
LOWER BOUND THEORY OF NONZERO ENTRIES IN SOLUTIONS
OF `2-`P MINIMIZATION

XIAOJUN CHEN∗, FENGMIN XU† , AND YINYU YE‡

Abstract. Recently, variable selection and sparse reconstruction are solved by finding
an optimal solution of a minimization model where the objective function is the sum of
a data-fitting term in `2 norm and a regularization term in `p norm (0 < p < 1). Since
it is a nonconvex model, most algorithms for solving the problem can only provide
an approximate local optimal solution, where nonzero entries in the solution cannot
be identified theoretically. In this paper, we establish lower bounds for the absolute
value of nonzero entries in every local optimal solution of the model, which can be
used to indentify zero entries precisely in any numerical solution. Therefore, we have
developed a lower bound theorem to classify zero and nonzero entries in its every
local solution. These lower bounds clearly show the relationship between the sparsity
of the solution and the choice of the regularization parameter and norm, so that our
theorem can be used for selecting desired model parameters and norms. Furthermore,
we also develop error bounds for verifying accuracy of numerical solutions of the `2-`p

minimization model. To demonstrate applications of our theory, we propose a hybrid
orthogonal matching pursuit-smoothing gradient (OMP-SG) method for solving the
nonconvex, non-Lipschitz continuous `2-`p minimization problem. Computational
results show the effectiveness of the lower bounds for identifying nonzero entries in
numerical solutions and the OMP-SG method for finding a high quality numerical
solution.
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1. Introduction. We consider the following minimization problem

min
x∈Rn

‖Ax− b‖22 + λ‖x‖p
p, (1.1)

where A ∈ Rm×n, b ∈ Rm, λ ∈ (0,∞), p ∈ (0, 1). Recently, minimization problem (1.1)
attracted great attention in variable selection and sparse reconstruction [5, 7, 8, 9, 28].
The objective function of (1.1),

f(x) := ‖Ax− b‖22 + λ‖x‖p
p
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consists of a data fitting term ‖Ax − b‖22 and a regularization term λ‖x‖p
p. Problem

(1.1) is intermediate between the `2-`0 minimization problem

min
x∈Rn

‖Ax− b‖22 + λ‖x‖0 (1.2)

and the `2-`1 minimization problem

min
x∈Rn

‖Ax− b‖22 + λ‖x‖1, (1.3)

in the sense

‖x‖0 =
n∑

i=1
xi 6=0

|xi|0, ‖x‖p
p =

n∑

i=1

|xi|p, and ‖x‖1 =
n∑

i=1

|xi|. (1.4)

Naturally, one expects that using the `p norm1 in the regularization term can find
sparser solution than using the `1 norm, which was evidenced in extensive computa-
tional studies [5, 7, 8, 9, 28]. However, some major theoretical issues remain open. Is
there any theoretical justification for solving minimization problem (1.1) with p < 1?
What are the solution characteristics of (1.1)? Is there theory to dictate the choice
of the regularization parameter λ and norm p? Our first main contribution of this
paper is to answer these questions. We establish lower bounds for the absolute value
of nonzero entries in every local optimal solution of (1.1) only when p < 1. Therefore,
we have developed a lower bound theorem to classify zero and nonzero entries in ev-
ery local solution of (1.1). These lower bounds clearly show the relationship between
the sparsity of the solution and the choice of the regularization parameter and norm,
so that the theorem can be used to guide the selection of desired model parameters
and norms in (1.1). It can be also used to identify zero and nonzero entries in the
numerical optimal solution.

More specifically, using the second order necessary condition for a local minimizer,
we present a component-wise lower bound

Li =
(

λp(1− p)
2‖ai‖2

) 1
2−p

(1.5)

for each nonzero entry x∗i of any local optimal solution x∗ of (1.1), that is,

for any i ∈ N , Li ≤ |x∗i |, if x∗i 6= 0,

which is equivalent to the following statement

for any i ∈ N , x∗i ∈ (−Li, Li) ⇒ x∗i = 0.

Here, N = {1, . . . , n} and ai is the ith column of the matrix A. We show that the
columns {ai | i ∈support(x∗)} are linearly independent, which implies that ‖x∗‖0 ≤ m
and the `2-`p minimization problem (1.1) has a finite number of local minimizers.

Most minimization algorithms are descent-iterative in nature, that is, starting
from an initial point x0 they generate a sequence of points xk, k = 0, 1, ..., such

1‖x‖p (0 < p < 1) is a quasi-norm which satisfies the norm axioms except the triangle inequality.
We call ‖x‖p a norm for simplicity.
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that the objective values f(xk) are strictly decreasing along the sequence. Thus, any
local minimizer, including the global minimizer, that a descent algorithm may find
must be in the level set {x : f(x) ≤ f(x0)}, and the set must contain at least one
local minimizer. Therefore, in both theory and practice, one may be only interested
in the minimizers satisfying f(x) ≤ f(x0). Specifically, for our problem, the zero
vector x0 = 0 would be a trivial initial point for (1.1) with f(0) = ‖b‖2, the least
squares solution of min

x
‖Ax− b‖ is another choice, and so is a point generated by any

heuristic procedure such as the Orthogonal Matching Pursuit method. Based on this
observation, we use the first necessary condition for a local minimizer to present a
lower bound

L =

(
λp

2‖A‖
√

f(x0)

) 1
1−p

(1.6)

for the absolute value of nonzero entries in a local optimal solution x∗ of (1.1), which
satisfies f(x∗) ≤ f(x0), that is,

for any i ∈ N , L ≤ |x∗i |, if x∗i 6= 0.

Moreover, we show that the number of nonzero entries in every local optimal solution
x∗ satisfying f(x∗) ≤ f(x0) is bounded by

‖x∗‖0 ≤ min
(

m,
f(x0)
λLp

)
.

The lower bounds in (1.5) and (1.6) are not only useful for identification of zero
entries in local optimal solutions from approximation ones, but also for selection of
the regularization parameter λ and norm ‖ · ‖p. In particular, for a given norm ‖ · ‖p,
the lower bounds can help us to choose the regularization parameter λ for controlling
the sparsity level of the solution. On the other hand, for a given λ, the lower bounds
can also help us to understand the `2-`p problem with different values p ∈ (0, 1).

We need to mention that Nikolova [22] proved a similar bound based on the second
order condition in a different context. Nikolova’s result is important: it shows that
using non-convex potential functions is good for piecewise constant image restoration.
However, the result has not been used in practical algorithms, because one needs to
solve an optimization problem to construct the bound. On the other hand, our first
and second order bounds have explicit close forms and are easily checkable. Moreover,
we have found that the bound based on the first order condition seems more effective
in practice, especially when a good initial point x0 is chosen.

Our second main contribution is on some numerical issues for solving (1.1). The
`p norm ‖ · ‖p for 0 < p < 1 is neither convex nor Lipschitz continuous. Solving the
nonconvex, non-Lipschitz continuous minimization problem (1.1) is difficult.

Most optimization algorithms are only efficient for smooth and convex problems.
Nevertheless, some algorithms for nonsmooth and nonconvex optimization problems
have been developed recently [4, 12, 20, 29]. However, the Lipschitz continuity re-
mains a necessary condition to define the Clarke subgradient in these algorithms. To
overcome the non-Lipschitz continuity, some approximation methods have been con-
sidered for solving (1.1). For example, at the kth iteration, replacing ‖x‖p

p by the
3



following terms [5, 7, 23]

n∑

i=1

x2
i

((xk−1
i )2 + εi)1−p/2

,
n∑

i=1

(|xi|+ εi)p or
n∑

i=1

|xi|
(|xk−1

i |+ εi)1−p
.

Here ε ∈ Rn is a small positive vector. The question is: are there error bounds for
verifying accuracy of numerical solutions of these approximation methods? We have
resolved this question by developing several error bounds.

More precisely, we consider smoothing methods for nonconvex, nonsmooth op-
timization problems, for example, the smoothing gradient method [29]. We choose
a smoothing function sµ(t) of |t|, such that sp

µ is continuously differentiable for any
fixed scalar µ > 0 and satisfies

0 ≤ (sµ(t))p − |t|p ≤
(µ

2

)p

.

See section 3. Let the smoothing objective function of f be

fµ(x) := ‖Ax− b‖22 +
n∑

i=1

(sµ(xi))p.

We can show that the solution x∗µ of the smoothing nonconvex minimization problem

min
x∈Rn

fµ(x) (1.7)

converges to a solution of (1.1) as µ → 0. For some small µ < L
2 , let

(x̄∗µ)i =
{

0 if |(x∗µ)i| ≤ µ
(x∗µ)i otherwise.

We show that there is x∗ in the solution set of (1.1) such that

(x̄∗µ)i = 0 if and only if x∗i = 0, i ∈ N

and

‖x̄∗µ − x∗‖ ≤ κ‖∇fµ(x̄∗µ)‖, (1.8)

where κ is a computable constant.

To demonstrate the significance of the absolute lower bounds (1.5), (1.6) and er-
ror bounds (1.8), we propose a hybrid orthogonal matching pursuit-smoothing gradi-
ent (OMP-SG) method for the nonconvex, non-Lipschitz `2-`p minimization problem
(1.1). We first use the orthogonal matching pursuit method to select candidates of
nonzero entries in the solution. Next we use the smoothing gradient method in [29]
to find an approximate solution of (1.1). Both before and after the SG method, we
use the lower bound theory to identify zero entries in the solution.

Our preliminary numerical results show that using OMP-SG with elimination
of small entries in the numerical solution by the lower bounds for `2-`p minimization
problem (1.1) can provide more sparse solutions with smaller predictor error compared
with several well-known approaches for variable selection.
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This paper is organized as follows. In section 2, we present absolute lower bounds
(1.5) and (1.6) for nonzero entries in local solutions of `2-`p minimization problem
(1.1). In section 3, we present the computable error bound (1.8) for numerical solu-
tions. In section 4, we give the hybrid OMP-SG method for solving the `2-`p mini-
mization problem (1.1). Numerical results are given to demonstrate the effectiveness
of the lower bounds, the error bounds and the OMP-SG method.

Notations Throughout the paper, ‖ · ‖ denotes the `2 norm and | · | denotes
the vector of the componentwise absolute value. For any x, y ∈ Rn, x · y represents
the vector (x1y1, · · · , xnyn)T and xT y denotes the inner product. Let X ∗p denote the
set of local minimizers of (1.1). For a vector x ∈ Rn, support(x) = { i ∈ N |xi 6= 0 }
denotes the support set of x.

2. Lower bounds for nonzero entries in solutions. In this section we present
two lower bounds for nonzero entries in local solutions of `2-`p minimization problem
(1.1).

Since f(x) ≥ λ‖x‖p
p, the objective function f(x) is bounded below and f(x) →∞

if ‖x‖ → ∞. Moreover, the set X ∗p of local minimizers of (1.1) is nonempty and
bounded.

Theorem 2.1. (The second order bound) Let Li =
(

λp(1− p)
2‖ai‖2

) 1
2−p

, i ∈ N .

Then for any x∗ ∈ X ∗p , the following statements hold.

(1)

for any i ∈ N , x∗i ∈ (−Li, Li) ⇒ x∗i = 0.

(2) The columns of the sub-matrix B := AΛ ∈ Rm×|Λ| of A are linearly independent,
where Λ =support(x∗), and |Λ| = ‖x∗‖0 is the cardinality of the set Λ.

(3)

‖BT A(x∗ − b)‖ ≤ λp

2
·
√
‖x∗‖0

(
min

1≤i≤‖x∗‖0
Li

)p−1

.

In particular, If ‖ai‖ = 1 for all i ∈ N (that is, A is column-wise normalized),
then

‖BT A(x∗ − b)‖ ≤
√
‖x∗‖0

(
λp

2

) 1
2−p

(
1

1− p

) 1−p
2−p

.

(4)

‖x∗‖ ≤ ‖(BT B)−1BT b‖+
λp

2
‖(BT B)−1‖

(
min

1≤i≤|Λ|
Li

)p−1

.

If ‖ai‖ = 1 for all i ∈ N , then

‖x∗‖ ≤ ‖(BT B)−1BT b‖+ ‖(BT B)−1‖
(

λp

2

) 1
2−p

(
1

1− p

) 1−p
2−p

.
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Proof. For x∗ ∈ X ∗p , with ‖x∗‖0 = k, without loss of generality, we assume

x∗ = (x∗1, · · · , x∗k, 0, · · · , 0)T .

Let z∗ = (x∗1, · · · , x∗k)T and B ∈ Rm×k be the submatrix of A, whose columns are the
first k columns of A. Define a function g : Rk → R by

g(z) = ‖Bz − b‖2 + λ‖z‖p
p.

We have

f(x∗) = ‖Ax∗ − b‖2 + λ‖x∗‖p
p = ‖Bz∗ − b‖2 + λ‖z∗‖p

p = g(z∗).

Since |z∗i | > 0, i = 1, . . . , k, g is continuously differentiable at z∗. Moreover, in a
neighborhood of x∗,

g(z∗) = f(x∗) ≤ min{f(x) | xi = 0, i = k + 1, · · · , n}
= min{g(z) | z ∈ Rk},

which implies that z∗ is a local minimizer of the function g. Hence the second order
necessary condition for

min
z∈Rk

g(z) (2.1)

holds at z∗.

(1) The second order necessary condition at z∗ gives that the matrix

2BT B + λp(p− 1)diag(|z∗|p−2)

is positive semi-definite. Therefore, we obtain

2eT
i BT Bei + λp(p− 1)|z∗|p−2

i ≥ 0, i = 1, . . . , k

where ei is the ith column of the identity matrix of Rk×k.

Note that ‖ai‖2 = eT
i BT Bei. We find that

|z∗|p−2
i ≤ 2‖ai‖2

λp(1− p)
, i = 1, . . . , k

which implies that

|z∗|i ≥
(

λp(1− p)
2‖ai‖2

) 1
2−p

= Li, i = 1, . . . , k.

Hence for any x∗ ∈ X ∗p , if x∗i 6= 0, i ∈ N , then |x∗i | ≥ Li. This is equivalent to that if
x∗i ∈ (−Li, Li), i ∈ N , then x∗i = 0.

(2) Since the matrix 2BT B + λp(p − 1)diag(|z∗|p−2) is positive semi-definite, and
λp(p− 1)diag(|z∗|p−2) is negative definite, the matrix BT B must be positive definite.
Hence the columns of B must be linearly independent.
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(3) Since z∗ is a local minimizer of g, the first order necessary condition must hold at
z∗. Hence, we find, with Bz∗ = Ax∗,

‖BT (Ax∗ − b)‖ = ‖BT (Bz∗ − b)‖ =
λp

2
‖|z∗|p−1‖ ≤ λp

2
·
√
|Λ|

(
min

1≤i≤|Λ|
Li

)p−1

.

If ‖ai‖ = 1 for all i ∈ N , then Li =
(

λp(1−p)
2

) 1
2−p

for all i ∈ Λ, which implies (3).

(4) The first order necessary condition for (2.1) yields

2BT Bz∗ = 2BT b− λp|z∗|p−1sign(z∗).

From (1) and (2) of this theorem, we know that |z∗i | ≥ Li and BT B is nonsingular.
Hence, we obtain the desired results. For the case where ‖ai‖ = 1, i ∈ N , we have

‖x∗‖ = ‖z∗‖ ≤ ‖(BT B)−1BT b‖+ ‖(BT B)−1‖1
2
λp‖|z∗|p−1‖

≤ ‖(BT B)−1BT b‖+ ‖(BT B)−1‖
(

λp

2

) 1
2−p

(
1

1− p

) 1−p
2−p

.

Corollary 2.2. The set X ∗p of local minimizers of problem (1.1) has a finite
number of elements. Moreover, we have

X ∗p ⊆
{

x | ‖x‖ ≤ σ‖AT b‖+ σ
λp

2

(
min

1≤i≤|Λ|
Li

)p−1
}

,

where

σ = max{ ‖(BT B)−1‖ | B ∈ Rm×k, rank(B) = k, B lies in the columns of A }

and k =rank(A) ≤ min(m,n).

Proof. From (2) of Theorem 2.1, we find that X ∗p has a finite number of elements
as there are at most

(
n
m

)
possible matrices B, and the linear independence of the

columns guarantees that at most one local minimizer exists for each matrix.

It is known that for any two sets {âi, i = 1, . . . , `} ⊆ {ai, i = 1, . . . , k}, the
matrices B̂ ∈ Rm×` and B ∈ Rm×k whose columns lie on the two sets, respectively,
satisfy

λmin(BT B) ≤ λmin(B̂T B̂),

where λmin denotes the smallest eigenvalue. Thus ‖(BT B)−1‖ ≤ σ for any matrix B
arising from an x∗ ∈ X ∗p .

From (4) of Theorem 2.1, and ‖BT b‖ ≤ ‖AT b‖, we find the closed ball containing
X ∗p in this corollary.

Remark 2.1. Note that Theorem 2.1 holds for all local minimizers of (1.1). Result (1)
of Theorem 2.1 presents a lower bound theory of nonzero entries in local minimizers
of (1.1). Result (2) implies that columns of A corresponding to nonzero entries of x∗
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must form a basis as long as 0 < p < 1, while bound (3) shows that x∗ approaches
the least squares solution of min

x
‖Ax− b‖ (restricted to the support of x∗) as λ → 0.

Corollary 2.2 points out that (1.1) has a finite number of local minimizers, and presents
a closed ball which contains all local minimizers of (1.1), and an upper bound for all
nonzero entries in any local minimizer.

As we mentioned before, most minimization algorithms are descent-iterative in
nature, that is, they generate a sequence of points xk, k = 0, 1, ..., such that the
objective values f(xk) are strictly decreasing along the sequence. Thus, any local
minimizer, including the global minimizer, that a descent algorithm may find must
be in the level set {x : f(x) ≤ f(x0)}, where x0 is any given initial point. Therefore,
in both theory and practice, one may be only interested in the minimizers satisfying
f(x) ≤ f(x0). Indeed, our next theorem presents a lower bound theory of nonzero
entries for any local minimizer x∗ of (1.1) in {x : f(x) ≤ f(x0)}, and derives an
upper bound on ‖x∗‖0. The upper bound indicates that for λ sufficiently large but
finite, ‖x∗‖0 reduces to 0 for 0 < p < 1, which means that x∗ = 0 is the only global
minimizer.

Theorem 2.3. (The first order bound) Let x∗ be any local minimizer of (1.1) sat-

isfying f(x∗) ≤ f(x0) for an arbitrarily given initial point x0. Let L =

(
λp

2‖A‖
√

f(x0)

) 1
1−p

.

Then we have

for any i ∈ N , x∗i ∈ (−L,L) ⇒ x∗i = 0.

Moreover, the number of nonzero entries in x∗ is bounded by

‖x∗‖0 ≤ min
(

m,
f(x0)
λLp

)
. (2.2)

Proof. Suppose f(x∗) ≤ f(x0), x∗ ∈ X ∗p . Then, we have

‖AT (Ax∗ − b)‖2 ≤ ‖AT ‖2‖Ax∗ − b‖2 ≤ ‖AT ‖2(‖Ax∗ − b‖2 + λ‖x∗‖p
p)

= ‖AT ‖2f(x∗) ≤ ‖AT ‖2f(x0). (2.3)

Recall the function g in the proof of Theorem 2.1. The first order necessary
condition for

min
z∈Rk

g(z)

at z∗ gives

2BT (Bz∗ − b) + λp(|z∗|p−1 · sign(z∗)) = 0.

This, together with (2.3), implies

λp
∥∥|z∗|p−1

∥∥ = 2
∥∥BT (Bz∗−b)

∥∥ = 2
∥∥BT (Ax∗−b)

∥∥ ≤ 2
∥∥AT (Ax∗−b)

∥∥ ≤ 2‖A‖
√

f(x0).

Therefore, we obtain

2‖A‖
√

f(x0) ≥ λp
∥∥|z∗|p−1

∥∥ ≥ λp( min
1≤i≤k

|z∗i |)p−1.
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Note that p− 1 < 0. We find

min
1≤i≤k

|z∗i | ≥
(

λp

2‖A‖
√

f(x0)

) 1
1−p

= L.

Hence, all nonzero components of x∗ are no less than L. In other words, for i ∈ N , if
x∗i ∈ (−L,L) then x∗i = 0.

Now we show the second part of the theorem. Again,

λ‖x∗‖p
p ≤ ‖Ax∗ − b‖+ λ‖x∗‖p

p = f(x∗) ≤ f(x0).

From the first part of this theorem, any nonzero entry of x∗ is bounded from below
by L. Thus, they together with (2) of Theorem 2.1, imply the desired bound in (2.2).

The lower bound in Theorem 2.1 depends on the parameters λ, p, and the matrix
A, while the lower bound in Theorem 2.3 depends on λ, p, A and the initial objective
value f(x0). In practice, we can take the maximum value of the two bounds to get a
new bound. Moreover, in Theorem 2.3 one may simply set x0 = 0, the trivial local
minimizer of (1.1), (so that f(x) ≤ f(x0) = ‖b‖2), the minimizer of ‖Ax − b‖, or a
point generated by any heuristic procedure such as the Orthogonal Matching Pursuit
method. It is worth noting that x0 can be replaced by x∗ in Theorem 2.3 and the
theorem remains true.

The lower bound theory can be extended to the following problem

min
x∈Rn

‖Ax− b‖2 + λ
r∑

i=1

ϕ(dT
i xi), (2.4)

where D ∈ Rr×n is the first or second order difference matrix with rows di, and ϕ
is a non-Lipschitz potential function; see Table 4.5. In fact, as we mentioned earlier,
Nikolova [22] proved that there is θ > 0 such that every local minimizer x∗ of (2.4)
satisfies

either |dT
i x∗| = 0 or |dT

i x∗| ≥ θ

by using the second order necessary condition for (2.4). However, the result has not
been used in practical algorithms, because one needs to solve an optimization problem
to construct θ. Nikolova [22] also stated that it is difficult to get an explicit solution
from the optimization problem for constructing θ.

Lower bounds (1.5) and (1.6) clearly show the relationship between the sparsity
of the solution and the choice of the regularization parameter λ and norm ‖·‖p. Hence
our lower bound theory can be used for selecting model parameters λ and p. In Figure
1, we show some properties of the function L(λ, p) = (λp(1 − p))

1
2−p for λ = (0, 10]

and p ∈ [0, 1].

From Figure 1, we can see clearly that for any given λ > 0, (λp(1 − p))
1

2−p is a
nonnegative and concave function of p on [0, 1]. It takes the minimum value at p = 0
and p = 1, for any λ ∈ (0, 10].
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Fig. 2.1: (a) p∗(λ) = arg max
0≤p≤1

L(λ, p) (b) L(λ, p) = (λp(1− p))
1

2−p

3. Error Bounds derived from lower bound theory. Smoothing approxi-
mations are widely used in optimization and scientific computing. In the following
we consider a smoothing function of f and give a smooth version of Theorem 2.1 and
Theorem 2.3.

For µ ∈ (0,∞), let

sµ(t) =




|t| |t| > µ
t2

2µ
+

µ

2
|t| ≤ µ.

Then sµ(t) is continuously differentiable and

((sµ(t))p)
′
=





p|t|p−1sign(t) |t| > µ

p

(
t2

2µ
+

µ

2

)p−1
t

µ
|t| ≤ µ.

However, sµ(t) is not twice differentiable at t = µ. For t ∈ (−µ, µ), the second
derivative of (sµ(t))p satisfies

(sµ(t)p)′′ = p(p− 1)(
t2

2µ
+

µ

2
)p−2(

t

µ
)2 + p(

t2

2µ
+

µ

2
)p−1 1

µ

≥ p(p− 1)(
t2

2µ
+

µ

2
)p−2(

t2

2µ
+

µ

2
)
1
µ

+ p(
t2

2µ
+

µ

2
)p−1 1

µ
(3.1)

= p2(
t2

2µ
+

µ

2
)p−1 1

µ
> 0.

Hence sp
µ(t) is strictly convex in (−µ, µ). Moreover, from sµ(t) = |t|( t2 + µ2

2µ|t| ) ≥ |t|
and 0 =argmaxt∈(−µ,µ)(sµ(t)− |t|), we have that for any t ∈ R

0 ≤ (sµ(t))p − |t|p ≤
(µ

2

)p

. (3.2)

Let

ψµ(x) = (sµ(x1), · · · , sµ(xn))T

10



and

Ψµ(x) =
(
((sµ(x1))p)

′
, · · · , ((sµ(xn))p)

′)T

.

We define a smoothing approximation of the objective function f(x)

fµ(x) = ‖Ax− b‖2 + λ‖ψµ(x)‖p
p,

and consider the smooth minimization problem (1.7). The smoothing objective func-
tion fµ is continuously differentiable in Rn, and strictly convex on the set {x | ‖x‖∞ ≤
µ }.

Let X ∗p,µ denote the set of local minimizers of (1.7). By the definition of ψµ and
(3.2) for any x we have

λn(
µ

2
)p ≥ fµ(x)− f(x) ≥ 0.

Since ‖x‖ → ∞ implies f(x) →∞, we deduce fµ(x) →∞ if ‖x‖ → ∞. Moreover, for
any x ∈ Rn, lim

µ↓0
fµ(x) = f(x). The following theorem presents the smooth version of

the first and second order lower bounds.

Theorem 3.1. Let L =

(
λp

2‖A‖
√

f(x0)

) 1
1−p

for an arbitrarily given initial point

x0, and Li =
(

λp(1− p)
2‖ai‖2

) 1
2−p

, i ∈ N .

(1) (The second order bound) For any µ > 0 and any x∗µ ∈ X ∗p,µ, we have

for any i ∈ N , (x∗µ)i ∈ (−Li, Li) ⇒ |(x∗µ)i| ≤ µ.

(2) (The first order bound) For any µ > 0 and any x∗µ ∈ X ∗p,µ satisfying f(x∗µ) ≤
f(x0), we have

for any i ∈ N , (x∗µ)i ∈ (−L,L) ⇒ |(x∗µ)i| ≤ µ.

Proof. (1) Since x∗µ ∈ X ∗p,µ, the second order necessary condition for (1.7) implies
that the matrix

∇2fµ(x∗µ) = 2AT A + λΨ′µ(x)

is positive semi-definite. Suppose |(x∗µ)i| > µ then from

eT
i (2AT A + λΨ′µ(x))ei = 2‖ai‖2 + λp(p− 1)|(x∗µ)i|p−2 ≥ 0,

we can get

|(x∗µ)i| ≥
(

λp(1− p)
2‖ai‖2

) 1
2−p

= Li.

Since µ > 0 and x∗µ ∈ X ∗p,µ are arbitrarily chosen, we can claim that for any µ > 0
and x∗µ ∈ X ∗p,µ, if (x∗µ)i ∈ (−Li, Li), i ∈ N ,then |(x∗µ)i| ≤ µ.

11



(2) Since x∗µ ∈ X ∗p,µ, the first order necessary condition for (1.7) gives

∇fµ(x∗µ) = 2(AT Ax∗µ −AT b) + λΨµ(x∗µ) = 0, (3.3)

which, together with f(x∗µ) ≤ f(x0), implies

‖λΨµ(x∗µ)‖2 ≤ 4‖AT ‖2(‖Ax∗µ − b‖2 + ‖x∗µ‖p
p) = 4‖A‖2f(x∗µ) ≤ 4‖A‖2f(x0). (3.4)

Suppose |(x∗µ)i| > µ then

λ‖Ψµ(x∗µ)‖ ≥ λ|Ψµ(x∗µ)i| = λp|(x∗µ)i|p−1. (3.5)

From (3.4) and (3.5) we can get

|(x∗µ)i|p−1 ≤ 2‖A‖
√

f(x0)
λp

.

Note that p− 1 < 0, we find

|(x∗µ)i| ≥
(

λp

2‖A‖
√

f(x0)

) 1
1−p

= L.

Hence we can claim that for i ∈ N if (x∗µ)i ∈ (−L,L) then |(x∗µ)i| ≤ µ.

The function f is not Lipschitz continuous. We define the first order necessary
condition and the second order necessary condition for (1.1) as follows.

Definition 3.2. For x ∈ Rn, let X = diag(x).

(1) x is said to satisfy the first order necessary condition of (1.1) if

2XAT (Ax− b) + λp|x|p = 0. (3.6)

(2) x is said to satisfy the second order necessary condition of (1.1) if

2XAT AX + λp(p− 1)diag(|x|p) (3.7)

is positive semi-definite.

Obviously, the zero vector in Rn satisfies the first and second necessary condition
of (1.1).

Let {xµk
} denote a sequence with µk > 0, k = 1, 2, . . . , and µk → 0 as k →∞.

Theorem 3.3.

(1) Let {xµk
} be a sequence of vectors satisfying the first order necessary condition of

(1.7). Then any accumulation point of {xµk
} satisfies the first order necessary

condition of (1.1).
(2) Let {xµk

} be a sequence of vectors satisfying the second order necessary condition
of (1.7). Then any accumulation point of {xµk

} satisfies the second order
necessary condition of (1.1).

(3) Let {xµk
} be a sequence of vectors being global minimizers of (1.7). Then any

accumulation point of {xµk
} is a global minimizer of (1.1).
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Proof. Let x̄ be an accumulation point of {xµk
}. By working on a subsequence,

we may assume that {xµk
} converges to x̄. Let Xµk

=diag(xµk
) and X̄ =diag(x̄).

(1) From the first order necessary condition (3.3) of (1.7), we have

Xµk
∇fµk

(xµk
) = 2Xµk

(AT Axµk
−AT b) + λXµk

Ψµ(xµk
) = 0.

By the definition of Ψµ, we have

(Xµk
Ψµk

(xµk
))i = p|xµk

|pi , if |xµk
|i > µk

and

0 ≤ (Xµk
Ψµk

(xµk
))i = p(

(xµk
)2i

2µk
+

µk

2
)p−1 (xµk

)2i
µk

≤ p(
(xµk

)2i
µk

)p ≤ p|xµk
|pi , if |xµk

|i ≤ µk.

If |xµk
|i ≤ µk for arbitrarily large k, then x̄i = lim

k→∞
(xµk

)i = 0, and lim
k→∞

(Xµk
Ψµk

(xµk
))i = 0.

Therefore, we have

0 = 2 lim
k→∞

Xµk
(AT Axµk

−AT b) + λ lim
k→∞

Xµk
Ψµk

(xµk
) = X̄(AT Ax̄−AT b) + λp|x̄|p.

Hence x̄ satisfies the first order necessary condition of (1.1).

(2) From the second order necessary condition of (1.7), we have

Xµk
∇2f(xµk

)Xµk
= 2Xµk

AT AXµk
+ λXµk

Ψ′µk
(xµk

)Xµk

is positive semi-definite. Using the definition of Ψµ and (3.1), we have

(Xµk
Ψ′µk

(xµk
)Xµk

)ii = p(p− 1)|xµk
|pi , if |xµk

|i > µk

and

0 < (Xµk
Ψ′µk

(xµk
)Xµk

)ii = p(p−1)(
(xµk

)2i
2µk

+
µk

2
)p−2 (xµk

)4i
µ2

k

+p(
(xµk

)2i
2µk

+
µk

2
)p−1 (xµk

)2i
µk

≤ p(
(xµk

)2i
2µk

+
µk

2
)p−1 (xµk

)2i
µk

≤ p(
(xµk

)2i
2µk

+
(xµk

)2i
2µk

)p−1 (xµk
)2i

µk
≤ p(

(xµk
)2i

µk
)p ≤ pµp

k,

if |xµk
|i ≤ µk.

Therefore, for any y ∈ Rn, we have

0 ≤ lim
k→∞

yT
(
2Xµk

AT AXµk
+ λXµk

Ψ′µk
(xµk

)Xµk

)
y

= yT

(
2 lim

k→∞
Xµk

AT AXµk
+ λ lim

k→∞
Xµk

Ψ′µk
(xµk

)Xµk

)
y

= yT
(
2X̄AT AX̄ + λp(p− 1)diag(|x̄|p)) y.

Hence x̄ satisfies the second order necessary condition for (1.1).

(3) Let x∗ be a global minimizer of (1.1). Then from the following three inequalities

f(xµk
) ≤ fµk

(xµk
) ≤ fµk

(x∗) ≤ f(x∗) + λn(
µk

2
)p,
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we deduce that x̄ is a global minimizer of (1.1).

In the following, we present a computable error bound for KKT solutions (satis-
fying the first order necessary condition) of the smooth minimization problem (1.7)
to approximate a KKT solution of the non-Lipschitz optimization problem (1.1).

Let Xp,µ be the set of KKT solutions of (1.7) and Xp be the set of KKT solutions
of (1.1).

Theorem 3.4. Let {xµk
} be a sequence of vectors satisfying the first order nec-

essary condition of (1.7) and f(xµk
) ≤ f(x0) for an arbitrarily given initial point x0.

Then there is a K > 0, such that for any k ≥ K, there is x∗ ∈ Xp such that

Γµk
:= {i ∈ N

∣∣ |(xµk
)i| ≤ µk } = {i ∈ N

∣∣ |x∗i | = 0 } =: Γ. (3.8)

Define

(x̄∗µk
)i =

{
0 i ∈ Γ

(xµk
)i i ∈ N\Γ.

(3.9)

Let B be the submatrix of A whose columns are indicated by N\Γ. Suppose λmin(BT B) >
λp(1− p)

2
Lp−2, then

∥∥x̄∗µk
− x∗

∥∥ ≤ ∥∥G−1
∥∥∥∥∇fµk

(x̄∗µk
)
∥∥, (3.10)

where G = 2BT B + λp(p− 1)Lp−2I, and λmin(BT B) denotes the smallest eigenvalue
of the matrix BT B.

Proof. Since the level set {x | f(x) ≤ f(x0) } is bounded, the sequence {xµk
}

is bounded. From (1) of Theorem 3.2, any accumulation point of {xµk
} is in Xp.

Hence we have lim
k→∞

dist(xµk
,Xp) = 0. This implies that there is x∗ ∈ Xp such that

lim
k→∞

xµk
= x∗ and there is K > 0 such that for k ≥ K, µk < L

2 ,

dist(xµk
,Xp) = ‖xµk

− x∗‖ <
L

2
,

and f(x∗) ≤ f(x0) hold. Then

∣∣x∗i
∣∣−

∣∣(xµk
)i

∣∣ ≤
∣∣x∗i − (xµk

)i

∣∣ ≤ ‖x∗ − xµk
‖ <

L

2
.

If i ∈ Γµk
, that is,

∣∣(xµk
)i

∣∣ ≤ µk, then we have

∣∣x∗i
∣∣ <

∣∣(xµk
)i

∣∣ +
L

2
< L.

Assume that x∗i 6= 0. From (3.6), we derive

λpLp−1 < λp|x∗i |p−1 = 2|AT (Ax∗ − b)|i ≤ 2‖AT (Ax∗ − b)‖ ≤ 2‖A‖
√

f(x0)

which implies L >

(
λp

2‖A‖
√

f(x0)

)1−p

= L. This is a contradiction. Hence |x∗i | = 0,

that is, i ∈ Γ. We obtain that Γµk
⊂ Γ.
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On the other hand, if i ∈ Γ then x∗i = 0. We have

∣∣(xµk
)i

∣∣ =
∣∣(x∗ − xµk

)i

∣∣ ≤ ‖x∗ − xµk
‖ <

L

2
< L.

From Theorem 3.1 we know |(xµk
)i| ≤ µk, and thus i ∈ Γµk

. Hence Γ ⊂ Γµ. We
obtain (3.8).

Without loss of generality, we assume that N\Γ = {1, 2, · · · , r}. Define the func-
tion g : Rr → R by

g(z) = ‖Bz − b‖22 + λ‖z‖p
p.

The first order necessary condition (3.6) at x∗ yields

∇g(z∗) = 2BT (Bz∗ − b) + λp|z∗|p−1 · sign(z∗) = 0

at z∗ = (x∗1, · · · , x∗r)
T . Furthermore, let zµk

=
(
(xµk

)1, · · · , (xµk
)r

)T
, then

∇g(zµk
) = ∇g(zµk

)−∇g(z∗)

= 2BT B(zµk
− z∗) + λp|zµk

|p−1 · sign(zµk
)− λp|z∗|p−1 · sign(z∗).

Note that sign(zµk
) = sign(z∗). By using the mean value theorem, we have

∇g(zµk
) = 2BT B(zµk

− z∗) + λp sign(zµk
) · (|zµk

|p−1 − |z∗|p−1
)

=
(
2BT B + λp(p− 1) D

)(
zµk

− z∗
)
,

(3.11)

where D ∈ Rr×r is a diagonal matrix whose diagonal elements are |z̃µk
|p−2
i , where

(z̃µk
)i is between (zµk

)i and z∗i , i = 1, 2, · · · , r. Since |(zµk
)i| ≥ L, |z∗i | ≥ L, and

sign((zµk
)i) =sign((z∗i )), we have |(z̃µk

)i| ≥ L, i = 1, 2, · · · , r.

Since the matrix 2BT B + λp(p − 1)D is symmetric, 0 < p < 1 and |(z̃µk
)i| ≥ L

for all i ∈ N\Γ, for any z ∈ Rr with ‖z‖ = 1, we have

zT (2BT B + λp(p− 1)D)z = zT (2BT B)z + λp(p− 1)zT Dz

≥ 2zT (BT B)z + λp(p− 1)Lp−2‖z‖2

≥ 2λmin(BT B) + λp(p− 1)Lp−2

> 0,

where the last inequality uses the assumption of this theorem. Hence the matrix
2BT B + λp(p− 1) D is invertible. We conclude from (3.9) and (3.11) that

‖x̄∗µk
− x∗‖ = ‖zµk

− z∗‖ ≤ ‖(2BT B + λp(p− 1) D
)−1‖‖∇g(zµk

)‖
≤ ‖(2BT B + λp(p− 1) Lp−2I

)−1‖‖∇g(zµk
)‖

= ‖G−1‖‖∇g(zµk
)‖

≤ ‖G−1‖‖∇fµk
(x̄∗µk

)‖,
15



where the last inequality uses
∥∥∇g(zµk

)
∥∥ ≤ ∥∥∇fµk

(x̄∗µk
)
∥∥, which can be shown as

follows,

‖∇g(zµk
)‖ = ‖2BT (Bz∗µk

− b) + λp|zµk
|p−1 · sign(zµk

)‖
= ‖2BT (Ax̄∗µk

− b) + λp|zµk
|p−1 · sign(zµk

)‖
= ‖2BT (Ax̄∗µk

− b) + λΨµk
(zµk

)‖
≤ ‖2AT (Ax̄∗µk

− b) + λΨµk
(x̄∗µk

)‖
= ‖∇fµk

(x̄∗µk
)‖,

where the inequality uses (x̄∗µk
)i = 0 for i ∈ Γ and (sp

µk
)′(0) = 0.

4. Hybrid OMP-SG algorithm using lower bound theory. The lower
bound theory can be applied to improve existing algorithms and develop new al-
gorithms. To demonstrate the application, we use a hybrid Orthogonal Matching
Pursuit-smoothing gradient (OMP-SG) method to solve the `2-`p minimization prob-
lem (1.1). More specifically, we employ the OMP method to generate an initial point
x0 and its support, develop an SG method to further reduce the objective value of
(1.1), and finally apply our theoretical result to purify the numerical solution by
deleting its entries with small values. Our limited computational experiment in this
section does not intend to develop a new algorithm for sparse reconstruction, but to
show how our theory could improve any existing algorithm to achieve a higher quality
performance.

The OMP algorithm is well-known in the literature of signal processing. The
following algorithm is a standard version of the OMP algorithm [3], but has a different
stop criterion.

Algorithm 1. Orthogonal Matching Pursuit(OMP)

Parameters: Given the m× n matrix A, the vector b ∈ Rm and the error threshold
β0.

Initialization: Initialize k = 0, and set
• the initial solution x0 = 0.
• the initial residual r0 = b−Ax0 = b.
• the initial solution support Λ0 = ∅.

Main Iteration: Increment k by 1 and perform the following steps:
• Find the index jk that solves the optimization problem

jk = arg max
‖(Axk−1 − b)T aj‖22

‖aj‖ for j ∈ N \ Λk−1.

• Let Λk = Λk−1

⋃{jk}.
• Compute xk, the minimizer of ‖Ax− b‖22 subject to support(x) = Λk.
• Calculate the new residual rk = Axk − b.
• If ‖AT rk‖ < β0, stop, and let Λ = Λk.

Output: A point xomp := xk, a set Λ=support(xomp) and a matrix B = AΛ ∈
Rm×|Λ|.

The smoothing gradient method (SG) [29] is a simple method for Lipschitz con-
tinuous but nonsmooth nonconvex minimization problems.
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Algorithm 2. Smoothing Gradient(SG)

Step 1. Choose constants σ, ρ ∈ (0, 1), and an initial point x0. Set k = 0.
Step 2. Compute the step size νk by the Armijo line search, where νk = max{ρ0, ρ1, · · · }

and ρi satisfies

fµk
(xk − ρigk) ≤ fµk

(xk)− σρigT
k gk.

Set xk+1 = xk − νkgk. Here gk = ∇fµk
(xk).

Step 3. If ‖∇fµk
(xk+1)‖ ≥ nµk, then set µk+1 = µk; otherwise, choose µk+1 = σµk.

Now we present the hybrid OMP-SG algorithm for solving `2-`p minimization
problem (1.1) with the lower bound L defined in (1.6).

Algorithm 3. Hybrid OMP-SG

Step 1. Using the OMP algorithm to get xomp, Λ=support(xomp) and B = AΛ ∈
Rm×|Λ|.

Step 2. Using the SG algorithm with an initial point x0 = xomp to find

y∗ = arg min g(y) := ‖By − b‖22 + λ‖y‖p
p.

Step 3. Output a numerical solution x∗, where

x∗j =
{

y∗j |y∗j | ≥ L and j ∈ Λ,
0 otherwise.

Remark 4.1 We know that from (2.3) at a solution x∗ of (1.1), f(x∗) ≤ f(x0) and
‖AT (Ax∗− b)‖ ≤ ‖A‖

√
f(x0) for any x0 ∈ Rn. From Theorem 2.1 and Theorem 2.3,

the number of nonzero entries of x∗ is less than κ =min
(
m, f(x0)

λLp

)
, and each nonzero

entry satisfies |x∗i | ≥ L. In the hybrid OMP-SG method, we first choose candidates of
columns of A which correspond to nonzero entries in a solution of (1.1) and use these
candidates of columns to build a submatrix B. Based on Theorem 2.1 and Theorem
2.3, the number of columns of B is chosen slightly large than κ and the error threshold
β0 is slightly large than ‖A‖

√
f(x0). Next, we use the globally convergent smoothing

gradient method to find an approximate minimizer of the reduced problem min g(y).
According to Theorem 3.4, we set some entries of the approximate solution to zero if
their absolute values are less than L. It is worth noting that the lower bound theory
is algorithms independent. For instance, we can replace the SG by the smoothing
conjugate gradient (SCG) method [12] in Step 2 of the hybrid OMP-SG method to
accelerate the algorithm, and have a hybrid OMP-SCG method.

Now we report numerical results to compare the performance of the hybrid OMP-
SG method and OMP-SCG method for solving (1.1) with several other approaches to
find sparse solutions. Our preliminary computational results indicate that the variable
elimination according to our theory makes a significant difference. The computational
test was conducted on a Philips PC (2.36 GHz, 1.96GB of RAM) with using Matlab
7.4.

We consider the following four approaches.

• LASSO: Solve the `2-`1 problem (1.3) by the least squares algorithm (Lars)
proposed in [16].
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• ConApp: Solve the `2-`p problem (1.1) with p = 1
2 by using the following

`2-`1 convex approximation [5]

min ‖Ax− b‖22 + λ

n∑

i=1

|xi|√
|xk−1

i |+ ε
(4.1)

at the kth interation, where ε > 0 is a parameter. We use the Lars to solve
(4.1).

• OMP-SG: Solve the `2-`p problem (1.1) by the hybrid OMP-SG.
• OMP-SCG: Solve the `2-`p problem (1.1) by the hybrid OMP-SCG.

4.1. Variable selection. This example is artificially generated and was firstly
used in Tibshirani [25] to test the effectiveness of Lasso. The true solution is x∗ =
(3, 1.5, 0, 0, 2, 0, 0, 0)T . We simulated 100 data sets consisting of m observations from
the model

Ax = b + ση,

where η is a noise vector generated by the standard normal distribution. We select
three cases to discuss the performance of the three approaches LASSO, ConApp and
OMP-SCG. The first case is m = 40, σ = 3, the second case is m = 40, σ = 1 and the
last case is m = 60, σ = 1. We used 80 of the 100 data sets to select the variables, then
tested the performance on the remaining 20. The Mean Squared Errors (MSE) over
the test set are summarized in Table 4.1. The average number of correctly identified
zero coefficient (ANZ) and the average number of the coefficients erroneously set
to zero (NANZ) over test set are also presented in Table 4.1. In our numerical
experiment, we used p = 0.5 and λ ≈ 1.1 in the `2-`p problem (1.1). From Table 4.1,
we observe that OMP-SCG performs the best, followed by LASSO and ConApp.

Table 4.1: Results for variable selection

m σ Approach MSE ANZ NANZ

LASSO 0.4730 4.77 0.23

40 3 ConApp 0.4688 4.83 0.17

OMP-SCG 0.4755 4.88 0.12

LASSO 0.1595 4.77 0.23

40 1 ConApp 0.1541 4.86 0.14

OMP-SCG 0.1511 4.91 0.09

LASSO 0.3582 4.92 0.08

60 1 ConApp 0.3503 4.93 0.07

OMP-SCG 0.3464 4.95 0.05

4.2. Signal reconstruction. The signal reconstruction has been studied exten-
sively in the past decades [6, 15]. According to Donoho [15], the signal reconstruction
can be solved by the `2-`1 model (1.3). In this subsection we apply the `2-`p model
with p = 0.5 to solve signal reconstruction problems.

Consider a real-valued, finite-length signal x ∈ Rn. Suppose x is T-sparse, that
is, only T of the signal coefficients are nonzero and the others are zero. We use the
following Matlab code to generate the original signal, a matrix A and a vector b.

xor =zeros(n,1); q = randperm(n); xor(q(1:T)) = 2*randn(T,1);
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A = randn(m,n); A = orth(A’)’; b= A*xor ;

Our aim is to obtain good reconstructions of x with less nonzero entries. We
applied OMP-SCG, LASSO and ConApp to reconstruct the signal. The error between
the reconstructed signal and the original one is computed by 2-norm.

In Table 4.2.1, we present numerical results of three sets of signal examples with
different values of L and λ. The CPU time is given in second. From Table 4.2.1,
we observe that the three approaches can reconstruct the original signal with n =
512, T = 60,m = 184, while OMP-SCG has the highest accuracy. Moreover, the
LASSO can not reconstruct the original signal with n = 512, T = 60,m = 182, but
OMP-SCG and ConApp can reconstruct the original signal, while OMP-SCG has
small error. Furthermore, if the original signal has n = 512, T = 130,m = 225,
LASSO and ConApp algorithms can not reconstruct this signal, but OMP-SCG can
reconstruct this signal with error=0.41. OMP-SG gives similar results as OMP-SCG,
but uses more time.

Table 4.2.1: Results for signal reconstruction without noisy

Problem LASSO ConApp OMP-SCG

(Error,Time) (Error,Time) L λ Error Time

n = 512

T = 60 (5.33× 10−4, (1.29× 10−5, 0.8 0.002 1.12× 10−16 1.02

m = 184 0.653) 6.82)

n = 512

T = 60 (38.64, (2.41× 10−5, 0.7 0.001 1.03× 10−16 1.34

m = 182 0.43) 7.84)

n = 512

T = 130 (122.25, (119.43, 0.00001 0.00006 0.41 4.03

m = 225 0.69) 19.99)

Now we add noisy signals to the problem

b= A*xor - w ;

where w = ση is independent identically distributed Gaussian noise with zero mean
and variance σ2. We measure the quality of a reconstructed signal x̂ using the mean-
square error(MSE), defined as E[‖x̂−xor‖2]. To compare the capability of algorithms
in recovering the original signals under noisy circumstance, we use the oracle estima-
tor, defined as

xoracle = σ2tr(AT
ΛAΛ)−1

where Λ =support(xor).

For each algorithm, we calculated the ratio of the MSE of a reconstructed signal
generated from the algorithm and the MSE of the oracle estimator and listed the
results as “Ratio” in Table 4.2.2. The closer the ratio is to 1, the more robust is the
algorithm. From Table 4.2.2, we can see that the Ratio of OMP-SCG is always closer
to 1 than LASSO and ConApp.
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Table 4.2.2: Results for signal reconstruction with noisy (n = 512, T = 130, σ = 0.1)

m Method(s) MSE Ratio CPU m Method(s) MSE Ratio CPU

LASSO 3.71 1.46 3.2541 LASSO 5.34 1.77 1.7519

330 ConApp 3.58 1.41 63.01 310 ConApp 4.10 1.36 60.83

OMP-SCG 3.42 1.34 5.23 OMP-SCG 4.05 1.34 22.45

Oracle 2 .5434 Oracle 3 .0180

LASSO 5.30 1.77 2.3011 LASSO 6.1 1.75 2.01

300 ConApp 4.04 1.35 69.12 275 ConApp 5.05 1.45 78.15

OMP-SCG 3.97 1.33 23.42 OMP-SCG 4.94 1.41 18.83

Oracle 2 .9845 Oracle 3 .4877

4.3. Prostate cancer. The data set in this subsection is downloaded from the
UCI Standard database [1] for the study of prostate cancer. The data set consists of
the medical records of 97 patients who were about to receive a radical prostatectomy.
The predictors are eight clinical measures: lcavol, lweight, age, lbph, svi,lcp, gleason
and pgg45. Detailed explanation can be found in the UCI Standard database. This
is a variable selection problem with A ∈ R97×8. One of our main aims is to identify
which predictors are most significant in predicting the response.

The prostate cancer data were divided into two parts: a training set with 67
observations and a test set with 30 observations. The prediction error is the mean
squared errors over the test set. The numerical results of Ridge regression [19] and
Best Subset [2] were derived from [18]. In this example, we also select p = 0.5 in the
`2-`p model (1.1).

From Table 4.3 we find that OMP-SG and OMP-SCG succeed in finding three
main factors and have smaller prediction accuracy than ConApp and LASSO. This
implies that OMP-SG and OMP-SCG can find more sparse solution with smaller
prediction error than LASSO.

Table 4.3: Results for prostate cancer

Parameter LASSO Ridge Best Subset ConApp OMP-SG OMP-SCG

x1(lcavol) 0.545 0.389 0.740 0.6187 0.6436 0.6436

x2(lweight) 0.237 0.238 0.367 0.2362 0.2804 0.2804

x3(lage) 0 -0.029 0 0 0 0

x4(lbph) 0.098 0.159 0 0.1003 0 0

x5(svi) 0.165 0.217 0 0.1858 0.1856 0.1857

x6(lcp) 0 0.026 0 0 0 0

x7(gleason) 0 0.042 0 0 0 0

x8(pgg45) 0.059 0.123 0 0 0 0

Number of nonzreo 5 8 2 4 3 3

Prediction error 0.478 0.5395 0.5723 0.468 0.4418 0.4419

Now we apply Theorem 3.4 to compute the error bound ‖G−1‖‖∇fµ(x̄∗µ)‖ of x̄∗µ
to x∗ ∈ X ∗p , for a given µ > 0. We set µ < 0.01 and p = 0.5. The numerical results
are listed in Table 4.4.

Table 4.4: Error bounds for ‖x̄∗µ − x∗‖
µ L λ error bound

0.001 0.015 0.1304 1.5793× 10−5

0.0001 0.0119 0.1164 5.7310× 10−6

0.00001 0.0119 0.1164 5.5721× 10−6
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It is worth noting that the lower bound theory, the error bounds and the hybrid
OMP-SCG method can be extended to

min
x∈Rn

‖Ax− b‖22 +
n∑

i=1

ϕ(xi), (4.2)

where ϕ : R+ → R is a potential function, e.g. [23], which includes (1.1) as a special
case. Table 4.5 lists some well-used potential functions (left) and their extensions
(right).

Table 4.5: Potential functions (PFs) where α ∈ (0, 1) is a parameter

Convex Non Lipschitz
f1 ϕ(t) = |t| ϕ(t) = |t|p

Non convex Non Lipschitz
f2 ϕ(t) = |t|p ϕ(t) = (|t|p)α

f3 ϕ(t) =
α|t|

1 + α|t| ϕ(t) =
α|t|p

1 + α|t|p
f4 ϕ(t) = log(α|t|+ 1) ϕ(t) = log(α|t|p + 1)

The numerical results with different potential functions and α = 0.1699 are listed
in Table 4.6. We observe that choosing p ≤ 0.5 seems good for this example, since
using p ≤ 0.5 can find three main factors with smaller prediction error than p > 0.5.

Table 4.6: Comparisons of different p with different PFs

p (L, Number of nonzero, Prediction error)
f1 f2 f3 f4

0.9 (0.0001, 4, 0.4754) (0.011, 4, 0.473) (2.500, 4, 0.475) (2.040, 4, 0.474)
0.8 (0.0015, 4, 0.4740) (0.013, 4, 0.468) (1.990, 4, 0.474) (1.851, 4, 0.474)
0.7 (0.0050, 4, 0.4741) (0.012, 4, 0.465) (1.755, 4, 0.474) (1.550, 4, 0.474)
0.6 (0.0084, 4, 0.4661) (0.015, 3, 0.446) (1.545, 4, 0.475) (1.344, 4, 0.475)
0.5 (0.0119, 3, 0.4419) (0.016, 3, 0.445) (1.420, 3, 0.477) (1.200, 3, 0.483)
0.4 (0.0148, 3, 0.4456) (0.014, 3, 0.445) (1.480, 3, 0.477) (1.114, 3, 0.484)
0.3 (0.0176, 3, 0.4429) (0.012, 3, 0.443) (1.590, 3, 0.484) (1.190, 3, 0.483)
0.2 (0.0196, 3, 0.4359) (0.018, 3, 0.443) (1.955, 3, 0.483) (1.240, 3, 0.482)

5. Final remark. Using the first and second order necessary condition for a
local minimizer, we establish lower bounds for nonzero entries in any local optimal
solution of a minimization model where the objective function is the sum of a data-
fitting term in `2 norm and a regularization term in `p norm (0 < p < 1). This
establishes a theoretical justification by “zeroing” those entries in an approximate
solution whose values are small enough, and explanation why the model generates
more sparse solutions when the norm parameter p < 1.

Moreover, the lower bounds clearly show the relationship between the sparsity of
the solution and the choice of the regularization parameter and norm. These provide
a systematic mechanism for selecting the model parameters, such as regularization
weight λ and norm p. Based on these results, we propose a hybrid orthogonal match-
ing pursuit-smoothing gradient (OMP-SG) method for the nonconvex, non-Lipschitz
continuous `2-`p minimization problem. Numerical results show that using the OMP-
SG method to solve the `2-`p minimization problem (1.1) can provide more sparse
solutions with smaller predictor error compared with several well-known approaches
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for variable selection.
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