Minimizing the Condition Number of a Gram Matrix on the Sphere

Xiaojun Chen

Hong Kong Polytechnic University

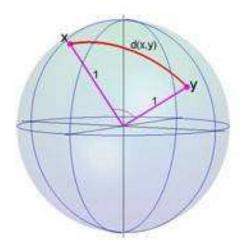
Joint work with

Robert S. Womersley (Univ. of New South Wales, Australia) Jane Ye (Univ. of Victoria, Canada)

23-27 October, NASC2010, Beijing

Least squares approximation on the sphere

$$\mathbb{S}^2 = \{ \mathbf{z} \in \mathbb{R}^3 : \|\mathbf{z}\|_2 = 1 \}, \quad \text{Area } |\mathbb{S}^2| = 4\pi$$



 \mathbb{P}_t : the linear space of restrictions of polynomials of degree $\leq t$ in 3 variables to \mathbb{S}^2 .

dim $\mathbb{P}_t = (t+1)^2$ Minimizing the Condition Number of a Gram Matrix on the Sphere 1/25

Gram matrix

 \mathbb{P}_t can be spanned by an orthonormal set of real spherical harmonics with degree ℓ and order k,

$$\{ Y_{\ell k} \mid k = 1, \dots, 2\ell + 1, \ell = 0, 1, \dots, t \}.$$

Let $X_N = {\mathbf{z}_1, \dots, \mathbf{z}_N} \subset S^2$ be a set of *N*-points on the sphere. The Gram matrix is defined as

$$G_t(X_N) = Y(X_N)^T Y(X_N),$$

where $Y(X_N) \in R^{(t+1)^2 \times N}$ and the *j*-th column of $Y(X_N)$ is given by

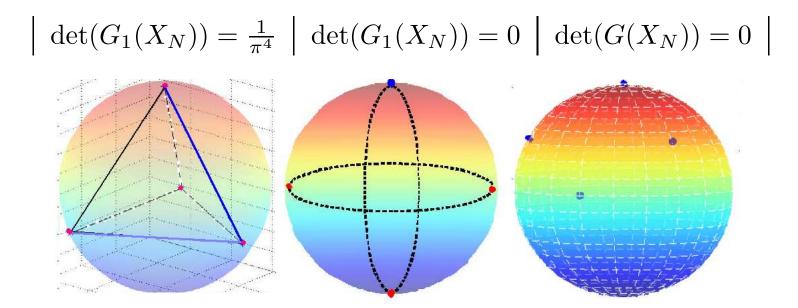
$$Y_{\ell k}(\mathbf{z}_j), \qquad k = 1, \dots, 2\ell + 1, \quad \ell = 0, 1, \dots, t.$$

The Gram matrix G_t is a function of a set of N-points X_N .

Distribution of points on the sphere

$$t = 1$$
, dim $P_1 = 4$, $X_N = \{\mathbf{z}_1, \dots, \mathbf{z}_4\} \subset S^2$,

 $G_1(X_N) \in R^{4 \times 4}$



Regular tetrahedron: $G_1(X_N) = \frac{1}{\pi}I_4$, $\operatorname{cond}(G_1(X_N)) = 1$.

Minimizing the Condition Number of a Gram Matrix on the Sphere 3/25

Four sets of points on the sphere

minimimum energy system

extremal system

spherical design

minimum cond points

$$\operatorname{argmin} \sum_{i \neq j}^{N} \frac{1}{\|\mathbf{z}_{i} - \mathbf{z}_{j}\|}$$
$$\operatorname{argmax} \det(G_{t}(X_{N}))$$
$$4\pi \sum_{i \neq j}^{N}$$

$$\int_{\mathbb{S}^2} p(\mathbf{z}) d\mathbf{z} = \frac{4\pi}{N} \sum_{i=1}^N p(\mathbf{z}_i), \quad \forall p \in \mathbb{P}_t$$

optimal solution of problem:

$$\min \frac{\lambda_{\max}(G_t(X_N))}{\lambda_{\min}(G_t(X_N))}$$

Minimizing the Condition Number of a Gram Matrix on the Sphere 4/25

Spherical *t*-Design

Definition 1 (Delsarte-Goethals-Seidel 1977) A spherical *t*-design is a set of N points $X_N = {\mathbf{z}_1, \ldots, \mathbf{z}_4} \subset S^2$ such that

$$\frac{1}{4\pi} \int_{S^2} p(\mathbf{z}) d\mathbf{z} = \frac{1}{N} \sum_{i=1}^N p(\mathbf{z}_i)$$

for every polynomial $p \in P_t$.

- The average value of $p \in P_t$ on the whole sphere equals the average value of p on the set.
- The equally weighted cubature rule is exact for all $p \in P_t$.

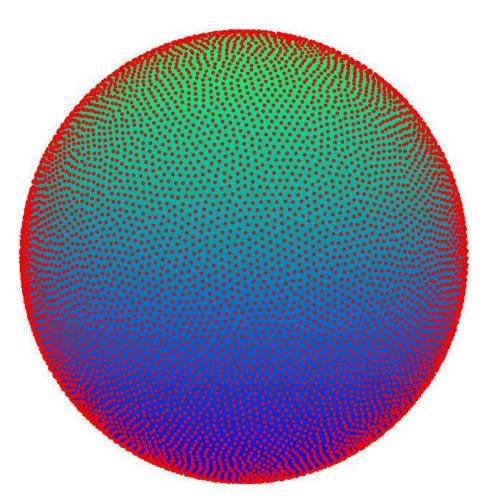
No answer to what is the number of points needed to construct a spherical *t*-design for any $t \ge 1$? Whether $N = O(t^2)$ as $t \to \infty$?

Can we guarantee the existence of spherical *t*-designs with $(t+1)^2$ points and well-conditioned Gram matrices ?

Minimizing the Condition Number of a Gram Matrix on the Sphere 5/25

Spherical 100-design

Chen-Frommer-Lang, to appear in Numer. Math.



Minimizing the Condition Number of a Gram Matrix on the Sphere 6/25

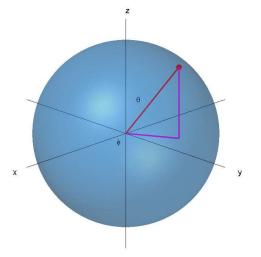
Reformulation I: Parametrization

$$N = (t+1)^2, \quad m = 2N - 3, \quad X_N = \{\mathbf{z}_1, \dots, \mathbf{z}_4\} \subset S^2.$$

Represent $\mathbf{z}_i \in X_N \subset S^2$ using polar coordinates with angles θ_i , ϕ_i .

 $\mathbf{z}_i = [\sin(\theta_i)\cos(\phi_i), \quad \sin(\theta_i)\sin(\phi_i), \quad \cos(\theta_i)]^T, \quad \theta_1 = 0, \phi_1 = \phi_2 = 0$

Fix \mathbf{z}_1 on the north pole and \mathbf{z}_2 on the zero meridian. $x_{\theta} = [\theta_2, \dots, \theta_N]^T, \quad x_{\phi} = [\phi_3, \dots, \phi_N]^T, \quad x = [x_{\theta}^T, x_{\phi}^T]^T \in \mathbb{R}^m$



Minimizing the Condition Number of a Gram Matrix on the Sphere 7/25

Reformulation II, Gram matrix

Define the Legendre polynomials by the recurrence

 $p_0(u) = 1$ $p_1(u) = z$ $\ell p_\ell(z) = (2\ell - 1)up_{\ell-1}(u) - (\ell - 1)p_{\ell-2}(u)$ for $\ell = 2, \dots, t, \quad u \in [-1, 1].$

Define the Jacobi polynomials

$$J_t(u) = \sum_{\ell=0}^t (2\ell + 1)p_\ell(u)$$

Define the Gram matrix $G(x) \in \mathbb{R}^{N \times N}$

$$G_{i,j}(X_N(x)) = J_t(\mathbf{z}_i(x)^T \mathbf{z}_j(x))$$

Minimizing the Condition Number of a Gram Matrix on the Sphere 8/25

Euclidean condition number

 $V \in R^{\ell \times n}$ with $\ell \ge n$, and $\operatorname{rank}(V) = n$. Let $A = V^T V$ The Euclidean condition number of V is defined by

$$\kappa(V) = \max_{y \neq 0} \frac{\|y\|}{\|Vy\|} \max_{z \neq 0} \frac{\|Vz\|}{\|z\|} = \|V\| \|V^{\dagger}\| = \sqrt{\kappa(A)} = \frac{\sqrt{\lambda_1(A)}}{\sqrt{\lambda_n(A)}},$$

 $V^{\dagger} = (V^T V)^{-1} V^T$ is the Moore-Penrose generalized inverse of V. Suppose each entry of V(x) is a continuously differentiable function of $x \in R^m$. Let $A(x) = V(x)^T V(x)$.

We consider

where \mathcal{X} is a convex set in \mathbb{R}^m .

A small Vandermonde-like matrix

$$V(x) = \begin{pmatrix} 1 & -x \\ 1 & 0 \\ 1 & x \end{pmatrix}, \quad A(x) = V(x)^T V(x) = \begin{pmatrix} 3 & 0 \\ 0 & 2x^2 \end{pmatrix}$$

$$f(x) = \frac{\lambda_1(A(x))}{\lambda_n(A(x))} = \begin{cases} \frac{3}{2x^2}, & 0.5 \le x \le \sqrt{1.5} \\ \frac{2x^2}{3}, & \sqrt{1.5} \le x \le 1.5. \end{cases}$$

consider
$$f(x)$$

subject to $x \in [0.5, 1.5]$.

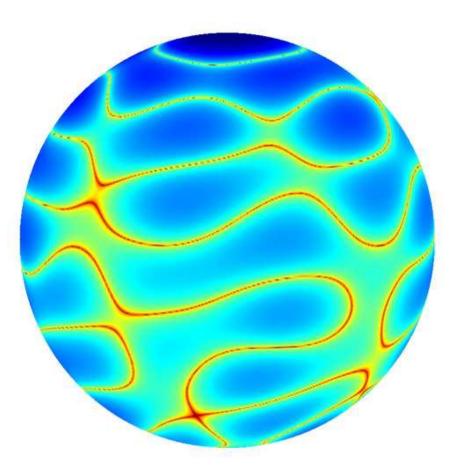
 $x^* = \sqrt{1.5}$ is the minimizer. The Clarke generalized gradient at x^* is

We

$$\partial f(x^*) = \operatorname{conv}\left\{-2\sqrt{\frac{2}{3}}, \quad 2\sqrt{\frac{2}{3}}\right\} = 2\sqrt{\frac{2}{3}}[-1,1].$$

Minimizing the Condition Number of a Gram Matrix on the Sphere 10/25

An example on the sphere



The condition number for degree t = 9, N = 100 extremal points. The plot is of the condition number of the Gram matrix *G* when the point at the north pole is moved to locations over the whole sphere.

Least squares approximation on [-1, 1]

Let $\{p_j, j = 0, ..., n-1\}$ be a basis for $\mathbb{P}_{n-1}[-1, 1]$, the linear space of polynomials of degree $\leq n-1$. For given ℓ distinct real numbers

$$-1 \le a_1 < a_2 < \ldots < a_\ell \le 1$$

we consider the weighted Vandermonde-like matrix

$$V(w,a) = \begin{pmatrix} w_1 p_0(a_1) & w_1 p_1(a_1) & w_1 p_2(a_1) & \dots & w_1 p_{n-1}(a_1) \\ w_2 p_0(a_2) & w_2 p_1(a_2) & w_2 p_2(a_2) & \dots & w_2 p_{n-1}(a_2) \\ \vdots & \vdots & \vdots & & \vdots \\ w_\ell p_0(a_\ell) & w_\ell p_1(a_\ell) & w_\ell p_2(a_\ell) & \dots & w_\ell p_{n-1}(a_\ell) \end{pmatrix}$$

$$w = (w_1, \dots, w_\ell)^T$$
 and $a = (a_1, \dots, a_\ell)^T$.

Minimizing the Condition Number of a Gram Matrix on the Sphere 12/25

Generalized gradient

Let d(x) be the multiplicity of $\lambda_1(A(x))$, and b(x) be the multiplicity of $\lambda_n(A(x))$. Let A(x) admit an eigenvalue decomposition

 $A(x) = U(x) \operatorname{diag}(\lambda(A(x))) U(x)^T$

with $U(x)^T U(x) = I$. Denote

 $U_{\alpha} = (u_1(x), \dots, u_{d(x)}(x)), \text{ and } U_{\beta} = (u_{n-b(x)+1}(x), \dots, u_n(x)).$

Suppose that rank(V(x)) = n. Then *f* is Clarke regular and the Clarke generalized gradient $\partial f(x)$ is

$$\{g \in R^m : g_k = \frac{1}{\lambda_n(A(x))} \langle U_{\alpha}^T A_k(x) U_{\alpha}, P_{\alpha} \rangle - \frac{\kappa(A(x))}{\lambda_n(A(x))} \langle U_{\beta}^T A_k(x) U_{\beta}, P_{\beta} \rangle$$
$$k = 1, \dots, m$$
where $P_{\alpha} \in D_{d(x)}^+, \operatorname{tr}(P_{\alpha}) = 1, P_{\beta} \in D_{b(x)}^+, \operatorname{tr}(P_{\beta}) = 1\}.$

Minimizing the Condition Number of a Gram Matrix on the Sphere 13/25

Some properties

1. $f(x) = \kappa(A(x))$ is strongly semismooth on \mathcal{X} .

2. Suppose that V(x) is a linear mapping of x on \mathcal{X} . Then $\lambda_1(A(x))$ with $A(x) = V(x)^T V(x)$ is a convex function on \mathcal{X} .

3. Let B be a fixed $m \times n$ matrix with $m \ge n$ and rank(B) = n. Define

$$h(W) = \kappa(B^T W B), \quad W \in S_m^{++}.$$

Then h is quasi-convex and strongly pseudo-convex.

Example: V(x) = XB, where $X \in D_m^{++}$ with diagonal elements $x_i, i = 1, ..., m$, $A(V(x)) = B^T X^T X B = B^T W B$.

Smoothing function I

We introduce the smoothing function of the condition number as follows:

$$\tilde{f}(x,\mu) = -\frac{\ln(\sum_{i=1}^{n} e^{\lambda_i(A(x))/\mu})}{\ln(\sum_{i=1}^{n} e^{-\lambda_i(A(x))/\mu})}.$$
(2)

In numerical computations, we use an equivalent formula

$$\tilde{f}(x,\mu) = \frac{\lambda_1(A(x)) + \mu \ln(\sum_{i=1}^n e^{(\lambda_i(A(x)) - \lambda_1(A(x)))/\mu})}{\lambda_n(A(x)) - \mu \ln(\sum_{i=1}^n e^{(\lambda_n(A(x)) - \lambda_i(A(x)))/\mu})},$$

which is more numerically stable than (2).

Smoothing function II

(i) $\tilde{f}(\cdot, \mu)$ is continuously differentiable for any fixed $\mu > 0$.

(ii) There exists c > 0 such that for any $x \in \mathcal{X}$ and $\mu \leq \frac{\lambda_n}{2 \ln n}$

$$0 \le \tilde{f}(x,\mu) - f(x) \le c\mu.$$
(3)

$$\lim_{x \to \bar{x}, \mu \downarrow 0, } \tilde{f}(x, \mu) = f(\bar{x}).$$

(iii) For any $\bar{x} \in \mathcal{X}$, $\{\lim_{x \to \bar{x}, \mu \downarrow 0} \nabla_x \tilde{f}(x, \mu)\}$ is nonempty and bounded.

$$\{\lim_{x\to\bar{x},\mu\downarrow 0,}\nabla_x \tilde{f}(x,\mu)\}\subset \partial f(\bar{x}).$$

(iv) For any fixed $\mu > 0$, there exists a constant L_{μ} such that

$$\|\nabla \tilde{f}(x,\mu) - \nabla \tilde{f}(y,\mu)\| \le L_{\mu} \|x - y\|.$$
(4)

Minimizing the Condition Number of a Gram Matrix on the Sphere 16/25

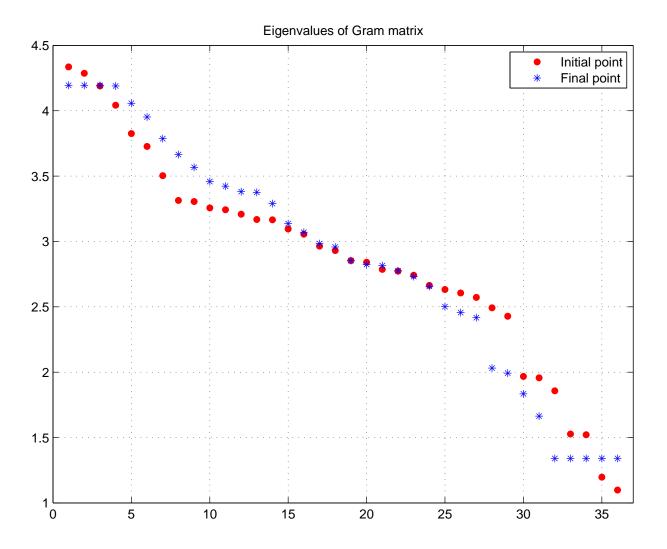
Convergence

Theorem From any staring point $x^0 \in \mathcal{X}$, the sequence $\{x^k\}$ generated by the SPG method is contained in \mathcal{X} and any accumulation point \bar{x} of $\{x^k\}$ is a Clarke stationary point, that is, there is $g \in \partial f(\bar{x})$ such that

 $\langle g, x - \bar{x} \rangle \ge 0, \quad \forall x \in \mathcal{X}.$

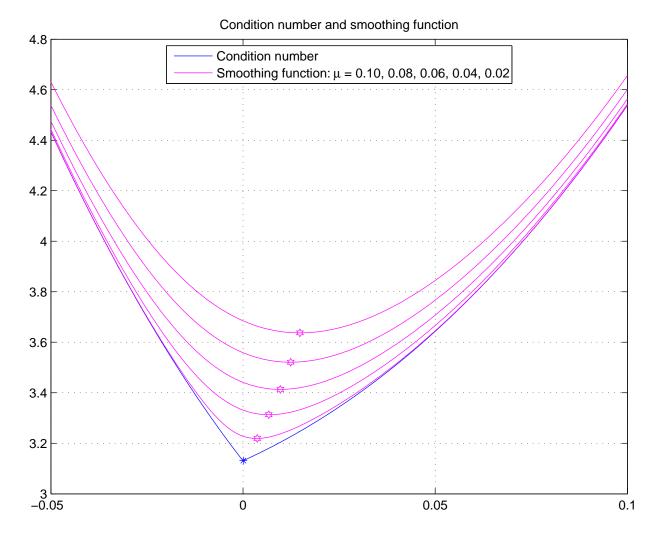
Corollary If the function f(x) is pseudoconvex in a neighborhood $B(\bar{x}) \subset \mathcal{X}$, then the accumulation point is a local optimal solution and if the function f(x) is pseudoconvex on \mathcal{X} , then the accumulation point is a global optimal solution over \mathcal{X} .

Eigenvalues of a Gram matrix on the sphere



The eigenvalues of 36×36 Gram matrix for degree 5, with 36 points on
the sphere.Minimizing the Condition Number of a Gram Matrix on the Sphere18/25

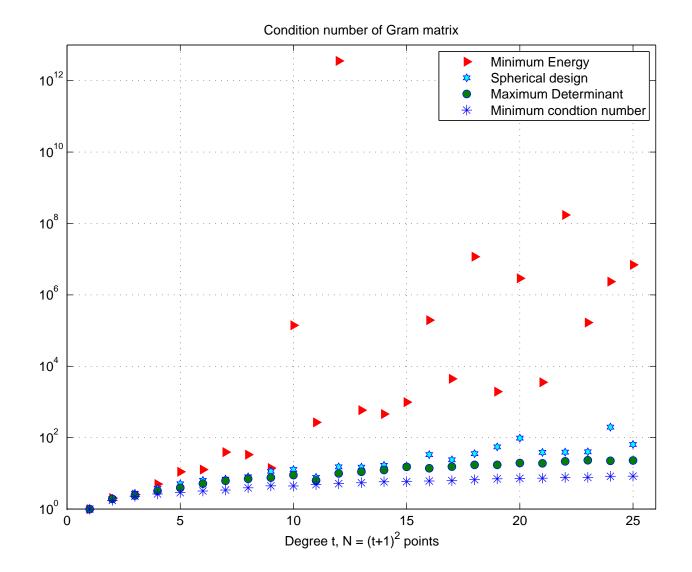
Smoothing function



For the same Gram matrix, $f(x^* + \alpha \nabla_x \tilde{f}(x^*, 0.0766))$, $\alpha \in [-0.05, 0.1]$.

Minimizing the Condition Number of a Gram Matrix on the Sphere 19/25

Condition number on the four sets of points



Minimizing the Condition Number of a Gram Matrix on the Sphere 20/25

References

- X. Chen and R.S. Womersley, Existence of solutions to systems of underdetermined equations and spherical designs, SIAM J. Numer. Anal. 44(2006) 2326-2341.
- 2. X. Chen, A. Frommer and B. Lang, Computational existence proofs for spherical *t*-designs, to appear in Numer. Math.

www.math.uni - wuppertal.de/SciComp/SphericalTDesigns

- 3. C. An, X. Chen, I.H. Sloan and R.S. Womersley, Well-conditioned spherical designs on 2-sphere, to appear in SIAM J. Numer. Anal.
- 4. X. Chen, R.S. Womersely and J. Ye, Minimizing the condition number of a Gram matrix, to appear in SIAM J. Optim.

Thank you very much

Minimizing the Condition Number of a Gram Matrix on the Sphere 22/25

Five sets of points in the interval [-1, 1]

equally spaced points $a_i = -1 + \frac{2(i-1)}{\ell-1}, i = 1, \dots, \ell.$

Gauss points

Gauss Lobatto points

 $\int_{-1}^{1} p(\tau) d\tau = \sum_{i=0}^{n-1} \alpha_i p(a_i), \quad \forall p \in \mathbb{P}_{2n}$ $a = \operatorname{argmax} \det(V(x)^T V(x)).$

Chebyshev points

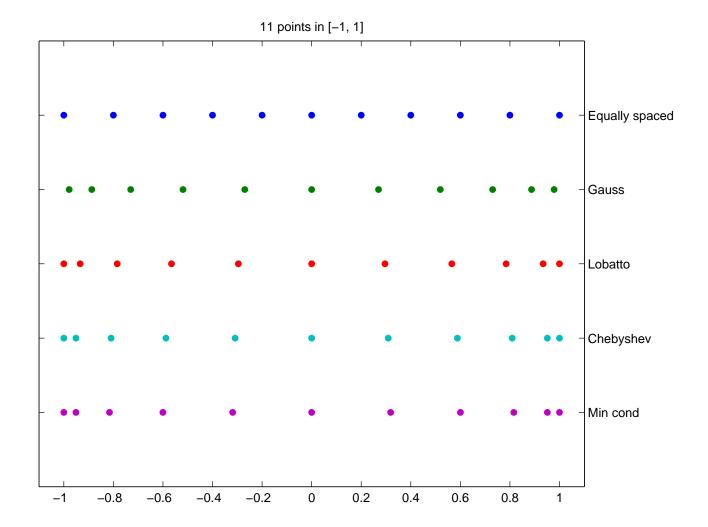
minimum cond points

$$a_i = \cos \frac{\pi (2i-1)}{2\ell}, \quad i = 1, \dots, \ell.$$

a = optimal solution of (1).

Here $\alpha_i, i = 0, ..., n - 1$ are the integral values of the Lagrange interpolation polynomials on [-1, 1].

Distribution of points



Minimizing the Condition Number of a Gram Matrix on the Sphere 24/25

condition number and determinant

	condition number	determinant
equally spaced points	1.946479e+008	5.755277e-022
Gauss points	1.767123e+007	4.616572e-020
Lobatto points	9.606328e+006	7.968101e-019
Chebyshev points	8.307060e+006	6.310887e-019
min cond points	8.176691e+006	5.826573e-019

Values of the condition number and determinant at equally spaced points, Gauss Points, Gauss Lobatto points, Chebyshev points and minimum cond points