
A PARALLEL ITERATIVE ALGORITHM FOR DIFFERENTIAL LINEAR

COMPLEMENTARITY PROBLEMS

SHU-LIN WU∗ AND XIAOJUN CHEN†

Abstract. We propose a parallel iterative algorithm for solving the differential linear complementarity
problems consisting of two systems, a linear ODE system and a linear complementarity system (LCS). At
each iteration we proceed in a system decoupling way: by using a rough approximation of the state variable
obtained from the previous iteration, we solve the LCS; then we solve the ODE system and update the state
variable for preparing for the next iteration, by using the obtained constraint variable as a known source
term. The algorithm is highly parallelizable, because at each iteration the computations of both the LCS
and the ODE system at all the time points of interest can start simultaneously. The parallelism for solving
the LCS is natural and for the ODE system it is achieved by using the Laplace inversion technique. For the
P-matrix LCS, we prove that the algorithm converges superlinearly with arbitrarily chosen initial iterate
and for the Z-matrix LCS the algorithm still converges superlinearly if we use the initial value as the initial
iterate. We show that this algorithm is superior to the widely used time-stepping method, with respect to
robustness, flexibility and computation time.

Key words. Dynamic complementarity problems, parallel computation, iterations, convergence analysis

AMS subject classifications. 65M55, 65M12, 65M15, 65Y05

1. Introduction. We are interested in solving the following differential linear comple-
mentarity problem (DLCP) with initial condition x(0) = x0:

ẋ(t) = Ax(t) +By(t) + f(t), y(t) ∈ SOL(Nx(t) + g(t),M), t ∈ (0, T), (1.1)

where x(t) ∈ R
m, y(t) ∈ R

n, A ∈ R
m×m, B ∈ R

m×n, N ∈ R
n×m, M ∈ R

n×n and
SOL(Nx(t)+g(t),M) denotes the solution set of the linear complementarity problem (LCP):

0 ≤ y(t) ⊥ Nx(t) + g(t) +My(t) ≥ 0. (1.2)

Here and hereafter, we denote the linear complementarity problem (1.2) by LCP(q,M) with
q = Nx(t) + g(t). Applications of DLCPs and other related models, e.g., the differential
variational inequalities arising from contact dynamics, span widely in the scientific and
engineering fields; see the monographs [8, 17] and the excellent papers [2, 3, 5, 21, 24, 26, 28].
Throughout this paper, we assume that f(t) and g(t) in (1.1) are time-continuous functions.

The widely used approach for solving DLCPs is the time-stepping method [3,4,6,7,10–
13,19, 20, 24–26], e.g., the famous implicit Euler method:

xj = xj−1 + hAxj + hByj + hfj, yj ∈ SOL(Nxj + gj ,M), (1.3)

where xj ≈ x(tj), yj ≈ y(tj), j = 1, 2, . . . , J and h = T/J is the step-size. Here and
hereafter, we assume that the time points {tj}Jj=0 are equally spaced, i.e., {tj = jh}Jj=0, but
this is not a restrictive assumption since all the results obtained in this paper can be simply
generalized to arbitrarily chosen time points. To forward (1.3) from one time point to the
next, the common procedure is to solve xj at first from the discrete ODE system, i.e.,

xj = (I − hA)−1xj−1 + h(I − hA)−1Byj + h(I − hA)−1fj, (1.4a)

and substitute xj into the complementarity system to form a static LCS, as

yj ∈ SOL(qj ,M
h), with Mh = hN(I − hA)−1B +M, (1.4b)

∗School of Science, Sichuan University of Science and Engineering, Zigong, Sichuan 643000, PR China,
E-mail: wushulin84@hotmail.com

†Department of Applied Mathematics, The Hong Kong Polytechnic University, Kowloon, Hong Kong,
E-mail: maxjchen@polyu.edu.hk

1

2 S. L. Wu and X. Chen

where qj = gj+N(I−hA)−1(hfj+xj−1). Then, by solving LCP(qj,M
h) and by substituting

the solution yj into (1.4a), we get xj . From [8], the property of a LCP(q,M) is dominated
by the matrix M . Precisely, if M is a P-matrix¶ the LCS always has a unique solution for
any input q; if M is positive semi-definite and the solution set SOL(q,M) is nonempty, the
LCS has a unique least-norm solution; ifM is a Z-matrix§ and the feasible set FEA(q,M) :=
{y|y ≥ 0, q+My ≥ 0} is nonempty, the LCS has a unique least-element solution. The same
conclusions go to LCP(qj,M

h) in (1.4b) with the corresponding assumption on the matrix
Mh. However, it is not easy to check whether Mh satisfies the assumption or not, because
it depends on three matrices B, N and M and it changes when we change the step-size h
and/or the formula of the time-stepping method. This task becomes harder when the sizes of
B, N andM are large. Alternatively, researchers in this field usually assume that the matrix
M satisfies some strong property and that the step-size h is sufficiently small. Apparently,
under these two assumptions Mh inherits the property of M and thus the desired property
of (1.4b) is guaranteed.

In this paper, we propose a method to solve (1.1), which avoids direct use of Mh

(actually, as we will see, the matrix Mh never occurs in our algorithm). Our algorithm is
based on the following functional iteration:

yk+1(t) ∈ SOL(Nxk(t) + g(t),M),

{
ẋk+1(t) = Axk+1(t) +Byk+1(t) + f(t),

xk+1(0) = x0,
(1.5)

together with a novel discretization of the ODE system, where k ≥ 0 denotes the iteration
index and for k = 0 the function x0(t) is an initial guess. Functional iteration of this type
is used widely in the study of DLCPs and DVIs; see, e.g., [10–13, 19, 26]. In those papers,
iteration of this type is often used as an intermediate step to study the convergence or to
derive the error bounds of the time-stepping method; it is also used in [11] to prove the
convergence of Newton’s method. Functional iteration is however never used as a point
of departure to design a practical numerical method for DLCPs. Indeed, the functional
iteration itself can not be used in practice, because it is impossible to get (xk(t), yk(t))
exactly. To make it useful we have to discretize the ODE system. The most natural choice
is the time-stepping method, e.g., the implicit Euler method, which leads to

yk+1
j ∈ SOL(Nxkj + gj,M), xk+1

j = xk+1
j−1 + hAxk+1

j + hByk+1
j + hfj ,

where xk+1
0 = x0. Clearly, with {xkj }Jj=1 being known from the previous iteration the

computation of {yk+1
j }Jj=1 is naturally parallelizable.

However, the evolution of the discrete ODE system is a sequential process. To match
the natural parallelization of the computation of the complementarity system, we abandon
the widely used time-stepping methods and use another numerical treatment: the numerical
Laplace inversion [22, 23, 30–33]. This method cleverly utilizes the linearity of the ODE
system and lies in representing the solution xk+1(t) by its inverse Laplace transform:

xk+1(t) =
1

2πi

∫

Γ

eztω̂(z)dz, with ω̂(z) = (zI −A)−1(x0 +Bŷk+1(z) + f̂(z)), (1.6)

where Γ is a suitable contour in the complex plane and ŷk(z) and f̂(z) are the Laplace forward
transform of yk(t) and f(t). Parameterizing the contour by Γ : v → z(v) with v ∈ R, we can
rewrite xk+1(t) as xk+1(t) = 1

2πi

∫∞
−∞ ż(v)ez(v)tω̂(z(v))dv. Then, by integrating the integral

¶A matrix M ∈ R
n×n is a P-matrix, if all the principal minors of M are positive.

§A matrix M ∈ R
n×n is a Z-matrix, if its off-diagonal elements are non-positive.

A parallel iterative algorithm for DLCPs 3

by the trapezoidal rule with step-size ∆v and then by truncating the infinite summation to
a finite one, we get a discrete analogue of (1.5) as

yk+1(t) ∈ SOL(NxkP (t) + g(t),M), xk+1
P (t) =

∆v

2πi

P∑

p=−P

żpe
zptω̂(zp), (1.7)

where zp = p∆v, żp = ż(vp), P > 1 is an integer and xkP (t) ≈ xk(t). Clearly, for any time
points {tj}Jj=1 of interest, the computation of {xk+1

P,j }Jj=1 is completely independent and is
therefore naturally parallelizable as well. Moreover, solving the (2P + 1) linear algebraic

equations, i.e., {(zpI − A)−1(x0 + Bŷk(zp) + f̂(zp))}Pp=−P , is also naturally parallelizable.
However, it is still impossible to use this scheme in practice, because it is difficult to get
ŷk(zp) (and f̂(zp) in many cases). Our idea towards avoiding direct use of the Laplace

forward transform of yk(t) and f(t), i.e., ŷk(z) and f̂(z), is given in detail in Section 2.1.
In summary, our motivation of this paper is twofold: design a highly parallelizable algo-

rithm for solving the DLCPs by using the linearity of the DLCPs and remove the restriction
on the step-size h in practice by solving the LCS and the ODE system separately. The
remainder of this paper is organized as follows. In Section 2, we present more details of
algorithm (1.7) derived by applying the numerical Laplace inversion to the ODE system in
(1.5). We then analyze the convergence of the algorithm for the P-matrix LCS. In Section
3, we generalize our analysis to the Z-matrix LCS and other cases. Our numerical results
are given in Section 4 and we conclude this paper in Section 5.

2. The algorithm and the convergence analysis for the P-matrix LCS. In this
section, we introduce the fully discrete analogue of (1.5), by applying the numerical Laplace
inversion [22, 23, 30–33] to the ODE system. We then analyze the convergence properties
of the resulting iterative algorithm for the P-matrix LCS. A generalization to the Z-matrix
LCS is given in the next section and the generalization to more broader cases is commented
in Remark 3.1. The following lemma shall be used in many places.

Lemma 2.1 (Corollary 2.1 in [11]). Let M be a P-matrix and y(ql) ∈ SOL(ql,M),
l = 1, 2. Then, it holds that ‖y(q1) − y(q2)‖ ≤ L‖q1 − q2‖ with L = maxS⊆{1,...,n}‖M−1

S,S‖,
where MS,S denotes the principle submatrix of M indexed by the set S.

This lemma implies that the solution y(q) of a LCP(q,M) is a globally Lipschitz con-
tinuous function of the input vector q, when M is a P-matrix.

2.1. Derivation of the algorithm. To use the Laplace inversion technique, we need
to know some information about the spectrum σ(A) of the matrix A. For simplicity, we
consider the following situation: σ(A) is contained in a sector

∑
α = {z : |arg(−z)| ≤ α}

with some constant α ∈ (0, π/2), i.e.,

σ(A) ⊆ Σα = {z : |arg(−z)| ≤ α}, with α ∈ (0, π/2). (2.1a)

Under this assumption, it holds that (see [22, 23, 30])

‖(zI −A)−1‖ ≤ φ

|z| with φ =
1

sin(α)
, ∀z /∈ Σα. (2.1b)

For a function u(t) with t ∈ R
+, we denote by û(z) the Laplace transform of u: û(z) =

L(u)(z) :=
∫ +∞
0

e−ztu(t)dt. Applying the Laplace transform to the ODE system in (1.5)

yields x̂k+1(z) = (zI−A)−1
[
x0 +Bŷk+1(z) + f̂(z)

]
. Then, inversing the Laplace transform

along the contour Γ represents the solution xk+1(t) at time point t as given by (1.6). The
contour Γ is a simple, closed, positively oriented curve that encloses both the spectrum of A

4 S. L. Wu and X. Chen

and the singularities of ŷk+1(z) and f̂(z). Popular choices of Γ are of Talbot type, parabolic
type and hyperbolic type; see the survey paper by Trefethen and Weideman [31, Section 15]
for more details. Here, we use the parameterized hyperbolic contour:

z(v) =
µ(1 + sin(iv − γ))

t
=
µ [1− sin(γ) cosh(v) + i cos(γ) sinh(v)]

t
, (2.2)

where v ∈ R, µ > 0 and γ ∈ (0, π/2− α)¶. The positive parameter µ/t controls the width
of the contour and the other parameter γ determines its asymptotic angle; see Fig.2.1. Sub-
stituting z = z(v) into (1.6) gives xk+1(t) = 1

2πi

∫ +∞
−∞ ez(v)tω̂(z(v))ż(v)dv. Then, applying

the Trapezoidal rule to this contour integral gives approximation xk+1
P (t) of xk+1(t) for all

k ≥ 0, as given by (1.7). For t > 0, we can expect that the error ‖xk+1
P (t)− xk+1(t)‖ decays

exponentially as P increases, provided the contour parameters µ and γ and the quadrature
step-size ∆v are properly chosen.

ℜ(z)

ℑ(z)

α (

z−(P−2)

z−P

zP

z−(P−1)

zP−1

zP−2

σ(A) ⊆ Σα

Fig. 2.1. The hyperbolic contour Γ and the sector Σα that contains the spectrum σ(A). The isolated
dots {zp}Pp=−P located on Γ denote the quadrature nodes used to discretize the contour integral in (1.6).

Remark 2.1. The assumption (2.1a) excludes the case that the coefficient matrix A
has zero eigenvalue, imaginary and/or unstable eigenvalues. Here, we propose an idea to
extend the Laplace inversion technique to this case. Assume that σ(A) consists of two parts:
σ(A) = σ1(A) ∪ σ2(A), where σ1(A) is contained in the sector Σα as given by (2.1a) and
σ2(A) consists of zero, imaginary and/or unstable eigenvalues. For any λ ∈ σ2(A), let
C be the circle centered at λ on the complex plane. Then, by using the Cauchy-Goursat
theorem [1] we have

xk+1(t) =
1

2πi

∫

Γ

etz(zI −A)−1F̂ (z)dz +
1

2πi

∑

λ∈σ2(A)

∮

C
etz(zI −A)−1F̂ (z)dz, (2.3)

where F̂ (z) = x0 + Bŷk+1(z) + f̂(z). Here, the integral along the circle C takes the coun-
terclockwise orientation. Both integrals in (2.3) can be discretized by the Trapezoidal rule
after suitable parameterizations of Γ and C (the numerical analysis of discretization error
corresponding to σ2(A) is incomplete and remains an ongoing work). Note that, the time-
stepping method can deal with the case σ(A) = σ1(A) ∪ σ2(A) uniformly, without special
modification.

¶The reason why γ must satisfy γ ∈ (0, π/2− α) is explained in [32, Section 4].

A parallel iterative algorithm for DLCPs 5

The contour quadrature given by (1.7) requires the values of the Laplace forward trans-

forms f̂(s) and ŷk+1(s) at the quadrature nodes {zp}Pp=−P , which, unfortunately, are un-
available in practice. So, the first step is to avoid direct use of the Laplace forward transform
of f(t) and yk+1(t). In our previous work [33], we proposed an idea for this goal, but the
resulting quadrature for computing xk+1

P (t) depends on the derivative functions ẏk+1(τ) and

ḟ(τ) for τ ∈ (0, t). This requirement is impractical here, because it is well known that we
can only expect Lipschitz continuity instead of differentiability for the constraint variable of
a DLCP.

Here, we propose a new idea towards avoiding direct use of f̂(s) and ŷk+1(s). LetK(t) =

etA and G(t) = 1
2πi

∫
Γ
eztK̂(z)

(
Bŷk+1(z) + f̂(z)

)
dz with K̂(z) = L(K)(z) = (zI − A)−1.

Then, we can represent (1.6) as

xk+1(t) =
1

2πi

∫

Γ

eztK̂(z)x0dz +G(t) = K(t)x0 +G(t). (2.4)

The idea here is two aspects: treat the initial term x0 exactly and treat the other term
G(t) by contour integral. Precisely, by choosing a contour Γ we can represent K(t) as

K(t) = L−1(K̂)(t) = 1
2πi

∫
Γ e

ztK̂(z)dz. Then, by using the Duhamel formula we get

G(t) =

∫ t

0

K(t− τ)f(τ)dτ =

∫ t

0

[
1

2πi

∫

Γ

ez(t−τ)K̂(z)dz

] (
Byk+1(τ) + f(τ)

)
dτ.

Thus, G(t) = 1
2πi

∫
Γ Ĝ(t, z)dz with Ĝ(t, z) = (zI−A)−1

∫ t

0 e
z(t−τ)

(
Byk+1(τ) + f(τ)

)
dτ (we

include ezt in the integrand Ĝ(t, z) to avoid floating overflow). Finally, substituting this into
(2.4) gives a new representation of xk+1(t):

xk+1(t) = eAtx0 +
1

2πi

∫ +∞

−∞
(z(v)I −A)−1

[∫ t

0

ez(v)(t−τ)
(
Byk+1(τ) + f(τ)

)
dτ

]
ż(v)dv.

Now, similar to (1.7) we get the following algorithm for solving DLCP (1.1):
{
yk+1(t) ∈ SOL(NxkP (t) + g(t),M),

xk+1
P (t) = eAtx0 +

∆v
2πi

∑P
p=−P żp(zpI −A)−1

∫ t

0 e
zp(t−τ)

(
Byk+1(τ) + f(τ)

)
dτ.

(2.5)

Upon convergence, i.e., k → ∞ in (2.5), we get the converged solution (x∗P (t), y
∗(t)) as

{
0 ≤ y∗(t) ⊥ Nx∗P (t) + g(t) +My∗(t) ≥ 0,

x∗P (t) = eAtx0 +
∆v
2πi

∑P
p=−P żp(zpI −A)−1

∫ t

0
ezp(t−τ) (By∗(τ) + f(τ)) dτ.

(2.6)

Remark 2.2 (parallelism of algorithm (2.5)). It is interesting to note that each iteration
of (2.5) is highly parallelizable:

• the computations of both the constraint variables yk+1(t) and the state variables
xk+1
P (t) at the time points {tj}Jj=1 of interest are naturally parallelizable, which

means that the computations of the static LCS and then the ODE system at all the
J time points can start simultaneously;

• at each time point tj, let bp :=
∫ tj
0
ezp(tj−τ)

(
Byk+1(τ) + f(τ)

)
dτ and Xp := (zpI −

A)−1bp. Then, the computation of the (2P +1) linear problems in (2.6), i.e., (zpI−
A)Xp = bp, is also naturally parallelizable.

Remark 2.3. If computing eAtx0 is expensive in some situation, we can approxi-
mate it via Laplace inversion with another contour, too. For example, we can choose

Γ̃ =
{
z : z(v) = µ̃(1+sin(iv−γ̃))

t , v ∈ R

}
and then approximate eAtx0 via Laplace inversion

6 S. L. Wu and X. Chen

along Γ̃, as eAtx0 ≈ ∆v
2πi

∑P̃
p=−P̃ żpe

zpt(zpI − A)−1x0, where zp = z(vp) and żp = ż(vp).
Carefully choosing µ̃, γ̃ and ∆v will lead to rapid reduction for the quadrature error as
P̃ grows. Precisely, by choosing µ̃ = 4.4921P̃ , γ̃ = 1.1721, and ∆v = 1.0818/P̃ , accord-

ing to [32, Section 4] we have
∥∥∥eAtx0 − ∆v

2πi

∑P̃
p=−P̃ żpe

zpt(zpI −A)−1x0

∥∥∥ = O
(
e−2.32P̃

)
.

Indeed, replacing eAtx0 in (2.5) by ∆v
2πi

∑P̃
p=−P̃ żpe

zpt(zpI − A)−1x0 leads to more practical
contour quadrature, but we shall not pursue this issue here, because our convergence analysis
of algorithm (2.5) does not depend on the initial value x0.

We can not directly use algorithm (2.5) in practice, because it contains an integral∫ t

0 e
zp(t−τ)(Byk+1(τ) + f(τ))dτ , which can not be exactly integrated. Suppose {tj}Jj=1 are

the time points of interest for the solution (x(t), y(t)) of DLCP (1.1). Then, a natural idea
for handling this integral is to construct piecewise polynomial ỹk+1(t), which is obtained by
interpolating {yk+1

j }Jj=0 at the time points {tj}Jj=0, and then replace yk+1(τ) by ỹk+1(τ) in

the integral. The integral
∫ t

0 e
zp(t−τ)ỹk+1(τ)dτ can be integrated exactly. Similar treatment

goes to the source term f(t), if
∫ t

0 e
zp(t−τ)f(τ)dτ can not be exactly integrated as well.

Convergence of the resulting algorithm is given in Section 2.3, but we analyze algorithm
(2.5) at first, because the proof provides a basis for the analysis of other cases.

2.2. Convergence of algorithm (2.5). The convergence of algorithm (2.5) and the
accuracy of the converged solution (x∗(t), y∗(t)) is given as follows.

Theorem 2.2. Assume that the source terms f(t) and g(t) and the solution x(t) of
DLCP (1.1) are integrable functions on the interval t ∈ [0, T]. Assume that the spectrum
σ(A) of the matrix A satisfies (2.1a) with α+ γ < π

2 and that the matrix M is a P-matrix.
Then, for algorithm (2.5) we have the following results.
1. For any µ > 0, γ ∈ (0, π2 − α) and ∆v > 0, it holds that

sup
t∈[0,T]

‖xkP (t)− x∗P (t)‖ ≤

(
∆vφL‖B‖‖N‖ k

√∏
k
l=1

Θl

2π T

)k

k!
sup

t∈[0,T]

‖x0P (t)− x∗P (t)‖,
(2.7a)

where φ is the constant given by (2.1b) and Θl is defined by

Θl = l

∫ 1

0

(1− τ)l−1

(∑P

p=−P

∣∣∣∣
żp
zp

∣∣∣∣ e
τµ[1−sin(γ) cosh(vp)]

)
dτ, (2.7b)

with żp = ż(vp), zp = z(vp) and vp = p∆v.

2. If we choose ∆v = 2.0603√
P

for the quadrature step-size and γ = 0.794, µ =
√
P
4 as the

parameters for the contour Γ = {z = z(v) : v ∈ R} defined by (2.2), it holds that

sup
t∈[0,T]

‖x(t)− x∗P (t)‖2 = O

(
e−2.06

√
P

√
P

)
. (2.8)

• Note: the first result is concerned with the estimate of the convergence rate of algorithm
(2.5) and the second result presents the accuracy of the converged solution if the inner

integral
∫ t

0
ezp(t−τ)(Byk+1(τ)+f(τ))dτ is exactly integrated. It will be proved in (2.15) that

Θl ≤ Θmax := (2P + 1)eµ[1−sin(γ)]
√

1+sin(γ)
1−sin(γ) < ∞ for all l ≥ 1, which implies k

√∏k
l=1 Θl ≤

Θmax. Hence, the bound given by (2.7a) shows that algorithm (2.5) converges superlinearly.

Proof. The proof is divided into two parts.

A parallel iterative algorithm for DLCPs 7

Part-A: the proof of (2.7a). Let ǫk(t) = ‖xkP (t)− x∗P (t)‖. Then, from (2.5) and (2.6),

ǫk+1(t) ≤ ∆vL‖B‖‖N‖
2π

∫ t

0

∥∥∥∥∥∥

P∑

p=−P

żp(zpI −A)−1ezp(t−τ)

∥∥∥∥∥∥
ǫk(τ)dτ

≤ ∆vφL‖B‖‖N‖
2π

∫ t

0

P∑

p=−P

∣∣∣∣
żp
zp

∣∣∣∣ e
ℜ(zp)(t−τ)ǫk(τ)dτ,

(2.9a)

where for the first (resp. second) inequality we have used Lemma 2.1 (resp. (2.1b)). Let

θ(t, τ) =

P∑

p=−P

∣∣∣∣
żp
zp

∣∣∣∣ e
ℜ(zp)(t−τ) =

P∑

p=−P

∣∣∣∣
cos(ivp − γ)

1 + sin(ivp − γ)

∣∣∣∣ e
t−τ
t

µ[1−sin(γ) cosh(vp)], (2.9b)

and ǫ0max = supt∈[0,T] ǫ
0(t). Then, using (2.9a) recursively gives

ǫk(t) ≤
(
∆vφL‖B‖‖N‖

2π

)k ∫ t

0

θ(t, τ1) · · ·
∫ τk−1

0

θ(τk−1, τk)ǫ
0(τk)dτk · · · dτ1

≤
(
∆vφL‖B‖‖N‖

2π

)k

ǫ0max

∫ t

0

θ(t, τ1) · · ·
∫ τk−1

0

θ(τk−1, τk)dτk · · · dτ1.
(2.10)

The k-th integral, i.e., the rightmost one in the right hand-side of (2.10), satisfies

∫ τk−1

0

θ(τk−1, τk)dτk =

∫ τk−1

0

P∑

p=−P

∣∣∣∣
żp
zp

∣∣∣∣ e
τk−1−τk

τk−1
µ[1−sin(γ) cosh(vp)]

dτk

= τk−1

∫ 1

0

P∑

p=−P

∣∣∣∣
żp
zp

∣∣∣∣ e
τµ[1−sin(γ) cosh(vp)]dτ = τk−1Θ1.

Here (and hereafter), we use an important fact that
żp
zp

is independent of t. Substituting

this into the (k − 1)-th integral gives
∫ τk−2

0

θ(τk−2, τk−1)

(∫ τk−1

0

θ(τk−1, τk)dτk

)
dτk−1

= Θ1

∫ τk−2

0

τk−1

P∑

p=−P

∣∣∣∣
żp
zp

∣∣∣∣ e
τk−2−τk−1

τk−2
µ[1−sin(γ) cosh(vp)]

dτk−1

τ=(τk−2−τk−1)/τk−2

================ Θ1τ
2
k−2

∫ 1

0

(1− τ)

P∑

p=−P

∣∣∣∣
żp
zp

∣∣∣∣ e
τµ[1−sin(γ) cosh(vp)]dτ =

τ2k−2

2
Θ1Θ2.

Repeating this procedure, we arrive at

∫ t

0

θ(t, τ1) · · ·
∫ τk−1

0

θ(τk−1, τk)dτk · · · dτ1 =

∏k−1
l=1 Θl

(k − 1)!

∫ t

0

P∑

p=−P

∣∣∣∣
żp

zp

∣∣∣∣ e
t−τ1

t
µ[1−sin(γ) cosh(vp)]τ

k−1
1 dτ1

τ=(t−τ1)/t
=========

∏k−1
l=1 Θl

(k − 1)!

∫ 1

0

P∑

p=−P

∣∣∣∣
żp
zp

∣∣∣∣ e
τµ[1−sin(γ) cosh(vp)][t(1− τ)]k−1tdτ

=
tk
(∏k−1

l=1 Θl

)

k!

k
∫ 1

0

(1− τ)k−1
P∑

p=−P

∣∣∣∣
żp
zp

∣∣∣∣ e
τµ[1−sin(γ) cosh(vp)]dτ

 =

tk
(∏k

l=1 Θl

)

k!
.

8 S. L. Wu and X. Chen

Substituting this into the second inequality in (2.10) gives the desired result (2.7a).
Part-B: the proof of (2.8). To prove (2.8) for the accuracy of the converged solution,

from the derivation of algorithm (2.5) we express the state variable x(t) of DLCP (1.1) via
the inverse Laplace transform along the parameterized contour Γ:

x(t) = eAtx0+
1

2πi

∫ +∞

−∞
ż(v)(z(v)I−A)−1

(∫ t

0

ez(v)(t−τ) (By(Nx(τ) + g(τ)) + f(τ)) dτ

)
dv,

where for any q we denote by y(q) the solution of LCP(q,M). Let ek(t) = xkP (t) − x(t).
Then, it holds that

ek+1(t) =
∆v

2πi

P∑

p=−P

żp(zpI − A)−1

∫ t

0

e
zp(t−τ)

B
[
y(Nx

k
P (t) + g(t))− y(Nx(t) + g(t))

]
dτ

+ Err(t),

(2.11)

where Err(t) denotes the error for the contour quadrature, i.e.,

Err(t) =
∆v

2πi

P∑

p=−P

żp(zpI −A)−1

∫ t

0

ezp(t−τ) (By(Nx(τ) + g(τ)) + f(τ)) dτ−

1

2πi

∫ +∞

−∞
ż(v)(z(v)I −A)−1

(∫ t

0

ez(v)(t−τ) (By(Nx(τ) + g(τ)) + f(τ)) dτ

)
dv.

Under the assumption that f(t), g(t) and the solution x(t) of DLCP (1.1) are integrable, it
is easy to know that y(Nx(τ) + g(τ)) is also integrable, since the solution function y(·) is a
Lipschitz continuous function. Then, from the analysis in [33, Section 3.3] we have

Errmax := sup
t∈[0,T]

‖Err(t)‖2 = O(e−2.06
√
P /

√
P),

if γ, µ and ∆v are chosen as stated. Substituting this into (2.11) gives

‖ek+1(t)‖ ≤ ∆vφL‖B‖‖N‖
2π

∫ t

0

θ(t, τ))‖ek(τ)‖dτ + Errmax, (2.12)

where we have used Lemma 2.1. Here, θ(t, τ) is given by (2.9b).
Let

L̃ =
∆vφL‖B‖‖N‖

2π
. (2.13)

Then, recursively using (2.12) gives

‖ek(t)‖ ≤
[
Errmax

k−1∑

r=0

L̃rJr(t) + L̃kJk(t)

]
sup

τ∈[0,t]

‖e0(τ)‖, (2.14a)

where Jr(t) is the r-fold nested integral defined recursively as

Jr(t) =

{
1, r = 0,∫ t

0
θ(t, τ)Jr−1(τ)dτ, r ≥ 1.

(2.14b)

It is easy to see that Jr(t) (with r = k) is exactly the second nested integral given in (2.10).

Hence, by using the analysis in Part-A we have Jr(t) =
tr(

∏r
l=1

Θl)
r! , where Θl is the quantity

A parallel iterative algorithm for DLCPs 9

defined by (2.7b). From (2.2) we have

Θl = l

∫ 1

0

(1− τ)l−1

P∑

p=−P

∣∣∣∣
żp
zp

∣∣∣∣ e
τµ[1−sin(γ) cosh(vp)]

 dτ

≤
√

1 + sin(γ)

1− sin(γ)

l
∫ 1

0

(1− τ)l−1

P∑

p=−P

eτµ[1−sin(γ) cosh(vp)]

 dτ

 ,

where we have used
∣∣∣ ż(vp)z(vp)

∣∣∣ =
√

cosh(vp)+sin(γ)
cosh(vp)−sin(γ) ≤

√
1+sin(γ)
1−sin(γ) , which holds for all vp ∈ R and

can be verified by a routine calculation. Clearly, it holds that

max
l≥1

Θl ≤ Θmax, with Θmax := (2P + 1)eµ[1−sin(γ)]

√
1 + sin(γ)

1− sin(γ)
<∞. (2.15)

Hence, it holds that

Jr(t) ≤
(tΘmax)

r

r!
⇒
{
limk→∞

∑k−1
r=0 L̃

rJr(t) <∞,

limk→∞ L̃kJk(t) = 0.
(2.16)

This together with (2.14a) gives limk→∞ ‖ek(t)‖ = O
(

e−2.06
√

P

√
P

)
.

Remark 2.4 (about the contour parameters). For γ = 0.794, the condition α+ γ < π
2

implies α < π
2 − 0.794 = 0.7768. If α, the maximal argument of the eigenvalue of the

matrix A, exceeds this value, we can still expect that the error of the contour quadrature

decays exponentially as O(e−δ
√
P /

√
P) as P increases, but with δ < 2.06. In this case, we

can properly choose the contour parameters µ and γ and the quadrature step-size ∆v to
maximize δ following the analysis in [33, Section 3].

2.3. Implementation in practice. As we mentioned at the end of Section 2.1, to use
algorithm (2.5) in practice we need to construct piecewise polynomials by interpolating the
values {yk+1

j }Jj=0 and {fj}Jj=0 at the time points {tj}Jj=0 and then compute this integral by

replacing yk+1(τ) and f(τ) by the corresponding interpolants. The natural idea is of course
to construct the following piecewise linear functions:

ỹk+1(t) = yk+1
j

(
1− t− tj

tj+1 − tj

)
+ yk+1

j+1

t− tj
tj+1 − tj

, t ∈ [tj , tj+1],

f̃(t) = f(tj)

(
1− t− tj

tj+1 − tj

)
+ f(tj+1)

t− tj
tj+1 − tj

, t ∈ [tj , tj+1],

and replace
∫ tj
0

ezp(tj−τ)
(
Byk+1(τ) + f(τ)

)
dτ by

∫ tj
0

ezp(tj−τ)
(
Bỹk+1(τ) + f̃(τ)

)
dτ . We have

∫ tj

0

ezp(tj−τ)
(
Bỹk+1(τ) + f̃(τ)

)
dτ =

j−1∑

l=0

ezptj
(
[al − bltl]ω

0
l + blω

1
l

)
,

where al = Byk+1
l + fl, bl =

al+1−al

tl+1−tl
and

ωs
l =

∫ tl+1

tl

e−zpττsdτ =

e−zptl−e−zptl+1

zp
, s = 0,

e−zptl (1+tlzp)−e−zptl+1(1+tl+1zp)
z2
p

, s = 1.

10 S. L. Wu and X. Chen

This treatment gives the following algorithm, which is a fully discrete analogue of (2.5):

{
0 ≤ yk+1

j ⊥ NxkP,j + gj +Myk+1
j ≥ 0,

xk+1
P,j = eAtjx0 +

∆v
2πi

∑P

p=−P żp(zpI − A)−1
∫ tj
0

ezp(tj−τ)
(
Bỹk+1(τ) + f̃(τ)

)
dτ ,

(2.17)

where j = 1, . . . , N . Upon convergence, the converged solution satisfies

{
0 ≤ y∗j ⊥ Nx∗P,j + gj +My∗j ≥ 0,

x∗P,j = eAtjx0 +
∆v
2πi

∑P
p=−P żp(zpI −A)−1

∫ tj
0 ezp(tj−τ)

(
Bỹ∗(τ) + f̃(τ)

)
dτ,

where ỹ∗(t) is the piecewise linear functions obtained by interpolating {y∗j }Jj=0.
Theorem 2.3. Under the assumption of Theorem 2.2, we have the following results.

1. For any µ > 0, γ ∈ (0, π2 − α) and ∆v > 0, the iterative scheme (2.17) is convergent.

2. If we use ∆v = 2.0603√
P

for the quadrature step-size and γ = 0.794, µ =
√
P
4 as the

parameters for the contour Γ = {z = z(v) : v ∈ R} defined by (2.2), it holds that

max
0≤j≤J

‖x(tj)− x∗P,j‖2 = O(h) +O(e−2.06
√
P /

√
P). (2.18)

Proof. For t ∈ [tl, tl+1] we have

ỹk+1(t)− ỹ∗(t) = (yk+1
l − y∗l)

(
1− t− tl

tl+1 − tl

)
+ (yk+1

l − y∗l)
t− tl
tl+1 − tl

.

Hence, by using Lemma 2.1 it holds that

‖ỹk+1(τ) − ỹ∗(τ)‖ ≤ L‖N‖
(
‖xkP,l − x∗P,l‖

(
1− t− tl

tl+1 − tl

)
+ ‖xkP,l − x∗P,l‖

t− tl
tl+1 − tl

)
.

Let ǫkj = ‖xkP,j − x∗P,j‖ and ǫ̃k(t) be the piecewise linear function obtained by interpolating

{‖xkP,j − x∗P,j‖}Jj=0 at the time points {tj}Jj=0. Let ξ
k(t) = supτ∈[0,t] ǫ̃

k(τ). Then, similar to
(2.9a) it holds for t = tj that

ξk+1(t) ≤ L̃

∫ t

0

θ(t, τ)ξk(τ)dτ, (2.19)

where L̃ is given by (2.13). Clearly, ξk(T) = max1≤j≤J ǫ
k
j . Therefore, to prove the conver-

gence of algorithm (2.17) it suffices to prove limk→∞ ξk(T) = 0. The difficulty of proving the
latter lies in the fact that inequality (2.19) only holds on the time points {tj}Jj=1 and there is
no guarantee that it holds for all t ∈ (0, T) and therefore we can not use it recursively as we

did in the proof of Theorem 2.2. By noticing that θ(t, τ) =
∑P

p=−P

∣∣∣ żpzp
∣∣∣ e t−τ

t
[1−sin(γ) cosh(vp)]

and that żp/zp is independent of t, we can rewrite (2.19) as

ξk+1(t) ≤ tL̃

∫ 1

0

P∑

p=−P

∣∣∣∣
żp
zp

∣∣∣∣ e
τ [1−sin(γ) cosh(vp)]

 ξk(t(1 − τ))dτ, (2.20)

where t ∈ {tj}Jj=1. Without loss of generality, we assume ξk(t1) > 0 for all k ≥ 0, since

otherwise if ξk
∗

(t1) = 0 for some k∗ ≥ 1 we shall have ξk(t) ≡ 0 for all t ∈ [0, t1] and k > k∗

and in this case we only need to consider t ∈ [t2, T]. Since ξ
k(t) is an increasing function of

A parallel iterative algorithm for DLCPs 11

t, the right hand-side of (2.20) is an increasing function of t as well. Hence, for t ∈ [tj−1, tj]
with j ∈ {2, 3, . . . , J} we can always choose the constant

Cj =
tj+1

tj
max
k≥0

∫ 1

0

(∑P
p=−P

∣∣∣ żpzp
∣∣∣ eτ [1−sin(γ) cosh(vp)]

)
ξk(tj+1(1 − τ))dτ

∫ 1

0

(∑P
p=−P

∣∣∣ żpzp
∣∣∣ eτ [1−sin(γ) cosh(vp)]

)
ξk(tj(1− τ))dτ

≥ 1,

such that ξk+1(t) ≤ tCj L̃
∫ 1

0

(∑P
p=−P

∣∣∣ żpzp
∣∣∣ eτ [1−sin(γ) cosh(vp)]

)
ξk(t(1 − τ))dτ for all t ∈

[tj , tj+1]. Let C
∗ = max2≤j≤J−1 Cj . Then, we have

ξk+1(t) ≤ tC∗L̃

∫ 1

0

P∑

p=−P

∣∣∣∣
żp
zp

∣∣∣∣ e
τ [1−sin(γ) cosh(vp)]

 ξk(t(1 − τ))dτ

= L̃∗
∫ t

0

θ(t, τ)ξk(τ)dτ, ∀t ∈ [t1, T],

(2.21)

where L̃∗ = C∗L̃. Now, by performing an analysis similar to Part-A in the proof of Theorem

2.2 we have ξk(T) ≤ (L̃∗ k
√∏

k
l=1

Θl)
k

k! ξ0(T). This, together with (2.16) (with L̃ being replaced

by L̃∗ there), implies limk→∞ ξk(T) = 0.
We now prove (2.18). Let ekj = xkP,j − x(tj). Then, similar to (2.11) we have

ek+1
j =

∆v

2πi

P∑

p=−P

żp(zpI − A)−1

∫ t

0

e
zp(t−τ)

B
[
ỹ
k+1(τ)− ỹ(τ)

]
dτ + Err1(tj) + Err2(tj),

where Err1(tj) and Err2(tj) are given by

Err1(tj) =
∆v

2πi

P∑

p=−P

żp(zpI −A)−1

∫ tj

0

ezp(tj−τ) (By(Nx(τ) + g(τ)) + f(τ)) dτ−

1

2πi

∫ +∞

−∞
ż(v)(z(v)I −A)−1

(∫ t

0

ez(v)(t−τ) (By(Nx(τ) + g(τ)) + f(τ)) dτ

)
dv,

Err2(tj) =
∆v

2πi

P∑

p=−P

żp(zpI −A)−1

∫ tj

0

ezp(tj−τ)
(
Bỹ(τ) + f̃(τ)

)
dτ−

∆v

2πi

P∑

p=−P

żp(zpI −A)−1

∫ tj

0

ezp(tj−τ) (By(Nx(τ) + g(τ)) + f(τ)) dτ.

The quantities Err1(tj) and Err2(tj) denote respectively the errors for the contour quadra-
ture and the piecewise linear interpolation. For the error of the contour quadrature, as we

mentioned in the proof of Theorem 2.2 it holds that ‖Err1(tj)‖2 = O
(

e−2.06
√

P

√
P

)
, if γ, µ and

∆v are chosen as stated. For the error of the piecewise linear interpolation, since y(·) is a
Lipschitz continuous function, it is easy to know ‖Err2(tj)‖ = O(h); see Remark 2.5 given

below for explanation. Hence, by letting Err = O(h) +O
(

e−2.06
√

P

√
P

)
we have

ek+1
j =

∆v

2πi

P∑

p=−P

żp(zpI − A)−1

∫ t

0

e
zp(t−τ)

B
[
ỹ
k+1(τ)− ỹ(τ)

]
dτ + Err.

By performing a similar deduction as that for deriving (2.14a) we get

max
0≤j≤J

‖ekj ‖ ≤
[
Err

k−1∑

r=0

L̃rJr(t) + L̃kJk(t)

]
max
0≤j≤J

‖e0j‖ = O(h) +O

(
e−2.06

√
P

√
P

)
,

12 S. L. Wu and X. Chen

where L̃ is given by (2.13) and for the equality ‘=’ we have used (2.16). Now, by letting
k → ∞ we arrive at (2.18).

Remark 2.5 (high order interpolation is unnecessary). From the proof of Theorem
2.3, we see that the term O(h) appearing in the error estimate (2.18) arises from the error
between a Lipschitz continuous function and its piecewise linear interpolant. For any func-
tion u(t) ∈ C1(0, T), the error of the piecewise linear interpolation is of order O(h2) with
h = max0≤j≤J−1(tj+1 − tj). However, if u(t) is only assumed to be Lipschitz continuous,
we can only expect an error of order O(h) in general.

The DLCP has very complicated dynamic properties and one of them is ‘the lack
of differentiability’ of the constraint variable y(t). This has an implication for numeri-
cal computation in practice: for a given DLCP, unless we have some priori information
about the time points where the constraint variable is non-differential, we can only expect
sup1≤j≤J ‖y(tj) − yj‖ = O(h), no matter how accurately the ODE system is solved. This
may be one of the reasons that most researchers in this field focus on studying the simple
implicit Euler method (or some similar analogues), which is a typical lower order numerical
method of order one¶. We should explicitly point out that, at the moment we have no
intention to improve the accuracy by using the Laplace inversion as the numerical method
for a DLCP. Our unique intention is to remove the restriction on the step-size h in practical
computation and to maximize the parallelism for each of the functional iterations.

3. Generalization to the Z-matrix LCS. The goal of this section is to generalize
our work in the above section to the Z-matrix LCS, i.e., M is a Z-matrix in DLCP (1.1).
In this case, from [11] we know that LCP(q,M) has a unique least-element solution§ if the
feasible set FEA(q,M) := {y|y ≥ 0, q+My ≥ 0} is nonempty. From [8], such a least-element
solution can be obtained by solving the following linear programming problem:

min ‖y‖1, s.t. y ≥ 0 and My + q ≥ 0, (3.1)

where ‖y‖1 =
∑n

l=1 yl is the standard 1-norm for y ≥ 0. Choosing the least-element solution
for the LCS in (1.1) leads to the following least-element differential complementarity system:

{
ẋ(t) = Ax(t) +By(t) + f(t), with x(0) = x0,

y(t) = argmin{‖v‖1 : 0 ≤ v ⊥ Nx(t) + g(t) +Mv ≥ 0}. (3.2)

The corresponding algorithm based on the numerical Laplace inversion is:
{
yk+1(t) = argmin{‖v‖1 : 0 ≤ v ⊥ Nxk(t) + g(t) +Mv ≥ 0},
xk+1(t) = eAtx0 +

∆v
2πi

∑P

p=−P żp(zpI − A)−1
∫ t

0
ezp(t−τ)

(
Byk+1(τ) + f(τ)

)
dτ .

(3.3)

To analyze the convergence of algorithm (3.3), we need the following lemma.
Lemma 3.1 (Theorem 2.3 in [11]). Let M ∈ R

n×n be a Z-matrix and q1, q2 ∈ R
n such

that FEA(q1,M) 6= ∅ and FEA(q2,M) 6= ∅. Then, we have

‖ymin(q1)− ymin(q2)‖ ≤ L‖q1 − q2‖,

where ymin(q) ∈ SOL(q,M) denotes the unique least-element solution and L = max{‖M−1
S,S‖ :

S ⊆ {1, . . . , n} and MS,S is nonsingular}.

¶The other reasons may be the simplicity for implementation and the strong stability for handing the
stiffness of the ODE system.

§The least-element solution ymin is a solution of 0 ≤ y ⊥ q + My ≥ 0 satisfying ymin ≤ y for all
y ∈ FEA(q,M).

A parallel iterative algorithm for DLCPs 13

For the P-matrix LCS, the fact that lies in the heart of our convergence analysis for
algorithm (2.5) is the Lipschitz continuity of the solution function y(q) of LCP(q,M); see
Lemma 2.1. Comparing Lemma 3.1 to Lemma 2.1, we see that to guarantee the Lipschitz
continuity of the constraint variable the unique difference between the P-matrix LCS and
the Z-matrix LCS is that for the latter we need to require the feasible set of the LCS to
be nonempty. Therefore, it is easy to understand that for the least-element algorithm (3.3)
if FEA(Nxkj + gj ,M) 6= ∅ (with j = 1, 2, . . . , J) at each iteration, the results given by
Theorems 2.2 and 2.3 still hold.

Suppose FEA(Nx0 + g(0),M) 6= ∅ and there are constants β1 > 0 and β2 > 0 such that

‖x̃− x0‖ ≤ β1 and ‖g̃ − g(0)‖ ≤ β2 ⇒ FEA(Nx̃+ g̃,M) 6= ∅. (3.4)

Then, according to [11, Theorem 4.1] there exist suitable T > 0 and β > 0 such that

∀t ∈ [0, T] : x(t) ∈ B(x0, β) := {x : ‖x− x0‖ ≤ β} ⇒ FEA(Nx(t) + g(t),M) 6= ∅. (3.5)

Theorem 3.2. For the DLCP (3.2), let M be a Z-matrix and the spectrum σ(A) of
the matrix A satisfy (2.1a). Assume that FEA(Nx0 + g(0),M) 6= ∅ and that (3.4) holds.
Then, there exists some T ∗ > 0 such that the least-element algorithm (3.3) is well-defined
for t ∈ [0, T ∗], i.e., FEA(Nxk(t) + g(t),M) 6= ∅ for t ∈ [0, T ∗], provided {x0P,j = x0}Jj=0 and
T ∗ satisfies

max
k≥0

[
C0

k−1∑

r=0

(
T

∗
L̃Θmax

)r 1

r!
+
(
T

∗
L̃Θmax

)k 1

k!

]
≤ β, (3.6)

where Θmax is given by (2.15), β is given by (3.5), L̃ is given by (2.13), and C0 is given by

C0 = sup
t∈[0,T∗]

(
‖eAt − I‖‖x0‖+

∥∥∥∥∥
∆v

2πi

∫ t

0

(
P∑

p=−P

Ape
zp(t−τ)

)
(
f(τ) +By

1(τ)
)
dτ

∥∥∥∥∥

)
,

with Ap = żp(zpI −A)−1 and y1(t) = ymin(Nx0 + g(t)).
Proof. We shall prove that if the initial iterate is chosen as {x0P,j = x0}Jj=0 and T ∗

satisfies (3.6), all the iterates {xkP (t)}k≥1 generated by the algorithm (3.3) lie in the ball
B(x0, β) defined by (3.5) for t ∈ [0, T ∗]. Then, by using (3.5) repeatedly the well posedness
of the least-element algorithm (3.3) follows.

From (3.3) we have

xk+1
P (t)− x0 = (eAt − I)x0 +

∆v

2πi

∫ t

0

(
P∑

p=−P

żp(zpI − A)−1
e
zp(t−τ)

B

)(
y
k+1(τ)− y

1(τ)
)
dτ

+
∆v

2πi

∫ t

0

P∑

p=−P

żp(zpI −A)−1ezp(t−τ)

(f(τ) +By1(τ)

)
dτ

⇒ ‖xk+1
P (t)− x0‖ ≤ C0 +

∆v‖B‖
2π

∫ t

0

θ(t, τ)‖yk+1(τ) − y1(τ)‖dτ,

where θ(t, τ) is defined by (2.9b). Clearly, for k = 0 we have ‖x1P (t) − x0‖ ≤ C0 and thus
x1P (t) ∈ B(x0, β) because of (3.6).

Suppose xkP (t) ∈ B(x0, β) for 0 ≤ t ≤ T ∗. Then, by using Lemma 3.1 we know that

yk+1(t) is uniquely existent and ‖xk+1
P (t) − x0‖ ≤ C0 + L̃

∫ t

0 θ(t, τ)‖xkP (τ) − x0‖dτ . Using
this relation iteratively we get

‖xkP (t)− x0‖ ≤
[
C0

k−1∑

r=0

L̃rJr(t) + L̃kJk(t)

]
sup

τ∈[0,τ]

‖xkP (τ)− x0‖, (3.7)

14 S. L. Wu and X. Chen

where Jr(t) is the r-fold nested integral defined by (2.14b). In the proof of Theorem 2.3,

we have already proved that Jr(t) =
tr(

∏r
l=1

Θl)
r! , where Θl is the quantity defined by (2.7b).

From (2.15) we have Jr(t) ≤ (tΘmax)
r

r! . Substituting this into (3.7) and then by using (3.6)

we have xk+1
P (t) ∈ B(x0, β) for t ∈ [0, T ∗].

In both Theorems 2.2 and 3.2, it is clear that, to get a better performance of the
proposed iterative algorithm, the quantity Θmax defined by (2.15) should be as small as
possible. This quantity heavily depends on the choice of P and the contour Γ. From (2.15),
we see that Θmax increases linearly with respect to P . Fortunately, for a given time step-
size h it is unnecessary to choose a very large P in practice. We explain this as follows.
From Theorem 2.3 we know that the accuracy of the obtained numerical solution is of order

O(h)+O(e−2.06
√
P /

√
P), provided the spectrum σ(A) satisfies (2.1a) and the contour Γ and

the quadrature nodes zp’s are fixed according to Theorem 2.2. The second term decays very
fast as P increases and to balance the first term we just need a moderate value of P . For
example, as h varies from 10−1 to 10−10 we need a P varying from 4 to 100.

Remark 3.1 (Generalization to broader cases). To finish this section, we point out
that the work in this paper can be generalized to broader cases, besides the P-matrix LCS
and the Z-matrix LCS. The overall requirement is twofold: the Lipschitz continuity of the
solution function y(q) of LCP(q,M) and the (unique) existence of the solution function in
some sense, e.g., the least-element solution, the least-norm solution or the spare solution,
etc. From [8, 11], we know that the Lipschitz continuity of the solution function y(q) holds
for the case that M is a nondegenerate matrix, semi-definite matrix and many other cases,
together with some additional conditions. To apply the algorithms proposed in this paper to
these cases, we only need to explore suitable conditions such that the additional conditions
are fulfilled in each iteration.

4. Numerical experiments. In this section, we provide numerical results to validate
the efficiency of the algorithm proposed in this paper. We consider the Z-matrix LCS only,
because, compared to the P-matrix case, it is easier to verify whether a matrix is a Z-matrix
or not. This kind of DLCPs arise frequently from the finite element or finite difference
discretization of free boundary problems, reaction-diffusion problems, journal bearing prob-
lems and equilibrium models in economics including input-output equilibrium models and
Walrasian price equilibrium models [8, 9, 11, 18, 34].

For all the experiments, we divide the time interval [0, T] equally with step-size h and
algorithm (3.3) stops if

max
0≤j≤J

‖xkj − xrefj ‖∞ ≤ 10−12, (4.1)

where {xrefj }Jj=0 denotes the converged solution. In all numerical experiments, the concerned
LCP is solved by the semi-smooth Newton’s method proposed in [11].

A parallel iterative algorithm for DLCPs 15

4.1. A small-scale DLCP. In this first set of numerical results, we consider the
following DLCP for t ∈ [0, 1] with arbitrarily chosen coefficient matrices and source terms:

ẋ1

ẋ2

ẋ3

 =

=A︷ ︸︸ ︷

−2 1 0
1 −2 3

2

0 −1 −2

x1

x2

x3

+

=B︷ ︸︸ ︷

−1 −4 −2 0
−3 −2 −2 0
−3 −3 0 3

y1
y2
y3
y4

=f(t)
︷ ︸︸ ︷

−

√
t[1− cos(t2)]
3 cos(3πt)√

t[1− cos(3t2)]|

,

0 ≤

y1
y2
y3
y4

 ⊥

0 0 −1
−2 −2 3

2

− 1
2

−1 − 1
2

1 5
2

3
2

︸ ︷︷ ︸
=N

x1

x2

x3

+

2
3

−1 − 1
3

− 5
3

− 2
3

1
3

− 2
3

− 4
3

− 2
3

− 1
30

0 − 5
3

−1 0 − 5
3

1
3

︸ ︷︷ ︸
=M

y1
y2
y3
y4

+

te−t + 3
20

−1.2

te−
t
3 + 3

20

te−
t
4 + 3

20

︸ ︷︷ ︸
=g(t)

.

(4.2)

For this DLCP, with two different values of the step-size h, h = 2−5 and h = 2−7, we show
in Fig.4.1 the measured convergence rates of algorithm (3.3), together with the error bound
given by Theorem 2.2. We see that the convergence rate is strongly robust with respect to
the change of the step-size and that the error bound predicts the measured convergence rate
very well, except for the first few iterations.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Iteration Number

C
on

ve
rg

en
ce

H
is

to
ry

Iterative Algorithm (3.3): h = 2−5

Error Bound

Measured Error

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Iteration Number

C
on

ve
rg

en
ce

H
is

to
ry

Iterative Algorithm (3.3): h = 2−7

Error Bound

Measured Error

Fig. 4.1. For two different values of the step-size h, the measured convergence rates of algorithm (3.3),
together with the corresponding error bounds given by Theorem 2.2.

With h = 2−7, we next show in Fig.4.2 the solutions generated by running algorithm
(3.3) for 1, 2 and 4 iterations at each time point, together with the converged solution,
i.e., the ‘Ref.Solution’ indicated by the solid line in each panel of Fig.4.2. In the bottom
subfigure, we only plot the components y2(t) and y4(t), because y1(t) = y3(t) ≡ 0. We see
that, the algorithm proposed in this paper generates a satisfactory solution after only a few
iterations.

It would be interesting to study the accuracy of the converged solution of algorithm
(3.3). Because of the lack of differentiability of the constraint variable, the accuracy of the

converged solution shall be of order O(h) +O(e−2.06
√
P /

√
P); see our discussion in Section

2.3. We first check the dependence of the accuracy on the step-size h. To eliminate the
effect of the error arising from the contour quadrature, we choose P = 64 for the number
of quadrature nodes, which leads to an error of order O(10−9) for the contour quadrature.
Since the exact solution of DLCP (4.2) is unknown, we can only study the accuracy of the

converged solution indirectly. We proceed as follows. Let {xhj , yhj } and {xh/2j , y
h/2
j } be two

numerical solutions of DLCP (4.2) at the time points {tj}Nj=1 with N = T/h, obtained

with step-sizes h and h
2 , respectively. Then, we compute the difference between these two

numerical solutions: εx = maxj ‖xhj − x
h/2
j ‖∞ and εy = maxj ‖yhj − y

h/2
j ‖∞.

16 S. L. Wu and X. Chen

0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

Time: tj

x1

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

Time: tj

x2

0 0.2 0.4 0.6 0.8 1
−0.8

−0.6

−0.4

−0.2

0

0.2

Time: tj

x3

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

Time: tj

y2

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

Time: tj

y4

k = 1

k = 2

k = 4k = 4

Ref. Solution

Fig. 4.2. The solutions generated by running algorithm (3.3) for 1, 2 and 4 iterations, together with
the converged solution, i.e., the ‘Ref.Solution’ indicated by the solid line.

Suppose x(tj) − xhj = O(hp) with some constant p ≥ 1. Then, we have xhj − x
h/2
j =

(xh − x(tj)) + (x(tj) − x
h/2
j) = O(hp) + O((h2)

p) = O(hp). Hence, εx shall be a reliable

prediction of the absolute error x(tj) − xhj . The same statement goes to εy. In Fig.4.3 we
plot the measured quantities εx and εy, together with a bound O(h) = 5h, as h varies from
2−3 to 2−9. We see that both εx and εy decay with a rate O(h) as h decreases. We next fix
h = 10−5 and vary the quantity P , the number of the quadrature nodes used in algorithm
(3.3), from 4 to 38. The measured εx and εy for each P are plotted in Fig.4.3 on the right.

We see that for P ≤ 23, both εx and εy decay with a rate O(e−2.06
√
P /

√
P) as P increases

and when P exceeds 23 these two quantities stop decaying and stagnate around 10−5. This

can be explained like this: for P = 23 we have e−2.0680
√
P /

√
P = 1.05 × 10−5 ≈ h; hence

for P > 23 the accuracy of the converged solution of algorithm (3.3) is dominated by the
term O(h) arising from the piecewise linear interpolation. The results shown in Fig.4.3
confirm our error analysis given by Theorem 2.3 very well. If we change the piecewise linear

10
−3

10
−2

10
−1

10
−3

10
−2

10
−1

10
0

h (logarithmic scale)

ε x
,
ε y

(l
og

ar
it

h
m

ic
sc

al
e)

Iterative Algorithm (3.3) with P=64

log(εx)

log(εy)

O(h) = 5h

5 10 15 20 25 30 35

10
−6

10
−5

10
−4

10
−3

10
−2

P

Iterative Algorithm (3.3) with h=10−5

ε x
,
ε y

(l
og

ar
it

h
m

ic
sc

al
e)

log(εx)

log(εy)

O(e−2.06
√

P/
√
P) = 2e−2.06

√

P/
√
P

Fig. 4.3. Left: for fixed P = 64 the quantities εx and εy, together with a bound O(h) = 5h, for h
varies from 2−3 to 2−9. Right: similar information when h = 10−5 is fixed and P varies from 4 to 38.

interpolation to high order interpolation, e.g., the cubic spline interpolation, the plots look

A parallel iterative algorithm for DLCPs 17

very similar to Fig.4.3.
We next show that algorithm (3.3) is more flexible than the strategy of directly forward-

ing the implicit Euler method as described by (1.4a)-(1.4b). To this end, we show in Fig.
4.4 the components y2(t) and y4(t) of constraint variable for three step-sizes. In the top row,
we show the results for algorithm (3.3), where we see clearly that the difference between the
profiles of y2(t) (and y4(t)) for the three step-sizes is almost invisible, which implies that
algorithm (3.3) generates a reliable solution of DLCP (4.2) for all these three step-sizes. The
bottom row corresponds to the case of implicit Euler time-stepping method. Of particular
interest is the case h = 2−6 indicated by the thickened dashed line, for which the compu-
tation by the implicit Euler time-stepping method gives correct solution for t ∈ [0, 0.36]
and somehow incorrect solution for t ∈ [0.36, 0.75]. When t exceeds the critical time point
t = 0.75, no numerical solution is found and the computation is broken.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

Time point: tj

y
2

by iterative algorithm (3.3)

h = 2−8

h = 2−7

h = 2−6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

Time point: tj

y
2

by implicit Euler time stepping

h = 2−8

h = 2−7

h = 2−6

t = 0.75

t = 0.36

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

Time point: tj

y
4

by iterative algorithm (3.3)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

Time point: tj

y
4

by implicit Euler time stepping

h = 2−8

h = 2−7

h = 2−6

h = 2−8

h = 2−7

h = 2−6

t = 0.75

t = 0.36

Fig. 4.4. Top row: the converged solutions y2(t) and y4(t) by algorithm (3.3) with three step-sizes h.
Bottom row: similar information for the case that the discrete DLCP is solved directly by the procedure
described by (1.4a)-(1.4b).

This result for the implicit Euler time-stepping method can be explained by examining
the coefficient matrix Mh for the LCS:

Mh
1 =

0.6725 −0.9942 −0.3333 −1.6725
−0.6598 0.3480 −0.6511 −1.3246
−0.6569 −0.0226 0.0058 −1.6696
−1.0253 −0.0263 −1.6803 0.3421

, Mh
2 =

0.6782 −0.9884 −0.3334 −1.6783
−0.6528 0.3628 −0.6355 −1.3160
−0.6472 −0.0119 0.0117 −1.6725
−1.0506 −0.0526 −1.6939 0.3509

,

Mh
3 =

0.6896 −0.9770 −0.3335 −1.6897
−0.6385 0.3925 −0.6045 −1.2993
−0.6279 0.0095 0.0232 −1.6785
−1.1007 −0.1050 −1.7207 0.3686

,

where Mh
1,2,3 correspond to h = 2−8, h = 2−7 and h−6, respectively. We see that the first

two matrices are Z-matrix, but for h = 2−6 the matrix Mh
3 is not a Z-matrix since it has a

positive off-diagonal element 0.0095. So, for a given input vector q there is no guarantee that
the solution set SOL(q,Mh

3) is nonempty or the least-element solution is correctly founded.

4.2. A large-scale DLCP. We now consider a large-scale DLCP arising from the space
discretization of the parabolic Signorini problem in a real parallel computation situation.

18 S. L. Wu and X. Chen

4.2.1. The parabolic Signorini problem. The parabolic Signorini problem studied
here consists of a regular diffusion equation and a Signorini boundary condition:

c∆V − ∂tV = 0 in ΩT := Ω× (0, T),

0 ≤ ∂νV ⊥ (V − ψ) ≥ 0 on MT := M× (0, T),

V = f on ST := S × (0, T),

V (·, 0) = V0 on Ω0 := Ω× {0},

(4.3)

where S = ∂Ω \M, c > 0 is the diffusion coefficient, ∂ν denotes the outer normal derivative
on ∂Ω (the boundary of the spatial domain Ω ∈ R

d with d ≥ 2), M denotes an open subset
of ∂Ω (in its relative topology) and V denotes the pressure of the chemical solution satisfying
a diffusion equation c∆V − ∂tV = 0 over the interior of the domain Ω. Here, we consider
the following setting for the domain

Ω = (0, 1)× (0, 1), M = (0, 1)× {0}. (4.4)

Classical examples where Signorini-type boundary conditions appear are the problems with
unilateral constraints in elastostatics, problems with semipermeable membranes in fluid
mechanics (including the phenomenon of osmosis and osmotic pressure in biochemistry),
and the problems on the temperature control on the boundary in thermics. We refer to the
books of Duvaut and Lions [16] and Petrosyan et al. [27], where many such applications are
discussed and the mathematical models are derived. We also refer the interested reader to
the survey paper [15] for the most recent progress of this kind of problems.

The region M denotes the semipermeable part of the boundary, which can be considered
as a semipermeable membrane that is permeable only for a certain type of molecules (sol-
vents) and blocks other molecules (solutes); see Fig.4.5 on the left. Because of the chemical
imbalance, the solvent flows through the membrane from the region of smaller concentration
of solute to the region of higher concentration, due to the osmotic pressure ψ. The flow oc-
curs in one direction and continues until a sufficient pressure builds up on the other side of
the membrane to compensate for osmotic pressure, which then shuts the flow. The boundary
condition on the semipermeable part M, which is terminologically called Signorini boundary
condition, is determined by the mechanism of semipermeable osmosis described above; see
Fig.4.5 on the right.

Fig. 4.5. The semipermeable membranes and osmosis in the 2D case. Left: the semipermeable mem-
brane is a membrane that is permeable only for a certain type of molecules (solvents) and blocks other
molecules (solutes). Right: the mathematical formulation of the unilateral problem illustrated on the left.

For discretization, we employ the spatial grids {(x1,p, x2,q) = (p∆x, q∆x)}Q+1
p,q=0 with

Q = 1
∆x − 1. Then, applying the centered finite difference formula to the spatial derivatives

in (4.3) gives the following DLCP (details are presented in Appendix-A):

Ẋ(t) = AX(t) +BY(t) + F(t), 0 ≤ Y(t) ⊥ NX(t) +MY(t) +G(t) ≥ 0, (4.5)

A parallel iterative algorithm for DLCPs 19

where X(t) ∈ R
Q2

, Y(t) ∈ R
Q, F(t) = f(t) + c

∆x2 (I ⊗ E1)ψ(t) ∈ R
Q2

and G(t) = −g(t) +
(2I −∆x2A)ψ(t) ∈ R

Q with I ∈ R
Q×Q being the identity matrix, E1 = (1, 0, . . . , 0)⊤ ∈ R

Q

and ⊗ denotes the Kronecker product. The four coefficient matrices are defined by

A = c (I ⊗A+A⊗ I) , B =
c

∆x2
(I ⊗E1), M = 2I −∆x2A, N = −2(I ⊗E⊤

1),

with A = − 1

∆x2

2 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 2

Q×Q

.
(4.6)

Clearly, the matrix M is a Z-matrix.

4.2.2. Parallel computation. For numerical experiments, we use the following data:

t ∈ (0, 4), c = 2× 10−3, f ≡ 0, P = 25 (number of contour quadrature nodes),

V0(x1, x2) = 2x1x2(1− x1)(1− x2), ψ(x2, t) =

{
4

1+t , if |x2 − 1
2 | ≥ 1

4 ,

sin(2πt), otherwise.

(4.7)

For algorithm (3.3), we set the following tolerance for the iterations:

max
0≤j≤J

‖Xk
j −Xref

j ‖∞ ≤ min{h,∆x2}
50

, (4.8)

where J = T
h and {Xref

j }Jj=0 denotes the converged solution. This tolerance shall be suf-
ficient to match the error arising from the spatial discretization and the piecewise linear
interpolation used for treating the inner integral involved in the Laplace inversion.

All experiments are conducted by using the following hardware and software:
• CPU: Intel Core i7-3770K 3.5 GHz and 32 GB RAM using gcc 4.8.1. A single
CPU was used for the sequential computation of DLCP (4.5) by using the implicit
Euler method. The codes were tested with gcc’s fast math option (ffast math).

• GPU: NVIDIA GeForce GTX 660 installed in a system with the above described
CPU. The GPU operates at 1.10 GHz clock speed and consists of 5 multiprocessors
(each contains 192 CUDA cores). We compiled the code using CUDA version 5.5 in
combination with the gcc 4.8.1 compiler with fast math option (use fast math).

Particularly, the GPU is used to carry out the parallel computation of DLCP (4.5) at the
discrete time points. As mentioned in Remark 2.2, for each discrete time point the (2P +1)
linear systems involved in the Laplace inversion are independent and therefore we solve them
in parallel by GPU as well. For both the computations carried out by CPU and CPU, the
linear algebras concerning the computation of the ODE system is solved by Fourier spectral
method, by noticing the special structure of the matrix A given by (4.6).

We first check the convergence rates of algorithm (3.3) for different discretization pa-
rameters. In Fig.4.6 on the left, we show the measured error between the current iterate
and the converged solution for three values of the temporal step-size h, while the spatial
mesh-size is fixed to ∆x = 0.04. We see that, the convergence rate is strongly robust with
respect to the change of h, the same as we observed in Fig.4.1 in the first example. If we fix
h, the convergence rate somehow slightly increases as ∆x decreases; see Fig.4.6 on the right.
This issue is worth further study and shall be addressed in our forthcoming work. In both
subfigures, the (dotted) horizontal line denotes the tolerance given by (4.8) which indicates
where the algorithm should stop in practice.

20 S. L. Wu and X. Chen

1 2 3 4 5 6 7 8 9 10 11 12 13 14
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Iteration Number

C
o
n
v
er

g
en

ce
H

is
to

ry

∆x = 0.04

h = 0.002

h = 0.01

h = 0.02

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Iteration Number

C
o
n
v
er

g
en

ce
H

is
to

ry

h = 0.01

∆x = 0.02

∆x = 0.05

∆x = 0.1

Fig. 4.6. Left: convergence rates of algorithm (3.3) for three values of the temporal step-size h, while
the spatial mesh size is fixed to ∆x = 0.04. Right: similar information as given in the left subfigure, when
h = 0.01 is fixed and ∆x varies.

With h = 0.01 and ∆x = 0.025, we show in Fig.4.7 the approximation of the shifted
solution V k(0, x2, t)+ψ on the semipermeable boundary M, after k = 1, 3 and 5 iterations,
to the converged solution V (0, x2, t) + ψ. We see that, each iteration needs approximately
6 seconds and after 30 seconds the solution generated by algorithm (3.3) is sufficiently close
to the converged solution. These four subfigures have oblivious difference for the evolution
of the four large bulges. A local description of this difference is shown in Fig.4.8, where we
show the 1st, 2nd and 5th iterates and the converged solution as a function of x2 when t = 4
(and as a function of t when x2 = 0.5).

Fig. 4.7. Approximation of the shifted solution V k(0, x2, t) + ψ at the semipermeable boundary M,
after k = 1, 3 and 5 iterations, to the converged solution V (0, x2, t) + ψ.

We now illustrate the advantages of using the parallel computation over the sequential
computation. With h = 0.01, ∆x = 0.025 and T = 4, as we already saw in Fig.4.7, algo-

A parallel iterative algorithm for DLCPs 21

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

x2

V
(0
,x

2
,t

)
+
ψ

t = 4

Ref.Solution k = 5 k = 3 k = 1

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

t

V
(0
,x

2
,t

)
+
ψ

x2 = 0.5

Ref.Solution k = 5 k = 3 k = 1

Fig. 4.8. Left: the 1st, 3rd and 5th iterates and the converged solution as a function of x2 when t = 4.
Right: similar information when x2 = 0.5 and t varies from 0 to 4.

rithm (3.3) needs 30 seconds to generate accurate approximation of the converged solution.
However, it takes about 27.5 minutes to finish the computation for t ∈ (0, 4) by the implicit
Euler method step by step (i.e., in the sequential computation mode). An illustration of the
evolution of the numerical solution generated by the implicit Euler method in the sequential
mode, after 30, 180, 900 and 1200 seconds, is shown in Fig.4.9. By comparing Fig.4.7 to
Fig.4.9, it is clear that algorithm (3.3) with full parallelization is dramatically faster than
the implicit Euler method used in the sequential mode.

0
1

2
3

4

0

0.2

0.4

0.6

0.8

1
0

0.5

1

1.5

2

t

Sequential Computation by Implicit Euler

30 secs.

x2

V
(x

2
,t

)
+
ψ

0
1

2
3

4

0

0.2

0.4

0.6

0.8

1
0

0.5

1

1.5

2

t

Sequential Computation by Implicit Euler

180 secs.

x2

V
(x

2
,t

)
+
ψ

0
1

2
3

4

0

0.2

0.4

0.6

0.8

1
0

0.5

1

1.5

2

900 secs.

t

Sequential Computation by Implicit Euler

x2

V
(x

2
,t

)
+
ψ

0
1

2
3

4

0

0.5

1
0

0.5

1

1.5

2

1200 secs.

t

Sequential Computation by Implicit Euler

x2

V
(x

2
,t

)
+
ψ

Fig. 4.9. The profile of V (0, x2, t) + ψ generated by the implicit Euler method in the sequential mode,
after 30, 180, 900 and 1200 seconds. Here, h = 0.01 and ∆x = 0.025.

More comparisons with respect to the computation time between algorithm (3.3) and
the implicit Euler method are shown in Fig.4.10. Precisely, in the left subfigure we show the
measured time when ∆x is fixed and h varies. We see that the time costed for algorithm

22 S. L. Wu and X. Chen

(3.3) maintains a constat value around 60 seconds when h changes, while the time for
implementing the implicit Euler method increases linearly (in the logarithmic scale) as h
reduces. The latter is natural and the former is mainly because that algorithm (3.3) behaves
robustly with respect to the change of h when ∆x is fixed; see Fig.4.6 on the left for evidence.
In Fig.4.10 on the right, we fix h = 0.01 and vary ∆x from 1

16 to 1
512 . In this case, both

algorithm (3.3) and the implicit Euler method need more time as ∆x reduces¶. However,
the computation time of algorithm (3.3) is still significantly less than that of the implicit
Euler method. For example, with h = 0.01 and ∆x = 1

512 , the implicit Euler method needs
15 hours to finish the computation for t ∈ (0, 4), while by using algorithm (3.3) with full
parallelization it only takes 1.4 hours !

10
−3

10
−2

10
−1

10
1

10
2

10
3

10
4

h

M
e

a
su

re
d

 T
im

e
 (

in
 s

e
cs

.)

∆x = 0.025

Implicit Euler (sequential)

Algorithm (3.3) (parallel)

10
−3

10
−2

10
−1

10
1

10
2

10
3

10
4

10
5

∆x

M
ea

su
re

d
T

im
e

(in
 s

ec
s.

)
h = 0.01

Implicit Euler (sequential)

Algorithm (3.3) (parallel)(≈ 15 hours)

(≈ 1.4 hours)

Fig. 4.10. Comparison with respect to time for algorithm (3.3) (with full parallelization) and the
implicit Euler method implemented in the sequential mode.

It would be interesting to show how the total wall-clock time of the GPU computation
is split among the components of the algorithm, e.g., the LCP solver, the linear algebras,
the linear interpolations (see Section 2.3) and the communication cost between the CUDA
cores. To this end, we show in Table 4.1 the percentage of the total wall-clock time for these
four components of the iterative algorithm proposed in this paper.

Table 4.1
GPU computation: percentage of the wall-clock time for four components of the algorithm (3.3)

Case-I: ∆x = 0.025 is fixed and h varies (corresponds to Fig. 4.10 on the left)

h = 1
16

h = 1
32

h = 1
64

h = 1
128

h = 1
256

h = 1
512

LCP Solver 47.5% 48.8% 46.1% 42.8% 35.6% 32.0%

Linear Algebra 35.7% 34.7% 39.5% 42.4% 50.7% 53.7%

Interpolation 4.5% 4% 4.3% 4.1% 4% 4.1%

Communication 12.3% 12.5% 10.1% 10.7% 9.7% 10.2%

Case-II: h = 0.01 is fixed and ∆x varies (corresponds to Fig. 4.10 on the right)

∆x = 1
16

∆x = 1
32

∆x = 1
64

∆x = 1
128

∆x = 1
256

∆x = 1
512

LCP Solver 46.9% 46.1% 49.3% 40.1% 30.2% 22.8%

Linear Algebra 37.9% 37.3% 34.1% 40.2% 51.7% 56.8%

Interpolation 4.5% 4.7% 5.1% 6.3% 6.6% 7%

Communication 10.7% 11.9% 14.2% 13.4% 11.5% 13.4%

¶There are two things that increases the computation time of algorithm (3.3). First, as ∆x reduces we
need more iterations to reach the tolerance (4.8); see Fig.4.6 on the right for evidence. Second, as ∆x reduces
the sizes of the coefficient matrices A and M in DLCP (4.5) become larger and naturally this increases the
computation time for solving the involved linear algebraic equations and LCPs.

A parallel iterative algorithm for DLCPs 23

5. Conclusions. We have proposed an iterative algorithm for solving the DLCPs,
which is based on the idea of functional iteration together with a novel treatment of the
ODE system, namely the numerical Laplace inversion. Different from the widely used time-
stepping method, which requires that the step-size h should be sufficiently small such that
the coefficient matrix Mh in the concerned LCP(q,Mh) satisfies some desired property, the
proposed algorithm is concerned with a LCP(q,M) in which the matrix Mh never occurs.
Moreover, the proposed algorithm is highly parallelizable in time, while the time-stepping
method studied so far can be only implemented in the sequential-in-time mode. Conver-
gence analysis for the new algorithm is performed for the P-matrix (and Z-matrix) LCS
and generalization to broader cases is also discussed; see Remark 3.1. The estimate of the
convergence rate given by Theorem 2.2 implies that the algorithm converges superlinearly
and our numerical results indicate that the estimate is sharp and confirms numerical re-
sults well; see Fig.4.1. The numerical experiments conducted on the GPU-based parallel
computation platform for the parabolic Signorini problem show that, with the same prob-
lematic/discretization configurations, the computation time of the proposed algorithm is less
in several magnitudes than that of the widely used time-stepping method.

Our ongoing work is twofold. First, we try to generalize the current work to the case that
the matrix A in the ODE system contains zero, imaginary and/or unstable eigenvalues, by
using the Cauchy-Goursat theorem as we mentioned in Remark 2.1. Second, we try to apply
the Laplace inversion technique to dynamic complementarity problems in the nonlinear case:

ẋ(t) = f(t, x(t), y(t)),

0 ≤ y(t) ⊥ g(t, x(t), y(t)) ≥ 0.
(5.1)

To this end, we construct the following functional iterations

0 ≤ yk+1(t) ⊥ g(t, xk(t), yk+1(t)) ≥ 0,

ẋk+1(t) =Wxk+1(t) + f(t, xk(t), yk+1(t))−Wxk(t),
(5.2)

where W ∈ R
m×m is a suitable matrix. Upon convergence, i.e., k → ∞, it is clear that

{x∞(t), y∞(t)} is the solution of (5.1). Apparently, the ODE system in (5.2) is linear and
therefore the Laplace inversion technique is applicable, by treating f(t, xk(t), yk+1(t)) −
Wxk(t) as the source term.

Acknowledgements. The authors are very grateful to the anonymous referees for
the careful reading of a preliminary version of the manuscript and their valuable sug-
gestions and comments, which greatly improve the quality of this paper. This work is
supported by the NSFC of China (11771313), the Project of China Postdoctoral Science
Foundation (2015M580777, 2016T90841), the Hong Kong Research Grant Council grant
PolyU153000/15p and The Hong Kong Polytechnic University Postdoctoral Fellowship Scheme.

REFERENCES

[1] L. V. Ahlfors, Complex analysis, Third Edition, McGraw-Hill, New Yourk, 1978.
[2] M. Anitescu and F. A. Potra, Formulating dynamic multi-rigid-body contact problems with friction

as solvable linear complementarity problems, Nonlinear Dynamics, 14 (1997), pp. 231-247.
[3] M. Anitescu and A. Tasora, An iterative approach for cone complementarity problems for nonsmooth

dynamics, Comput. Opt. Appl., 47 (2010), pp. 207-235.
[4] X. J. Ban, J.-S. Pang, H. X. Liu, and R. Ma, Modeling and solving continuous-time instantaneous

dynamic user equilibria: a differential complementarity systems approach, Transport. Res. B-
Meth., 46 (2012), pp. 389-408.

[5] B. Brogliato, Some perspectives on the analysis and control of complementarity systems, IEEE Trans.
Automat. Control, 48 (2003), pp. 918-935.

24 S. L. Wu and X. Chen

[6] M. K. Camlibel, Complementarity Methods in the Analysis of Piecewise Linear Dynamical Systems,
Ph.D. thesis, Center for Economic Research, Tilburg University, Tilburg, The Netherlands, 2001.

[7] M. K. Camlibel, W. P. M. H. Heemels, and J. M. Schumacher, Consistency of a time stepping
method for a class of piecewise-linear networks, IEEE Trans. Circuits Systems I. Fund. Theory
Appl., 49 (2002), pp. 349-357.

[8] R. W. Cottle, J.-S. Pang, and R. E. Stone, The Linear Complementarity Problem, Academic Press,
Boston, MA, 1992.

[9] X. Chen and S. Xiang, Sparse solutions of linear complementarity problems, Math. Program. Ser. A,
159 (2016), pp. 539-556.

[10] X. Chen and Z. Wang, Computational error bounds for a differential linear variational inequality,
IMA. J. Numer. Anal., 32 (2012), pp. 957-982.

[11] X. Chen and S. Xiang, Newton iterations in implicit time-stepping scheme for differential linear
complementarity systems, Math. Program. Ser. A, 138 (2013), pp. 579-606.

[12] X. Chen and Z. Wang, Convergence of regularized time-stepping methods for differential variational
inequalities, SIAM J. Opt., 23 (2013), pp. 1647-1671.

[13] X. Chen and Z. Wang, Differential variational inequality approach to dynamic games with shared
constraints, Math. Program. Ser. A, 146 (2014), pp. 379-408

[14] M. K. Camlibel, J.-S. Pang, and J. Shen, Lyapunov stability of complementarity and extended
systems, SIAM J. Opt., 17 (2006), pp. 1056-1101.

[15] D. Danielli, N. Garofalo, A. Petrosyan, and T. To, Optimal regularity and the
free boundary in the parabolic Signorini problem, Mem. Amer. Math. Soc., to appear
(http://arxiv.org/pdf/1306.5213.pdf)

[16] G. Duvaut and J.-L. Lions, Inequalities in mechanics and physics, Springer-Verlag, Berlin, 1976.
[17] F. Facchinei and J.-S. Pang, Finite-Dimensional Variational Inequalities and Complementarity

Problems, Springer, New York, 2003.
[18] M. C. Ferris and J.-S. Pang, Engineering and economic applications of complementarity problems,

Siam Rev., 39 (1997), pp. 669-713.
[19] S. Greenhalgh, V. Acary, and B. Brogliato, On preserving dissipativity properties of linear com-

plementarity dynamical systems with the θ-method, Numer. Math., 125 (2013), pp. 601-637.
[20] L. Han, A. Tiwari, M. K. Camlibel, and J.-S. Pang, Convergence of time-stepping schemes for

passive and extended linear complementarity systems, SIAM J. Numer. Anal., 47 (2009), pp.
3768-3796.

[21] T. Heyn, M. Anitescu, A. Tasora, and D. Negrut, Using Krylov subspace and spectral methods
for solving complementarity problems in many-body contact dynamics simulation, Int. J. Numer.
Meth. Engng., 95 (2013), pp. 541-561.

[22] W. Mclean, I. H. Sloan, and V. Thomée, Time discretization via Laplace transformation of an
integro-differential equation of parabolic type, Numer. Math., 102 (2006), pp. 497-522.

[23] W. Mclean and V. Thomée, Time discretization of an evolution equation via Laplace transformation,
IMA J. Numer. Anal., 24 (2004), pp. 439-463.

[24] F. A. Potra, M. Anitescu, B. Gavrea, and J. Trinkle, A linearly implicit trapezoidal method
for integrating stiff multibody dynamics with contact, joints, and friction, Int. J. Numer. Meth.
Engng., 66 (2006), pp. 1079-1124.

[25] J.-S. Pang, L. Han, G. Ramadurai, and S. Ukkusuri, A continuous-time linear complementarity
system for dynamic user equilibria in single bottleneck traffic flows, Math. Program. Ser. A,, 133
(2012), pp. 437-460.

[26] J.-S. Pang and D. Stewart, Differential variational inequalities, Math. Program. Ser. A, 113 (2008),
pp. 345-424.

[27] A. Petrosyan, H. Shahgholian, and N. Uraltseva, Regularity of free boundaries in obstacle-type
problems (Vol. 136), American Mathematical Society, Providence, 2012.

[28] J. M. Schumacher, Complementarity systems in optimization, Math. Program. Ser. B, 101 (2004),
pp. 263-296.

[29] J. Shen and J.-S. Pang, Linear complementarity systems: Zeno states, SIAM J. Control Opt., 44
(2005), pp. 1040-1066.

[30] D. Sheen, I. H. Sloan, and V. Thomée, A parallel method for time discretization of parabolic problems
based on contour integral representation and quadrature, Math. Comput., 69 (1999), pp. 177-195.

[31] L. N. Trefethen and J. A. C. Weideman, The exponentially convergent Trapezoidal rule, SIAM
Rev., 56 (2014), pp. 385-458.

[32] J. A. C. Weideman and L. N. Trefethen, Parabolic and hyperbolic contours for computing the
Bromwich integral, Math. Comput., 76 (2007), pp. 1341-1356.

[33] S. L. Wu, Laplace inversion for the solution of an abstract heat equation without the forward transform
of the source term, J. Numer. Math., to appear in 2017 (DOI: 10.1515/jnma-2016-1014).

[34] Z. Wang and Y. X. Yuan, Componentwise error bounds for linear complementarity problems, IMA J.

A parallel iterative algorithm for DLCPs 25

Numer. Anal., 31 (2011), pp. 348-357.

Appendix A. Discretization of the parabolic Signorini equation (4.3)-(4.4). To
discretize (4.3) by the centered finite difference formula, we first discretize the outer normal
derivative ∂νV at x1 = 0 by

∂νV (0, x2, t) =
V (x1,−1, x2, t)− V (x1,1, x2, t)

2∆x
+O(∆x2), (A.1)

where x1,−1 = −∆x denotes the extended grid point along the negatively horizontal direc-
tion. The quantity V (x1,−1, x2) is therefore a ‘ghost’ value because x1,−1 lies outside the
domain Ω. In the community of numerical partial differential equations, a widely used idea
to fix such a ghost value is to discretize the governing equation on the boundary together
with some suitable truncation. First, we assume that the diffusion equation also holds on
the boundary M. This assumption permits us to make the following discretization:

V (x1,−1, x2, t)− 2V (0, x2, t) + V (x1,1, x2, t)

∆x2
+ ∂2x2

V (0, x2, t) = c−1∂tV (0, x2, t) +O(∆x2).

Then, for sufficiently small ∆x we can expect V (x1,−1, x2, t) = 2V (0, x2, t)−∆x2∂2x2
V (0, x2, t)−

V (x1,1, x2, t) + O(∆x2). Substituting this into (A.1) gives the following discretization for
the outer normal derivative on the semipermeable boundary M:

∂νV (0, x2, t) ≈
2V (0, x2, t)− 2V (x1,1, x2, t)−∆x2∂2x2

V (0, x2, t)

2∆x
. (A.2)

Let V(x2, t) = (V (x1,1, x2, t), V (x1,2, x2, t), . . . , V (x1,Q, x2, t))
⊤. Then, we have

{
∂tV(x2, t) = cAV(x2, t) + c∂2x2

V(x2, t) +
c

∆x2E1V (0, x2, t) +
c

∆x2EQf(1, x2, t),

0 ≤ 2V (0, x2, t)−∆x2∂2x2
V (0, x2, t)− 2E⊤

1 V(x2, t) ⊥ V (0, x2, t)− ψ ≥ 0,
(A.3)

where EQ = (0, . . . , 0, 1)⊤ ∈ R
Q and A is the tri-diagonal matrix defined by (4.6).

Similarly, discretizing ∂2x2
V(x2, t) in (A.3) by the centered finite difference formula gives

{
X′(t) = c(I ⊗A+ A⊗ I)X(t) + c

∆x2 (I ⊗E1)y(t) + f(t),

0 ≤ (2I −∆x2A)y(t) − 2(I ⊗E⊤
1)X(t) − g(t) ⊥ y(t) −ψ(t) ≥ 0,

(A.4)

where X(t) =
(
V⊤(x2,1, t),V⊤(x2,2, t), . . . ,V⊤(x2,Q, t)

)⊤ ∈ R
Q2

and

y(t) = (V (0, x2,1, t), V (0, x2,2, t), . . . , V (0, x2,Q, t))
⊤ ∈ R

Q,

f(t) =
c

∆x2
[(I ⊗EQ)fx1=1(t) + (E1 ⊗ I)fx2=0(t) + (E1 ⊗ I)fx2=1(t)] ,

g(t) = E1f(0, 0, t) +EQf(0, 1, t), ψ = (ψ(x2,1, t), ψ(x2,2, t), . . . , ψ(x2,Q, t))
⊤
.

The vector fx1=1(t) is defined by fx1=1(t) = (f(1, x2,1, t), . . . , f(1, x2,Q, t))
⊤; similar defini-

tions go to fx2=0(t) and fx2=1(t). To get the standard form of a DLCP, it remains to make
a shift to y(t): by letting Y(t) = y(t) −ψ(t) we can rewrite (A.4) as (4.5).

