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Abstract The expected residual minimization (ERM) formulation for the stochastic
nonlinear complementarity problem (SNCP) is studied in this paper. We show that
the involved function is a stochastic R0 function if and only if the objective function
in the ERM formulation is coercive under a mild assumption. Moreover, we model
the traffic equilibrium problem (TEP) under uncertainty as SNCP and show that the
objective function in the ERM formulation is a stochastic R0 function. Numerical
experiments show that the ERM-SNCP model for TEP under uncertainty has various
desirable properties.
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1 Introduction

In this paper, we consider the stochastic nonlinear complementarity problem

x ≥ 0, F (x,ω) ≥ 0, xT F (x,ω) = 0, ω ∈ �, (1)
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where ω ∈ � ⊆ Rm is a random vector with given probability distribution P and
F : Rn × � → Rn is a given vector-valued function. We denote problem (1) by
SNCP(F (x,ω)).

If � is a singleton, SNCP(F (x,ω)) reduces to the intensively studied nonlinear
complementarity problem; see the comprehensive books ([1] and [2]) for theoretical
analysis, numerical algorithms and applications especially in economics and engi-
neering. In reality, due to stochastic factors, the function value of F depends not only
on the variables x, but also on random vectors. The SNCP provides a framework for
modeling of equilibria under uncertainty as a special case of stochastic variational
inequalities. Recently, Lin and Fukushima [3] reformulated the SNCP as a stochas-
tic mathematical programming problem with equilibrium constraints. When F is an
affine function of x for any ω ∈ �,

F(x,ω) = M(ω)x + q(ω), ω ∈ �, (2)

where M(ω) ∈ Rn×n and q(ω) ∈ Rn, the SNCP(F (x,ω)) reduces to the stochastic
linear complementarity problem (SLCP), denoted by SLCP(M(ω), q(ω)), which has
been studied recently in [4–6].

The expected value (EV) formulation introduced in [7] and the expected resid-
ual minimization (ERM) introduced in [4] are two deterministic formulations for the
SNCP. The EV formulation is to solve a single nonlinear complementarity problem
NCP(E[F(x,ω)]). The ERM formulation is to minimize the expected residual of the
NCP(F (x,ω)) for all ω ∈ �. A version of the ERM formulation using NCP functions
is to find an optimal solution of

min
x∈Rn+

f (x) := E[‖�(x,ω)‖2], (3)

where

�(x,ω) = (φ(F1(x,ω), x1), . . . , φ(Fn(x,ω), xn)),

and φ : R2 → R is an NCP function, which satisfies

φ(a, b) = 0 ⇐⇒ a ≥ 0, b ≥ 0, ab = 0.

Many NCP functions have been studied for solving nonlinear complementarity prob-
lems [2]. In this paper, we study the ERM formulation (3) for SNCP with the follow-
ing three NCP functions:

(i) The min function φ1(a, b) = min(a, b).
(ii) The FB function φ2(a, b) = a + b−√

a2 + b2.

(iii) The penalized FB function φ3(a, b) = λφ2(a, b) + (1 − λ)a+b+, λ ∈ (0,1).

It is known ([5] and [8]) that there exist positive constants c1, c2, c3 such that

c1|φ1(a, b)| ≤ c2|φ2(a, b)| ≤ c3|φ1(a, b)| ≤ |φ3(a, b)|. (4)

The above relation indicates that φ1 and φ2 have the same growth rate, and the growth
rate of φ3 is no less than that of φ1 and φ2. In the following, we use fi to distinct f

defined by φi for i = 1,2,3, and f when we study their common properties.
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In this paper, we study the solution set of the ERM formulation (3) for the SNCP.
In particular, we define a stochastic R0 function and show that F is a stochastic R0
function if and only if the objective function f1 in the ERM formulation (3) for the
SNCP(F (x,ω)) is coercive, i.e., f1(x) → ∞ as ‖x‖ → ∞, under a mild assump-
tion. Moreover, we model the traffic equilibrium problem (TEP) under uncertainty as
SNCP and show that the involved function F is a stochastic R0 function. Our numer-
ical experiments show that a solution of the ERM formulation has high reliability and
delivered rate.

The NCP model with effective algorithms for static TEP based on the Wardrop
equilibrium principle [9] has been widely studied ([2] and [10–12]). On the other
hand, disruptive events such as uncertain demands, adverse weather, road construc-
tion, traffic accidents, landslides, earthquakes, may disrupt greatly one static equi-
librium of a network. Recently, Fernando and Nichlàs [13] address this problem and
extend the Wardrop equilibrium principle to TEP under uncertainty by defining a ro-
bust Wardrop equilibrium (RWE). Their equilibria is supposed to be robust in the
sense that it has optimal worst-case cost, which is different with the robustness of
SNCP c.f. [5].

The remainder of this paper is organized as follows: In Sect. 2, we introduce the
concepts of a stochastic R0 function, and equicoercivity. We show that under the
assumption that F is equicoercive, F being a stochastic R0 function is a necessary
and sufficient condition for the coercivity of f1 in the ERM formulation. In Sect. 3,
we model the TEP under uncertainty as a stochastic R0 function NCP. In Sect. 4, we
report numerical results of the ERM formulation and the EV formulation for TEP
under uncertainty.

We will use the following notations. 〈l, u〉 represents the set {l, l + 1, . . . , u} for
natural numbers l and u with l < u, z+ = max(z,0) for any given vector z, |S| de-
notes the cardinality of a given finite set S , and ‖ · ‖ refers to the Euclidean norm.
Given a set � ⊆ Rm of random vectors, let supp� be the support set of �. For
a given subset �̂ ⊆ � and a function s : � → R+, we use E

�̂
[s(ω)] to represent

E[s(ω)1{ω∈�̂}] for simplicity, where 1{ω∈�̂} is the indicator function of the set �̂,

which is equal to 1 if ω ∈ �̂ and 0 if ω ∈ � \ �̂. Throughout the paper, we suppose
the following assumption holds:

Assumption A1 F(·,ω) is a continuous function for ω ∈ � a.e. and E[‖F(x,ω)‖2]
< ∞ at any x ∈ Rn+.

Remark 1.1 Note that ‖min(x,F (x,ω))‖ ≤ ‖F(x,ω)‖ for any x ∈ Rn+. It is easy to
verify that E[‖F(x,ω)‖2] < ∞ at any x ∈ Rn+ implies that f (x) < ∞ at any x ∈ Rn+.
Moreover, from Proposition 1 in Chap. 2 [14], if there exists a function z(ω) such
that ‖F(x,ω)‖2 ≤ z(ω) a.e. for all x in a neighborhood of x̂, and E[z(ω)] < ∞, then
f is continuous at x̂ under Assumption A1.

2 Solution Set of ERM for SNCP

In this section we investigate solvability of the ERM formulation for the SNCP. We
define a stochastic R0 function. Under the assumption that F is equicoercive, we
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prove that the involved function being a stochastic R0 function is a necessary and suf-
ficient condition for the coercivity of the objective function in the ERM formulation.

The solution set of the ERM formulation for the SLCP has been studied in [4–6].
Some results depending on the special affine construction of F(x,ω) in the SLCP
cannot be simply generalized to the SNCP. For instance, Lemma 2.2 in [5] states
that the ERM formulation for the SLCP(M(ω), q(ω)) defined by the ‘min’ function
always has a solution when � is composed of finite elements. However, the following
example tells us that we do not have the same result for the SNCP(F (x,ω)).

Example 2.1 Let F(x,ω) = ( 1
2 − 3

2ω)e− ω
2 x − ω where ω ∈ � = {ω1,ω2}. Here,

ω1 = 0, ω2 = 1, and P{ω1} = P{ω2} = 1
2 . Then the objective function in the ERM

formulation for SNCP(F (x,ω)) defined by φ1 is

f1(x) = 1

2

∥
∥
∥
∥

min

(

x,
1

2

)∥
∥
∥
∥

2

+ 1

2
‖min(x,−e− x

2 − 1)‖2

=
⎧

⎨

⎩

1
2x2 + 1

2 (e−x + 1 + 2e− x
2 ) x ∈ [0, 1

2 ],
1
8 + 1

2 (e−x + 1 + 2e− x
2 ) x ∈ ( 1

2 ,∞).

It is easy to find that, for x ∈ [0, 1
2 ],

f1(x) ≥ 1

2
(e− 1

2 + 1 + 2e− 1
4 ) = 1

2
+ 1

2
√

e
+ e− 1

4 >
5

8
,

and for x ∈ ( 1
2 ,∞), f1(x) is strictly decreasing and tending to 5

8 as x tends to ∞.
Hence, the ERM formulation defined by the ‘min’ function has no solution. More-
over, we have E[F(x,ω)] = − 1

4 − 1
2e− x

2 < 0 for any x. Thus, the EV formulation
NCP(E[F(x,ω)]) has no solution.

However, for any λ ∈ (0,1) and x ∈ R+,

f3(x) ≥ 1

2

[

λ

(

x + 1

2
−

√

x2 + 1

4

)

+ 1

2
(1 − λ)x

]2

≥ 1

8
(1 − λ)2x2,

which is coercive, and hence ERM formulation defined by φ3 has a nonempty and
bounded solution set.

2.1 Stochastic R0 Function

The R0 property relates closely to the boundedness of level sets in the literature of
the complementarity problem. For NCP(G), G : Rn → Rn is an R0 function if and
only if the function ‖min(x,G(x))‖2 is coercive.

Definition 2.1 (See [2]) The function G : Rn → Rn is called an R0 function on a set
D ⊆ Rn if, for every infinite sequence {xk} ⊆ D satisfying

lim
k→∞‖xk‖ = ∞, lim sup

k→∞
‖(−xk)+‖ < ∞, lim sup

k→∞
‖(−G(xk))+‖ < ∞, (5)

there exists i ∈ 〈1, n〉 such that lim supk→∞ min(xk
i ,Gi(x

k)) = ∞.
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Now, we define a stochastic R0 function.

Definition 2.2 F : Rn × � → Rn is called a stochastic R0 function on a set D ⊆ Rn

if, for every infinite sequence {xk} ⊆ D satisfying

lim
k→∞‖xk‖ = ∞, lim sup

k→∞
‖(−xk)+‖ < ∞,

lim sup
k→∞

‖(−F(xk,ω))+‖ < ∞ a.e.
(6)

there exists i ∈ 〈1, n〉 such that P{ω : lim supk→∞ min(xk
i ,Fi(x

k,ω)) = ∞} > 0.

If � is a singleton, Definition 2.2 reduces to Definition 2.1.

Definition 2.3 We say F : Rn × � → Rn is equicoercive on D ⊆ Rn if, for any
{xk} ⊆ D satisfying ‖xk‖ → ∞, the existence of {ωk} ⊆ supp� with
limk→∞ Fi(x

k,ωk) = ∞ (limk→∞(−Fi(x
k,ωk))+ = ∞) for some i ∈ 〈1, n〉 implies

that there exists {xkj } ⊆ {xk} such that

P{ω : lim
kj →∞Fi(x

kj ,ω) = ∞} > 0
(

P{ω : lim
kj →∞(−Fi(x

kj ,ω))+ = ∞} > 0
)

.

Proposition 2.1 F : Rn × � → Rn is equicoercive if � is a compact set and there
exist constants L > 0 and δ > 0 such that, if ‖ω1 − ω2‖ < δ, then

‖F(x,ω1) − F(x,ω2)‖ < L, for any x ∈ Rn+.

Proof We only consider the case that {xk} ⊆ D with ‖xk‖ → ∞, and {ωk} ⊆ supp�

satisfy limk→∞ Fi(x
k,ωk) = ∞. For the case limk→∞(−Fi(x

k,ωk))+ = ∞, it can
be proved in the similar way.

Since � is a compact set and supp� is a closed set, {ωk} has an accumulation
point ω̄ ∈ supp�. Let {ωkj } ⊆ {ωk} be a subsequence converging to ω̄. It is clear that
there is K > 0 such that ‖ωkj − ω̄‖ < δ for any kj ≥ K . Thus, for any ‖ω − ω̄‖ < δ

and kj ≥ K ,

|Fi(x
kj ,ω) − Fi(x

kj ,ωkj )| ≤ ‖F(xkj ,ω) − F(xkj ,ωkj )‖
≤ ‖F(xkj ,ω) − F(xkj , ω̄)‖

+ ‖F(xkj , ω̄) − F(xkj ,ωkj )‖
< 2L,

which implies limkj →∞ Fi(x
kj ,ω) = ∞. Hence,

P{ω : lim
kj →∞Fi(x

kj ,ω) = ∞} ≥ P{ω ∈ � : ‖ω − ω̄‖ < δ} > 0.

Therefore, F is equicoercive. �
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Remark 2.1 If � has only finite elements, or F is uniformly continuous with respect
to ω ∈ � on Rn+, the condition of Proposition 2.1 holds.

From Definitions 2.1–2.3, we can easily get the following proposition.

Proposition 2.2 Suppose that F(·, ω̄) is an R0 function on a set D for some ω̄ ∈
supp�, and F is equicoercive on D, then F is a stochastic R0 function on D.

Proof Suppose that {xk} ⊆ D satisfies (6). If lim supk→∞ ‖(−F(xk, ω̄))+‖ = ∞,

then there exist i ∈ 〈1, n〉 and {xk̃j } ⊆ {xk} such that lim
k̃j →∞(−Fi(x

k̃j , ω̄))+ = ∞.

By using the assumption that F is equicoercive, there exists {xkj } ⊆ {xk̃j } such that

P{ω : lim
kj →∞(−Fi(x

kj ,ω))+ = ∞} > 0,

which contradicts to the fact that lim supk→∞ ‖(−F(xk,ω))+‖ < ∞ a.e. in (6).
Hence lim supk→∞ ‖(−F(xk, ω̄))+‖ < ∞. Since F(·, ω̄) is an R0 function, there
exists i ∈ 〈1, n〉 such that

lim sup
k→∞

min(xk
i ,Fi(x

k, ω̄)) = ∞.

Using the assumption that F is equicoercive again, we obtain that

P{ω : lim sup
k→∞

min(xk
i ,Fi(x

k,ω)) = ∞} > 0.

Therefore, F is a stochastic R0 function on the set D. �

We use Example 3.2 in [15] to show that the assumption of equicoercivity in
Proposition 2.2 cannot be omitted.

Example 2.2 Let ω ∈ � = [−2,2], where ω is uniformly distributed on �. Consider
the function F : R+ × � → R defined by

F(x,ω) :=
{

2 + ω, ω ∈ [−2,0],
2 − ω, ω ∈ (0,2],

for x ∈ [0,1] and

F(x,ω) :=

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2x + x3ω, ω ∈ [− 2
x2 ,− 1

x2 ],
x + x3 + x5ω, ω ∈ (− 1

x2 ,0],
x + x3 − x5ω, ω ∈ (0, 1

x2 ],
2x − x3ω, ω ∈ ( 1

x2 , 2
x2 ],

0, ω ∈ [−2,− 2
x2 ) ∪ ( 2

x2 ,2],
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for x ∈ (1,∞). The function F is continuous on R+ × � and Assumption A1 holds.
It is easy to check that F(·,0) is an R0 function on R+, but F is not a stochastic R0
function on R+. Moreover, F is not equicoercive on Rn+, as limxk→∞ F(xk,0) = ∞,
and P{ω : lim supxk→∞ Fi(x

k,ω) = ∞} = 0.

The following example shows that the inverse of Proposition 2.2 does not hold. For
a stochastic R0 function F , even if F is equicoercive, it is not necessary to have that
F(·, ω̃) is an R0 function for some ω̃ ∈ supp�. Moreover, E[F(·,ω)] is not necessary
to be an R0 function.

Example 2.3 Consider the function

F(x,ω) = (

(−ω)+ex1, ω+ex2 , sign(ω)x3
)

,

where x = (x1, x2, x3) and ω is uniformly distributed on � = [−1,1]. It is not diffi-
cult to show that Assumption A1 holds and F is equicoercive. For a fixed ω̃ ≤ 0 and
a sequence {xk}, where xk = (0, k,0) for k = 1,2, . . . , it is easy to verify that {xk}
satisfies (5) with G(xk) = F(xk, ω̃) = (−ω̃,0,0) and

lim sup
k→∞

min(xk
i ,Gi(x

k)) = 0, for i = 1,2,3.

Similarly, for a fixed ω̃ > 0 and a sequence {xk} defined by xk = (k,0,0) for k =
1,2, . . . , (5) holds with G(xk) = F(xk, ω̃) = (0, ω̃,0), and

lim sup
k→∞

min(xk
i ,Gi(x

k)) = 0, for i = 1,2,3.

Thus, F(·,ω) is not an R0 function for any fixed ω ∈ [−1,1]. Moreover, we can
show that E[F(x,ω)] = (ex1/4, ex2/4, 0) is not an R0 function by using a sequence
{xk} where xk = (0,0, k) for k = 1,2, . . . . However, for every infinite sequence {xk}
satisfying (6), if lim supk→∞ xk

1 = ∞, we have

P{ω : lim sup
k→∞

min(xk
1 ,F1(x

k,ω)) = ∞} = P{ω : ω ∈ [−1,0)} = 1

2
.

If lim supk→∞ xk
i = ∞ where i ∈ 〈2,3〉, we have

P{ω : lim sup
k→∞

min(xk
i ,Fi(x

k,ω)) = ∞} =P{ω : ω ∈ (0,1]} = 1

2
.

Therefore, F is a stochastic R0 function.

We call A ∈ Rn×n an R0 matrix [1] if

x ≥ 0, Ax ≥ 0, xT Ax = 0 �⇒ x = 0.

We call M(·) : � → Rn×n a stochastic R0 matrix [6] if

x ≥ 0, M(ω)x ≥ 0, xT M(ω)x = 0, a.e. �⇒ x = 0.
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If � is a singleton, then M(ω) is an R0 matrix. It is known that the R0 function
is a generalization of Ax + b with A being an R0 matrix [16]. Here we show that
the stochastic R0 function is a generalization of M(ω)x + q(ω) with M(·) being a
stochastic R0 matrix.

Proposition 2.3 Let F be an affine function of x for any ω ∈ � defined by (2). Then,
F is a stochastic R0 function on Rn+ if and only if M(·) is a stochastic R0 matrix.

Proof (‘If’ part) Suppose on the contrary that F is not a stochastic R0 function on
Rn+, then there exists a sequence {xk} ⊂ Rn+ satisfying (6) in Definition 2.2, such that

P{ω : lim sup
k→∞

min(xk
i ,Fi(x

k,ω)) = ∞} = 0, for all i ∈ 〈1, n〉.

Let x be any accumulation point of the bounded sequence { xk

‖xk‖ }. Notice that

F(xk,ω) = M(ω)xk + q(ω) for all ω ∈ �. We have

‖x‖ = 1, x ≥ 0, M(ω)x ≥ 0, xT M(ω)x = 0, a.e.

This contradicts M(·) being a stochastic R0 matrix.
(‘Only if’ part) Suppose on the contrary that M(·) is not a stochastic R0 matrix,

then there exists a vector x ∈ Rn satisfying

0 �= x ≥ 0, M(ω)x ≥ 0, xT M(ω)x = 0 a.e.

Note that qi(ω) < ∞ a.e. by using Assumption A1 that E[‖F(0,ω)‖2] = E[‖q(ω)‖2]
< ∞. Define a sequence {xk} where xk = kx for k = 1,2, . . . . From M(ω)xk ≥ 0,
we have that −F(xk,ω) = −(M(ω)xk + q(ω)) ≤ −q(ω) for any k and

lim sup
k→∞

‖(−F(xk,ω))+‖ ≤ ‖(−q(ω))+‖ ≤ ‖q(ω)‖ < ∞, a.e.

Hence, {xk} ⊂ Rn+ satisfies condition (6).
For an index i ∈ 〈1, n〉 such that xi = 0, we have

min(xk
i ,Fi(x

k,ω)) = min(0,Fi(x
k,ω)) ≤ 0, ω ∈ �.

For an index i ∈ 〈1, n〉 such that xi > 0, we have (M(ω)x)i = 0 a.e., which implies
Fi(x

k,ω) = k(M(ω)x)i + qi(ω) = qi(ω) a.e. Therefore,

P{ω : lim sup
k→∞

min(xk
i ,Fi(x

k,ω)) = ∞} = 0,

which contradicts F being a stochastic R0 function. �

Now, we investigate the relation between F being a stochastic R0 function and the
coercivity of the objective function f1 in the ERM formulation.

Theorem 2.1 Suppose that F is equicoercive on Rn+. Then, f1 is coercive on Rn+ if
and only if F is a stochastic R0 function on Rn+.
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Proof (‘If’ part) Suppose on the contrary that f1 is not coercive on Rn+. Thus, there
exists a sequence {xk} ⊂ Rn+ with ‖xk‖ → ∞ and a constant a ∈ R+ such that

f1(x
k) ≤ a, ∀k.

First, consider the case that {xk} does not satisfy (6). Thus, there exists i ∈ 〈1, n〉
such that P{ω : lim supk→∞(−Fi(x

k,ω))+ = ∞} > 0, and hence there are ω̄ ∈
supp� and a subsequence {xk̃j } ⊆ {xk} such that lim

k̃j →∞(−Fi(x
k̃j , ω̄))+ = ∞. By

the assumption that F is equicoercive on Rn+, there exists {xkj } ⊆ {xk̃j } such that
P{ω : limkj →∞(−Fi(x

kj ,ω))+ = ∞} > 0. Let

�1 := {ω : lim
kj →∞ min(x

kj

i ,Fi(x
kj ,ω)) = −∞}.

Then, P{�1} > 0. By the Fatou lemma [17],

E�1[lim inf
kj →∞ (min(x

kj

i ,Fi(x
kj ,ω)))2] ≤ lim inf

kj →∞ E�1[(min(x
kj

i ,Fi(x
kj ,ω)))2].

Since lim infkj →∞(min(x
kj

i ,Fi(x
kj ,ω)))2 = ∞ on �1 and P{�1} > 0, the left-hand

side of the above inequality is infinite. Hence,

lim inf
kj →∞ E�1[(min(x

kj

i ,Fi(x
kj ,ω)))2] = ∞.

Moreover, it is easy to find

f1(x
kj ) = E[‖�(xkj ,F (xkj ,ω))‖2]

≥ E�1[(min(x
kj

i ,Fi(x
kj ,ω)))2] → ∞, as kj → ∞.

This contradicts to the fact that f1(x
k) ≤ a for ∀k. Thus {xk} ⊂ Rn+ must sat-

isfy (6). According to Definition 2.2, we choose an index i ∈ 〈1, n〉 such that
P{ω : lim supk→∞ min(xk

i ,Fi(x
k,ω)) = ∞} > 0. Since F is equicoercive on Rn+, we

get that there exists {xkj } ⊆ {xk} such that P{ω : limkj →∞ min(x
kj

i ,Fi(x
kj ,ω)) =

∞} > 0. Let

�2 := {ω : lim
kj →∞ min(x

kj

i ,Fi(x
kj ,ω)) = ∞}.

Then P{�2} > 0. Again by using the Fatou lemma,

f1(x
kj ) ≥ E�2[(min(x

kj

i ,Fi(x
kj ,ω)))2] → ∞, as kj → ∞,

which is a contradiction to f1(x
k) ≤ a for ∀k.

(‘Only if’ part) Suppose on the contrary that F is not a stochastic R0 function
on Rn+, then there exists a sequence {xk} ⊂ Rn+ satisfying (6), such that
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P{ω : lim sup
k→∞

min(xk
i ,Fi(x

k,ω)) = ∞} = 0, for any i ∈ 〈1, n〉. (7)

We then declare that there must exist constants c and c such that, for any i ∈ 〈1, n〉,
c ≤ min(xk

i ,Fi(x
k,ω)) ≤ c, ∀ω ∈ supp�. (8)

Suppose on the contrary that (8) is not true; then, there exist {ωk} ⊆ supp� and î ∈
〈1, n〉 such that

lim sup
k→∞

(−F
î
(xk,ωk))+ = ∞ or lim sup

k→∞
min(xk

î
,F

î
(xk,ωk)) = ∞.

Hence there must exist a subsequence {xk̃j } ⊆ {xk} such that lim
k̃j →∞(−F

î
(xk̃j ,

ωk̃j ))+ = ∞; or lim
k̃j →∞ min(x

k̃j

î
, F

î
(xk̃j ,ωk̃j )) = ∞. By the assumption that F

is equicoercive on Rn+, for the first case we know that there exists a subsequence

{xkj } ⊆ {xk̃j } such that P{ω : limkj →∞(−F
î
(xkj ,ω))+ = ∞} > 0, which contra-

dicts to (6); For the second case, we know that P{ω : limkj →∞ F
î
(xkj ,ω) = ∞} > 0,

which implies that

P{ω : lim sup
k→∞

min(xk

î
,F

î
(xk,ω)) = ∞} > 0.

This contradicts (7). Therefore, (8) holds and we get

f1(x
k) =

n
∑

i=1

E[(min(xk
i ,Fi(x

k,ω)))2]

=
n

∑

i=1

Esupp�[(min(xk
i ,Fi(x

k,ω)))2] ≤ n(max{|c|, |c|})2.

Notice that the sequence {xk} ⊂ Rn+ satisfies (6) and the sequence {f1(x
k)} is

bounded. This contradicts to the coercivity of f1 on Rn+. �

Remark 2.2 Following the proof of Theorem 2.1, we can see that if for every se-
quence {xk} ⊂ Rn+ satisfying limk→∞ ‖xk‖ = ∞, there exists i ∈ 〈1, n〉 and a subse-
quence {xkj } such that

P{ω : lim
kj →∞(−Fi(x

kj ,ω))+ = ∞} > 0, or

P{ω : lim
kj →∞ min(x

kj

i ,Fi(x
kj ,ω)) = ∞} > 0,

then F is a stochastic R0 function and f1 is coercive on Rn+.

Similar results for the coercivity of f defined by other NCP functions can be
obtained by noticing their relations with φ1. In particular, from (4), we have the fol-
lowing corollary.
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Corollary 2.1

(i) Suppose that F is equicoercive on Rn+. Then, f2 is coercive on Rn+ if and only if
F is a stochastic R0 function on Rn+.

(ii) If F is a stochastic R0 function and equicoercive on Rn+, then f3 is coercive
on Rn+.

From Theorem 2.1 and Corollary 2.1, we obtain immediately the following corol-
lary.

Corollary 2.2 If F is a stochastic R0 function and equicoercive on Rn+, then the
solution set of (3) defined by φi, i = 1,2,3 is nonempty and bounded.

3 ERM-SNCP Model for TEP under Uncertainty

Let [N ,A] represent a given transportation network, where N is the set of nodes,
and A is the set of links. We use � ⊆ Rm to represent a set of random vectors. Each
vector ω ∈ �, corresponding to one realization of stochastic factors such as weather,
accidents, etc., is of given probability P . For any realization ω ∈ �, let us denote

I the set of origin-destination (OD) pairs,
Ri the set of “available” routes, connecting OD pair i (which

might, but not necessarily be all paths joining the OD pair),
hr(ω) the flow on route r,

� the link-route incidence matrix of the network,

	 the OD pair-route incidence matrix of the network,

ui(ω) the shortest travel cost function for OD pair i,

di(ω) the demand function for OD pair i,

Cr(h(ω),ω) the travel cost function for route r.

Moreover, let R = ⋃

i∈I Ri and u(ω), d(ω), h(ω), C(h(ω),ω) represent the vector
composed of ui(ω), di(ω), hr(ω), Cr(h(ω),ω) for i ∈ I, r ∈ R, respectively. It is
clear that

u, d : � → R
|I|
+ , h : � → R

|R|
+ , C : R|R|

+ × � → R
|R|
+ .

Here, we suppose that the uncertain demand d(ω) is bounded for almost all ω ∈ �.
We say that the network [N ,A] is strongly connected if for any OD pair i ∈ I there
is at least one route joining the origin to the destination. Then each row of 	 is a
nonzero vector. Moreover, since one route connects only one OD pair, 	 has full
row-rank. The link-route incidence matrix � is deterministic for the given network.

In a congested network, drivers have the incentive to compete with each other for
selecting the route with minimal travel cost, at a certain level of travel demand. The
traffic equilibrium problem (TEP) has been used for transportation planning, which
seeks for flow pattern with the equilibrium property that no driver may decrease his
travel cost by unilaterally changing his route. It is the interaction between drivers that
forms the stable flow pattern in the equilibrium state and such flow pattern is used by
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the administrator for predicting the traffic flow. For more details about TEP, we refer
to [18].

The Wardrop equilibrium principle [9] for the genesis of the TEP states that in the
equilibrium state, for any OD pair the travel cost on every used routes equals and any
route needs higher travel cost will have no traffic flow. Application of the Wardrop
equilibrium for the realization ω ∈ � gives

Cr(h(ω),ω) − ui(ω) ≥ 0, hr(ω) ≥ 0,

(Cr(h(ω),ω) − ui(ω))hr(ω) = 0, i ∈ I, r ∈Ri .
(9)

Moreover, according to the demand conservation, we have

∑

r∈Ri

hr (ω) − di(ω) = 0,

which is equivalent to

∑

r∈Ri

hr (ω) − di(ω) ≥ 0, ui(ω) ≥ 0,

(
∑

r∈Ri

hr (ω) − di(ω)

)

ui(ω) = 0, i ∈ I, r ∈ Ri ,
(10)

under some mild assumptions that would be expected to meet always in practice [10].
(9)–(10) is the NCP formulation of static TEP ([10] and [19]) for each fixed ω ∈ �.
In particular, we can write (9)–(10) as

xω ≥ 0, F (xω,ω) ≥ 0, xT
ω F (xω,ω) = 0, ω ∈ �, (11)

where

xω =
(

h(ω)

u(ω)

)

, F (xω,ω) =
(

C(h(ω),ω) − 	T u(ω)

	h(ω) − d(ω)

)

.

The solution xω of (11) depends on an unknown realization ω, which can only be
predicted such as weather. It is interesting for the administrator to find a reliable flow
pattern that is not far from optimal flow pattern xω given by (11). Such flow pattern
may help for future planning. In other words, we wish that there was a deterministic
vector x ∈ R|R|+|I| satisfying the SNCP

x ≥ 0, F (x,ω) ≥ 0, xT F (x,ω) = 0, ω ∈ �, (12)

where

x =
(

h

u

)

, F (x,ω) =
(

C(h,ω) − 	T u

	h − d(ω)

)

. (13)

However, in general, we can not find such vector x that is the equilibria for any
random vector ω ∈ �. We have to consider a deterministic formulation of (12) such
as the EV formulation NCP(E[F(x,ω)]) and the ERM formulation (3). The ERM
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formulation provides a solution x∗ = (h∗, u∗) that minimizes expected violation of
the equilibrium (9)–(10), and represents the most likely equilibrium flow pattern h∗
and travel cost u∗ before we know the realization of uncertain factors. In general, we
do not have x∗ = xω for all ω ∈ �. The violation of x∗ to (9)–(10) is natural, which
means x∗ has error to xω for some ω ∈ �.

In what follows, we let va be the travel flow on link a, and v be the link travel flow
vector with components va, a ∈ A. We use the function ta(v,ω) to denote the travel
time on link a, and t (v,ω) for the link travel time vector with components ta(v,ω),
a ∈ A. Clearly, the link travel flow vector v and the route travel flow vector h have
the following relationship:

v = �h.

It is pointed out in [19] that in many cases the travel cost function is nonadditive,
which may rise from a variety of transportation polices, nonlinear valuation of travel
time, etc. In this paper, we add random factors ω to the general nonadditive travel
cost function suggested in [19] as

C(h,ω) = η1�
T t(�h,ω) + g(�T t (�h,ω)) + �(h,ω), (14)

where η1 > 0 is the time-based operating costs factor, g : R
|R|
+ → R

|R|
+ is the trans-

lation function converting time t to money, and � is the perturbed financial cost
function (e.g., distance-based operating costs such as maintenance). We call (14) the
perturbed general nonadditive travel cost function. We suppose the following assump-
tion on the travel time function and the travel cost function holds.

Assumption A2 There exists a subset �̂ ⊆ � with P{�̂} > 0, such that, for any
ω ∈ �̂,

(i) the travel cost function Cr(h,ω) on each route is a nondecreasing function of
flow h, and finite for any fixed h;

(ii) the travel time function ta(v,ω) on each link is a nondecreasing function of
flow v, finite for any fixed v, and coercive with flow on the link va , i.e.,
ta(v,ω) → ∞ if va → ∞.

Assumption A2 holds in various perturbed travel cost and travel time functions
used in practice. For instance, let the perturbed travel cost function be

C(h,ω) = (�T t (�h,ω))2,

and let the travel time function t be

ta(v,ω) := (K(ω)v + k(ω))a, a ∈A,

where K(ω) ∈ R
|A|×|A|
+ has positive diagonal elements and k(ω) ∈ R

|A|
+ for any ω ∈

�. For a fixed ω, this is the simple affine travel time function used in [11], where it
is said that K(ω) is in general a positive semi-definite matrix.
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Proposition 3.1 Suppose that the network [N ,A] is strongly connected and that
Assumption A2 holds; then, F in (13) is a stochastic R0 function on Rn+.

Proof For any infinite sequence {xk} ⊂ Rn+ satisfying (6), let us choose a subse-
quence {xkj } ⊆ {xk} such that xkj

l → ∞ as kj → ∞ for some l ∈ 〈1, n〉. Recall that
n = |R| + |I|.

If l ∈ 〈1, |R|〉, we have h
kj

l → ∞ as kj → ∞. Notice that �al = 1 for any link a

on route l, thus (�hkj )a ≥ h
kj

l → ∞ as kj → ∞. This indicates that ta(�hkj ,ω) →
∞ as kj → ∞ for �̂ ⊆ � with P{�̂} > 0 by (ii) of Assumption A2. Hence, for any
ω ∈ �̂,

Cl(h
kj ,ω) ≥ η1(�

T t (�hkj ,ω))l ≥ η1�alta(�hkj ,ω) = η1ta(�hkj ,ω) → ∞,

as kj → ∞. If {(	T ukj )l} is bounded, then Fl(x
kj ,ω) = (C(hkj ,ω)−	T ukj )l → ∞

as kj → ∞ for ω ∈ �̂. From Definition 2.2, we find that F is a stochastic R0 function,
since

P{ω : lim
kj →∞ min(x

kj

l ,Fl(x
kj ,ω)) = ∞} ≥ P{�̂} > 0.

Otherwise, we have (	T ukj )l → ∞ as kj → ∞. This implies the existence of i ∈ I
such that 	il = 1 and u

kj

i → ∞. Thus, for any ω ∈ �̂,

(	hkj − d(ω))i ≥ 	ilh
kj

l − di(ω) → ∞, as kj → ∞.

Hence, F is a stochastic R0 function by noticing the expression of F in (13) and

P{ω : lim
kj →∞ min(u

kj

i , (	hkj − d(ω))i) = ∞} ≥P{�̂} > 0.

Now, we consider l ∈ 〈|R| + 1, n〉 and {hkj } is bounded. Then, we have u
kj

i → ∞
as kj → ∞ for some i ∈ I . Since the network is strongly connected, there exists
	ir = 1 for any route r connecting OD pair i. Thus, we get

(	T ukj )r ≥ 	iru
kj

i = u
kj

i → ∞ as kj → ∞.

Moreover, {Cr(h
kj ,ω)} is bounded for ω ∈ �̂ by using (i) of Assumption A2 and

the fact that {hkj } is bounded. Hence (C(hkj ,ω) − 	T ukj )r → −∞ as kj → ∞ for
ω ∈ �̂. From the expression of F in (13), we get

lim
kj →∞‖(−F(xkj ,ω))+‖ ≥ lim

kj →∞| − (C(hkj ,ω) − 	T ukj )r | = ∞ for ω ∈ �̂,

where P{�̂} > 0. This is impossible, since {xk} satisfies (6).
Hence, F is a stochastic R0 function on Rn+. �

Remark 3.1 It is easy to see that F in fact satisfies the condition in Remark 2.2.
Hence the objective function f1 is coercive on Rn+, and the solution set of the ERM
formulation for SNCP(F (x,ω)) is nonempty and bounded.
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4 Evaluation of the ERM-SNCP Model for TEP under Uncertainty

In this section, we report computational experiments that compare the proposed
ERM-SNCP model with EV-SNCP model through a simple example of TEP under
uncertainty. We begin with definitions of performance measure which evaluate the
quality for a flow pattern such as reliability, unfairness, and total travel cost.

The reliability ([4–6] and [20]) concerns the safety of a flow pattern, that is, the
probability to be feasible. For a flow pattern h, its reliability is defined by

rel(h) := P{ω : (	h − d(ω))i ≥ 0, i = |R| + 1, . . . , n}. (15)

Notice that (	h−d(ω))i ≥ 0 manifests that the demand for OD pair i ∈ I and ω ∈ �

can be delivered in the traffic flow pattern h.
For a flow pattern h, the expected ratio of the delivered demand to the total demand

of the system is defined by

dr(h) := E

[
1

|I|
∑

i∈I

min((	h)i, di(ω))

di(ω)

]

. (16)

Clearly 0 ≤ dr(h) ≤ 1 and the nearer dr(h) is to 1, the more feasibility the solution
earns in practice.

For each fixed ω ∈ �, the Wardrop equilibria reflects the fairness to all users with
the same OD pair, since the travel cost for each used route connecting the same OD
pair is equal and less than any unused route. However, for the uncertain case, the
travel cost for any flow pattern connecting the same OD pair is not necessarily the
same. For a fixed ω ∈ �, the unfairness of a feasible flow pattern for an OD pair i ∈ I
[21] is measured by

Cunfair
i (h,ω) = Cmax

i (h,ω)

Cmin
i (h,ω)

,

where Cmax
i (h,ω) and Cmin

i (h,ω) are the largest and smallest travel cost of routes
being used, which connect OD pair i. Thus, the expected unfairness of the decision
for the whole system under uncertainty is defined by

unf(h) := E

[
1

|I|
∑

i∈I
Cunfair

i (h,ω)

]

= E

[
1

|I|
∑

i∈I

Cmax
i (h,ω)

Cmin
i (h,ω)

]

. (17)

For a flow pattern h, the corresponding expected travel cost is defined by

tc(h) := E[hT C(h,ω)]. (18)

We use a simple example to illustrate the ERM-SNCP model for the traffic equilib-
rium under uncertainty.

Example 4.1 The transportation network shown in Fig. 1 is adopted from [22], which
has 13 nodes, 19 links and 4 OD pairs (1 → 2, 1 → 3, 4 → 2, 4 → 3), with the
network characters t0

a and c0
a.
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Fig. 1 An example network

We suppose that the perturbed travel cost function is defined as

C(h,ω) = �T t(�h,ω), ω ∈ �,

where the perturbed travel time function, derived from the Bureau of Public Road
link travel time function (1964), can be written as

ta(v,ω) := t0
a

(

1 + 0.15

(
va

ca(ω)

)4)

, a ∈A.

Here t0
a > 0 is the travel time in the network without congestion, and ca(ω) ≥ 0

represents perturbed link capacity with P{ω : ca(ω) > 0} > 0 for all a ∈A. For any
fixed ω, it is a separable function, i.e., for each link, the travel time depends only on
the travel flow and capacity of this link.

Case 1. Suppose that c(ω) ≡ c0 and d(ω) = ω = (ω1,ω2,ω3,ω4), where ω1, ω2, ω3,
ω4 follow the independent truncated normal distributions, respectively,

ω1 ∼ 300 ≤ N(400,2500) ≤ 500, ω2 ∼ 600 ≤ N(800,2500) ≤ 1000,

ω3 ∼ 400 ≤ N(600,2500) ≤ 800, ω4 ∼ 100 ≤ N(200,900) ≤ 300.

Case 2. Based on case 1, we suppose that some great changes of capacity of the link
a = 5 may happen due to the weather and road condition, as

P
{

ω : c5(ω) ≡ 1

4
c0

5

}

= 1

2
, P{ω : c5(ω) ≡ c0

5} = 1

2
.

Case 3. Based on case 1, we extend the range of ω1, ω2 as

ω1 ∼ 200 ≤ N(400,2500) ≤ 600, ω2 ∼ 400 ≤ N(800,2500) ≤ 1200.

Let xEV and xERM be the solutions of the EV and the ERM formulations of the
SNCP (12), respectively. In Table 1, we report the computation results for the perfor-
mance measure (15)–(18) as well as the number of used routes nr(h). Here, a used
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Table 1 Reliability, unfairness and total travel cost of xEV and xERM

xEV Case 1 Case 2 Case 3

Reliability rel(h) 0.0623 0.0623 0.0626

Delivered rate dr(h) 93.24% 93.24% 91.22%

Unfairness unf(h) 1.25 1.56 1.25

Total travel cost tc(h) 7.93e + 4 8.47e + 4 7.93e + 4

Num. of used routes nr(h) 7 7 7

xERM Case 1 Case 2 Case 3

Reliability rel(h) 0.5285 0.4586 0.5405

Delivered rate dr(h) 99.41% 99.14% 99.25%

Unfairness unf(h) 1.38 1.73 1.45

Total travel cost tc(h) 1.10e + 5 1.21e + 5 1.39e + 5

Num. of used routes nr(h) 19 16 19

Fig. 2 Travel flow pattern of
ERM-SNCP in case 1

route refers to the route that has flow hr ≥ 0.0001. The results are the average of 100
simulations for � = {ω1,ω2, . . . ,ω1000}. The sample points were obtained by the
Monte-Carlo method. Figures 2–4 show the travel flow pattern of the ERM-SNCP
model for the three cases, respectively. Notice that the width of each link in Figs. 2–4
is proportional to the amount of travel flow on this link.

Preliminary numerical results of traffic equilibrium problems under uncertainty
show that the flow pattern drawing from a solution xERM of the ERM formulation has
higher reliability and delivered rate than the EV formulation. On the other hand, the
EV-SNCP formulation has lower unfairness and total travel cost than the ERM for-
mulation. This phenomenon can be explained as follows. The EV formulation seeks
equilibria with the expected value of the travel cost function and travel demand. The
ERM formulation minimizes the violation (residual) of the equilibrium for all ω ∈ �.
Hence the ERM formulation has higher reliability and delivered rate than the EV for-
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Fig. 3 Travel flow pattern of
ERM-SNCP in case 2

Fig. 4 Travel flow pattern of
ERM-SNCP in case 3

mulation. Since the ERM flow pattern delivers much more vehicles, its cost is higher
than the EV flow pattern. Moreover, the unfairness of each flow pattern is defined on
the routes being used, and the ERM flow pattern uses more routes than the EV one.
This makes ERM flow pattern has higher unfairness than the EV formulation. There-
fore, the EV formulation is recommended to administrators who prefer low cost, and
the ERM formulation is recommended to administrators who want a reliable travel
flow pattern which minimizes the expected violation of the equilibrium.
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