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Abstract. We analyze the behavior of inexact Newton methods for problems where the nonlinear
residual, Jacobian, and Jacobian-vector products are the outputs of Monte Carlo simulations. We propose
algorithms which account for the randomness in the iteration, develop theory for the behavior of these
algorithms, and illustrate the results with an example from neutronics.
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1. Introduction. We consider the solution of systems of nonlinear equations

F (u) = 0,(1.1)

when the residual, F (u), Jacobian, and Jacobian-vector products are not computed directly,
but are instead approximated with a Monte Carlo (MC) simulation using a number of trials
which one may vary during an inexact Newton iteration. Such problems arise, for example,
in neutronics [17, 26], and we will use an example from [26] in § 5 as an example in this
paper. We propose and analyze an inexact Newton method and show how the MC error
affects the iteration. The theory will provide guidance in managing the number of trials in
the MC simulation as the iteration progresses.

The results in this paper are very different from results which consider deterministic
errors in residuals, Jacobians, and Jacobian-vector products [4–7, 13–16] some of which we
review in § 2. An important feature of these previous papers is that the errors have upper
bounds which can be used in the analysis. The errors in the problems considered here do
not have upper bounds, but rather, small variances. This leads to significant differences in
both the theory and the algorithms.

The randomness implies that one cannot prove asymptotic convergence results without
letting the number of trials increase very rapidly, which is an impractical approach. Hence
we prove results about how well an iteration based on MC approximations tracks a finite
part of the idealized iteration using the true function and Jacobian. Therefore we use the
term “tracking” instead of convergence.
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We will consider local theory in this paper, so we assume that the standard assumptions
for local quadratic convergence [9, 13] hold for the function F and the initial iterate u0. We
will assume that the errors in the MC simulations behave like those from a Monte Carlo
method for computing integrals [21]. So, when we ask for the residual F , the Jacobian F ′,
or a Jacobian-vector product, the output of the simulation is centered at the correct value
with a variance inversely proportional to the square root of the number of trials. This is not
the same as saying the error is inversely proportional to the square root of the number of
trials, which is a case one can understand with existing theory (see [13] and § 2).

The results in this paper explain the behavior of the algorithm reported in [26] and
improve that algorithm by better management of the number of MC trials. The algorithm
in [26] modifies a Jacobian-free Newton-Krylov (JFNK) iteration by testing for random
errors which, for example, cause the norm of the nonlinear residual to fail to decrease after
a Newton step or a linear iteration for an inexact Newton step to fail to converge. The new
approach in this paper increases the number of MC trials with every nonlinear iteration.

In § 2 we will establish notation and formally state our assumptions. Then we will
review some of the local theory for Newton’s method. In § 3 we will state the assumptions
on the MC simulations and connect those assumptions to the concept of consistency from
stochastic optimization [21].

In § 4 we will state and prove two tracking theorems. Theorem 4.1 is for the idealized
case where we can approximate residuals and Jacobians equally well. We can directly apply
the results in § 2 to this case because we can explicitly estimate the moduli of continuity of a
single inexact Newton iteration as a function of the residual and Jacobian (see Theorem 2.2).
Theorem 4.2 is for the particular JFNK method we used in [26], which uses GMRES as the
linear solver and MC approximations of the Jacobian-vector product. In this case we do not
have an explicit expression of the continuity properties of the iteration as a function of the
residual and sequence of Jacobian-vectors products in the linear iteration.

Finally we illustrate the results by solving one of the problems from [26] with several
variations of the algorithm.

2. Nonlinear Solver Preliminaries. We begin by setting the notation for nonlinear
equations and reviewing the local convergence theory for Newton’s method. We give the
estimate from [13] on the effects of errors in the function and Jacobian evaluations on inexact
Newton methods. The results in this section are either known [9,13,18] or direct consequences
of known results, but our use of them is new, so we present them in some detail.

We will let ‖ · ‖ denote any weighted inner product norm on RN . We will use the inner
product only in our discussion of Newton-Krylov methods, Newton-GMRES in particular,
in § 4.2. Elsewhere the norm could be any norm. We will also use ‖ · ‖ to denote the matrix
norm induced by the vector norm and κ(·) to denote the condition number relative to the
norm.

2.1. Convergence of Newton’s Method. We will let u∗ ∈ RN be a solution of (1.1)
at which the standard assumptions for local quadratic convergence of Newton’s method hold.
These assumptions are

Assumption 2.1.
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• F (u∗) = 0.
• F ′(u∗) is nonsingular.
• F ′ is locally Lipschitz continuous near u∗ with Lipschitz constant γ.
Here F ′ is the Jacobian of F and the final assumption is that

‖F ′(u)− F ′(v)‖ ≤ γ‖u− v‖(2.1)

for all u, v sufficiently near u∗. Now let

ρ ∈
(

0,
1

2γ‖F ′(u∗)−1‖

)
(2.2)

be such that (2.1) holds for all u, v in the set

B(ρ) = {z | ‖z − u∗‖ ≤ ρ}.(2.3)

As is standard [9, 13] we will describe iterative methods in terms of the transition from
uc, the current approximation to u∗, to a new approximation, u+. Newton’s method is

u+ = uc − F ′(uc)−1F (uc).(2.4)

Theorem 2.1 is taken from several results in [13]. Beyond the convergence result, we also
include some estimates that we will use in the rest of the paper. In the statement, and in
the rest of the paper, we use the standard notation

e = u− u∗.

Theorem 2.1. Assume that the standard assumptions hold. Let uc ∈ B(ρ). Then
• F ′(uc) is nonsingular and

‖F ′(uc)−1‖ ≤ 2‖F ′(u∗)−1‖.(2.5)

•
3

4‖F ′(u∗)−1‖
‖ec‖ ≤ ‖F (uc)‖ ≤

5‖F ′(u∗)‖
4

‖ec‖.(2.6)

• The Newton iterate u+ ∈ B(ρ) satisfies

‖e+‖ ≤ ‖ec‖/2 and ‖e+‖ ≤ γ‖F ′(u∗)−1‖‖ec‖2.

We must deal with errors in both the function and Jacobian and with an inexact solution
of the linear equation for the Newton step. The iteration of interest is

u+ = uc + s,(2.7)

where for some 0 ≤ ηc < 1,
‖Jcs+ F̃c‖ < ηc‖F̃c‖,(2.8)

Jc = F ′(uc) + ∆c, and F̃c = F (uc) + εc.(2.9)
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The condition on the step (2.8) is analogous to the classic inexact Newton condition [8, 13]

‖F ′(uc)s+ F (uc)‖ < ηc‖F (uc)‖.(2.10)

Theorem 2.2, taken from [13] summarizes the effects of all of the above deviations from (2.4).
We depart from convention here by making the inequalities in (2.8) and (2.10) strict.

We will only need this in the proof of Corollary 2.5. This change does not alter the standard
convergence theory or analysis.

Theorem 2.2. Let the assumptions of Theorem 2.1 hold. Assume that ηc < 1 and

‖∆c‖ ≤
1

4‖F ′(u∗)−1‖
.(2.11)

Then Jc is nonsingular and u+, as defined by (2.7), satisfies

‖e+‖ ≤ γ‖F ′(u∗)−1‖‖ec‖2 + (CJ‖∆c‖+ CIηc)‖ec‖+ CF‖εc‖,(2.12)

where
CJ = 6‖F ′(u∗)−1‖, CI = 3 + 4κ(F ′(u∗)), and CF = 8‖F ′(u∗)−1‖.(2.13)

We have expressed our convergence results in terms of a general norm. Inexact Newton
methods can be formulated in the context of the norm

‖ · ‖∗ = ‖F ′(u∗) · ‖

[8,10]. With this choice of norm, any η ∈ [0, 1) will lead to a q-linearly convergent iteration.
We have elected to use an arbitrary norm ‖ · ‖. Among our reasons for this are that (1)
most solvers either use the `2 norm or allow the user to select a norm and (2) the ‖ · ‖∗ norm
would be difficult to integrate into a Krylov linear solver.

2.2. A Tracking Theorem for Inexact Newton Methods. Theorem 2.2 quantifies
explicitly how the inexact Newton iteration depends continuously on the residual and Jaco-
bian. That continuity will be critical to the results in this paper. The algorithms we propose
in this paper manage the errors in the Jacobian and the residual as the iteration progresses
and attempt to track the performance of a pure Newton iteration. To that end we let {uνn}
be the sequence of Newton iterations starting with u0 ∈ B(ρ). Theorem 2.1 is applicable
and hence (2.5) holds. One may either attempt to manage the errors so that superlinear
convergence is preserved or, as we advocate in this paper, preserve q-linear convergence. Our
reason for this choice is that rapidly increasing the accuracy via Monte Carlo trials could be
prohibitively expensive. We will discuss the alternative of preserving superlinear convergence
later in this section.

Theorem 2.1 implies that
‖eνn+1‖ ≤ rNewton‖eνn‖,(2.14)

where
rNewton = ‖e0‖‖F ′(u∗)−1‖γ ≤ ρ‖F ′(u∗)−1‖γ ≤ 1/2,
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by the choice of ρ. Note that rNewton depends on the quality of the initial iterate.
The proof of our tracking theorems will depend on two corollaries of Theorem 2.2. The

first, Corollary 2.3, requires a bound on the error in the Jacobian. Corollary 2.5 is more
specific and directed at an iteration which uses GMRES as the linear solver with approximate
Jacobian-vector products.

Corollary 2.3. Let the assumptions of Theorem 2.2 hold. Let an integer K ∈ [0,∞]
and r ∈ (rNewton, 1) be given. There there are ε0, η̄, and ∆̄ so that for all u0 ∈ B(ρ) the
subsequence

un+1 = un + sn, 0 ≤ n ≤ K

from the iteration (2.7)–(2.10) satisfies

‖en‖ ≤ rn‖e0‖(2.15)

if
ηn ∈ [0, η̄], ‖Jn − F ′(un)‖ ≤ ∆̄, and ‖F̃n − F (un)‖ ≤ ε0r

n(2.16)

for all 0 ≤ n ≤ K − 1.
Proof. We begin with the special case ∆n = 0 and εn = 0. Our target will be an iteration

{uιn} that converges q-linearly with q-factor rη ∈ (rNewton, r), i. e.

‖eιn+1‖ ≤ rη‖eιc‖.(2.17)

We will first apply Theorem 2.2 with ∆ = 0 and ε = 0. In that case, one can combine (2.12)
and (2.14) to obtain

‖eιn+1‖ ≤ rNewton‖eιn‖+ CIηn‖eιn‖.(2.18)

We will have (2.17) if we pick ηn so that

‖eιn+1‖ ≤ rNewton‖eιn‖+ CIηn‖eιn‖ ≤ rη‖eιn‖.

This requires that

ηn ≤ η̄ ≡ rη − rNewton
CI

=
rη − rNewton

3 + 4κ(F ′(u∗))
,(2.19)

for all n. We will manage η in the following sections by insisting on (2.19).
While one could manage the sequence of Jacobian errors {∆n} and the forcing terms

simultaneously, we will not do that because we control them in different ways. We chose to
manage the forcing term first because we can do that independently of the methods we use
to approximate the residual and Jacobian. Now suppose εn = 0 for all n. In that case we
can obtain a q-factor r∆ ∈ (rη, r) by requiring that

CJ‖∆n‖+ rη ≤ r∆.

Hence we will require that

‖∆n‖ ≤ ∆̄ ≡ r∆ − rη
CJ

=
r∆ − rη

6‖F ′(u∗)−1‖
.(2.20)
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So, if the errors in the residual are zero, we can obtain q-linear convergence with a q-
factor that is as close to rNewton as we like. To move beyond that to superlinear or quadratic
convergence, we would have to let ∆n → 0 and ηn → 0. We do not think that is practical in
the MC setting of this paper.

Finally we consider reduction in the residual error. Convergence requires that the resid-
ual errors {εn} converge to zero. A q-linear convergence estimate would require that

εn = O(‖en‖) = O(‖F (un)‖),

with a sufficiently small constant in the O-term. An r-linear convergence estimate would
need

εn = O(rn)

for some r ∈ (0, 1). We will take the latter approach and seek r-linear convergence with an
r-factor r, i. e.

‖en‖ ≤ rn‖e0‖.(2.21)

We can use Theorem 2.2 again to obtain (2.21). Beginning with u0 ∈ B(ρ) and requiring
that (2.19) and (2.20) hold. We will obtain (2.21) as well as {un} ⊂ B(ρ) if

‖en+1‖ ≤ r∆‖e0‖rn + CF‖εn‖ ≤ ‖e0‖rn+1,(2.22)

which is satisfied if
‖εn‖ ≤ ε0r

n,(2.23)

where

ε0 ≤ ‖e0‖
r − r∆

CF
= ‖e0‖

r − r∆

8‖F ′(u∗)−1‖
.(2.24)

Our plan for the analysis in § 4.1 is to require (2.19) and then to manage the number
of MC trials to force (2.20) and (2.23) to hold with high probability, and thereby obtain
(2.21). The difficulty is that one can only do this for a finite subsequence of the iteration
(so K <∞), as we will see in the proof of Theorem 4.1.

If one wanted to track superlinear convergence, one would have to reduce the errors in
residuals superlinearly and drive the Jacobian error to zero. For example, if one demanded
that

lim
n→∞

‖εn+1‖
‖εn‖

= 0 and lim
n→∞

‖∆n‖ = 0,

then one could easily extend the analysis above to show that the iteration was superlinearly
convergent if u0 were sufficiently near u∗. This is, in our opinion, too costly if residuals,
Jacobians, and Jacobian-vector products are approximated with MC simulations.

2.3. A Tracking Theorem for JFNK Methods. In this section we consider a matrix-
free method. By this we mean that we compute only approximate Jacobian-vector products
within the linear solver, and do not apply the linear solver to an approximate Jacobian
matrix. The details differ from the analysis in § 2.2 because we cannot consider the error
in an approximate Jacobian directly, but must instead analyze the sequence of approximate
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matrix-vector products within the inner iteration. We will consider only Newton-GMRES
in this section. The analysis applies to other Krylov methods, such as conjugate gradient,
which are continuous in their data. The results in this section are significatly more detailed
than those in § 6.2.1 of [13].

Suppose one can only approximate a Jacobian-vector product and not a complete Ja-
cobian. One example of this situation is using a finite-difference Jacobian-vector product in
a Newton-Krylov method [13]. For definiteness, we will use GMRES [20] throughout this
paper. We will denote the approximate Jacobian-vector by

Jp(u, v) ≈ F ′(u)v.

The difference in the iteration from Corollary 2.3 is only that the inexact Newton condition
is realized by a Newton-GMRES iteration with Jp(u, v) used for all the Jacobian-vector
products. In the case of finite-difference Jacobian-vector products

Jp(u, v) =
F (u+ hv)− F (u)

h

for a properly chosen difference increment h [13].
The effect of the approximate Jacobian-vector product is well understood [4, 13] for a

finite-difference directional derivative, and the results in this section apply directly to that
case. As is the case for a finite-difference directional derivative, one must scale the direction
to obtain good results. For a finite difference approximation [13] we choose the difference
increment proportional to the reciprocal of norm of F (u). We enforce the scaling for the
general case by requiring that

Jp(u, αv) = αJp(u, v),(2.25)

for all scalars α and vectors u, v. In practice one does this by only asking for directional
derivatives for unit vectors v, and then correcting the scaling afterwards by multiplying by
the proper scalar.

We now restrict our attention to problems which are well-conditioned enough for the
number of Jacobian-vector products per nonlinear iteration in a Newton-GMRES iteration
to be uniformly bounded for the entire nonlinear iteration. So, we will impose a limit KL on
the size of the Krylov subspace, i. e. we will use GMRES(KL) as the linear solver, and limit
the number of restarts to KR. We must also keep in mind that GMRES tests the termination
criterion (2.10) indirectly within the linear iteration. We must now look into the continuity
of the linear iteration in the entire set of Jacobian-vector products.

Let A be a nonsingular matrix. We will denote the output of GMRES(KL) applied to
the linear system Ax = b with at most KR restarts, relative residual tolerance η, and initial
iterate x0 = 0 by

x = GMRES(A, b,KL, KR, η).

Here A may represent either multiplication by the matrix A or application of an approximate
matrix-vector product. Because the initial iterate is x0 = 0, one can see from the algorithmic
description for GMRES that

GMRES(A,αb,KL, KR, η) = αGMRES(A, b,KL, KR, η),(2.26)
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for any α ≥ 0. The most important consequence of this is that if two matrices (or the related
history of matrix-vector products) are close, then the outputs of the iteration are relatively
close provided that the iteration does not have a “happy breakdown” [13]. To make this
precise, suppose that we compare an “exact” implementation GMRES(A,αb,KL, KR, η) with
GMRES(Ap, αb,KL, KR, η), where Ap is an approximate matrix-vector product function. We
state the result as a lemma. The proof, as we said above, follows directly from the algorithmic
description of a GMRES iteration.

Lemma 2.4. Suppose that Ap(αv) = αAp(v) for all α ≥ 0, v ∈ RN and that

‖Aw − Ap(w)‖ ≤ ∆p

for all unit vectors w. Then, if GMRES(A,αb,KL, KR, η) does not break down,

‖GMRES(A,αb,KL, KR, η)−GMRES(Ap, αb,KL, KR, η)‖ = ‖b‖o(1),(2.27)

as ∆p → 0. Moreover, if ρ is the computed residual on termination of the iteration with A
and ρp the residual of the iteration with Ap, then

|ρ− ρp| = ‖b‖o(1)(2.28)

as ∆p → 0.
The method of interest in this section replaces s = F ′(uc)

−1F (uc) in a Newton iteration
with:

s = GMRES(Jp, F̃c, KL, KR, η).(2.29)

We will compare this with an idealized error-free inexact Newton method

s = GMRES(F ′(uc), F (uc), KL, KR, η).(2.30)

or the step with an approximate residual and an error-free Jacobian-vector product,

s = GMRES(F ′(uc), F̃c, KL, KR, η).(2.31)

We will assume that the error-free case converges sufficiently rapidly.
Assumption 2.2. There are rGMRES ∈ (rNewton, 1) and ηGMRES ∈ (0, 1), such that for

any η ∈ (0, ηGMRES) and u0 ∈ B(ρ) the sequence {uGn } of Newton-GMRES iterations using
(2.30) as the linear solver converges q-linearly with q-factor at most rGMRES. Moreover, the
internal GMRES solver does not break down.

The assumption that the GMRES iteration does not terminate with a “happy break-
down” is needed to ensure that the entire linear iteration is continuous in the sequence of
Jacobian-vector products. We will need this in the second part of the proof of Corollary 2.5.
We are also implicitly assuming that there is no loss of orthogonality within the GMRES
iteration. This assumption is needed to guarantee that the residual computed internally in a
GMRES implementation is the same as the actual residual. This is true in exact arithmetic,
of course. One can realize this in practice by either using Householder reflections to maintain
orthogonality [25] or orthogonalizing twice within each GMRES iteration [19].
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Corollary 2.5. Let Assumption 2.2 and the assumptions of Theorem 2.2 hold. Let
an integer K ∈ [0,∞], r ∈ (rGMRES, 1), and u0 ∈ B(ρ) be given. Assume the approximate
Jacobian-vector product Jp satisfies (2.25).

Then there are ε0, η̄, and ∆̄p so that the subsequence

un+1 = un + sn, 0 ≤ n ≤ K

from the iteration (2.7)–(2.10), with the Jacobian-vector products approximated by Jp(u, v)
satisfies

‖en‖ ≤ rn‖e0‖, for 0 ≤ n ≤ K,(2.32)

if

‖F ′(u)v − Jp(u, v)‖ ≤ ∆p(2.33)

for all u ∈ B(ρ) and unit vectors v, and

‖F̃n − F (un)‖ ≤ ε0r
n, for 0 ≤ n ≤ K.

Proof. The proof follows directly from Lemma 2.4. The lemma states that if ∆p is
sufficiently small then the linear iteration GMRES(Jp, F̃c, KL, KR, ēta) will terminate no
later than GMRES(F ′(uc), F̃c, KL, KR, η̄) and the steps will be near enough so that

‖F ′(uc)s+ F̃c‖ ≤
η̄ + ηGMRES

2

which is sufficient for (2.32) to hold. This completes the proof.

3. Monte Carlo Approximations and Consistency. In this section we formalize our
assumptions on the accuracy of the function, Jacobian, and Jacobian-vector approximations.
We then prove a consistency result to explain in what sense the approximate equations satisfy
the hypotheses of the Kantorovich theorem [12, 13]. We defer the statement and proof of a
tracking theorem for a specific algorithm until the next section.

3.1. Notation and Accuracy Assumptions. We will approximate each function, Ja-
cobian, and Jacobian-vector product with a randomized simulation using a variable number
of trials. Our notation will be

• NMC is the number of trails for the function and NJ
MC the number of trials for the

Jacobian or Jacobian-vector product.
• F̃ (u,NMC) is an outcome of the simulation for the residual F (u).
• J(u,NJ

MC) is an outcome of the simulation for the Jacobian F ′(u).
• Jp(u, v,NJ

MC) is an outcome of the simulation for the Jacobian-vector product F ′(u)v.
We will refer to the approximations as Monte Carlo approximations because that was the
setting in [26]. We assume that the evaluations of F̃ , J , and Jp are independent.

Recall that B(ρ) (see (2.2), (2.1), and (2.3)) is the set of initial iterates from which
Newton’s method converges. For consistency and the tracking theorems we will require
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Assumption 3.1. There are functions cF and cJ and an open set B′ which contains
B(ρ) such that, for all u ∈ B′ and δ > 0

Prob

(
‖F (u)− F̃ (u,NMC)‖ > cF (δ)√

NMC

)
< δ,(3.1)

and

Prob

‖F ′(u)− J(u,NJ
MC)‖ > cJ(δ)√

NJ
MC

 < δ.(3.2)

For the matrix-free implementation we will replace (3.2) by a similar assumption on
Jacobian-vector products.

Assumption 3.2. There is a function cJv and an open set B′ which contains B(ρ) such
that for all u ∈ B′, unit vectors v ∈ RN , and δ > 0, (3.1) holds and

Prob

‖F ′(u)v − Jp(u, v,NJ
MC)‖ > cJv(δ)√

NJ
MC

 < δ.(3.3)

These assumptions are very weak. One way to think of them is that the function,
Jacobian, and Jacobian-vector products are the outputs of experiments, i. e. vector or matrix-
valued random variables. Hence one cannot say that F̃ , J , or Jp inherit any continuity
properties from F . Our tracking results cannot talk about asymptotic convergence rates,
but only describe how an iteration based on F̃ , J , or Jp tracks an idealized iteration for F
itself.

3.2. Consistency Results. Consistency results for sequences of nonlinear problems
typically use the Kantorovich theorem [12,13] to show that the approximate problems have
solutions and that those solutions converge to the solution of the limiting problem. We
perform a similar analysis here, but that analysis is complicated by the MC evaluation of
the approximations.

If a sequence of functions {FN} converges to F pointwise and the Jacobians F ′N are uni-
formly Lipschitz continuous and well-conditioned in a neighborhood of u∗, the Kantorovich
theorem implies that FN(u) = 0 has a unique solution near u∗ and that these solutions
converge to u∗. In the present case, however, our assumptions do not imply any continuity
properties of FN or F ′N .

Theorem 3.1 connects the standard assumptions, which F satisfies, with the approxima-
tions.

Theorem 3.1. Assume that the standard assumptions and Assumption 3.1 hold. Then
for any ε > 0, ω ∈ (0, 1), and u, v ∈ B(ρ) there is N∗MC such that, for all NJ

MC , NMC ≥ N∗MC,

‖F̃ (u∗, NMC)‖ ≤ ε,(3.4)

‖J−1(u,NJ
MC)‖ ≤ 4‖F ′(u∗)−1‖,(3.5)

and
‖J(u,NJ

MC)− J(v,NJ
MC)‖ ≤ γ‖u− v‖+ ε,(3.6)
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with probability at least 1− ω.
Proof. Let ε > 0 and ω ∈ (0, 1) be given. Let N∗MC be large enough so that

cF (δ)√
N∗MC

≤ ε(3.7)

and
cJ(δ)√
N∗MC

≤ min

(
1

2‖F ′(u)−1‖
,
ε

2

)
.(3.8)

Now let
δ ≤ 1−

√
1− ω,(3.9)

and NMC ≥ N∗MC . Since δ ≤ ω, equation (3.1) from Assumption 3.1 and (3.7) imply (3.4)
with probability no less than 1− δ ≥ 1− ω.

Let NJ
MC ≥ N∗MC . (3.8) implies that, with probability 1− δ ≥ 1− ω

‖J(u,NJ
MC)−1‖ ≤ 2‖F ′(u)−1‖.

This and (2.5) imply (3.5) since u ∈ B(ρ).
Since NJ

MC ≥ N∗MC , Lipschitz continuity of F ′ and (3.8) imply, with probability at least

(1− δ)2 ≥ 1− ω

that
‖J(u,NJ

MC)− J(v,NJ
MC)‖ ≤ ‖F ′(u)− F ′(v)‖+ ε ≤ γ‖u− v‖+ ε.

This completes the proof.

4. Algorithms and Tracking Theorems. In this section we show how the MC ap-
proximations of functions, Jacobians, and Jacobian-vector products change the Newton it-
eration. The theoretical results will then guide the algorithmic discussion. The algorithms
manage the errors in the function, Jacobian, and linear solver by increasing the number of
MC trials as the iteration progresses.

Our results differ from those for problems with deterministic errors because we cannot
compare a point in B to a root of F̃ . In fact, there are no roots of F̃ because F̃ does not return
the same value for successive calls with the same inputs. Hence we can only assert that,
with high probability, the inexact Newton sequence which uses the approximations tracks
the sequence with the exact functions F and F ′ for a given finite number of iterations.

The JFNK algorithm proposed in [26] tested for stagnation by looking for a decrease
in the residual norm. If the residual norm failed to decrease, then the algorithm increased
NMC . GMRES was the linear solver. We will discuss a version of that algorithm later in
§ 4.2. Before that, in § 4.1, we will consider the case where one uses MC simulations to
approximate the entire Jacobian matrix.

Our tracking results may remind the reader of mesh-independence theorems (see [1, 2,
11, 16], for example), where one compares a Newton iteration for an infinite-dimensional
problem with one for a discretization as the mesh is refined. We will sketch a version of such
an analysis in § 2.2 to illustrate the kind of result we seek in this case.

The main tracking results are in § 4.1 and § 4.2.
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4.1. Tracking with MC Residual and Jacobian Approximations. We begin with
the case where the residual and Jacobian come from MC simulations, and we compute the
matrix-vector product used within the inner GMRES iteration as

J(uc, N
J
MC)v

rather than with a MC matrix-vector product

Jp(uc, v, N
J
MC).

In this case Theorem 2.2 and the ideas in § 2.2 can be applied directly. This is simpler
than the case where the matrix-vector product is an MC simulation (see § 4.2) because
estimating the error in the linear solver becomes significantly more complex both in theory
and in practice [22–24].

We must explicitly show how the number of MC trials fits into the iteration:

u+ = uc + s, where ‖J(uc, N
J
MC)s+ F̃ (uc, NMC)‖ ≤ ηn‖F̃ (uc, NMC)‖.(4.1)

Note that the number of trials NMC for the function need not (and, as we shall see, should
not) be the same as the number NJ

MC for the Jacobian. The reason for that, as one can
see from Theorem 2.2, is that the forcing terms and Jacobian errors influence the rate of
convergence, but not the accuracy of the iteration.

Theorem 2.2, of course, does not apply with certainty if one uses MC residuals and
Jacobian-vector products. We can, however, use Assumption 3.1 and Corollary 2.3 to adjust
NMC and NJ

MC so that a finite number of Newton iterates are approximated sufficiently well
with high probability.

Our primary goal will be tracking r-linear convergence and obtaining (2.21). For a given
finite K > 0, the analysis will show that we can, if the algorithmic parameters are chosen
correctly, obtain (2.21) for the first K iterations.

We will assume that the hypotheses of Corollary 2.3 hold and that ηn ≤ η̄, where η̄
is defined by (2.19). While we could make the limiting convergence as fast as q-quadratic
by decreasing ηn and increasing the number of MC trials very rapidly, the work required to
capture that convergence rate with the MC-based iteration is far too much. Hence we will
fix NJ

MC in a way that will enable us to bound the Jacobian error ∆n with high probability
for the first K iterations.

We must increase NMC as the iteration progresses to obtain the tracking results we
want. To track r-linear convergence we can increase NMC by a factor of at least r−2 with
each iteration.

The iteration is

un+1 = un + s, where,

‖J(un, N
J
MC)s+ F̃ (un, N

n
MC)‖ ≤ ηn‖F̃ (un, N

n
MC)‖.

We formalize this idea in Algorithm Newton-MC. The inputs are an initial iterate
u, NJ

MC , an upper bound η̂ for the forcing term η, an initial value of NMC , the factor
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Ninc by which NMC will increase with each iteration, and relative and absolute termination
parameters. Based on Corollary 2.3 and its proof we will require that

0 ≤ η̂ ≤ η̄(4.2)

where η̄ is defined by (2.19).

Newton-MC(u,NMC , N
J
MC , NMC , η̂, τr, τa)

Evaluate RMC = F̃ (u,NMC); τ ← τr‖RMC‖+ τa.
while ‖RMC‖ > τ do

Compute J(u,NJ
MC)

Find s which satisfies ‖J(u,NJ
MC)s+ F̃ (u,NMC)‖ ≤ ηRMC with 0 ≤ η ≤ η̂

u← u+ s
Evaluate RMC = F̃ (u,NMC);
NMC ← NincNMC

end while

The tracking result will follow from Corollary 2.3. We will use the terminology from
§ 2.2.

Theorem 4.1. Let the assumptions of Theorems 2.1 and 2.2 hold. Let a positive integer
K, r ∈ (rNewton, 1) and ω ∈ (0, 1) be given. Then there are η̂, NMC, NJ

MC, and Ninc, such that
with probability (1−ω) for all 1 ≤ n ≤ K, the iteration produced by Algorithm Newton-MC
satisfies

‖en‖ ≤ rn‖e0‖,(4.3)

and there is KF (depending only on F and u∗) such that

‖F (un)‖ ≤ KF r
n‖F (u0)‖.(4.4)

Proof. We will prove (4.3). After that, (4.4) will follow from (2.6) and

KF =
4κ(F ′(u∗))

3
.

We will use Corollary 2.3. Let η̄ be the bound from the corollary and let 0 ≤ η̂ ≤ η̄.
Now let ∆̄ be as in Corollary 2.3 and set

δ = 1− (1− ω)1/2K .(4.5)

If we require that

NJ
MC ≥

(
cJ(δ)

∆̄

)2

.(4.6)

then the choice of NJ
MC implies that

‖F ′(un)− J(un, N
J
MC)‖ ≤ ∆̄(4.7)
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for 0 ≤ n ≤ K − 1 with probability no smaller than

(1− δ)K =
√

1− ω,

provided un ∈ B(ρ), which will follow from our completion of the proof.
The next step is to manage NMC and Ninc. Let ε0 be as in Corollary 2.3 and let

εn = ε0r
n.(4.8)

Let N0
MC be the initial value of NMC and assume

N0
MC ≥

(
cF (δ)

ε0

)2

.(4.9)

Then, with probability at least 1− δ

‖F (u0)− F̃ (u0, N
0
MC)‖ ≤ ε0.

This completes the proof if Ninc ≥ r−2 as then,

‖F (un)− F̃ (un, N
n
MC)‖ ≤ ε0r

n,(4.10)

for all 0 ≤ n ≤ K−1. Hence, with probability no less than (1−δ)K , un ∈ B(ρ) for 0 ≤ n ≤ K
by (4.3), (4.7), and Corollary 2.3.

We complete the proof by noting that both (4.10) and (4.7) hold with probability no
less than

(1− δ)2K = (1− ω).

4.2. Matrix-Free Newton-GMRES Solvers. In this section we apply Corollary 2.5
in the context of MC approximations to the residual and Jacobian-vector product. We
implement a GMRES solver for the linear equation for the nth Newton step by using the
approximate function F̃ (un, N

n
MC) for the right hand side and approximating the Jacobian-

vector product F ′(un)v with Jp(u, v,N
J
MC). As was the case in § 4.1, we must manage

the number of trials for the residual computation Nn
MC as the iteration progresses, but the

number of trials for the Jacobian-vector product need not be increased.
Low accuracy matrix-vector products and their effects on GMRES have been studied

previously [22–24]. Those papers show the errors in the early matrix-vector products can
accumulate and lead to severe loss of accuracy in the solution which GMRES returns. The
accumulation of errors is especially problematic if we take many GMRES iterations, as one
might for a poorly conditioned problem or when one wants a significant reduction in the
residual norm.

In the context of a Newton-GMRES iteration, this loss of accuracy can be seen when the
nonlinear residual norm does not decrease from one Newton-GMRES iteration to the next,
even when the iterations are near the solution. We saw such behavior in the computations
reported in [26] and had to apply a line-search [3,9,13] to avoid increasing NMC too rapidly.
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The authors of [22–24] recommend that one use higher accuracy matrix-vector products early
in the Krylov iteration, but that is not practical in the problems we consider here.

The meaning of Assumption 2.2 is that the number of Krylov iterations for each Newton
iteration is uniformly bounded. In practice, in view of the effects of error propagation,
that bound should be small, as it is in our examples. This bound enables one to prove a
tracking theorem because then one can derive a bound on the number of MC residuals and
Jacobian-vector products that one will need for K nonlinear iterations.

To state the tracking result, Theorem 4.2, we will formulate a JFNK iteration that
explicitly bounds the number of Krylov iterations and restarts. While such an iteration will
not be a general purpose method, it will be effective on sufficiently well-conditioned problems.
To that end, as we said above, we constrain the number KL of GMRES vectors we are willing
to store, i. e. to use GMRES(KL) rather than full GMRES, and limit the number of restarts
to KR. Algorithm JFNK-MC combines these limits with the increments in NMC from
Algorithm Newton-MC.

JFNK-MC((u,NMC , N
J
MC , Ninc, η,KL, KR, τr, τa, Imax)

Evaluate RMC = F̃ (u,NMC); τ ← τr‖RMC‖+ τa.
while ‖RMC‖ > τ do
s = GMRES(Jp(uc, ·, NJ

MC), F̃c, KL, KR, η)
u← u+ s
NMC ← Ninc ∗NMC ;
Evaluate RMC = F̃ (u,NMC)

end while

Theorem 4.2. Assume that the assumptions of Theorem 2.2 and Corollary 2.5 hold.
Let u0 ∈ B, a positive integer K, r ∈ (rGMRES, 1) and ω ∈ (0, 1) be given. Then there
are NMC, NJ

MC, and Ninc, such that with probability (1− ω) the iteration produced by Algo-
rithm JFNK-MC satisfies (4.3) and (4.4) for 0 ≤ n ≤ K.

Proof. The ideas in the proof are similar to that of Theorem 4.1. We use continuity of the
iteration in its data and the fact that we do at most (KLKR+1)K MC residual or Jacobian-
vector product evaluations. The difference is the type of data. Here the nonlinear iterations
are functions of K residual evaluations and at most KLKR Jacobian vector products. The
continuity implies that if the residuals and Jacobian-vector products are sufficiently accurate,
then at most one additional Jacobian-vector product after the final restart will be needed to
satisfy the inexact Newton condition (2.10).

So let

δ = 1− (1− ω)1/(K[KLKR+1]).(4.11)

Let ∆p and ε0 come from Corollary 2.5 and choose N0
MC to satisfy (4.9) and Ninc ≥ r−2.

Then, exactly as in the proof of Theorem 4.1, we have, with probablity no less than (1−δ)K ,
(4.10) holds for 0 ≤ k ≤ K − 1.

The difference between this proof and the one of Theorem 4.1 is that we must deal with
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approximate Jacobian-vector products, rather that Jacobians. To do this we let

NJ
MC ≥

(
cJv(δ)

∆p

)2

which, in view of Lemma 2.4 and (2.25), implies that the Jacobian-vector products through-
out the entire Newton-GMRES iteration satisfy

‖F ′(un)vj − J(un, vjN
J
MC)‖ ≤ ∆̄p‖F̃n‖(4.12)

for 0 ≤ n ≤ K − 1 and all the KLKR Krylov vectors with probability no less than (1 −
δ)KLKRK .

Hence, the assumptions of Corollary 2.5 hold with probability no less than

(1− δ)K(KLKR+1) = 1− ω.

5. Numerical Results. In this section we apply Algorithm JFNK-MC with a variety of
choices of the algorithmic parameters η, KL and KR to an example from [26]. One should
keep in mind that restarting GMRES(KL) has a very low incremental cost if, as is the case
here, NJ

MC is fixed a low value while NMC increases throughout the iteration. One conclusion
from the testing here is that restarting once (KR = 2) does no harm, helps one keep both η
large and KL small, and can improve the results in some cases. On the other hand, a value
of η that is too small combined with a limit KL that is too large can lead to the types of
errors that were analyzed in [22–24] in the linear iteration.

As an example we use the nonlinear system for the nonlinear diffusion acceleration
(NDA) of the equation for neutron transport in one space dimension. We refer the reader
to [17,26] for the motivation for and the derivation of these equations. We will describe the
continuous form of the equations and not discuss the details of the discretizations.

The linear equation for the Newton step requires preconditioning before the assumptions
of the theory in § 4 hold. We will describe that preconditioner below and explain how it
compactifies the linearized operator.

The NDA equation is for a “low-order” flux φ ∈ C[0, L]. The coefficients and boundary
conditions for the low-order equation depend on a “high-order” equation, which we will solve
with a MC approximation.

The low-order equation is

d

dx

[
− 1

3Σt

dφ

dx
+ D̂HOφ

]
+ (Σt − Σs)φ = q(x).(5.1)

In (5.1), Σt and Σs are transmission and scattering cross sections and q is a source term.
The coefficient D̂ depends on the solution of the high-order equation

µ
∂ψ

∂x
+ Σtψ(x, µ) =

1

2
[Σsφ(x) + q(x)] ,(5.2)
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where µ ∈ [−1, 1] is the angular variable. The boundary conditions for the high-order
equation are the incoming fluxes ψ(0, µ) and ψ(L,−µ) for µ > 0.

We compute D̂ using the high-order flux

φHO(x) =
∫ 1

−1
ψ(x, µ′)dµ′,(5.3)

and high-order current

JHO(x) =
∫ 1

−1
ψ(x, µ′)µ′dµ′,(5.4)

with the formula

D̂ =
JHO + 1

3Σt

dφHO

dx

φHO
.(5.5)

We can represent this problem as a nonlinear system of equations by writing

F (φ) =
d

dx

[
− 1

3Σt

dφ

dx
+ D̂HO(φ)φ

]
+ (Σt − Σs)φ− q.(5.6)

We write D̂HO(φ) to demonstrate the dependence of D̂HO on φ as is seen in (5.5), in which
φHO and JHO are recovered from the solution to (5.2). Now, we employ a Newton-GMRES
algorithm to solve F (φ) = 0. This algorithm for solving the transport equation is known as
JFNK-NDA(MC) when the computation of D̂ employs a Monte Carlo simulation.

Within our Newton-GMRES algorithm there are several parameters which we may
change in order to tune the performance of JFNK-NDA(MC). First, we may change KL

the maximum number of Krylov vectors allowed per linear iteration. We used KL = 5, 10, 20
in our testing. Secondly, we may change the forcing term, η, which for these tests, takes on
values .1 and .001. Lastly, we also look at the possibility of restarting GMRES (KR = 1
or KR = 2). We will see that restarting GMRES(KL) once (KR = 2) can reduce the stor-
age requirements, as compared to doubling KL and not restarting, while not degrading the
performance of the algorithm.

We will consider a single test problem which is representative, in general, of problems
for which JFNK-NDA(MC) has been employed. In this computation we fix NJ

MC = 106 and
use the zero function as the initial iterate. We present the problem data in Table 5.1.

Table 5.1: Problem Data

Parameter Value
Σt 10
Σs 9.9
τ 1
q .5

Spatial Cells 50

In each of the following figures we employ the same structure. On the y-axis we plot
the nonlinear residual, on the x-axis we plot the cumulative number of realizations (particle
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histories) for residual and Jacobian-vector products. We plot the results of ten simulations
along with a dashed line demonstrating a rate of residual decrease that tracks 1√

NMC
. We

initialized NMC = NJ
MC = 106, held NJ

MC constant for the entire iteration, and increased
NMC by a factor of Ninc = 2 after each nonlinear iteration.

We configured the solver to respond to a failure of the linear solver to satisfy the inexact
Newton condition by accepting the step anyway and continuing the nonlinear iteration. The
experiments show that there is little change in performance if one saves storage, while keeping
the number of Jacobian-vector products the same, by setting KR = 2 and reducing KL by a
factor of two.

We begin with a tight (η = .001) tolerance on the linear solver and a limit of 20 Jacobian-
vector projects. In Figures 5.1 and 5.2 the overall performance of the two nonlinear iterations
is the same. In this set of experiments the linear solver failed seven times over the ten simula-
tions for KL = 10 and KR = 2 and never failed for KL = 20 and KR = 1. One would expect
that the larger dimension for the Krylov subspace would lead to fewer failures. However, the
failures of the linear solver did not affect the overall performance of the nonlinear iteration.
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Fig. 5.1: KL = 10, η = .001, KR = 2
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Fig. 5.2: KL = 20, η = .001, KR = 1

Next we let η = .1 with 10 Jacobian-vector products. We report the convergence results
in Figures 5.3 and 5.4. For the ten simulations and the case KR = 5, KL = 2, the linear
solver failed to converge a total of 102 times for the first pass. After restart, again for
the entire suite of ten simulations, we recorded 66 failures. Smaller forcing terms need
fewer Krylov iterations for each Newton step, but could require more nonlinear iterations.
However, when one measures cost in terms of the accumulated particle histories the cost of
the entire iteration is roughly the same as in the η = .001 case.
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Fig. 5.3: KL = 5, η = .1, KR = 2
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Fig. 5.4: KL = 10, η = .1, KR = 1

All of the figures in this section demonstrate that we can track r-linear convergence by
properly increasing the number of particles (realizations) per function evaluation.

6. Conclusions. In this paper we propose and analyze an inexact Newton algorithm
for problems in which residuals, Jacobians, and Jacobian-vector products are approximated
by a Monte Carlo simulation. For such problems, one may think of a call to a residual as
performing an experiment which does not give reproducible results. We prove results that
show how the iteration tracks an idealized inexact Newton iteration based on exact residuals,
Jacobians, and Jacobian-vector products.

We report on a set of numerical experiments which illustrate the analysis and show how
the theory can provide guidance for an efficient implementation.
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