
High-Order Evaluation Complexity for Convexly-Constrained

Optimization with Non-Lipschitzian Group Sparsity Terms

X. Chen∗ and Ph. L. Toint†

10 January 2020

Abstract

This paper studies high-order evaluation complexity for partially separable convexly-
constrained optimization involving non-Lipschitzian group sparsity terms in a noncon-
vex objective function. We propose a partially separable adaptive regularization al-
gorithm using a p-th order Taylor model and show that the algorithm needs at most
O(ε−(p+1)/(p−q+1)) evaluations of the objective function and its first p derivatives (whe-
never they exist) to produce an (ε, δ)-approximate q-th-order stationary point. Our algo-
rithm uses the underlying rotational symmetry of the Euclidean norm function to build
a Lipschitzian approximation for the non-Lipschitzian group sparsity terms, which are
defined by the group `2-`a norm with a ∈ (0, 1). The new result shows that the partially-
separable structure and non-Lipschitzian group sparsity terms in the objective function
do not affect the worst-case evaluation complexity order.

Keywords: complexity theory, nonlinear optimization, non-Lipschitz functions, partially-separable

problems, group sparsity, isotropic model.
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1 Introduction

Both applied mathematicians and computer scientists have, in recent years, made signi-
ficant contributions to the fast-growing field of worst-case complexity analysis for nonconvex
optimization (see [12] for a partial yet substantial bibliography). The purpose of this paper is
to extend the available general theory in two distinct directions. The first is to cover the case
where the problem involving non-Lipschitzian group sparsity terms. The second is to show
that the ubiquitous partially-separable structure of the objective function (of which standard
sparsity is a special case) can be exploited without affecting the complexity bounds derived
in [12].

We consider the partially-separable convexly constrained nonlinear optimization problem:

min
x∈F

f(x), where f(x) =
∑
i∈N

fi(Uix) +
∑
i∈H
‖Uix− bi‖a

def
=

∑
i∈N∪H

fi(Uix), (1.1)

N ∪H def
= M, N ∩H = ∅, fi is a continuously p times differentiable function from IRni into

IR for i ∈ N , and fi(Uix) = ‖Uix − bi‖a for i ∈ H, a ∈ (0, 1), ‖ · ‖ is the Euclidean norm,
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Ui ∈ IRni×n with ni ≤ n, and bi ∈ IRni . For simplicity, we assume that, for each i ∈ M, Ui
has full row rank and ‖Ui‖ = 1, and that the ranges of the UTi for i ∈ N span IRn so that
the intersection of the nullspaces of the Ui is reduced to the origin. We also assume that the
ranges of the UTi (for i ∈ H) are orthogonal, that is

UiU
T
j = 0 for i 6= j, i, j ∈ H. (1.2)

Without loss of generality, we furthermore assume that the rows of Ui are orthonormal for
i ∈ H. Our final assumption, as in [17], is that the feasible set F ⊆ IRn is non-empty closed
and convex, and that it is “kernel-centered” in that is, if PX [·] is the orthogonal projection
onto the convex set X and † denotes the Moore-Penrose generalized inverse, then

U †i bi + Pker(Ui)[F ] ⊆ F whenever bi ∈ UiF , i ∈ H. (1.3)

These assumptions allow us to cover interesting applications. For example, consider the
row sparse problem in multivariate regression [29, 30, 38]

min
X∈Rν×γ

‖HX −B‖2F + λ‖X‖`a/`2 , (1.4)

where H ∈ IRκ×ν , B ∈ IRκ×γ ,‖ · ‖F is the Frobenius norm of a matrix,

‖HX −B‖2F =

γ∑
j=1

κ∑
i=1

(
ν∑
`=1

Hi`X`,j −Bij)2 and ‖X‖`a/`2 =
ν∑
i=1

( γ∑
j=1

X2
ij

)a
2 .

Let n = νγ, F = IRn, bi = 0, x = (x11, x12, . . . , xνγ)T ∈ IRn and set Ui ∈ IRν×n for i ∈ N =
{1, . . . , γ} be the projection whose entries are 0, or 1 such that Uix be the ith column of X
and Ui ∈ IRγ×n for i ∈ H = {1, . . . , ν} be the projection whose entries are 0, or 1 such that
Uix be the ith row of X. Then problem (1.4) can be written in the form of (1.1). It is easy
to see that the {UTi }i∈N span IRn. Hence, all assumptions mentioned above hold for problem
(1.4).

Problem (1.1) encompasses the non-overlapping group sparse optimization problems. Let
G1, . . . , Gm be subsets of {1, . . . , n} representing known groupings of the decision variable
with size n1, . . . , nm and Gi ∩Gj = ∅, i 6= j. In this case, problem (1.1) reduces to

min
x∈F

f1(x) + λ
m∑
i=1

‖Uix‖a, (1.5)

where f1 : IRn → IR+ is a smooth loss function, λ > 0 is a positive number and Ui ∈ IRni×n

is defined in the following way

(Ui)kj =

{
1 if j ∈ Gi
0 otherwise

for k = 1, . . . , ni.

Thus Uix = xGi is the ith group variable vector in IRni with components xj , j ∈ Gi. If
F = {x |αi ≤ xi ≤ βi, i = 1, . . . , n} with αi < 0 < βi, then all assumptions mentioned above
with U1 = I ∈ IRn×n, for 1 ∈ N hold for problem (1.5).

In problem (1.1), the decision variables have a group structure so that components in the
same group tend to vanish simultaneously. Group sparse optimization problems have been
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extensively studied in recent years due to numerous applications. In machine learning and
statistics, when the explanatory variables have high correlative nature or can be naturally
grouped, it is important to study variable selection at the group sparsity setting [8, 29, 30,
34, 36, 39]. In compressed sensing, group sparsity is refereed to as block sparsity and has
been efficiently used to recovery signals with special block structures [1, 22, 32, 33, 35]. In
spherical harmonic representations of random fields on the sphere, Uix contains the coefficients
of homogeneous harmonic polynomials of the degree i. Since ‖Uix‖ is rotationally invariant,
the group sparse function

∑
i∈H ‖Uix‖ has been used in [31].

Note that problem (1.1) also covers some overlapping group sparse cases, provided (1.2)
remains valid. A simple example is given by

f1(U1x) = [x2
1 + x2

2 + (x3 − x4)2]
a
2 and f2(U2x) = [(x3 + x4)2 + x2

5)]
a
2

with

U1 =

 1 0 0 0 0
0 1 0 0 0
0 0 1 −1 0

 and U2 =

(
0 0 1 1 0
0 0 0 0 1

)
.

Problem (1.1) with a ∈ (0, 1) and ni = 1, i ∈ H has been studied in [5, 6, 14, 15, 16,
18]. Chen, Toint and Wang [17] show that an adaptive regularization algorithm using a p-
th order Taylor model for p odd needs in general at most O(ε−(p+1)/p) evaluations of the
objective function and its derivatives (at points where they are defined) to produce an ε-
approximate first order stationary point. Since this complexity bound is identical in order
to that already known for convexly constrained Lipschitzian minimization, the result in [17]
shows that introducing non-Lipschitzian singularities in the objective function does not affect
the worst-case evaluation complexity order.

The unconstrained optimization of smooth partially-separable was first considered in Grie-
wank and Toint [28], studied by many researchers [25, 24, 13, 37, 19, 21] and extensively used
in the popular CUTEst testing environment [26] as well as in the AMPL [23], LANCELOT [20]
and FILTRANE [27] packages.

In problem (1.1), all these “element functions” fi depend on Uix ∈ IRni rather than on x,
which is most useful when ni � n. Letting

xi = Uix ∈ IRni for i ∈M and fI(x) =
∑
i∈I

fi(x) for any I ⊆M,

we denote

fN (x)
def
=
∑
i∈N

fi(Uix) =
∑
i∈N

fi(xi) and fH(x)
def
=
∑
i∈H

fi(Uix) =
∑
i∈H

fi(xi).

The p-th degree Taylor series

TfN ,p(x, s) = fN (x) +

p∑
j=1

1

j!
∇jxfN (x)[s]j , where ∇jxfN (x)[s]j =

∑
i∈N
∇jxifi(xi)[Uis]

j , (1.6)

indicates that, for each j, only the |N | tensors {∇jxifi(xi)}i∈N of dimension nji needs to be
computed and stored. Exploiting derivative tensors of order larger than 2 — and thus using
the high-order Taylor series (1.6) as a local model of fN (x+ s) in the neighbourhood of x —
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may therefore be practically feasible in our setting since nji is typically orders of magnitude
smaller than n. The same comment applies to fH(x) whenever ‖Uix− bi‖ 6= 0.

The main contribution of this paper is twofold.
• We propose a partially separable adaptive regularization algorithm with a p-th order

Taylor model which uses the underlying rotational symmetry of the Euclidean norm
function for fH and the first p derivatives (whenever they exist) of the “element functi-
ons” fi, for i ∈M.

• We show that the algorithm can produce an (ε, δ)-approximate q-th-order stationary
point of problem (1.1) at most O(ε−(p+1)/(p−q+1)) evaluations of the objective function
and its first p derivatives for any q ∈ {1, . . . , p}.

Our results extend worst-case evaluation complexity bounds for smooth nonconvex opti-
mization in [11, 12] which do not use the structure of partially separable functions and do
not consider the non-Lipschitz continuity. Moreover, our results subsume the results for non-
Lipschitz nonconvex optimization in [17] which only consider the complexity with q = 1 and
ni = 1 for i ∈ H.

This paper is organized as follows. In Section 2, we define an (ε, δ) q-order necessary
optimality conditions for local minimizers of problem (1.1). A Lipschitz continuous model to
approximate f is proposed in Section 3. We then propose the partially separable adaptive
regularization algorithm using the p-th order Taylor model in Section 4. In Section 5, we
show that the algorithm produces an (ε, δ)-approximate q-th-order stationary point at most
O(ε−(p+1)/(p−q+1)) evaluations of f and its first p derivatives.

We end this section by introducing notations used in the next four sections.
Notations. For a symmetric tensor S of order p, S[v]p is the result of applying S to p copies
of the vector v and

‖S‖[p]
def
= max
‖v‖=1

|S[v]p| (1.7)

is the associated induced norm for such tensors. If S1 and S2 are tensors, S1 ⊗ S2 is their
tensor product and Sk⊗1 is the product of S1 with itself k times. For any set X , |X | denotes
its cardinality.

Because the notion of partial separability hinges on geometric interpretation of the pro-
blem, it is useful to introduce the various subspaces of interest for our analysis. We will
extensively use the following definitions. As will become clear in Section 2, we will need to
identify

C(x, ε) def
= {i ∈ H | ‖Uix− bi‖ ≤ ε} and A(x, ε)

def
= H \ C(x, ε), (1.8)

the collection of hard elements which are close to non-Lipschitz continuity for a given x and
its complement (the “active” elements), and

R(x, ε)
def
=

⋂
i∈C(x,ε)

ker(Ui) =

[
span
i∈C(x,ε)

(UTi )

]⊥
(1.9)

the subspace in which those nearly singular elements are invariant. (When C(x, ε) = ∅, we

set R(x, ε) = IRn.) For convenience, if ε = 0, we denote C(x)
def
= C(x, 0), A(x)

def
= A(x, 0) and

R(x)
def
= R(x, 0). From these definitions, we have

Uid = 0, for i ∈ C(x), d ∈ R(x). (1.10)
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Also denote by

R{i}
def
= span(UTi ) (1.11)

and observe that (1.2) implies that the R{i} are orthogonal for i ∈ H. Hence R{i} is also
the subspace in which all singular elements are invariant but the i-th. We also denote the
“working” collection of elements from N and those in H not close to non-Lipschitz continuity
by

W(x, ε)
def
= N ∪A(x, ε). (1.12)

We denote W(x)
def
= W(x, 0) when ε = 0.

If {xk} is a sequence of iterates in IRn, we also use the shorthands

Ck = C(xk, ε), Ak = A(xk, ε), Rk = R(xk, ε) and Wk =W(xk, ε). (1.13)

We will make frequent use of

fWk
(x)

def
=
∑
i∈Wk

fi(x), (1.14)

which is objective function “reduced” to the elements “away from non-Lipschitz continuity”
at xk.

For some x, s ∈ IRn, we often use the notations ri = Uix− bi and si = Uis.

2 Necessary optimality conditions

At variance with the theory developed in [17], which solely covers convergence to ε-approximate
first-order stationary points, we now consider arbitrary orders of optimality. To this aim, we
follow [11] and define, for a sufficiently smooth function h : IRn → IR and a convex set
F ⊆ IRn, the vector x to be an (ε, δ)-approximate q-th-order stationary point (ε > 0, δ > 0,
q ∈ {1, . . . , p}) of minx∈F h(x) if, for some δ ∈ (0, 1]

φδh,q(x) ≤ εχq(δ) (2.1)

where
φδh,q(x)

def
= h(x)− min

x+d∈F
‖d‖≤δ

Th,q(x, d), (2.2)

and

χq(δ)
def
=

q∑
`=1

δ`

`!
. (2.3)

In other words, we declare x to be an (ε, δ)-approximate q-th-order stationary point if the
scaled maximal decrease that can be obtained on the q-th order Taylor series for h in a
neighbourhood of x of radius δ is at most ε. We refer the reader to [11] for a detailed
motivation and discussion of this measure. For our present purpose, it is enough to observe
that φδh,q(x) is a continuous function of x and δ for any q. Moreover, for q = 1 and q = 2, δ

can be chosen equal to one and φ1
h,1(x) and φ1

h,2(x) are easy to compute. In the unconstrained
case,

φ1
h,1(x) = ‖∇1

xh(x)‖
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and computing φ1
h,2 reduces to solving the standard trust-region problem

φ1
h,2(x) =

∣∣∣∣ min
‖d‖≤1

∇1
xh(x)[d] + 1

2
∇2
xh(x)[d]2

∣∣∣∣ .
In the constrained case,

φ1
h,1(x) =

∣∣∣∣∣∣∣ min
x+d∈F
‖d‖≤1

∇1
xh(x)[d]

∣∣∣∣∣∣∣ ,
which is the optimality measure used in [9] or [17] among others. However, given the potential
difficulty of solving the global optimization problem in (2.2) for q > 2, our approach remains,
for now, conceptual for such high optimality orders.

We now claim that we can extend the definition (2.1) to cover problem (1.1) as well. The
key observation is that, by the definition of W(x, ε) and R(x, ε),

fA(x,ε)(x) = fA(x,ε)(x+ d) ≤ fH(x+ d) ≤ fA(x,ε)(x+ d) + εa|H| for all d ∈ R(x, ε). (2.4)

Note now that fW(x,ε) is smooth around x because it only contains elements which are away
from non-Lipschitz continuity, and hence that TfW(x,ε),p(x, s) is well-defined. We may therefore
define x to be an (ε, δ)-approximate q-th-order stationary point for (1.1) if, for some δ ∈ (0, 1]

ψε,δf,q(x) ≤ εχq(δ), (2.5)

where we define
ψε,δf,q(x)

def
= f(x)− min

x+d∈F
‖d‖≤δ, d∈R(x,ε)

TfW(x,ε),q(x, d). (2.6)

By the definition of W(x, ε), we have fW(x,ε)(x) ≤ f(x) and thus

fW(x,ε)(x)− min
x+d∈F

‖d‖≤δ, d∈R(x,ε)

TfW(x,ε),q(x, d) ≤ ψε,δf,q(x).

Taking ε = 0, x is q-th-order stationary point if ψ0,δ
fW(x),q

= 0.

The optimality measure (2.5) may give the impression (in particular in its use of R(x, ε))
that the “singular” and “smooth” parts of the problem are merely separated, and that one
could possibly apply the existing theory for smooth problems to the latter. Unfortunately,
this is not true, because the “separation” implied by (2.5) does depend on ε, and one therefore
needs to show that the complexity of minimizing the “non-singular” part does not explode
(in particular with the unbounded growth of the Lispchitz constant) when ε tends to zero.
Designing a suitable algorithm and proving an associated complexity result comparable to
what is known for smooth problems is the main challenge in what follows.

Theorem 2.1 If x∗ is a local minimizer of (1.1), then there is δ ∈ (0, 1] such that

ψ0,δ
f,q(x∗) = 0. (2.7)
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Proof. Suppose first that R(x∗) = {0} (which happens if there exists x∗ ∈ F such that
fH(x∗) = 0 and spani∈H{UTi } = IRn). Then (2.7) holds vacuously with any δ ∈ (0, 1]. Now
suppose that R(x∗) 6= {0}. Let

δ1 = min

[
1, min
i∈A(x∗)

‖Uix∗ − bi‖
]
∈ (0, 1].

Since x∗ is a local minimizer of (1.1), there exists δ2 > 0 such that

f(x∗) = min
x∗+d∈F
‖d‖≤δ2

fN (x∗ + d) +
∑
i∈H
‖Ui(x∗ + d)− bi‖a

≤ min
x∗+d∈F

‖d‖≤δ2, d∈R(x∗)

fN (x∗ + d) +
∑
i∈H
‖Ui(x∗ + d)− bi‖a

= min
x∗+d∈F

‖d‖≤δ2, d∈R(x∗)

fN (x∗ + d) +
∑

i∈A(x∗)

‖Ui(x∗ + d)− bi‖a

= min
x∗+d∈F

‖d‖≤δ2, d∈R(x∗)

fW(x∗)(x∗ + d),

where we used (1.10) and (1.12) to derive the last two equalities, respectively.

Now we consider the reduced problem

min
x∗+d∈F

‖d‖≤δ2, d∈R(x∗)

fW(x∗)(x∗ + d). (2.8)

Since we have that

fW(x∗)(x∗) = fN (x∗) +
∑

i∈A(x∗)

‖Uix∗ − bi‖a = fN (x∗) +
∑
i∈H
‖Uix∗ − bi‖a = f(x∗),

we obtain that
fW(x∗)(x∗) ≤ min

x∗+d∈F
‖d‖≤δ2, d∈R(x∗)

fW(x∗)(x∗ + d)

and x∗ is a local minimizer of problem (2.8).

Note that there is δ3 ∈ (0, δ1) such that for any x∗ + d in the ball B(x∗, δ3), we have

‖Ui(x∗ + d)− bi‖ ≥ ‖Uix∗ − bi‖ − ‖Uid‖ ≥ δ1 − ‖Ui‖‖d‖ = δ1 − δ3 > 0, i ∈ A(x∗).

Hence fW(x∗)(x∗ + d) is q-times continuously differentiable, and has Lipschitz continuous
derivatives of orders 1 to q in B(x∗, δ3). By Theorem 3.1 in [10], there is a δ ∈

(
0,min[δ2, δ3]

]
,

such that
ψ0,δ
fW(x∗),q

(x∗) = fW(x∗)(x∗)− min
x∗+d∈F

‖d‖≤δ, d∈R(x∗)

TfW(x∗),q
(x∗, d) = 0.

This and the identity f(x∗) = fW(x∗)(x∗), give the desired result (2.7). 2
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We recall x∗ a q-th-order stationary point of (1.1) if there is δ ∈ (0, 1] such that (2.7)
holds.

Theorem 2.2 For each k, let xk be an (εk, δk)-approximate q-th-order stationary point of
(1.1) with 1 ≥ δk ≥ δ̄ > 0 and εk → 0. Then any cluster point of {xk} is a q-th-order
stationary point of (1.1).

Proof. Let x∗ be a cluster point of {xk}. Without loss of generality, we assume that

x∗ = limk→∞ xk. From 0 < χq(δ) ≤ 2 and ψε,δf,q(x) ≥ 0 for any δ ∈ (0, 1), we have from (2.5)

that limk→∞ ψ
εk,δk
f,q (xk) = 0. We now need to prove that ψ0,δ̄

f,q(x∗) = 0.

If R(x∗) = {0}, (2.7) holds vacuously with any δ > 0, and hence x∗ is a qth-order-stationary
point of (1.1). Suppose now that R(x∗) 6= {0}. We first claim that there exists a k∗ ≥ 0 such
that

C(xk, εk) ⊆ C(x∗) for k ≥ k∗. (2.9)

To prove this inclusion, we choose k∗ sufficiently large to ensure that

‖xk − x∗‖+ εk < min
j∈A(x∗)

‖Ujx∗ − bj‖, for k ≥ k∗. (2.10)

Such a k∗ must exist, since the right-hand side of this inequality is strictly positive by definition
of A(x∗). For an arbitrary k ≥ k∗ and an index i ∈ C(xk, εk), using the definition of C(x, ε),
the identity ‖Ui‖ = 1 and (2.10), we obtain that

‖Uix∗ − bi‖ ≤ ‖Ui(x∗ − xk)‖+ ‖Uixk − bi‖ ≤ ‖x∗ − xk‖+ εk < min
j∈A(x∗)

‖Ujx∗ − bi‖.

This implies that ‖Uix∗ − bi‖ = 0 and i ∈ C(x∗). Hence (2.9) holds. By the definition of
R(x, ε) and W(x, ε), (2.9) implies that, for all k,

R(x∗) ⊆ R(xk, εk) and W(x∗) ⊆ W(xk, εk). (2.11)

For any fixed k ≥ k∗, consider now the following three minimization problems:

(A, k)

{
mind TfW(xk,εk)

,q(xk, d)

s.t. xk + d ∈ F , d ∈ R(xk, εk), ‖d‖ ≤ δk,
(2.12)

(B, k)

{
mind TfW(xk,εk)

,q(xk, d)

s.t. xk + d ∈ F , d ∈ R(x∗), ‖d‖ ≤ δk,
(2.13)

and

(C, k)

{
mind TfW(x∗),q

(xk, d)

s.t. xk + d ∈ F , d ∈ R(x∗), ‖d‖ ≤ δk.
(2.14)

Since d = 0 is a feasible point of these three problems, their minimum values, which we
respectively denote by ϑA,k, ϑB,k and ϑC,k, are all smaller than f(xk). Moreover, it follows
from the first part of (2.11) that, for each k,

ϑB,k ≥ ϑA,k. (2.15)

It also follows from (2.9) and (1.2) that

TfW(xk,εk)
,q(xk, d) = TfW(x∗),q

(xk, d)− fW(x∗)(xk) + fW(xk,εk)(xk) ≤ TfW(x∗),q
(xk, d) + |H|εak



Chen, Toint: High-Order Evaluation Complexity of Non-Lipschitzian Optimization 9

for all d ∈ R(x∗), and thus (2.15) becomes

ϑA,k ≤ ϑB,k ≤ ϑC,k + |H|εak for all k ≥ k∗. (2.16)

The assumption that xk is an (εk, δk)-approximate qth-order stationary point of (1.1) implies
that

f(xk)− ϑC,k − |H|εak ≤ f(xk)− ϑA,k ≤ εkχq(δk), for all k ≥ k∗. (2.17)

Now (2.11) implies that TfW(x∗),q
(xk, d) ≤ TfW(xk)

,q(xk, d). Hence

f(xk)− ϑC,k = f(xk)− min
xk+d∈F

‖d‖≤δk, d∈R(x∗)

TfW(x∗),q
(xk, d) ≥ ψ0,δk

f,q (xk).

As a consequence, (2.17) implies that

ψ0,δk
f,q (xk) ≤ εkχq(δk) + |H|εak. (2.18)

In addition, the feasible sets of the three problems (2.12)-(2.14) are convex, and the objecti-
ves functions are polynomials with degree q. By the perturbation theory for optimization
problems [21, Theorem 3.2.8], we can claim that

lim
k→∞

ϑC,k = min
x∗+d∈F

‖d‖≤δ∗, d∈R(x∗)

TfW(x∗),q
(x∗, d), (2.19)

where δ∗ = lim infk→∞ δk ≥ δ̄. This implies that letting k →∞ in (2.18) gives

ψ0,δ̄
f,q(x∗) = f(x∗)− min

x∗+d∈F
‖d‖≤δ̄, d∈R(x∗)

TfW(x∗),q
(x∗, d) = 0.

2

3 A Lipschitz continuous model of fWk
(x+ s)

Our minimization algorithm, described in the next section, involves the approximate mini-
mization of a model m(xk, s) of fWk

in the intersection of a neighbourhood of xk with Rk.
This model, depending on function and derivatives values computed at xk, should be able
to predict values and derivatives of f at some neighbouring point xk + s reasonably accura-
tely. This is potentially difficult if the current point happens to be near a point at which the
function is not Lipschitz continuous.

Before describing our proposal, we need to state a useful technical result.

Lemma 3.1 Let a be a positive number and r 6= 0. Define, for a positive integer j,

π(a− j) def
= a

j−1∏
i=1

(a− i). (3.1)



Chen, Toint: High-Order Evaluation Complexity of Non-Lipschitzian Optimization 10

Then, if ∇j·
∥∥r∥∥a is the value of the j-th derivative tensor of the function ‖ · ‖a with respect to

its argument, evaluated at r, we have that,

∇j· ‖r‖a =

j∑
i=1

φi,j‖r‖a−2i r(2i−j)⊗ ⊗ I(j−i)⊗ (3.2)

for some scalars {φi,j}ji=1 such that
∑j

i=1 φi,j = π(a− j) , and that∥∥∇j· ‖r‖a ∥∥[j]
= |π(a− j)| ‖r‖a−j . (3.3)

Moreover, if β1, β2 are positive reals and ‖r‖ = 1, then∥∥∇j· ‖β1r‖a −∇j· ‖β2r‖a
∥∥

[j]
= |π(a− j)|

∣∣∣βa−j1 − βa−j2

∣∣∣ . (3.4)

Proof. See appendix. 2

Consider now the elements fi for i ∈ N . Each such element is p times continuously
differentiable and, if we assume that its p-th derivative tensor ∇pxfi is globally Lipschitz
continuous with constant Li ≥ 0 in the sense that, for all xi, yi ∈ IRni

‖∇pxifi(xi)−∇
p
xifi(yi)‖[p] ≤ Li‖xi − yi‖, (3.5)

then it can be shown (see [11, Lemma 2.1]) that

fi(xi + si) = Tfi,p(xi, si) +
1

(p+ 1)!
τiLi‖si‖p+1 with |τi| ≤ 1. (3.6)

Because Li in (3.6) is usually unknown in practice, it may not be possible to use (3.6) directly
to model fi in a neighbourhood of x. However, we may replace this term with an adaptive
parameter σi, which yields the following (p+ 1)-rst order model for the i-th smooth element
fi,

mi(xi, si) = Tfi,p(xi, si) +
1

(p+ 1)!
σi‖si‖p+1, (i ∈ N ). (3.7)

Now we consider the elements fi for i ∈ H. Let ri = Uix − bi. Using the associated
Taylor’s expansion would indeed ignore the non-Lipschitzian continuity occurring for ri = 0
and this would restrict the validity of the model to a possibly very small neighbourhood of xk
whenever ri is small for some i ∈ A(xk, ε). Our proposal is to use the underlying rotational
symmetry of the Euclidean norm function to build a better Lipschtzian model. Suppose that
ri 6= 0 6= ri + si and let

ui =
ri
‖ri‖

, r+
i = ri(x+ s) = ri + si and u+

i =
r+
i

‖r+
i ‖
. (3.8)

Moreover, let Ri be the rotation in the (ui, u
+
i ) plane(1) such that

Riu
+
i = ui. (3.9)

(1)If ui = u+
i , Ri = I. If ni = 1 and rir

+
i < 0, this rotation is just the mapping from IR+ to IR−, defined by

a simple sign change, as in the two-sided model of [17].
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We observe that, given the isotropic nature of the Euclidean norm and the value ‖ri‖a, the
derivatives of ‖ri + si‖a with respect to si can be deduced from those ‖ ‖ri‖u+

i ‖a. More
precisely, for any d ∈ IRni ,∥∥ ‖ri‖u+

i

∥∥a = ‖ri‖a and ∇`·
∥∥ ‖ri‖u+

i

∥∥a[d]` = ∇`·‖ri‖a[Rid]`. (3.10)

For example, when ` = 1, one verifies that

∇1
· ‖ri‖a[Rid] = a‖ri‖a−2rTi Rid

= a‖ri‖a−2‖ri‖(RTi ui)Td

= a
∥∥ ‖ri‖u+

i

∥∥a−2
(‖ri‖u+

i )Td

= ∇1
·
∥∥ ‖ri‖u+

i

∥∥a[d].

We may then choose to compute the Taylor’s expansion for the function ‖ · ‖a around ‖ri‖u+
i ,

that is
‖r+
i ‖a =

∥∥ ‖r+
i ‖u

+
i

∥∥a
=
∥∥ ‖ri‖u+

i

∥∥a +
∞∑
`=1

1

`!
∇`·
∥∥‖ri‖u+

i

∥∥a[(‖r+
i ‖ − ‖ri‖)u

+
i

]`
= ‖ri‖a +

∞∑
`=1

(‖r+
i ‖ − ‖ri‖)

`

`!
∇`·
∥∥ri∥∥a[Riu+

i

]`
= ‖ri‖a +

∞∑
`=1

(‖r+
i ‖ − ‖ri‖)

`

`!
∇`·
∥∥ri∥∥a[ui]`.

Using the expression (3.2) applied to ` copies of the unit vector ui and the fact that rj⊗i [ui]
j =

(rTi ui)
j = ‖ri‖j for all j ∈ IN, we now deduce that, for ζi = ‖ri + si‖ − ‖ri‖ ≥ −‖ri‖,

‖ri + si‖a = ‖ri‖a +

∞∑
`=1

π(a− `)
`!

ζ`i ‖ri‖a−`, (3.11)

which is nothing else than the Taylor’s expansion of ‖ri+ζiui‖a (or, equivalently, of
∥∥‖ri‖u+

i +
ζiu

+
i

∥∥a) expressed as a function of the scalar variable ζi ≥ −‖ri‖. As can be expected from
the isotropic nature of the Euclidean norm, the value of ‖r+

i ‖a (and of its derivatives after
a suitable rotation) only depend(s) on the distance of r+

i to the non-Lipschitz continuity at
zero. Thus, limiting the development (3.11) to degree p (as in (3.7)), it is natural to define

µ(‖ri‖, ζi)
def
= ‖ri‖a +

p∑
`=1

π(a− `)
`!

ζ`i ‖ri‖a−`, (i ∈ A(x, ε)), (3.12)

which is a unidimensional model of ‖ri + ζiui‖a based of the residual value ‖ri‖. Note that
µ(‖ri‖, ζi) is Lipschitz continuous as a function of ζi as long as ‖ri‖ remains uniformly bounded
away from zero, with a Lipschitz constant depending on the lower bound. We then define the
isotropic model

mi(xi, si)
def
= µ(‖ri‖, ζi) = µi(‖ri‖, ‖ri + si‖ − ‖ri‖) for i ∈ A(x, ε), (3.13)
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so that, abusing notation slightly,

mi(xi, si) = Tmi,p(xi, si)
def
= ‖ri‖a +

p∑
`=1

π(a− `)
`!

ζ`i ‖ri‖a−`, (i ∈ A(x, ε)).

We now state some useful properties of this model.

Lemma 3.2 Suppose that p is odd and that A(x) 6= ∅ for some x ∈ F . Then, for i ∈ A(x),

mi(xi, si) ≥ ‖ri + si‖a, (3.14)

and, whenever ‖ri + si‖ ≤ ‖ri(x)‖,

∇`ζµ(‖ri‖, ζi)) ≥ ∇`ζµ(‖ri‖, 0) = π(a− `)‖ri‖a−` (` odd), (3.15)

and
∇`ζµ(‖ri|, ζi) ≤ ∇`ζµ(‖ri‖, 0) = π(a− `)‖ri‖a−` (` even). (3.16)

As a consequence, mi(xi, ζi) is a concave function of ζi on the interval [−‖ri‖, 0].

Proof. Let i ∈ A(x). From the mean-value theorem and (3.11), we have that, for some
ν ∈ (0, 1),

‖ri + si‖a = ‖ri‖a +

p∑
`=1

π(a− `)
`!

ζ`i ‖ri‖a−` +
π(a− p− 1)

(p+ 1)!
ζp+1
i ‖ri + νζiui‖a−p−1. (3.17)

Since p is odd, we obtain that π(a − p − 1) < 0 and ζp+1
i ≥ 0. Thus (3.14) directly results

from (3.17), (3.12) and (3.13). Now (3.12) and (3.13) together imply that

∇`ζµ(‖ri‖, ζi) = ∇`ζµ(‖ri‖, 0) +

p∑
j=`+1

π(a− j)
(j − `)!

ζj−`i ‖ri‖a−j (3.18)

for ζi = ‖ri(x) + si‖−‖ri(x)‖ ≤ 0. Suppose first that ` is odd. Then we have that π(a− j) is

negative for even j, that is exactly when ζj−`i is non-positive. Hence every term in the sum of
the right-hand side of (3.18) is non-negative and (3.15) follows. Suppose now that ` is even.

Then π(a− j) is negative for odd j, which is exactly when ζj−`i is non-negative. Hence every
term in the sum of the right-hand side of (3.18) is non-positive and (3.16) follows. The last
conclusion of the lemma is then deduced by considering ` = 2 in (3.16) and observing that
π(a− `)‖ri(x)‖a−` = a(a− 1)‖ri(x)‖a−2 < 0. 2

Thus the isotropic model mi(xi, si) overestimates the true function ‖ri(x) + si‖a and cor-
rectly reflects its concavity in the direction of its non-Lipschitz continuity. But mi(xi, si) =
µ(‖ri‖, ζi) is now Lipschitz continuous as a function of si, while ‖ri(x) + si‖a is not.

Combining (3.7) and (3.13) now allows us to define a model for the complete f on R(x, ε)
as

m(x, s)
def
=

∑
i∈W(x,ε)

mi(xi, si). (3.19)

Since ri(x) 6= 0 for i ∈ A(x, ε), this model is in turn well defined.
We conclude this section by observing that writing the problem in the partially-separable

form (1.1) is the key to expose the singular parts of the objective function, which then allows
exploiting their rotational symmetry.
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4 The adaptive regularization algorithm

Having defined a model of f , we may then use this model within a regularization minimization
method inspired from the ARp algorithm in [11]. In such an algorithm, the step from an iterate
xk is obtained by attempting to (approximately) minimize the model ((3.19) in our case). If
an (ε, δ)-approximate q-th-order-stationary point is sought, this minimization is terminated
as soon as the step sk is long enough, in that

‖sk‖ ≥ $ε
1

p−q+1 (4.1)

for some constant $ ∈ (0, 1], or as soon as the trial point xk + sk is an approximate q-th-
order-stationary point of the model, in the sense that

ψε,δkm,q (xk, sk) ≤ min

[
θ‖sk‖p−q+1

(p− q + 1)!
, a min

i∈A(xk+sk,ε)
‖ri(xk + sk)‖

]
χq(δk) (4.2)

for some θ, δk ∈ (0, 1], where ψε,δkm,q (xk + sk) is the optimality measure (2.6) computed for the
model m(x, s), that is

ψε,δm,q(x, s)
def
= m(x, s)− min

x+s+d∈F
‖d‖≤δ,d∈R(x,ε)

Tm,q(x, s+ d). (4.3)

When q = 1, δk = 1 and the feasible set F = IRn, we have χq(δk) = 1, and (4.2) holds if
θ‖sk‖ ≥ aε and

ψε,1m,1(x, sk) = ‖∇fN (x) +∇fA(x,ε)(x)‖ ≤ aε.
In view of the optimality condition (2.5), we also require that, if ‖ri(x + s)‖ ≤ ε occurs

for some i ∈ H in the course of the model minimization, the value of ri(x + s) is fixed,
implying that the remaining minimization is carried out on R(xk + s, ε). As a consequence,
the dimension of R(xk + s, ε) (and thus of Rk) is monotonically non-increasing during the
step computation and across all iterations. It was shown in [11, Lemma 2.5] that, unless
xk is an (ε, 1)-approximate p-th-order-stationary point (which is obviously enough for the
whole algorithm to terminate), a step satisfying (4.2) can always be found. The fact that this
condition must hold on a subspace of potentially diminishing dimension clearly does not affect
the result, and indicates that (4.2) is well-defined. This model minimization is in principle
simpler than the original problem because the general nonlinear fi have been replaced by
locally accurate polynomial approximations and also because the model is now Lipschitz
continuous, albeit still non-smooth. Importantly, the model minimization does not involve
any evaluation of the objective function or its derivatives, and model evaluations within this
calculation therefore do not affect the overall evaluation complexity of the algorithm.

We now introduce some useful notation for describing our algorithm. Define

xi,k
def
= Uixk, ri,k

def
= Uixk − bi, si,k

def
= Uisk, ui,k

def
=

ri,k
‖ri,k‖

and
A+
k

def
= A(xk + sk, ε), R+

k
def
= R(xk + sk, ε) and W+

k
def
= W(xk + sk, ε).

Also let

∆fi,k
def
= fi(xi,k)− fi(xi,k + si,k), ∆fk

def
= fW+

k
(xk)− fW+

k
(xk + sk) =

∑
i∈W+

k

∆fi,k,
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∆mi,k
def
= mi(xi,k, 0)−mi(xi,k, si,k), ∆mk =

∑
i∈W+

k

∆mi,k,

and

∆Tk
def
= TfW+

k
,p(xk, 0)− TfW+

k
,p(xk, sk)

= [TfN ,p(xk, 0)− TfN ,p(xk, sk)] +
[
mA+

k
(xk, 0)−mA+

k
(xk, sk)

]
= ∆mk + 1

(p+ 1)!

∑
i∈N

σi,k‖si,k‖p+1.

(4.4)

Our partially-separable adaptive regularization degree-p algorithm PSARp is then given by
Algorithm 4.1 on the following page.

Note that an x0 ∈ F can always be computed by projecting an infeasible starting point
onto F . The motivation for the second and third parts of (4.9) and (4.10) is to identify
cases where the isotropic model mi overestimates the element function fi to an excessive
extent, leaving some room for reducing the regularization and hence allowing longer steps.
The requirement that ρk ≥ η in both (4.9) and (4.10) is intended to prevent a situation
where a particular regularization parameter is increased and another decreased at a given
unsuccessful iteration, followed by the opposite situation at the next iteration, potentially
leading to cycling.

It is worthwhile noting the differences between the PSARp algorithm and the algorithm
discussed in [17]. The first and most important is that the new algorithm is intended to find
an (ε, δ)-approximate q-th-order stationary point for problem (1.1), rather than a first-order
stationary point. This is made possible by using the q-th-order termination criterion (4.5)
instead of a criterion only involving the first-order model decrease, and by simultaneously
using the step termination criteria (4.1) and (4.2) which again replace a simpler version based
solely on first-order information. The second is that the PSARp algorithm applies to the
more general problem (1.1), in particular using the isotropic model (3.12) to allow ni > 1 for
i ∈ H.

As alluded to above and discussed in [12] and [4], the potential termination of the algorithm
in Step 2 can only happen whenever q > 2 and xk = xε is an (ε, 1)-approximate p-th-order-
stationary point within Rk, which, together with (2.5), imply that the same property holds
for problem (1.1). This is a significantly stronger optimality condition than what is required
by (4.5). Also note that the potentially costly calculation of (4.2) may be avoided if (4.1)
holds.

Let the index set of the “successful” and “unsuccessful” iterations be given by

S def
= {k ≥ 0 | ρk ≥ η} and U def

= {k ≥ 0 | ρk < η}.

Also define
Sk

def
= S ∩ {0, . . . , k} and Uk

def
= {0, . . . , k} \ Sk.

We then state a bound on |Uk| as a function of |Sk|. This is a standard result for non-
partially-separable problems (see [7, Theorem 2.4] for instance), but needs careful handling
of the model’s overestimation properties to apply to our present context.
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Algorithm 4.1: Partially-Separable Adaptive Regularization (PSARp)

Step 0: Initialization: x0 ∈ F and {σi,0}i∈N > 0 are given as well as the accuracy
ε ∈ (0, 1] and constants 0 < γ0 < 1 < γ1 ≤ γ2, η ∈ (0, 1), θ ≥ 0, δ−1 = 1,
σmin ∈ (0,mini∈N σi,0] and κbig > 1. Set k = 0.

Step 1: Termination: Evaluate f(xk) and {∇jxfWk
(xk)}qj=1. If

ψ
ε,δk−1

f,q (xk) ≤ εχq(δk−1) (4.5)

return xε = xk and terminate. Otherwise evaluate {∇jxfWk
(xk)}pj=q+1.

Step 2: Step computation: Attempt to compute a step sk ∈ Rk such that xk + sk ∈
F , m(xk, sk) < m(xk, 0) and either (4.1) holds or (4.2) holds for some δk ∈ (0, 1].
If no such step exists, return xε = xk and terminate.

Step 3: Step acceptance: Compute

ρk =
∆fk
∆Tk

(4.6)

and set xk+1 = xk if ρk < η, or xk+1 = xk + sk if ρk ≥ η.

Step 4: Update the “nice” regularization parameters: For i ∈ N , if

fi(xi,k + si,k) > mi(xi,k, si,k) (4.7)

set
σi,k+1 ∈ [γ1σi,k, γ2σi,k]. (4.8)

Otherwise, if either

ρk ≥ η and ∆fi,k ≤ 0 and ∆fi,k < ∆mi,k − κbig|∆fk| (4.9)

or
ρk ≥ η and ∆fi,k > 0 and ∆fi,k > ∆mi,k + κbig|∆fk| (4.10)

then set
σi,k+1 ∈ [max[σmin, γ0σi,k], σi,k], (4.11)

else set
σi,k+1 = σi,k. (4.12)

Increment k by one and go to Step 1.
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Lemma 4.1 Suppose that AS.2 and AS.3 hold and that σi,k ≤ σmax for all i ∈ M and all
k ≥ 0. Then, for all k ≥ 0,

k ≤ κa|Sk|+ κb,

where

κa
def
= 1 +

|N | | log γ0|
log γ1

and κb
def
=
|N |

log γ1
log

(
σmax

σmin

)
.

Proof. Note that ρk is defined by ∆fk and ∆Tk which are computed on W+
k = N ∪ A+

k .
Following the proof of [17, Lemma 4.11] and (3.14), we have ∆fk ≥ ∆mk if (4.7) fails for all
i ∈ N . Hence, from (4.6), we have ρk ≥ 1 > η and k ∈ Sk. If k ∈ Uk, σi,k is increased with
(4.8) for at least one i ∈ N . Let Ji,k be the set of iterations where σi,j (j ≤ k) is increased.
Then |Uk| ≤ |N |maxi∈N |Ji,k|. Using k = |Sk|+ |Uk| − 1 completes the proof. 2

5 Evaluation complexity analysis

We are now ready for a formal analysis of the evaluation complexity of the PSARp algorithm
for problem (1.1), under the following assumptions.

AS.1 The feasible set F is closed, convex, non-empty and kernel-centered (in the
sense of (1.3)).

AS.2 Each element function fi (i ∈ N ) is p times continuously differentiable in an
open set containing F , where p is odd whenever H 6= ∅.

AS.3 The p-th derivative of each fi (i ∈ N ) is Lipschitz continuous on F with
associated Lipschitz constant Li (in the sense of (3.5)).

AS.4 There exists a constant flow such that fN (x) ≥ flow for all x ∈ F .

AS.5 If H 6= ∅, there exists a constant κN ≥ 0 such that ‖∇jxfi(Uix)‖ ≤ κN for all
x ∈ V, i ∈ N and j ∈ {1, . . . , p}, where

V def
=
{
x ∈ F | there exists i ∈ H with ‖ri(x)‖ ≤ a

16

}
. (5.1)

Note that AS.4 is necessary for problem (1.1) to be well-defined. Also note that, because
of AS.2, AS.5 automatically holds if F or V are bounded or if the iterates {xk} remain in
a bounded set. It is possible to weaken AS.2 and AS.3 by replacing F with the level set
L = {x ∈ F | f(x) ≤ f(x0)} without affecting the results below. Finally observe that V need
not to be bounded, in particular if spani∈H(Ui) is a proper subspace of IRn. The motivation
for the particular choice of 1

16
a in (5.1) will become clear in Lemma 5.5 below.

We first recall a result providing useful bounds.

Lemma 5.1 There exist a constant ς > 0 such that, for all s ∈ IRm and all v ≥ 1,

ςv‖s‖v ≤
∑
i∈N
‖si‖v ≤ |N | ‖s‖v. (5.2)
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Proof. See [17, Lemma 4.1]. 2

This lemma states that
∑

i∈N ‖ · ‖ is a norm on IRn whose equivalence constants with respect
to the Euclidean one are ς and |N |.

Our next step is to specify under which conditions the standard ε-independent overesti-
mation and derivative accuracy bounds typical of the Lipschitz case (see [11, Lemma 2.1] for
instance) can be obtained for the elements functions of (1.1). We define, for a given k ≥ 0
and a given constant µ > 0 independent of ε,

Ok,µ
def
= {i ∈ A+

k | min[ ‖ri,k‖, ‖ri,k + si,k‖ ] ≥ µ}. (5.3)

Observe that if, for some i ∈ H and bi 6∈ UiF , then both ‖ri,k‖ and ‖ri,k + si,k‖ are bounded
away from zero, so i ∈ Ok,µ for all k and all µ such that µ ≤ minx∈F ‖Uix − bi‖. Thus we
assume, without loss of generality, that

bi ∈ UiF for all i ∈ H. (5.4)

We then obtain the following crucial error bounds.

Lemma 5.2 Suppose that AS.2 and AS.3 hold. Then, for k ≥ 0 and Lmax
def
= maxi∈N Li,

fi(xi,k + si,k) = mi(xi,k, si,k) +
1

(p+ 1)!

[
τi,kLmax − σi,k

]
‖si,k‖p+1 with |τi,k| ≤ 1, (5.5)

for all i ∈ N . If, in addition, µ > 0 is given and independent of ε, then there exists a constant
L(µ) independent of ε such that, for ` ∈ {1, . . . , p},

‖∇`xfN∪Ok,µ(xk + sk)−∇`sTfN∪Ok,µ ,p(xk, sk)‖ ≤
L(µ)

(p− `+ 1)!
‖sk‖p−`+1. (5.6)

Proof. First note that, if fi has a Lipschitz continuous p-th derivative as a function
of xi = Uix, then (1.6) shows that it also has a Lipschitz continuous p-th derivative as a
function of x. It is therefore enough to consider the element functions as functions of xi.

Observe now that, for each k and i ∈ N , AS.2 and AS.3 ensure (5.5), and the inequality

‖∇`xifi(xi,k + si,k)−∇`siTfi,p(xi,k, si,k)‖ ≤
Li

(p− `+ 1)!
‖si,k‖p−`+1 (5.7)

immediately follows from the known bounds for p times continuously differentiable functions
with Lipschitz continuous p-th derivative (see [11, Lemma 2.1]). Consider now i ∈ Ok,µ for
some k and some fixed µ > 0, implying that min[‖ri,k‖, ‖ri,k + si,k‖] ≥ µ > 0. Then

∇`·‖ri,k + si,k‖a[d]` = ∇`·
∥∥‖ri,k + si,k‖u+

i,k

∥∥a[d]` = ∇`·
∥∥‖ri,k + si,k‖ui,k

∥∥a[Ri,kd]` (5.8)

where Ri,k is the rotation such that Ri,ku
+
i,k = ui,k. We also have from (3.10) with x replaced

by xk + sk that
∇`siTmi,p(xi,k, si,k)[d]` = ∇`·

∥∥‖ri,k‖ui,k∥∥a[Ri,kd]`. (5.9)
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Taking the difference between (5.8) and (5.9), we obtain, successively using the definition of
the tensor norm, the fact that Ri,k is orthonormal and (3.4) in Lemma 3.1, that∥∥∇`·‖ri,k + si,k‖a −∇`siTmi,p(xi,k, si,k)

∥∥
[`]

= max
‖d‖=1

∣∣∣∇`·‖ri,k + si,k‖a[d]` −∇`siTmi,p(xi,k, si,k)[d]`
∣∣∣

= max
‖d‖=1

∣∣∣∇`·∥∥‖ri,k + si,k‖ui,k
∥∥a[Ri,kd]` −∇`·

∥∥‖ri,k‖ui,k∥∥a[Ri,kd]`
∣∣∣

=
∥∥∇`·∥∥‖ri,k + si,k‖ui,k

∥∥a −∇`·∥∥‖ri,k‖ui,k∥∥a ∥∥[`]

= |π(a− `)|
∣∣‖ri,k + si,k‖a−` − ‖ri,k‖a−`

∣∣ .
Now the univariate function ν(t)

def
= ta is (more than) p+ 1 times continuously differentiable

with bounded (p+ 1)-rst derivative on the interval [t1, t2] and thus, from Lemma 5.2, we have
that

π(a− `)
∣∣∣ta−`1 − ta−`2

∣∣∣ =

∣∣∣∣d`νdt` (t1)− d`ν

dt`
(t2)

∣∣∣∣ ≤ Lν
(p− `+ 1)!

|t1 − t2|p−`+1,

where Lν is the upper bound on the (p + 1)-rst derivative of ν(t) on interval [t1, t2], that is
Lν = |π(a− p− 1)|min[t1, t2]a−p−1. As a consequence, we obtain that∥∥∇`·‖ri,k + si,k‖a −∇`siTmi,p(xi,k, si,k)

∥∥
[`]
≤ L(µ)

(p− `+ 1)!

∣∣‖ri,k + si,k‖ − ‖ri,k‖
∣∣p−`+1

,

where we use the fact that min[‖ri,k‖, ‖ri,k + si,k‖] ≥ µ to define

L(µ)
def
= max

∣∣π(a− p− 1)|µa−p−1, Lmax

]
.

We then observe that ‖si,k‖ = ‖ri,k + si,k − ri,k‖ ≥
∣∣‖ri,k + si,k‖ − ‖ri,k‖

∣∣ which finally yields
that ∥∥∇`·‖ri,k + si,k‖a −∇`siTmi,p(xi,k, si,k)

∥∥
[`]
≤ L(µ)

(p− `+ 1)!
‖si,k‖p−`+1.

Combining this last inequality with (5.7) and the fact that ∇`xi‖ri,k +si,k‖a = ∇`·‖ri,k +si,k‖a
then ensures that (5.6) holds. 2

Observe that the Lipschitz constant L is independent of φ whenever H = ∅. Our model
definition also implies the following bound.

Lemma 5.3 For all k ≥ 0 before termination, sk 6= 0, (4.6) is well-defined and

∆Tk ≥
σminς

p+1

(p+ 1)!
‖sk‖p+1. (5.10)

Proof. We immediately deduce that

∆Tk ≥
σmin

(p+ 1)!

∑
i∈N
‖si,k‖p+1 (5.11)

from (4.4), the observation that, at successful iterations, the algorithm enforces ∆mk > 0
and (4.11). As a consequence, sk 6= 0. Hence at least one ‖si,k‖ is strictly positive because
of (5.2), and (5.11) therefore implies that (4.6) is well-defined. The inequality (5.10) then
follows from Lemma 5.1. 2
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Following a now well-oiled track in convergence proofs for regularization methods, we
derive an upper bound on the regularization parameters.

Lemma 5.4 [17, Lemma 4.6] Suppose that AS.2 and AS.3 hold. Then, for all i ∈ N and all
k ≥ 0,

σi,k ∈ [σmin, σmax], (5.12)

where σmax
def
= γ2Lmax.

Proof. Assume that, for some i ∈ N and k ≥ 0, σi,k ≥ Li. Then (5.5) gives that (4.7) must
fail, ensuring (5.12) because of the mechanism of the algorithm. 2

It is important to note that σmax is independent of ε. We now verify that the trial step
produced by Step 2 of the PSARp Algorithm either essentially fixes the residuals ri to zero
(their values being then fixed for the rest of the calculation), or the step is long enough (i.e.
(4.1) holds), or it maintains these residuals safely away from zero in the sense that their norm
exceeds an ε-independent constant.

Lemma 5.5 Suppose that AS.1, AS.2, AS.3 and AS.5 hold, that H 6= ∅ and that (4.1) fails.
Let

ω
def
= min

 a
16
,

 a

12|N |
(
κN + σmax

(p−q+1)!

)
 1

1−a
 . (5.13)

Then, if, for some i ∈ H,
‖ri,k‖ < ω, (5.14)

we have that
‖ri,k + si,k‖ ≤ ε or ‖ri,k + si,k‖ ≥ ω. (5.15)

Proof. The conclusion is obvious if i ∈ C+
k = H \ A+

k . Consider now i ∈ A+
k and suppose,

for the purpose of deriving a contradiction, that

‖ri,k + si,k‖ ∈ (ε, ω) for some i ∈ A+
k , (5.16)

and immediately note that the failure of (4.1) and the orthonormality of the rows of Ui imply
that

‖si,k‖ ≤ ‖sk‖ < $ε
1

p−q+1 ≤ 1 (5.17)

and also that (4.2) must hold. As a consequence, for some δk ∈ (0, 1],

a‖ri,k + si,k‖χq(δk) ≥ ψε,δkm,q (xk, sk). (5.18)

Consider now the vector

dk = −min
[
δk, ‖ri,k + si,k‖

]
v+
i,k with v+

i,k = U †i u
+
i,k

def
= U †i

ri,k + si,k
‖ri,k + si,k‖

. (5.19)

We now verify that dk is admissible for problem (4.3). Clearly ‖dk‖ = δk because the rows of
Ui are orthonormal. We also see that (1.2) and (1.11) imply that, since i ∈ A+

k ,

dk ∈ R{i} ⊆ R+
k . (5.20)
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Moreover, we have that

xk + sk + dk ∈ [[xk + sk, xk + sk − U †i (ri,k + si,k)]], (5.21)

where [[v, w]] denotes the line segment joining the vectors v and w. But

xk + sk − U †i (ri,k + si,k) = xk + sk − U †i Ui(xk + sk) + U †i bi
= (I − U †i Ui)(xk + sk) + U †i bi
= Pker(Ui)[xk + sk] + U †i bi
∈ F ,

where we have used (1.3) to deduce the last inclusion. Since F is convex and xk + sk ∈ F ,
we deduce from (5.21) that xk + sk + dk ∈ F . As a consequence, dk is admissible for problem
(4.3) and hence, using (5.18),

a‖ri,k + si,k‖χq(δk) ≥ ψε,δkm,q (xk, sk) ≥ max [0,m(xk, sk)− Tm,q(xk, sk − dk)] . (5.22)

Moreover (5.20) and (3.13) imply that

m(xk, sk)− Tm,q(xk, sk − dk)

= mN (xk, sk)− TmN ,q(xk, sk − dk) +mi(xi,k, si,k)−mi(xi,k, si,k − Uidk)

≥ − |mN (xk, sk)− TmN ,q(xk, sk − dk)|+mi(xi,k, si,k)−mi(xi,k, si,k − Uidk).
(5.23)

We start by considering the first term in the right-hand side of this inequality. Observe now
that (5.14) ensures that xk ∈ V (as defined in (5.1)). Hence AS.5, (5.14) and (5.17) together
imply that, for each i ∈ N ,

|mi(xk, sk)− Tmi,q(xk, sk − dk)|

≤

∣∣∣∣∣
q∑
`=1

1

`!
∇`xTmi,q(xi,k, si,k)[−Uidk]`

∣∣∣∣∣
=

∣∣∣∣∣
q∑
`=1

1

`!

(
p∑
t=`

1

(t− `)!
∇txfi(xi,k)[si,k]t−` +

σi,k
(p+ 1)!

∥∥∇`·‖si,k‖p+1
∥∥) [−Uidk]`

∣∣∣∣∣ .
(5.24)

Using now the identity ‖Uidk‖ = ‖dk‖ = δk and the fact that

p∑
t=`

1

(t− `)!
≤ 1 + χp−`(1) < 3,

we obtain from (5.24), the triangle inequality and (5.17) that

|mi(xk, sk)− Tmi,q(xk, sk − dk)| <
q∑
`=1

1

`!

(
3‖∇txfi(xi,k)‖[t] +

σi,k
(p+ 1)!

∥∥∇`·‖si,k‖p+1
∥∥) δ`k.

(5.25)
But we have from Lemma 3.1 and (5.17) that, for ` ∈ {1, . . . , q},∥∥∇`·‖si,k‖p+1

∥∥ = |π(p− `+ 1)| ‖si,k‖p+1−` ≤ (p+ 1)!

(p− q + 1)!
, (5.26)
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and therefore that∣∣∣mN (xk, sk)− TmN ,q(xk, sk − δk‖ri,k + si,k‖v+
i,k)
∣∣∣ < 3|N |

(
κN + 1

(p−q+1)!σmax

)
χq(δk)

≤ 1
4
aωa−1χq(δk),

(5.27)
where we have used (5.13) to derive the last inequality. Let us now consider the second
term in the right-hand side of (5.23). Applying Lemma 3.2, we obtain that µ(‖ri,k + si,k‖, ·)
is concave between 0 and −‖ri,k + si,k‖ and µ(‖ri,k‖, ·) is concave between 0 and −‖ri,k‖.
Therefore, because of (5.14), we may deduce that

mi(xi,k, si,k)−mi(xi,k, si,k − Uidk) = µ(‖ri,k + si,k‖, 0)− µ(‖ri,k + si,k‖, ‖Uidk‖)

≥ ∇1
ζµ(‖ri,k + si,k‖, 0)‖Uidk‖

≥ ∇1
ζµ(‖ri,k‖, ‖ri,k + si,k‖ − ‖ri,k‖)‖Uidk‖

≥ a‖ri,k‖a−1δk

≥ 1
2
aωa−1χq(δk),

where the second and third inequalities result from (3.15). Combining now this inequality
with (5.22), (5.23) and (5.27), we deduce that

a‖ri,k + si,k‖χq(δk) > 1
2
aωa−1χq(δk)− 1

4
aωa−1χq(δk) = 1

4
aωa−1χq(δk).

Finally, we obtain using (5.16) that
ω > 1

4
ωa−1,

which is impossible in view of (5.13). Hence (5.16) cannot hold and the proof is complete.
2

This last result is crucial in that it shows that there is a “forbidden” interval (ε, ω) for the
residual’s norms ‖ri(xk + sk)‖, where ω only depends on the problem and it is independent
of ε. This in turn allows to partition the successful iterates into subsets, distinguishing
iterates which “fix” a residual to a near zero value, iterates with long steps and iterates with
possibly short steps in regions where the considered objective function’s p-th derivative tensor
is safely bounded independently of ε. Our analysis now follows the broad outline of [17] while
simplifying some arguments. Focusing on the case where H 6= ∅, we first isolate the set of
successful iterations which “deactivate” a residual, that is

Sε
def
= {k ∈ S | ‖ri,k + si,k‖ ≤ ε and ‖ri,k‖ > ε for some i ∈ H},

and notice that, by construction
|Sε| ≤ |H|. (5.28)

We next define the ε-independent constant

α = 3
4
ω

and
Sω

def
= {k ∈ S | ‖sk‖ ≥ 1

4
ω}. (5.29)
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Moreover, for an iteration k ∈ S \ (Sε ∪ Sω), we verify that Ak can be partitioned into

I♥,k
def
= {i ∈ Ak | ‖ri,k‖ ∈ [α,+∞) and ‖ri,k + si,k‖ ∈ [α,+∞)}

I♦,k
def
= {i ∈ Ak |

(
‖ri,k‖ ∈ [ω,+∞) and ‖ri,k + si,k‖ ∈ (ε, α)

)
or

(
‖ri,k‖ ∈ (ε, α) and ‖ri,k + si,k‖ ∈ [ω,∞)

)
}

I♣,k
def
= {i ∈ Ak | ‖ri,k‖ ∈ (ε, ω) and ‖ri,k + si,k‖ ∈ (ε, ω)}.

Morever, Lemma 5.5 shows that I♣,k is always empty and one additionally has that, if i ∈ I♦,k,
then

‖sk‖ ≥ ‖si,k‖ ≥
∣∣‖ri,k + si,k‖ − ‖ri,k‖

∣∣ ≥ ω − α = 1
4
ω,

implies that k ∈ S‖s‖. Hence I♦,k is also empty and

Ak = I♥,k for k ∈ S \ (Sε ∪ Sω)
def
= S♥. (5.30)

The next important result shows that steps at iteration belonging to S♥ are long enough,
because they are taken over regions where a good ε-independent Lipschitz bound holds. In-
deed, if H 6= ∅ and assuming that ε ≤ α, we have, for k ∈ S♥, that A+

k = Ak and thus that
W+
k =Wk and R+

k = Rk. Moreover, the definition of I♥,k = Ak ensures that Ak ⊆ Ok,α and
thus that Lemma 5.2 (and in particular (5.6)) guarantees that fWk

satisfies standard deriva-
tive error bounds for functions with Lipschitz continuous p-th derivative (with corresponding
Lipschitz constant L(α)). We may therefore apply known results for such functions to fWk

.
The following lemma is extracted from [11], by specializing Lemma 3.3 in that reference to
the optimization of fWk

over Rk for functions with Lipschitz continuous p-th derivative (i.e.
β = 1 in [11]).

Lemma 5.6 Suppose that AS.1 – AS.3 and AS.5 hold, that

ε ≤ α if H 6= ∅ (5.31)

and consider k ∈ S♥ such that the PSARp Algorithm does not terminate at iteration k + 1.
Then

‖sk‖ ≥ κ♥ε
1

p−q+1 with κ♥
def
=

(
(p− q + 1)!

L(α) + θ + σmax

) 1
p−q+1

. (5.32)

We may finally establish our final evaluation complexity bound by combining our results so
far.

Theorem 5.7 Suppose that AS.1–AS.5 and (5.31) hold. Then the PSARp Algorithm requires
at most ⌊

κS(f(x0)− flow)ε
− p+1
p−q+1

⌋
+ |H| (5.33)

successful iterations and at most⌊⌊
κS(f(x0)− flow)

(
ε
− p+1
p−q+1

)⌋(
1 +
| log γ1|
log γ2

)
+

1

log γ2
log

(
σmax

σ0

)⌋
+ |H|+ 1 (5.34)

evaluations of f and its p first derivatives to return an (ε, δ)-approximate q-th-order-stationary
point for problem (1.1), where

κS
def
=

(p+ 1)!

ησminςp+1

(
(p− q + 1)!

L(α) + θ + σmax

)− 1
p−q+1

. (5.35)
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Proof. Consider k ∈ S before termination. Because the iteration is successful, we obtain
from AS.4, Step 3 of the algorithm and Lemma 5.3 that

f(x0)− flow ≥ f(x0)− f(xk+1) =
∑
j∈Sk

∆fk ≥ η
∑
j∈Sk

∆Tk ≥
ησminς

p+1

(p+ 1)!

∑
j∈Sk

‖sk‖p+1. (5.36)

Defining now

Sε,k
def
= Sε ∩ {0, . . . , k}, Sω,k

def
= Sω ∩ {0, . . . , k} and S♥,k

def
= S♥ ∩ {0, . . . , k},

we verify that Sω,k and S♥,k form a partition of Sk \ Sε,k. As a consequence, we have that

f(x0)− flow ≥ ησminς
p+1

(p+ 1)!

{
|Sω,k| min

j∈S‖s‖,k
‖sk‖p+1 + |S♥,k| min

j∈S♥,k
‖sk‖p+1

}
≥ ησminς

p+1

(p+ 1)!

{
|Sω,k|( 1

4
ω)p+1 + |S♥,k|

(
κ♥ε

1
p−q+1

)p+1
}

≥ ησminς
p+1

(p+ 1)!
{|Sω,k|+ |S♥,k|}min

[
( 1
4
ω)p+1,

(
κ♥ε

1
p−q+1

)p+1
]

≥ ησminς
p+1

(p+ 1)!
|Sk \ Sε,k|κ

1
p−q+1

♥ ε
1

p−q+1 ,

where we have used (5.36), Lemma 5.1, (5.29) and (5.32) to deduce the second inequality,
and the assumption that (without loss of generality in view of (5.32)) κ♥ ≤ 1

4
ω to deduce the

last. The above inequality yields that

|Sk| = |Sk \ Sε,k|+ |Sε,k| ≤ κS(f(x0)− flow)ε
− p+1
p−q+1 + |Sε,k|,

where κS is given by (5.35). Since |Sε,k| ≤ |Sε| ≤ |H|, we finally deduce that the bound (5.33)
holds. The bound (5.34) then follows by applying Lemma 4.1 and observing that f and its
first p derivatives are evaluated at most once per iteration, plus once at termination. 2

We conclude our development by recalling that the above result is valid for H = ∅, in
which case the problem is a smooth convexly-constrained partially-separable problem. Note
that the norm-equivalence constant ς occurs in (5.35), which indicate that the underlying
geometry of the problem’s invariants subspaces ker(Ui) may have a significant impact on
complexity.

6 Conclusions

We have shown that an (ε, δ)-approximate q-th-order stationary point of partially-separable
convexly-constrained optimization with non-Lipschitzian singularities can be found at most
O(ε−(p+1)/(p−q+1)) evaluations of the objective function and its first p derivatives for any
q ∈ {1, 2, . . . , p} whenever the smooth element functions fi, i ∈ N of the objective function
are p times differentiable. This worst-case complexity is obtained via our Algorithm 4.1
(PSARp) with a p-th order Taylor model which uses the underlying rotational symmetry of
the Euclidean norm function for fH and the first p derivatives (whenever they exist) of the
“element functions” fi, for i ∈M.

Several observations are of interest. A first one is that the results remain valid if Lipschitz
continuity is not assumed on the whole of the feasible set, but restricted to the segments of
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the “path of iterates”, that is ∪k[[xk, xk+1]]. While this might in general be difficult to ensure
a priori, there may be cases where problem structure could help. A second observation is that
convexity of the feasible set is only used on the segments ∪i,k[[xi,k, U †i bi]]. Again this might
be exploitable in some cases. The third observation is that, in line with [11], it is possible to
replace the Lipschitz continuity assumption by a weaker Hölder continuity.

We have seen in the introduction that our framework covers general non-overlapping as
well as special cases of overlapping group sparsity, where (1.2) still holds. While it would
obviously be interesting to relax this orthogonality condition, this seems very challenging
with our present conceptual tools. Indeed, (1.2) is crucial for obtaining the second inclusion
of (5.20) in the proof of Lemma 5.5, itself a central piece of our argumentation. The main
difficulty, if (1.2) is not assumed, is to reconcile the analysis of the isotropic model described
in Section 3 in the segment between the current point and singularity (as assumed in the
definition of µ in (3.12) and Lemma 3.2) with the requirement that a step along the same
segment leaves the (nearly) singular elements invariant (as requested in the definition of the
optimality measure (2.6)). Further progress covering the general overlapping group sparsity
case is therefore likely to require a new proof technique.

While it may be possible to handle non-kernel-centered feasible sets (maybe along the lines
of the discussion in [17]), this remains open at this stage. Another interesting perspective is
a more generic exploitation of geometric symmetries inherent to optimization problems: our
treatment here focuses on a specific case of rotational symmetry, but this should not, one
hopes, be limitative.
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Appendix

Proof Lemma 3.1 The proof of (3.3) is essentially borrowed from [11, Lemma 2.4], although
details differ because the present version covers a ∈ (0, 1). We first observe that ∇j· ‖r‖a is a
j-th order tensor, whose norm is defined using (1.7). Moreover, using the relationships

∇1
· ‖r‖τ = τ ‖r‖τ−2r and ∇1

·
(
rτ⊗
)

= τ r(τ−1)⊗ ⊗ I, (τ ∈ IR), (A.1)

defining

ν0
def
= 1, and νi

def
=

i∏
`=1

(a+ 2− 2`), (A.2)

and proceeding by induction, we obtain that, for some µj,i ≥ 0 with µ1,1 = 1,

∇1
·

[
∇j−1
· ‖r‖a

]
= ∇1

·

[
j∑
i=2

µj−1,i−1νi−1‖r‖a−2(i−1) r(2(i−1)−(j−1))⊗ ⊗ I((j−1)−(i−1))⊗

]

=

j∑
i=2

µj−1,i−1νi−1

[
(a− 2(i− 1))‖r‖a−2(i−1)−2 r(2(i−1)−(j−1)+1)⊗ ⊗ I(j−i)⊗

+((2(i− 1)− (j − 1))‖r‖a−2(i−1) r(2(i−1)−(j−1)−1)⊗ ⊗ I(j−1)−(i−1)+1)⊗
]

=

j∑
i=2

µj−1,i−1νi−1

[
(a+ 2− 2i)‖r‖a−2i r(2i−j)⊗ ⊗ I(j−i)⊗

+(2(i− 1)− j + 1)‖r‖a−2(i−1) r(2(i−1)−j)⊗ ⊗ I(j−(i−1))⊗
]

=

j∑
i=2

µj−1,i−1νi−1(a+ 2− 2i)‖r‖a−2i r(2i−j)⊗ ⊗ I(j−i)⊗

+

j−1∑
i=1

(2i− j + 1)µj−1,iνi‖r‖a−2i r(2i−j)⊗ ⊗ I(j−i)⊗

=

j∑
i=1

(
(a+ 2− 2i)µj−1,i−1νi−1 + (2i− j + 1)µj−1,iνi

)
‖r‖a−2i r(2i−j)⊗ ⊗ I(j−i)⊗,
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where the last equation uses the convention that µj,0 = 0 and µj−1,j = 0 for all j. Thus we
may write

∇j· ‖r‖a = ∇1
·
[
∇j−1
· ‖r‖a

]
=

j∑
i=1

µj,iνi ‖r‖a−2i r(2i−j)⊗ ⊗ I(j−i)⊗ (A.3)

with
µj,iνi = (a+ 2− 2i)µj−1,i−1νi−1 + (2i− j + 1)µj−1,iνi

=
[
µj−1,i−1 + (2i− j + 1)µj−1,i

]
νi,

(A.4)

where we used the identity

νi = (a+ 2− 2i)νi−1 for i = 1, . . . , j (A.5)

to deduce the second equality. Now (A.3) gives that

∇j· ‖r‖a[v]j =

j∑
i=1

µj,iνi‖r‖a−j
(
rT v

‖r‖

)2i−j

(vT v)j−i.

It is then easy to see that the maximum in (1.7) is achieved for v = r/‖r‖, so that

‖∇j· ‖r‖a ‖[j] =

∣∣∣∣∣
j∑
i=1

µj,iνi

∣∣∣∣∣ ‖r‖a−j = |πj | ‖r‖a−j (A.6)

with

πj
def
=

j∑
i=1

µj,i νi. (A.7)

Successively using this definition, (A.4), (A.5) (twice), the identity µj−1,j = 0 and (A.7)
again, we then deduce that

πj =

j∑
i=1

µj−1,i−1νi +

j∑
i=1

(2i− j + 1)µj−1,iνi

=

j−1∑
i=1

µj−1,iνi+1 +

j∑
i=1

(2i− j + 1)µj−1,iνi

=

j−1∑
i=1

µj−1,i

[
νi+1 + (2i− j + 1)νi

]
=

j−1∑
i=1

µj−1,i

[
(a+ 2− 2(i+ 1))νi + (2i− j + 1)νi

]
= (a+ 1− j)

j−1∑
i=1

µj−1,i νi

= (a+ 1− j)πj−1.

(A.8)

Since π1 = a from the first part of (A.1), we obtain from (A.8) that

πj = π(a− j), (A.9)
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which, combined with (A.6) and (A.7), gives (3.3). Moreover, (A.9), (A.7) and (A.3) give
(3.2) with φi,j = µj,i νi. In order to prove (3.4) (where now ‖r‖ = 1), we use (A.3), (A.7),
(A.9) and obtain that

∇j· ‖β1r‖a −∇j· ‖β2r‖a =

j∑
i=1

µj,iνi ‖β1r‖a−2i β
(2i−j)
1 r(2i−j)⊗ ⊗ I(j−i)⊗

−
j∑
i=1

µj,iνi ‖β2r‖a−2i β
(2i−j)
2 r(2i−j)⊗ ⊗ I(j−i)⊗

= π(a− j)
[
βa−j1 − βa−j2

]
‖r‖a−2i r(2i−j)⊗ ⊗ I(j−i)⊗

= π(a− j)
[
βa−j1 − βa−j2

]
r(2i−j)⊗ ⊗ I(j−i)⊗.

Using (1.7) again, it is easy to verify that the maximum defining the norm is achieved for
v = r and (3.4) then follows from ‖r‖ = 1.


