions of approximation problems approach to

those of problem (1.3). However, it may be difficult to find an exact optimal solution of prob-

lem (Pε,σ). Thus it is also necessary to investigate the convergence behavior of approximate

stationary points of problem (Pε,σ) as ε ↓ 0, σ ↓ 0.

Algorithm 4.1 Let {σk} ↓ 0 and {εk} ↓ 0, {εk1} and {εk2} be sequences of nonnegative

parameters approaching to 0, and {ζk} be a sequence of error parameters satisfying ‖ζk‖ ≤ εk1.

Choose an arbitrary point x0,0 ∈ IRn and set k = 0.

(i) Solve problem (Pεk,σk) with initial point xk,0 to get x̃k such that there exists xk satisfying

‖xk − x̃k‖ ≤ εk2 and

ζk ∈ ∇f(xk) + p

r∑
i=1

(|DT
i x

k|+ εki )
p−1sign (DT

i x
k)Di +NFσk (xk). (4.1)

(ii) Set xk+1,0 = x̃k, k = k + 1, and go to Step (i).

We give some comments on Step (i) of Algorithm 4.1. The point x̃k required in Step (i)

of Algorithm 4.1 can be seen as a generalization of an approximate stationary point since

when εk2 = 0, it follows that x̃k = xk is an approximate stationary point of problem (Pεk,σk).

On the other hand, by Ekeland’s variational principal (e.g., [38, Proposition 1.43]), the point

x̃k can be used to characterize approximate optimal solutions of problem (Pεk,σk) as shown

in the proof of Theorem A.2. Recall that ψσ(x) := G(x)TH(x)− σ.

Theorem 4.1 Let {x̃k} be a sequence generated by Algorithm 4.1 and x∗ be an arbitrary

accumulation point of {x̃k}. Suppose further that MPCC-LI qualification holds at x∗. Then

x∗ is a C-stationary point of problem (1.3).

Proof. Without loss of generality, we assume that x̃k → x∗ as k →∞. By the implementa-

tion process of Algorithm 4.1, there exists xk ∈ Fσk satisfying (4.1) such that ‖xk − x̃k‖ → 0

as k →∞, which together with the fact that x̃k → x∗ implies that xk → x∗ as k →∞. Then

by the continuity of functions G,H, it is not difficult to see that x∗ ∈ F .

By Proposition 3.1 and the relations that σk → 0 and xk → x∗, it follows that LICQ

holds at xk ∈ Fσk when k is sufficiently large. This together with e.g. [38, Theorem 6.14]

implies that

NFσk (xk) ⊆

 −∇G(xk)αk −∇H(xk)βk+

[∇G(xk)H(xk) +∇H(xk)G(xk)]γk
:
αk ≥ 0, G(xk)Tαk = 0
βk ≥ 0, H(xk)Tβk = 0
γk ≥ 0, ψσk(xk)γk = 0

 . (4.2)

It then follows from (4.1) that for all k sufficiently large, there exist αk, βk, and γk such that

ζk ∈ ∇f(xk) + p
r∑
i=1

(|DT
i x

k|+ εki )
p−1sign (DT

i x
k)Di

−∇G(xk)(αk − γkH(xk))−∇H(xk)(βk − γkG(xk)),
(4.3)
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αk ≥ 0, G(xk)Tαk = 0, βk ≥ 0, H(xk)Tβk = 0, γk ≥ 0, ψσk(xk)γk = 0. (4.4)

For simplicity, we denote I∗0 := I0(x∗), I∗6= := I6=(x∗), I∗0+ := I0+(x∗), I∗00 := I00(x∗), and

I∗+0 := I+0(x∗). By the continuity of functions G,H, it follows from (4.4) that for all k

sufficiently large, αki = 0 for all i ∈ I∗+0 and βki = 0 for all i ∈ I∗0+. Then after a suitable

rearrangement of terms, (4.3) can be rewritten as

ζk −∇f(xk)−
∑
i∈I∗6=

λkiDi −
∑

i∈I∗+0

γkHi(x
k)∇Gi(xk)−

∑
i∈I∗0+

γkGi(x
k)∇Hi(x

k)

=
∑
i∈I∗0

λkiDi −
∑

i∈I∗0+∪I∗00
µki∇Gi(xk)−

∑
i∈I∗+0∪I∗00

νki ∇Hi(x
k),

(4.5)

where
µk := αk − γkH(xk), νk := βk − γkG(xk),

λki := p(|DT
i x

k|+ εki )
p−1sign (DT

i x
k) i ∈ I∗6=, λki ∈ IR i ∈ I∗0 .

(4.6)

We next show the convergence of the sequences {λki : i ∈ I∗0}, {µk}, and {νk} by consid-

ering two cases. (a) Assume that {γk} is bounded. Then µki = −γkHi(x
k)→ 0 for all i ∈ I∗+0

and νki = −γkGi(xk)→ 0 for all i ∈ I∗0+. Then the left hand side of (4.5) tends to

−∇f(x∗)−
∑
i∈I∗6=

p|DT
i x
∗|p−1sign (DT

i x
∗)Di

as k → ∞. Then by MPCC-LI qualification at x∗, it is not hard to verify that {λki : i ∈
I∗0}, {µki : i ∈ I∗0+ ∪ I∗00}, and {νki : i ∈ I∗+0 ∪ I∗00} converge to some {λ∗i : i ∈ I∗0}, {µ∗i : i ∈
I∗0+ ∪ I∗00}, and {ν∗i : i ∈ I∗+0 ∪ I∗00}, respectively. Then taking limits on both sides of (4.5)

implies that

∇f(x∗) +
∑
i∈I∗6=

p|DT
i x
∗|p−1sign (DT

i x
∗)Di +

∑
i∈I∗0

λ∗iDi

−
∑

i∈I∗0+∪I∗00

µ∗i∇Gi(x∗)−
∑

i∈I∗+0∪I∗00

ν∗i∇Hi(x
∗) = 0. (4.7)

(b) Assume that {γk} is unbounded. Then dividing (4.5) by γk implies that

ζk−∇f(xk)−
∑
i∈I∗6=

λkiDi

γk
−
∑

i∈I∗+0

∇Gi(xk)Hi(x
k)−

∑
i∈I∗0+

∇Hi(x
k)Gi(x

k)

=
∑
i∈I∗0

Di
λki
γk
−

∑
i∈I∗0+∪I∗00

∇Gi(xk)
µki
γk
−

∑
i∈I∗+0∪I∗00

∇Hi(x
k)
νki
γk
.

(4.8)

By the definition of I∗6=, I∗+0, and I∗0+, it is easy to see that λki → p|DT
i x
∗|p−1sign (DT

i x
∗)Di for

all i ∈ I∗6=, Gi(x
k)→ 0 for all i ∈ I∗0+, and Hi(x

k)→ 0 for all i ∈ I∗+0. These together with the

boundedness of {∇f(xk)} and {ζk} imply that the left hand side of (4.8) tends to 0 as k →∞.

Then by MPCC-LI qualification at x∗, one can easily have that the coefficients of gradients on

the right hand side of (4.8) tend to 0. In particular,
µki
γk
→ 0 for any i ∈ I∗0+ and

νki
γk
→ 0 for any

i ∈ I∗+0 as k →∞. If i ∈ I∗0+, then Hi(x
∗) > 0. Then by the fact that

µki
γk

=
αki
γk
−Hi(x

k)→ 0,
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it follows that the equality αki = 0 never holds on an infinite subsequence for all i ∈ I∗0+.

This together with (4.4) means that for all k sufficiently large, Gi(x
k) = 0 for any i ∈ I∗0+.

By symmetry, one can also have that for all k sufficiently large, Hi(x
k) = 0 for any i ∈ I∗+0.

Then µki = −γkHi(x
k) = 0 for all i ∈ I∗+0 and νki = −γkGi(xk) = 0 for all i ∈ I∗0+. These

two relations and (4.5) imply that

ζk −∇f(xk)−
∑
i∈I∗6=

λkiDi =
∑
i∈I∗0

λkiDi −
∑

i∈I∗0+∪I∗00

µki∇Gi(xk)−
∑

i∈I∗+0∪I∗00

νki ∇Hi(x
k). (4.9)

Due to the boundedness of the left hand side of the above equation, by MPCC-LI qualification

at x∗, it is not hard to verify that {λki : i ∈ I∗0}, {µki : i ∈ I∗0+∪I∗00}, and {νki : i ∈ I∗+0∪I∗00}
converge to some {λ∗i : i ∈ I∗0}, {µ∗i : i ∈ I∗0+ ∪ I∗00}, and {ν∗i : i ∈ I∗+0 ∪ I∗00}, respectively.

Taking limits on both sides of (4.9) as k →∞ implies

∇f(x∗) +
∑
i∈I∗6=

p|DT
i x
∗|p−1sign (DT

i x
∗)Di +

∑
i∈I∗0

λ∗iDi

−
∑

i∈I∗0+∪I∗00

µ∗i∇Gi(x∗)−
∑

i∈I∗+0∪I∗00

ν∗i∇Hi(x
∗) = 0. (4.10)

The inequality µ∗i ν
∗
i ≥ 0 follows immediately since

µki ν
k
i = (αki − γkHi(x

k))(βki − γkGi(xk))
= αki β

k
i − γkαkiGi(xk)− γkβki Hi(x

k) + (γk)2Gi(x
k)Hi(x

k)

= αki β
k
i + (γk)2Gi(x

k)Hi(x
k) ≥ 0,

where the last equality follows from (4.4). This together with (4.7) and (4.10) implies that

x∗ is a C-stationary point.

If we can use Algorithm 4.1 to find an approximate WSONC point x̃k for all large k ≥ 0

i.e., there exists xk satisfying ‖xk − x̃k‖ ≤ εk2 and xk is an approximate WSONC point of

problem (Pεk,σk), Theorem 4.1 can be improved as shown in Theorem 4.2. Recall that xk is

an approximate WSONC point of problem (Pεk,σk) if there exist αk, βk, and γk such that

(4.3) and (4.4) hold, and

dT (Φk +Mk)d ≥ −τk ∀d ∈ Cw(xk),

where τk ≥ 0 is a tolerance, and Φk, Mk, and Cw(xk) are respectively defined as (3.15), (3.16),

and (3.17) with εk, σk, xk, αk, βk, and γk in place of ε, σ, xσ, α, β, and γ, respectively.

Theorem 4.2 Assume that f,G,H are twice continuously differentiable. In addition to the

assumptions of Theorem 4.1, we also assume that for all large k, approximate WSONC of

problem (Pεk,σk) holds at xk. Let τk ≤ τ0 for some positive number τ0. Then x∗ is an

M-stationary point of problem (1.3).

17



Proof. In the same way as the proof of Theorem 4.1, we can show that x∗ is a C-stationary

point. Assume to the contrary that x∗ is not an M-stationary point. There must exist i0 ∈ I∗00

such that µ∗i0 < 0 and ν∗i0 < 0. Then by (4.6), we have

αki0 − γ
kHi0(xk)→ µ∗i0 < 0, βki0 − γ

kGi0(xk)→ ν∗i0 < 0. (4.11)

This together with (4.4) implies that for all k sufficient large,

αki0 = βki0 = 0, Hi0(xk) > 0, Gi0(xk) > 0. (4.12)

Then (4.11) simplifies to

−γkHi0(xk)→ µ∗i0 < 0, −γkGi0(xk)→ ν∗i0 < 0. (4.13)

Let

Ak :=



DT
i i ∈ I∗0
∇Gi(xk)T i = i0
∇Gi(xk)T i ∈ I∗00\{i0} ∪ IG(xk)
Gi(x

k)
Hi(xk)

∇Hi(x
k)T +∇Gi(xk)T i ∈ I∗0+\IG(xk)

∇Hi(x
k)T i = i0

∇Hi(x
k)T i ∈ I∗00\{i0} ∪ IH(xk)

Hi(x
k)

Gi(xk)
∇Gi(xk)T +∇Hi(x

k)T i ∈ I∗+0\IH(xk)


and

zk =



0 i ∈ I∗0
1 i = i0
0 i ∈ I∗00\{i0}
0 i ∈ I∗0+

−Hi0 (xk)

Gi0 (xk)
i = i0

0 i ∈ I∗00\{i0}
0 i ∈ I∗+0


.

Since IG(xk) ⊆ I∗0+ ∪ I∗00\{i0} and IH(xk) ⊆ I∗+0 ∪ I∗00\{i0} for all k sufficiently large, we

can have that (I∗00\{i0}∪IG(xk))∪ (I∗0+\IG(xk)) = I∗0+∪I∗00\{i0} and (I∗00\{i0}∪IH(xk))∪
(I∗0+\IH(xk)) = I∗0+ ∪ I∗00\{i0}. Then by MPCC-LI qualification at x∗, it follows that the

limit point of the matrix sequence {Ak} has full row rank. Thus, Ak has full row rank for all

k sufficiently large. Let dk := ATk (AkA
T
k )−1zk, which clearly satisfies Akd

k = zk. Moreover,

by (4.13), the sequence {zk} is convergent since
Hi0 (xk)

Gi0 (xk)
→

µ∗i0
ν∗i0

as k → ∞. It then follows

that {dk} is bounded. By the choice of dk, it easily follows that

∇ψσk(xk)Tdk =

m∑
i=1

[Gi(x
k)∇Hi(x

k)Tdk +Hi(x
k)∇Gi(xk)Tdk]

= Gi0(xk)∇Hi0(xk)Tdk +Hi0(xk)∇Gi0(xk)Tdk

= −Hi0(xk) +Hi0(xk)

= 0. (4.14)
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Moreover, one can have that I0(xk) ⊆ I∗0 for all k sufficiently large. Thus, it follows from the

fact that Akd
k = zk and (4.14) that dk ∈ Cw(xk) for all k sufficiently large.

We next show that ϕk(d
k) := (dk)T (Φk +Mk)d

k → −∞ as k →∞. This contradicts the

approximate WSONC at xk when k is sufficiently large. This contradiction implies that x∗

is an M-stationary point. By the definition of Φk and the fact that DT
i d

k = 0 for all i ∈ I∗0 ,

we have that

(dk)TΦkd
k = (dk)T∇2f(xk)dk + p(p− 1)

∑
i∈I∗6=

(|DT
i x

k|+ εki )
p−2(DT

i d
k)2.

It is not hard to verify that the sequence {(dk)TΦkd
k} is bounded due to the boundedness of

{dk} and {xk}, and the relation that |DT
i x

k| → |DT
i x
∗| > 0 for all i ∈ I∗6=. By the definition

of Mk, it follows that

(dk)TMkd
k := 2γk

m∑
i=1
∇Gi(xk)Tdk∇Hi(x

k)Tdk

−(dk)T
[
m∑
i=1

αki∇2Gi(x) +
m∑
i=1

βki ∇2Hi(x)− γk
m∑
i=1

[Gi(x)∇2Hi(x) +Hi(x)∇2Gi(x)]

]
dk.

After a rearrangement of terms, by (4.6), we have that

(dk)TMkd
k = 2γk

m∑
i=1

∇Gi(xk)Tdk∇Hi(x
k)Tdk −

m∑
i=1

(αki − γkHi(x
k))(dk)T∇2Gi(x)dk

−
m∑
i=1

(βki − γkGi(xk))(dk)T∇2Hi(x)dk

= −
m∑
i=1

µki (d
k)T∇2Gi(x

k)dk −
m∑
i=1

νki (dk)T∇2Hi(x
k)dk (4.15)

+2γk
m∑
i=1

∇Gi(xk)Tdk∇Hi(x
k)Tdk. (4.16)

In the proof of Theorem 4.1, we have shown that {uk} and {vk} have limits which imply that

{uk} and {vk} are bounded. Recall that {dk} is bounded. Thus, it is easy to see that the

terms in (4.15) are all bounded. At the same time, by the choice of dk, we have

γk
m∑
i=1

∇Gi(xk)Tdk∇Hi(x
k)Tdk

= −
∑
i∈I∗0+

Gi(x
k)

Hi(xk)
(∇Hi(x

k)Tdk)2 −
∑
i∈I∗+0

Hi(x
k)

Gi(xk)
(∇Gi(xk)Tdk)2

+γk∇Gi0(xk)Tdk∇Hi0(xk)Tdk

= −
∑
i∈I∗0+

Gi(x
k)

Hi(xk)
(∇Hi(x

k)Tdk)2 −
∑
i∈I∗+0

Hi(x
k)

Gi(xk)
(∇Gi(xk)Tdk)2 (4.17)

+
−γkHi0(xk)

Gi0(xk)
. (4.18)
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We observe that the terms in (4.17) tend to 0 as k → ∞. Moreover, since Gi0(xk) ↓ 0 and

−γkHi0(xk)→ u∗i0 < 0, the term in (4.18) tends to −∞ as k →∞. Thus the term in (4.16)

tends to −∞ and then (dk)TMkd
k → −∞ as k → ∞. This together with the boundedness

of {(dk)TΦkd
k} implies that ϕk(d

k)→ −∞ as k →∞. The proof is complete.

The proof for the following result is standard as that in [40].

Theorem 4.3 If, in addition to the assumptions of Theorem 4.2, ULSC holds at x∗, then

x∗ is an S-stationary point of problem (1.3).

Proof. In Theorem 4.2, we have shown that x∗ is an M-stationary point. Moreover, the

multipliers (µ, ν) associated with x∗ are unique by MPCC-LI qualification at x∗. These facts

together with the ULSC assumption imply that x∗ is an S-stationary point immediately.

5 Numerical simulations

In this section we conduct numerical experiments to test the performance of the proposed

Algorithm 4.1. All computations are performed on a Lenovo laptop (1.80 GHz-2.40 GHz,

7.92GB RAM) with MATLAB R2018a.

5.1 Sparse LCP solution

Consider problem (1.2) with p ∈ (0, 1]. The case with p = 1 will be used as a benchmark

against cases with 0 < p < 1. We first generate M and q such that the LCP in the constraints

of problem (1.2) has a solution z with sparsity being s = n/10. In particular, we generate M

by setting M = H ∗Diag(|w|) ∗HT where the entries of matrix H are randomly chosen from

the standard normal distribution, and the n/5 components with random positions of vector

w are also randomly chosen from the standard normal distribution and other components

of vector w are equal to 0. Let ind be a row vector containing s unique integers selected

randomly from {1, 2 . . . , n}. Then let z be a vector whose components in ind are generated

by the standard normal distribution truncated by 0.1 ∗ e and other components are equal to

0. Let q be a vector that is equal to −M ∗ z for indices in ind and equal to the maximum of

−M ∗ z and 0 for indices not in ind. From the construction process, it is easy to see that z

(with sparsity being s) is a solution to the LCP in the constraints of problem (1.2). Our goal

is to find an approximate solution xk such that ‖xk‖0 ≤ ‖z‖0 by using Algorithm 4.1 to solve

problem (1.2). The initial point of using Algorithm 4.1 to solve problem (1.2) is obtained by

solving the quadratic programming problem:

min xTMx+ qTx

s.t. x ≥ 0, Mx+ q ≥ 0.

We set σk = 10−3−2k and εk = 10−3−k. In Step (i) of Algorithm 4.1, we use the active-set

method implemented in KNITRO [29] with the default setting to solve problem (Pεk,σk).

Algorithm 4.1 is terminated once the solution xk of the k-th approximation problem satisfies

‖min(xk,Mxk + q)‖ ≤ 10−6 and ‖xk − xk−1‖/max{‖xk−1‖, 1} ≤ 10−8.
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In the tests below, we set n = 500 and n = 1000, and generate 100 random instances for

each such n. The computational results reported in Tables 1 and 2 are averaged over the 100

instances, where we report the number of nonzero entries (‖xk‖0), the deviation of sparsity

(Dev=max{‖xk‖0 − s, 0}) compared with s, and the residual (Res=‖min{xk,Mxk + q}‖)
at the approximate solution xk, and the CPU time (CPU) in seconds. From Tables 1 and

2, we observe that our method can find a sparse solution successfully for almost all instances

when 0 < p < 1 and moreover, it can produce sparser solutions when using 0 < p < 1 than

using p = 1.

Table 1: Results for random instances with n = 500

p 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

‖xk‖0 51 51 51 50.5 50 50 50 50.5 50.5 87.4

Dev 1 1 1 0.5 0 0 0 0.5 0.5 37.4

Res 1e-12 1e-12 1e-12 1e-12 1e-12 2e-12 2e-12 2e-11 1e-10 4e-9

CPU 3.0 2.8 2.9 2.4 2.2 2.2 2.1 2.1 3.2 8.5

Table 2: Results for random instances with n = 1000

p 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

‖xk‖0 100 100 100 100 100 100 100 100 101 150.8

Dev 0 0 0 0 0 0 0 0 1 50.8

Res 8e-12 7e-12 8e-12 8e-12 8e-12 8e-12 9e-12 1e-11 2e-08 2e-08

CPU 17.5 17.5 15.5 14.9 14.9 14.4 14.3 14.5 22.0 59.9

5.2 Second-best road pricing problem

We are given a directed network of nodes and links (V,A) representing the road network of

some city. Let W denote the set of all origin-destination (OD) pairs. For certain pairs of

nodes w = (ws, wt) ∈ W, we are given an amount of flow dw that flows from ws to wt. Let

d = (dw : w ∈ W) denote the vector of all OD demands. Let R = ∪w∈WRw denote the set of

all paths in the network, where Rw denotes the set of all paths connecting OD pair w ∈ W.

Let ∆ = [δar] ∈ {0, 1}|A|×|R| denote the link/path incidence matrix where δar is equal to 1

if link a ∈ A is on path r ∈ R and 0 otherwise. Let Λ = [ηwr] ∈ {0, 1}|W|×|R| denote the

OD/path incidence matrix, where ηwr is equal to 1 if path r ∈ Rw and 0 otherwise.

Let frw denote the flow variable on path r ∈ Rw and f = (frw : r ∈ Rw, w ∈ W) the

vector of path flows. Let va denote the flow variable on link a ∈ A and v = (va : a ∈ A)

the vector of link flows. Let µw denote the generalized travel cost between OD pair w ∈ W
at equilibrium and µ = (µw : w ∈ W) the vector of generalized OD travel costs. Let ta(v)

denote the travel cost function for a given link a ∈ A and t(v) = (ta(v) : a ∈ A) the vector

of link travel costs, depending on link flows v. Then Wardrop’s user equilibrium (UE) flows
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satisfy the flow conservation conditions Λf − d = 0, 4f − v = 0, f ≥ 0, and

4T t(v)− ΛTµ ≥ 0, f ≥ 0, (4T t(v)− ΛTµ)T f = 0.

We refer the reader to the monograph [43] for detailed discussions.

In general, the UE flow is not the same as the system optimum (SO) flow that is the

optimal solution of minimizing the total network travel cost t(v)T v subject to the flow con-

servation conditions. Then various road pricing schemes are explored to decentralize the SO

flow pattern into an UE flow pattern in a general network. The assumptions of the first-best

road pricing scheme are generally not met in reality due to the fact that we cannot charge on

all links in view of high operating cost and poor public acceptance. As an improvement to

first-best road pricing scheme, the general second-best road pricing model in the literature

is to choose a subset of links for toll charges to minimize the total travel cost while taking

account of the route choice behavior of network users; see the monograph [43]. However, it is

difficult and even almost impossible to predetermine an appropriate set of toll links especially

when the set of links A is huge.

Let u = (ua : a ∈ A) denote the vector of link tolls in which ua denotes the toll charging

on link a ∈ A. By introducing the sparsity-induced function ‖u‖pp, we give an alternative

approach that minimizes the total travel cost and the number of toll links simultaneously. In

particular, we propose a new second-best road pricing model as follows

min
u,v,f,µ

t(v)T v + τ‖u‖pp

s.t. Λf − d = 0, 4f − v = 0, (5.1)

4T (t(v) + u)− ΛTµ ≥ 0, f ≥ 0, (4T (t(v) + u)− ΛTµ)T f = 0,

where τ > 0 is used to tune the tradeoff between the total network travel cost and the number

of toll links. Letting G(u, v, f, µ) := 4T (t(v)+u)−ΛTµ and H(u, v, f, µ) := f , problem (5.1)

is a special case of problem (1.3) with nonlinear complementarity constraints 1.

We apply Algorithm 4.1 to solve the second-best road pricing problem (5.1) with p ∈ (0, 1).

The test examples are based on a road network as shown in Figure 1, which is first adopted

in [36] and then is extensively used in transportation community. This network contains 13

nodes, 19 directed links, and 4 OD movements 1 → 2, 1 → 3, 4 → 2, and 4 → 3. The link

cost function ta(va) is assumed to follow a Bureau of Public Roads (BPR) function:

ta(va) = t0a

(
1 + ba

(va
ca

)na)
,

where ba ≡ 0.15 and na ≡ 4 are given as in [44,48]. The free-flow travel time t0a and the link

capacity ca are the same as those used in [44]. The entries of the OD demand vector d are

chosen from a normal distribution with mean 1000 and standard deviation 400.

1We check that all the results presented in the paper have evident valid counterparts in the presence
of additional usual equality and inequality constraints. We omit the usual constraints of problem (1.3) for
simplifying the analysis since all the essential difficulties are associated with the complementarity constraints
and the non-Lipschitz term in the objective.
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Figure 1: Nguyen and Dupuis’s road network

The initial point in our method for solving problem (5.1) is chosen as (u0, v0, f0, µ0)

where u0 = 0 and (v0, f0, µ0) is an arbitrary UE solution. The parameters are the same as

those mentioned above. In Table 3, we report numerical results including the vector of link

tolls (uk) and the number of toll links (‖uk‖0) at the approximate solution, the standardized

total network travel cost (TotalCost = (Cτ − C0)/C0) where Cτ is the total network cost

at the approximate solution when the tradeoff is τ , and the CPU time (CPU) in seconds.

Since we are concerned about the impact of choice of τ on the number of toll links and

the total network travel cost, we fix p = 0.5 and set τ = 0, 10−4, 10−3, 10−2, 10−1, 1, 2. It

should be noted that when setting τ = 0, the obtained solution is actually the first-best

road pricing strategy that makes the SO flow to be the same as the UE flow, which can

be seen as a benchmark against cases with τ > 0. As shown in Table 3, the scheme with

τ = 0 leads to charge on almost all links, which is not a good decision in view of high

operating cost and managing difficulty. From Table 3, we observe that when we choose

τ = 2, then u = (0, 0, 0, 5.40, 3.24, 0, 3.54, 0, 0, 0, 3.18, 0, 0, 0, 0, 0, 0, 5.64, 0)T as the vector

of link tolls, and the total network cost only increases 0.014% compared with the first-best

pricing case, while the number of toll links decreases 68.74 % (only 5 links are for toll charges).

The numerical results demonstrate the effectiveness of the non-Lipschitz MPCC model (5.1)

and our approximation method.
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Table 3: Results for second-best road pricing problem (5.1) with p = 0.5

τ 0 1e-4 1e-3 1e-2 1e-1 1 2

7.24 2.40 2.40 2.40 2.40 2.38 0

1.17 0 0 0 0 0 0

5.65 0 0 0 0 0 0

10.45 4.80 4.80 4.80 4.80 4.79 5.40

2.34e-4 2.40 2.40 2.40 2.40 2.39 3.24

1.94e-7 0 0 0 0 0 0

0.66 4.00 4.00 4.00 4.00 3.99 3.54

3.20 0 0 0 0 0 0

11.05 1.33e-4 6.93e-4 0 0 0 0

uk 6.55 0 0 0 0 0 0

0 3.20 3.20 3.20 3.20 3.19 3.18

0.80 2.58e-3 0 0 0 0 0

5.16 3.20 3.20 3.20 3.20 3.16 0

0 0 0 0 0 0 0

1.30 0 0 0 0 0 0

1.15 0 0 0 0 0 0

1.27 0 0 0 0 0 0

15.38 6.40 6.40 6.40 6.40 6.38 5.64

0 0 0 0 0 0 0

‖uk‖0 16 9 8 7 7 7 5

TotalCost 0 3.60e-12 7.34e-12 7.35e-12 2.69e-10 2.77e-08 1.44e-04

CPU 0.4 0.4 0.3 0.3 0.3 0.2 0.2
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A An iteratively reweighted `1 minimization method for solv-
ing problem (Pε,σ)

Algorithm A.1 Choose an arbitrary initial point y0 ∈ IRn and set ı = 0.

Step 1) Solve the weighted `1 minimization problem

min f(y) + p
r∑
i=1

wıi|DT
i y|

s.t. G(y) ≥ 0, H(y) ≥ 0, G(y)TH(y) ≤ σ
(A.1)

to get yı+1, where wıi = (|DT
i y

ı|+ εi)
p−1 for all i = 1, . . . , r.

Step 2) Set ı = ı+ 1 and go to Step 1).

The proof of the following theorem uses the techniques in [33] for iteratively reweighted `1
methods for unconstrained minimization problems. For completeness, we give a brief proof.

Theorem A.1 Any accumulation point y∗ of the sequence {yı} generated by Algorithm A.1

is a stationary point of problem (Pε,σ).

Proof. Let q be such that 1/p+ 1/q = 1, and let

Υε(y, w) := f(y) + p
r∑
i=1

[
wi(|DT

i y|+ εi)−
wqi
q

]
.

It is easy to verify that for any y ∈ IRn and ε > 0,

Fε(y) = min
w≥0

Υε(y, w), (A.2)

and for any ı ≥ 0,

wı = Arg min
w≥0

Υε(y
ı, w), yı+1 ∈ Arg min

y∈Fσ
Υε(y, w

ı). (A.3)

It then follows that

Fε(y
ı+1) = Υε(y

ı+1, wı+1) ≤ Υε(y
ı+1, wı) ≤ Υε(y

ı, wı) = Fε(y
ı). (A.4)

Hence, the sequence of {Fε(yı)}ı≥0 is nonincreasing. Let yı → y∗ as ı ∈ K → ∞. This

together with the continuity of Fε and the monotonicity of {Fε(yı)}ı≥0 implies that Fε(y
ı)→
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Fε(y
∗) as ı→∞. Moreover, it is easy to see that wı → (|DT

i y
∗|+ εi)

p−1 as ı ∈ K →∞ for all

i = 1, . . . , r. Then by (A.4), we have that Υε(y
ı+1, wı)→ Fε(y

∗) = Υε(y
∗, w∗). It follows from

the second relation in (A.3) that Υε(y
ı+1, wı) ≤ Υε(y, w

ı) for all y ∈ Fσ. Upon taking limits

on both sides of this inequality as ı ∈ K → ∞, we have that Υε(y
∗, w∗) ≤ Υε(y, w

∗) for all

y ∈ Fσ. This means that y∗ ∈ Arg min
y∈Fσ

Υε(y, w
∗). By Fermat’s rule (see, e.g., [38, Theorem

10.1]), it follows that

0 ∈ ∇f(y∗) + p
r∑
i=1

Di(|DT
i y
∗|+ εi)

p−1sign (DT
i y
∗) +NFσ(y∗),

which is the stationary condition of problem (Pε,σ) at y∗. The proof is complete.

Although any accumulation point of the sequence generated by Algorithm A.1 is a sta-

tionary point of problem (Pε,σ), all iteration points may not be approximate stationary points

since ‖yı − yı+1‖ may not converge to 0 as ı→∞. However, a weak approximate stationary

point can be obtained as follows.

Theorem A.2 Assume that the sequence {yı} generated by Algorithm A.1 has a bounded

subsequence. Then for any ε > 0, there exist ỹı and ζ satisfying ‖yı − ỹı‖ ≤ ε and ‖ζ‖ ≤ ε

such that

ζ ∈ ∇f(ỹı) + p
r∑
i=1

Di(|DT
i ỹ

ı|+ εi)
p−1sign (DT

i ỹ
ı) +NFσ(ỹı).

Proof. Without loss of generality, we assume that the whole sequence {yı} is bounded. Let

ε0 > 0. Since the sequence {Fε(yı)}ı≥0 is convergent, it follows that ‖Fε(yı)−Fε(yı+1)‖ ≤ ε0

when ı is sufficiently large. Then by (A.4), we have

0 ≤ Υε(y
ı, wı)−Υε(y

ı+1, wı) ≤ ε0.

This means that yı is an ε0-optimal solution to the problem of minimizing Υε(y, w
ı) on

Fσ. Then by Ekeland’s variational principal, there exists ỹı such that ‖ỹı − yı‖ ≤ √ε0,

Υε(ỹ
ı, wı) ≤ Υε(y

ı, wı), and ỹı is the unique minimizer of the problem

min Υε(y, w
ı) +
√
ε0‖y − ỹl‖ s.t. y ∈ Fσ.

Then by Fermat’s rule (see, e.g., [38, Theorem 10.1]), we have that

0 ∈ ∇f(ỹı) + p

r∑
i=1

wıiDisign (DT
i ỹ

ı) +
√
ε0B +NFσ(ỹı),

where B stands for the closed unit ball of IRn. This and the definition of wı imply that

0 ∈ ∇f(ỹı) + p

r∑
i=1

Di(|DT
i ỹ

ı|+ εi)
p−1sign (DT

i ỹ
ı) +NFσ(ỹı) +

√
ε0B

+p
r∑
i=1

Di[(|DT
i y

ı|+ εi)
p−1 − (|DT

i ỹ
ı|+ εi)

p−1]sign (DT
i ỹ

ı). (A.5)

Since {yı} is bounded, we can find an ε0 such that when ‖ỹı − yı‖ ≤ √ε0 ≤ ε/2, the norm of

the term in (A.5) is bounded above by ε/2. Then the desired result follows immediately.
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