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Abstract. A set XN of N points on the unit sphere is a spherical t-design if the average value
of any polynomial of degree at most t over XN is equal to the average value of the polynomial over
the sphere. This paper considers the characterization and computation of spherical t-designs on the
unit sphere S2 ⊂ R3 when N ≥ (t + 1)2, the dimension of the space Pt of spherical polynomials of
degree at most t. We show how to construct well conditioned spherical designs with N ≥ (t + 1)2

points by maximizing the determinant of a matrix while satisfying a system of nonlinear constraints.
Interval methods are then used to prove the existence of a true spherical t-design very close to the
calculated points and to provide a guaranteed interval containing the determinant. The resulting
spherical designs have good geometrical properties (separation and mesh norm). We discuss the
usefulness of the points for both equal weight numerical integration and polynomial interpolation on
the sphere, and give an example.
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1. Introduction. Let XN = {x1, . . . ,xN} be a set of N points on the unit
sphere Sd = {x | ‖x‖2 = 1} ⊂ Rd+1, and let Pt = Pt(Sd) be the linear space of
restrictions of polynomials of degree at most t in d + 1 variables to Sd. The set XN is
a spherical t-design if

1
N

N∑

j=1

p (xj) =
1
|Sd|

∫

Sd

p(x)dω(x) (1.1)

holds for all spherical polynomials p ∈ Pt(Sd), where dω(x) denotes the surface mea-
sure on Sd, and |Sd| is the surface area of the unit sphere Sd. In words, we see that
XN is a spherical t-design if the average value over XN of any polynomial of degree
at most t is equal to the average value of the polynomial over the sphere.

The concept of spherical t-designs was introduced by Delsarte, Goethals, and
Seidel [9] in 1977. Since then, spherical t-designs have been studied extensively. In
2009, Bannai and Bannai gave a comprehensive survey of research on spherical t-
designs in the last three decades [4].

In this paper we focus our attention on S2. The study of distribution of points
on S2 has many applications, including climate modeling and global approximation in
geophysics and virus modeling in bioengineering, as the earth and cell are approximate
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spheres. We look at spherical t-designs on S2 that are good for numerical integration
and also (if the number of points N is right) for polynomial interpolation.

It is well known that for d = 2 the dimension of Pt is (t+1)2. For N ≥ (t+1)2, we
introduce a new concept of extremal spherical t-designs. These are spherical t-designs
for which the determinant of a certain (t + 1)2 × (t + 1)2 Gram matrix, see (3.5a), or
equivalently the product of the singular values of a basis matrix, takes its maximum
value. This extends the definition of extremal spherical design introduced in [7] for
the case N = (t + 1)2.

As is well known, there is no proof that spherical t-designs (and hence extremal
spherical t-designs) exist with N = (t + 1)2 points (or even with N = O (t + 1)2

points) for all degrees t. The above definition is empty if spherical t-designs do not
exist. However, from the work of [6] we know that for d = 2 spherical t-designs with
(t + 1)2 points do exist for all degrees t up to 100, so extremal spherical t-designs
are well defined up to at least t = 100, but until now no attempt has been made to
compute them. This range of t values is large enough to persuade us of the usefulness
of the definition. Moreover, Seymour and Zaslavsky [26] showed that a spherical t-
design exists for any t if N is sufficiently large. This is one of our motivations for
considering N ≥ (t + 1)2.

In this paper we construct approximate extremal spherical t-designs for d = 2
for all t up to 60 and then use interval methods to prove that a well conditioned
true spherical t-design exists in a small neighborhood of the numerically computed
point set. We also compute a relatively narrow interval containing the determinant
of the matrix for the true spherical design. This is a new kind of problem in interval
analysis, and introduces a preconditioned matrix interval technique. In practice the
computation is extremely stable because of the maximizing (subject to the constraint)
of the determinant.

Our claim is that the constructed well conditioned spherical t-designs with N ≥
(t + 1)2 are valuable for numerical integration (where (1.1) provides an equal weight
integration rule) and if N = (t + 1)2 also for polynomial interpolation. When N =
(t+1)2 the quadrature rule and the interpolant are consistent, in that the quadrature
rule for a given function f is the exact integral of the interpolant of f .

The constructed point sets also have very good geometrical properties, as we dis-
cuss in Section 5. One might be tempted to believe that every spherical t-design is a
well distributed point set, but this is not the case. First, the tensor product construc-
tion of Korevaar and Meyers [17] as well as Bajnok [2], have O

(
t3

)
points (compared

to (t + 1)2 points for the current construction), and very bad geometrical properties.
Second, Hesse and Leopardi [14] have pointed out that any non-overlapping union of
spherical t-designs is also a spherical t-design. This makes it possible to construct a
spherical t-design with an arbitrarily small minimum distance between points.

In the next section we summarize the required background on spherical t-designs.
In Section 3 we give several variational characterizations of spherical t-designs based
on fundamental systems, and also present a new variational characterization that
extends the existing result in [29]. We also introduce the concept of extremal spherical
t-designs, and generalize the nonlinear system approach of Chen and Womersley [7] to
provide the foundation for the later computations in the present paper. In Section 4
we describe the computational construction and the interval analysis used to overcome

2



numerical uncertainties from rounding error. In Section 5 we consider the geometry of
well conditioned spherical t-designs, describe what is known, and what is conjectured
about their geometry. In Section 6 for N = (t+1)2 we present numerical evidence on
the quality of the resulting well conditioned spherical t-designs on S2 for interpolation
by computing the resulting Lebesgue constant and comparing it with the best known
Lebesgue constant. Finally, in Section 7 we give an example of both integration and
interpolation with these well conditioned spherical t-designs.

2. Background. Lower bounds for the number of points N needed to construct
a spherical t-design are [9]

N ≥ N∗ =





(t+1)(t+3)
4 , t is odd,

(t+2)2

4 , t is even.

A catalogue of known spherical t-design on S2 with small values of N is given by
Hardin and Sloane [13]. These authors also suggested a sequence of putative spherical
t-designs with N = 1

2 t2 + o(t2), but there is no proof that the construction is valid for
all values of t. Results in [29, 32] also provide strong numerical evidence that there
exist spherical t-designs with close to (t + 1)2/2 points.

In this paper, we are interested in finding well conditioned spherical t-designs
with N ≥ (t + 1)2. Rather than minimizing the number of points, the extra degrees
of freedom are used to ensure well conditioning, in a sense to be made clear later in
the paper.

Let {Y`,k : k = 1, . . . , 2`+1, ` = 0, 1, . . . , t} be a set of (real) spherical harmonics
orthonormal with respect to the L2 inner product,

(f, g)L2 =
∫

S2
f(x)g(x)dω(x),

where Y`,k is a spherical harmonic of degree ` [20]. It is well known that the addition
theorem for spherical harmonics on S2 gives

2`+1∑

k=1

Y`,k(x)Y`,k(y) =
2` + 1

4π
P` (x · y) ∀ x,y ∈ S2, (2.1)

where x ·y is the inner product in R3 and P` : [−1, 1] → R is the Legendre polynomial
of degree ` normalized so that P` (1) = 1.

For t ≥ 1, and N ≥ (t + 1)2, let Y0
t ∈ R((t+1)2−1)×N be the ((t + 1)2 − 1) × N

matrix defined by

Y0
t (XN ) := [Y`,k(xj)], k = 1, . . . , 2` + 1, ` = 1, . . . , t; j = 1, . . . , N, (2.2)

and let Yt(XN ) be a matrix with an added leading row consisting of the degree 0
spherical harmonic, that is

Yt(XN ) :=




1√
4π

eT

Y0
t (XN )


 ∈ R(t+1)2×N , (2.3)
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where e = [1, . . . , 1]T ∈ RN .

It is well known (see for example [4, 9]) that there are many equivalent conditions
for a set XN ⊂ S2 to be a spherical t-design. Among these equivalent statements, one
that plays an important role in the subsequent discussion is the following:

Proposition 2.1. [29] A finite set XN = {x1, . . . ,xN} ⊂ S2 is a spherical
t-design if and only if

N∑

j=1

Y`,k(xj) = 0, k = 1, . . . , 2` + 1, ` = 1, . . . , t. (2.4)

Using (2.2), the condition (2.4) can be written in matrix-vector form as

rt(XN ) := Y0
t (XN )e = 0, (2.5)

where rt(XN ) ∈ R(t+1)2−1.

Next, we define the nonnegative quantity

AN,t (XN ) : =
4π

N2
rt(XN )T rt(XN )

=
4π

N2
eT Y0

t (XN )T Y0
t (XN )e

=
4π

N2

N∑

j=1

N∑

i=1

t∑

`=1

2` + 1
4π

P`(xj · xi).

It is easy to see that, as pointed out in [29], XN is a spherical t-design if and only
if AN,t(XN ) = 0. The computational difficulty is in knowing when using computer
arithmetic whether or not a small number truly corresponds to zero. Therefore,
following [29], we also consider conditions expressed in terms of stationary point sets
of AN,t (XN ) .

Definition 2.2. A point x ∈ S2 is a stationary point of f ∈ C1
(
S2

)
if

(∇∗f) (x) = 0, where ∇∗ is the surface gradient [12] of f . Similarly, XN = {x1, . . . ,xN}
⊂ S2 is a stationary point set of AN,t if

(∇∗xi
AN,t

)
(XN ) = 0, i = 1, . . . , N.

Sloan and Womersley [29] used a condition based on the mesh norm to help determine
if a stationary point set of AN,t (XN ) is a spherical t-design. The mesh norm is
expressed in terms of the geodesic distance between two points x and y on the unit
sphere S2, defined by dist(x,y) := cos−1(x · y) ∈ [0, π].

Definition 2.3. The mesh norm hXN of a point set XN ⊂ S2 is

hXN := max
y∈S2

min
xi∈XN

dist(y,xi). (2.6)

Proposition 2.4. [29] If XN ⊂ S2 is a stationary point of AN,t(XN ) for which
the mesh norm satisfies

hXN <
1

t + 1
, (2.7)
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then XN is a spherical t-design.

Since many optimization methods are efficient for finding a stationary point but
not a global optimal solution, Proposition 2.4 provides a good way to use existing
optimization software to find spherical t-designs. However, the mesh norm condition
(2.7) is very strong. The mesh norm is the covering radius, that is the smallest radius
for N identical spherical caps centered at the points xi so that the caps cover the
sphere. Thus the whole area of all the caps must be at least that of the sphere, giving

N2π(1− cos hX
N

) = N4π sin2
hX

N

2
≥ 4π.

From the inequality sinx ≤ x, for x ≥ 0, we have the lower bound hX
N
≥ 2N− 1

2 on
mesh norm. Thus the condition (2.7) in Proposition 2.4 implies that N > 4(t + 1)2,
an inequality that is far from sharp. This means that Proposition 2.4 requires more
than 4(t + 1)2 points to ensure that XN is a spherical t-design.

Chen and Womersley [7] reformulated the problem of finding a spherical t-design
with N = (t + 1)2 points as a system of underdetermined nonlinear equations. The
nonlinear function Ct : (S2)N → RN−1 is defined by

Ct(XN ) := EGt(XN )e, (2.8)

where

E : = [1,−IN−1] ∈ R(N−1)×N , (2.9a)

Gt (XN ) : = Yt (XN )T Yt (XN ) (2.9b)

and 1 : = [1, . . . , 1]T ∈ RN−1. (2.9c)

Proposition 2.5. [7] Let N = (t + 1)2. Suppose the Gram matrix Gt(XN ) is
nonsingular. Then XN is a spherical t-design if and only if Ct (XN ) = 0.

We shall later prove a generalization of Proposition 2.5 for N ≥ (t + 1)2, see
Theorem 3.10. It is easily seen that the condition Ct (XN ) = 0 in Proposition 2.5 is
equivalent to the statement that the row sums of Gt(XN ) are all equal.

The condition in Proposition 2.5 that Gt(XN ) is nonsingular is essential, as shown
by Example 2 of [6]. In that example t = 1, and X4 consists of the four points:

x1 =




0
0
1


 , x2 =




1
0
0


 , x3 =

1
2




1
−√2

1


 , x4 =

1
2




1√
2

1


 .

The Gram matrix G1 for these points is

G1(X4) =
1
4π




4 1 2.5 2.5
1 4 2.5 2.5

2.5 2.5 4 1
2.5 2.5 1 4




which is singular. Since the row sums are each equal to 2.5/π, we have C1(X4) = 0,
yet X4 is not a spherical 1-design, since it fails to give the correct integral 0 for the

5



polynomial p ∈ P1 defined by p(x) = x where x ∈ [x, y, z]T ∈ S2, as

4π

4

4∑

j=1

p(xj) = π

(
0 + 1 +

1
2

+
1
2

)
6= 0 =

∫

S2
p(x)dω(x).

Based on Proposition 2.5 and interval arithmetic, Chen, Frommer and Lang [6]
proved the existence of spherical t-designs with N = (t + 1)2 points for t up to 100.

3. Fundamental systems and spherical t-designs. The concept of a funda-
mental system plays a key role in this paper.

Definition 3.1. The set XN = {x1, . . . ,xN} ⊂ S2 is a fundamental system for
Pt if the zero polynomial is the only element of Pt that vanishes at each point in XN ,
that is, if

p ∈ Pt, p(xi) = 0, i = 1, . . . , N (3.1)

implies p(x) = 0 for all x ∈ S2.

The simplest situation is when N = (t + 1)2, in which case XN is a fundamental
system for Pt if and only if Yt(XN ) is nonsingular, or equivalently if and only if
Gt(XN ) = Yt(XN )T Yt(XN ) is nonsingular. The definition can also be applied when
N > (t + 1)2, in which case the next lemma states that Definition 3.1 is equivalent to
the condition that Yt(XN ) ∈ R(t+1)2×N has full row rank. Note that a fundamental
system XN for Pt must have N ≥ (t + 1)2.

Lemma 3.2. A set XN ⊂ S2 is a fundamental system for Pt if and only if Yt(XN )
is of full row rank (t + 1)2 .

Proof. Firstly, suppose that for some XN = {x1, . . . ,xN} ⊂ S2 we have row
rank(Yt(XN )) < (t + 1)2. Then the rows of Yt(XN ) are linearly dependent, so there
exist λ`,k ∈ R not all zero, such that

t∑

`=0

2`+1∑

k=1

λ`,kY`,k(xj) = 0, j = 1, . . . , N. (3.2)

Define pt ∈ Pt by

pt(x) =
t∑

`=0

2`+1∑

k=1

λ`,kY`,k(x) ∀ x ∈ S2. (3.3)

Then pt is a non-zero polynomial satisfying (3.1), thus XN is not a fundamental
system.

On the other hand, suppose there exists pt ∈ Pt, pt 6≡ 0, such that (3.1) holds.
Then, as Y`,k, k = 1, . . . , 2` + 1, ` = 0, . . . , t, form a basis for Pt, there exist scalars
λ`,k such that (3.3) holds. Then (3.1) gives

t∑

`=0

2`+1∑

k=1

λ`,kY`,k(xi) = pt(xi) = 0, i = 1, . . . , N. (3.4)

Thus the rows of Yt(XN ) are linearly dependent and hence row rank(Yt(XN )) <
(t + 1)2. ¤
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Later for N ≥ (t + 1)2 we will use both of the matrices

Ht(XN ) := Yt(XN )Yt(XN )T ∈ R(t+1)2×(t+1)2 , (3.5a)

Gt (XN ) := Yt (XN )T Yt (XN ) ∈ RN×N . (3.5b)

The following result is an immediately consequence of Lemma3.2.

Corollary 3.3. A set XN ⊂ S2 is a fundamental system for Pt if and only if
Ht(XN ) is nonsingular.

A system of N = (t + 1)2 points can be fundamental but of very poor quality
in other respects. This is even more true when N ≥ (t + 1)2, since once a system
of points is fundamental the addition of further points at arbitrary locations cannot
change the fundamental nature of the system. Some fundamental systems of good
quality are the extremal fundamental systems of N = (t + 1)2 points of Sloan and
Womersley [28], which maximize the determinant of Gt(XN ). As pointed out in [28],
extremal systems are good for polynomial interpolation and have good geometrical
properties.

Chen and Womersley [7], and then Chen, Frommer and Lang [6], verified that a
spherical t-design exists in a neighborhood of an extremal system. This leads to the
idea of extremal spherical t-designs, which first appeared in [7] for the special case
N = (t + 1)2. We here extend the definition to N ≥ (t + 1)2.

Definition 3.4. A set XN = {x1, . . . ,xN} ⊂ S2 of N ≥ (t + 1)2 points is an ex-
tremal spherical t-design if the determinant of the matrix Ht(XN ) := Yt(XN )Yt(XN )T

∈ R(t+1)2×(t+1)2 is maximal subject to the constraint that XN is a spherical t-design.

Definition 3.4 is a generalization of the concept of an extremal spherical t-design,
defined originally in [7] only for N = (t + 1)2 , since in that special case the fact that
the matrix is square allows us to write

det(Ht(XN )) =det(Yt(XN )Yt(XN )T ) = det(Yt(XN ))2 (3.6a)

=det(Yt(XN )T Yt(XN )) = det(Gt(XN )). (3.6b)

Note that for N > (t + 1)2 maximizing det(Gt(XN )) = det(Yt(XN )T Yt(XN ))
would make no sense, as Gt(XN ) always has N − (t + 1)2 zero eigenvalues.

For N ≥ (t + 1)2, the squares of the singular values σi(Yt(XN )) of Yt(XN ) have
a fixed sum, since

(t+1)2∑

i=1

σ2
i (Yt(XN )) =trace(Yt(XN )Yt(XN )T ) (3.7a)

=
t∑

`=0

2`+1∑

k=1

N∑

j=1

Y 2
`,k(xj) (3.7b)

=
N(t + 1)2

4π
, (3.7c)

where the last step uses the addition theorem and P`(1) = 1. From (3.7c) and the
7



inequality of the arithmetic and geometric means we have

det(Ht(XN )) = det(Yt(XN )Yt(XN )T ) =
(t+1)2∏

i=1

σ2
i (Yt(XN )) ≤

(
(t + 1)2

4π

)N

. (3.8)

The constrained maximization of the product of the singular values when the sum
of the singular values is fixed has the effect of producing well conditioned matrices
Ht(XN ) [8].

The computational construction of extremal spherical t-designs is discussed in
Section 4. There we maximize instead of det(Ht(XN )) its logarithm,

log det(Ht(XN )) = 2
(t+1)2∑

i=1

log σi(Yt(XN )). (3.9)

It needs to be emphasized that we can never know if a computed set of points is
a global rather than a local maximizer. Thus in practice we prefer to say that the
computed sets are well conditioned spherical designs, rather than to claim that they
are truly extremal spherical designs. Section 4 discusses the use of interval methods
to prove there exists a true well conditioned spherical design close to the computed
spherical design and to provide rigorous bounds on log det(Ht(XN )).

3.1. Mesh norm and fundamental system. Theorem 3.5 below shows that
hX

N
< 1/t implies XN is a fundamental system for Pt, thus the mesh norm condition

in Proposition 2.4 (which is that hX
N

< 1/(t+1)) is much stronger than the condition
that XN is a fundamental system for Pt. Theorem 3.6 shows that, for N ≥ (t+2)2, if
XN is both a fundamental system for Pt+1 and a stationary point of AN,t(XN ) then
XN is a spherical t-design.

Theorem 3.5. For t a positive integer, if the mesh norm of the point set XN ⊂ S2

satisfies hX
N

< 1
t , then XN is a fundamental system for Pt.

The idea of the proof is adapted from the proof of Theorem 5 in [29].

Proof. Suppose the contrary, that row rank(Yt(XN )) < (t + 1)2. Then from
Lemma 3.2 there is a non-zero polynomial pt ∈ Pt defined by (3.3) which vanishes
at all points in XN . Now we show that such a pt cannot exist. Assume pt takes
its maximum absolute value at x0 ∈ S2. By definition of the mesh norm hX

N
of

XN = {x1, . . . ,xN}, there exists xi∗ , i∗ ∈ {1, . . . , N}, such that

dist(xi∗ ,x0) ≤ hX
N

<
1
t
.

Now let q be the restriction of pt to the great circle through x0 and xi∗ . Then q is a
trigonometric polynomial of degree ≤ t, which satisfies both

q(x0) = pt(x0) = ±‖pt‖∞ and q(xi∗) = 0.

The Bernstein inequality

sup |q′| ≤ t ‖q‖∞
8



implies

|q(x0)− q(xi∗)| ≤ sup |q′| dist(xi∗ ,x0) ≤ t||q||∞dist(xi∗ ,x0),

and hence

‖pt‖∞ = |q(x0)| = |q(x0)− q(xi∗)| ≤ t||q||∞dist(xi∗ ,x0) < t ‖q‖∞
1
t

= ‖pt‖∞ ,

which is a contradiction. ¤
The following example shows that the conditions hXN

< 1/(t + 1) in Proposition
2.4 and hXN

< 1/t in Theorem 3.5, although sufficient, are not necessary.

Example 3.1 (Regular tetrahedron). We consider the regular tetrahedron ver-
tices X ∗4 = {x∗1,x∗2,x∗3,x∗4} ⊂ S2 where

x∗1 =




0
0
1


 , x∗2 =



√

8/3
0

−1/3


 , x∗3 =



−√2/3√

2/3
−1/3


 , x∗4 =



−√2/3
−

√
2/3

−1/3


 ,

see Figure 3.1. It is well known that X ∗4 is a spherical 2-design and a fundamental

Fig. 3.1: Regular tetrahedron on S2

system for P1, that G1(X ∗4 ) = 1
π I4, and hence det(G1(X ∗4 )) = (1/π)4. The set X ∗4

also an extremal spherical 1-design. Yet hXN
< 1/t fails for every positive integer t,

as the mesh norm is hX∗4 = cos−1(1/3) ≈ 1.2310 > 1.

3.2. Stationary points and spherical designs. This subsection gives suffi-
cient conditions for a stationary point set of AN,t to be a spherical t-design. (See
Section 2 for definitions.)
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Theorem 3.6. Let t ≥ 1 and N ≥ (t + 2)2, and suppose XN = {x1, . . . ,xN} ⊂ S2

is a stationary point set of AN,t. Then either XN is a spherical t-design, or there exists
a non-zero polynomial p ∈ Pt+1, such that p (xj) = 0 for j = 1, . . . , N.

This theorem rests on the following lemma taken from [29].

Lemma 3.7. [29] Let t ≥ 1, and suppose XN = {x1, . . . ,xN} is a stationary point
set of AN,t. Then either XN is a spherical t-design, or there exists a non-constant
polynomial p ∈ Pt with a stationary point at each point xi ∈ XN , i = 1, . . . , N.

The proof of Theorem 3.6 follows the lines of Theorem 5 in [29].

Proof of Theorem 3.6. Suppose XN is a stationary point set of AN,t(XN ) but
not a spherical t-design. Then by Lemma 3.7, there exists a non-constant polynomial
q ∈ Pt with a stationary point at each xi ∈ XN , i = 1, . . . , N , i.e.

∇∗q(xj) = 0, j = 1, . . . , N, (3.10)

Now define

pi = ei · ∇∗q, i = 1, 2, 3,

where e1, e2, e3 are the unit vectors in the direction of the (fixed) coordinate axes for
R3, and the dot indicates the inner product in R3. By the stationary property of q,
each pi for i = 1, 2, 3 satisfies

pi(xj) = 0, j = 1, . . . , N.

Since q is not a constant polynomial, at least one component of ∇∗q does not vanish
identically, hence at least one of p1, p2, p3 is not identically zero. Assume

p := pi0 (3.11)

is not identically zero. Because q is a linear combination of spherical harmonics Y`,k

with ` = 1, . . . , t of degree `, then (see [12], Chapter 12) p = pi0 = ei0 ·∇∗q is a linear
combination of spherical harmonics of degrees `− 1 and ` + 1. Since q ∈ Pt, it follows
that p ∈ Pt+1. Finally (3.10) gives

p(xj) = 0 , j = 1, . . . , N, (3.12)

completing the proof. ¤
Remark 1. The statement that there exists a non-zero polynomial p ∈ Pt+1

such that p (xj) = 0 for j = 1, . . . , N is equivalent to the condition that XN is not a
fundamental system for Pt+1 or that Yt+1(XN ) is not of full row rank.

When the points of XN coincide, AN,t(XN ) achieves its maximum value (t+1)2−1,
see [29, Theorem 3], in which case XN is a stationary point set of AN,t but is neither
a spherical t-design, nor a fundamental system for any Pt, t ≥ 1.

Corollary 3.8. Let t ≥ 1 and N ≥ (t + 2)2 . Assume XN ⊂ S2 is a stationary
point set of AN,t, and XN is a fundamental system for Pt+1. Then XN is a spherical
t-design.

Since a fundamental system for Pt+s, with s ≥ 1 is a fundamental system for
Pt+1, we also have the following corollary.
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Corollary 3.9. Let t ≥ 1, s ≥ 1, and N=(t + s + 1)2. Assume XN ⊂ S2 is a
stationary point set of AN,t and XN is a fundamental system for Pt+s. Then XN is a
spherical t-design.

The following example shows that the fundamental system assumption in Corol-
lary 3.8 is, although a sufficient condition, not necessary for the existence of spherical
t-designs.

Example 3.2 (Equator points). Let us choose 10 points on the equator dis-
tributed equally, see Figure 3.2. It is easy to see the point set X10 is a spherical
1-design, and hence a stationary point set for A10,1. Indeed, any pair of antipodal
points is a spherical 1-design and hence any union of antipodal pairs is also a spher-
ical 1-design. However, X10 is not a fundamental system for P1, because the third
component of x = [x, y, z]T ∈ S2 vanishes at every point on the equator.

Fig. 3.2: Ten points distributed equally on the equator

3.3. Fundamental systems with at least (t+1)2 points. From [7, 6], Propo-
sition 2.5 can characterize spherical t-designs with N = (t+1)2 points via Ct(XN )=0
under the assumption that Gt(XN ) is nonsingular, or equivalently that XN is a fun-
damental system for Pt. Now we generalize the characterization to N ≥ (t + 1)2 and
XN a fundamental system for Pt. The extra points give additional degrees of freedom
which can be used to satisfy not only the spherical t-design constraints but also other
desired criteria. The next theorem shows that when XN is a fundamental system for
Pt, XN is a spherical t-design if and only if Ct(XN ) = 0, generalizing Proposition 2.5.
The definition of Ct(XN ) through (2.8) and (2.9) remains unchanged for N ≥ (t+1)2.

Theorem 3.10. Let N ≥ (t + 1)2, and suppose that XN = {x1, . . . ,xN} is a
fundamental system for Pt. Then XN is a spherical t-design if and only if Ct (XN ) =
0.

Proof. From (2.9b), we have

Gt (XN ) =
[

1√
4π

e Y0
t (XN )T

]



1√
4π

eT

Y0
t (XN )


 =

1
4π

eeT + Y0
t (XN )T Y0

t (XN ) .
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Hence, from (2.8) and rt(XN ) := Y0
t (XN )e we obtain, using Ee = 0,

Ct (XN ) = EY0
t (XN )T Y0

t (XN ) e = EY0
t (XN )T rt (XN ) . (3.13)

We are given that XN = {x1, . . . ,xN} is a fundamental system for Pt. Assume first
that Ct (XN ) = 0, so we have from (3.13)

EY0
t (XN )T rt (XN ) = 0.

Then, all elements of Y0
t (XN )T rt(XN ) are equal, i.e. there is a scalar ν such that

Y0
t (XN )T rt (XN ) = νe.

This implies

Yt (XN )T



−√4πν

rt (XN )


 =

[
1√
4π

e Y0
t (XN )T

]


−√4πν

rt (XN )


 = 0.

Since Yt (XN )T is of full (column) rank (t + 1)2, the only solution is the zero vector,
implying

ν = 0, rt (XN ) = 0.

Hence XN is a spherical t-design by Proposition 2.1. Conversely, suppose XN is a
spherical t-design. By Proposition 2.1 we have rt (XN ) = 0. From (3.13) it follows
that

Ct (XN ) = 0,

completing the proof. ¤

4. Computational construction of well conditioned spherical t-designs.
In this section we discuss the computational construction of well conditioned spherical
t-designs for N ≥ (t+1)2. Interval methods [6, 25] are then used to prove the existence
of a well conditioned true spherical t-design in a narrow interval and to place relatively
close upper and lower bounds on the determinant of the matrix Ht(XN ) over the
interval.

We seek to maximize the log det(Ht(XN )) subject to the constraint Ct(XN ) = 0.
We know already from inequality (3.8) that, even without the constraint, the log of
the determinant is bounded above by

logdet(Ht(XN )) ≤ N log
(

(t + 1)2

4π

)
. (4.1)

We do not know the maximum of log det(Ht(XN )) for the constrained maximization
problem considered here, and in any case it almost certainly has many local maxima.
Thus in reality the best we can hope for is to find a good local maximum of the
constrained problem. More precisely, we want to find an interval for the point set
XN that contains a solution of Ct(XN ) = 0, and such that there exist a lower bound
b and an upper bound b on log det(Ht(XN )) for XN in this interval, with b − b very
small, and b as large as possible. By Theorem 3.10, as long as b > −∞, a solution of
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Ct(XN ) = 0 is a true spherical t-design. Thus if b is large there is guaranteed to be
a well conditioned spherical t-design in the interval.

In [6, 7] it was verified that for t ≤ 100 a spherical t-design with N = (t+1)2 exists
in a neighborhood of an extremal system. Theorem 3.10 shows for N ≥ (t+1)2 that if
XN is a fundamental system for Pt, then the system of nonlinear constraints Ct (XN ) =
0 characterizes a spherical t-design. Maximizing the (log of) the determinant of
Ht(XN ) subject to these constraints ensures that we get a provably fundamental
system of points, and hence a spherical t-design. Thus we consider the following
optimization problem

max log det (Ht(XN ))
XN ⊂ S2

subject to Ct (XN ) = 0.
(4.2)

Problem (4.2) is a nonlinear programming problem with both nonlinear objective and
nonlinear constraints. An additional difficulty is that the objective and the constraints
Ct (XN ) = 0 are only well-defined for XN ⊂ S2, yet many nonlinear programming
algorithms allow intermediate iterates to be infeasible in order to make greater im-
provements in the objective function.

We represent the points xi on the sphere by spherical coordinates, with θi (the
angle xi makes with the positive z-axis, 0 ≤ θi ≤ π), and ϕi (the angle xi makes with
the plane y = 0, 0 ≤ ϕi < 2π). We use normalized point sets XN in which the first
point is fixed at the north pole (θ1 = 0, ϕ1 not defined) and the second point is fixed
on the prime meridian (ϕ2 = 0). Fixing the first point of XN at the north pole avoids
any difficulties there, but care must be taken with a point at the south pole.

The following strategy is adopted. Choose a nonnegative integer t, N ≥ (t + 1)2,
and a fundamental system X 0

N as a starting point set.

1. Use the Gauss-Newton method (see [21], pp. 256) to find an approximate
solution X̃N of Ct(XN ) = 0 starting from X 0

N .
2. Use a nonlinear programming method to find

X̂N ≈ arg max{log det(Ht(XN )) | Ct(XN ) = 0}

starting from X̃N .

Repeat as desired. The choice of a good starting point set is critical. For the N =
(t + 1)2 case, a suitable starting point set X 0

N is an extremal system [28].

Finally we use the verification method discussed in the next subsection to find a
narrow interval that contains both the computed spherical design and a true spherical
t-design.

4.1. Numerical verification. Generalizing the computational existence proofs
for spherical t-designs with N = (t + 1)2 in [6], we show how to construct a narrow
interval that contains a well conditioned true spherical t-design XN with N ≥ (t+1)2.
Moreover, using a preconditioned interval method, we give close upper and lower
bounds for det(Ht(XN )).

By IRn, we denote the space of all compact real interval vectors [a] = [a, a], a, a ∈
Rn, a ≤ a componentwise. The arithmetic operations +,−, ∗, / can be extended from
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Rn to IRn and from Rn×n to IRn×n. The bounds of the resulting intervals can be
computed from the bounds of the operands. Let mid[a] = (a + a)/2 componentwise.

Let F : D ⊆ Rn → Rn be a continuously differentiable function. Let [dF] ∈ IRn×n

be an interval matrix containing F′(ξ) for all ξ ∈ [z] ⊆ D, i.e.

{F′(z) : z ∈ [z]} ⊆ [dF] ([z]). (4.3)

Such a [dF] can be obtained by an interval arithmetic evaluation of (expressions for)
the Jacobian F′ at the interval vector [z].

Now let z,y ∈ [z]. Then, by the mean value theorem, there is αi ∈ [0, 1] such
that

Fi(y) = Fi(z) + F′i(ξi)T (y − z), ξi = αiz + (1− αi)y, i = 1, . . . , n

for each component Fi of F, i = 1, . . . , n. By (4.3), we obtain

{F(y) : y ∈ [z]} ⊆ F(z) + [dF] ([z]− z).

Given a nonsingular matrix B ∈ Rn×n, ž ∈ [z] ⊆ D and [dF] ∈ IRn×n, the
Krawczyk operator [18] is defined by:

kF(ž, [z] ,B, [dF]) := ž−BF(ž) + (In −B · [dF])([z]− ž). (4.4)

It is known that kF(ž, [z] ,B, [dF]) is an interval extension of the function ψ(z) :=
z−BF(z) over [z], that is, z−BF(z) ∈ kF(ž, [z] ,B, [F]) for all z ∈ [z].

Lemma 4.1. [18, 19] Let F : D ⊂ Rn → Rn be a continuously differentiable
function. Choose [z] ∈ IRn, ž ∈ [z] ⊆ D, an invertible matrix B ∈ Rn×n and
[dF] ∈ IRn×n such that F′ (ξ) ∈ [dF] for all ξ ∈ [z]. Assume that

kF (ž, [z],B, [dF]) ⊆ [z].

Then F has a zero z∗ in kF (ž, [z],B, [dF]).

In computation, we represent the points xi on the sphere by spherical coordinates
with θi and ϕi as stated before. We seek intervals [θi], [ϕi] such that there is a solution
of Ct(XN ) = 0 in the interval point set [XN ], in which the interval for each point is
defined by

[zi] = [sin([θi]) cos([ϕi]), sin([θi]) sin([ϕi]), cos([θi])]T , i = 1, . . . , N.

We fix the first point at the north pole (θ1 = 0, ϕ1 = 0) and the second on the prime
meridian (ϕ2 = 0). Hence Ct(XN ) is redefined as a system of nonlinear equation

F̃(y) = 0.

The components of y are yi−1 = θi, i = 2, . . . , N , yN+i−3 = ϕi, i = 3, . . . , N . As
in [6], we use a QR-factorization method at each step to determine the N − 2 least
important components of y, which we label collectively by yN , then write y := (z,yN ),
and define a new function F(z) = F̃(z,yN ), where F : RN−1 → RN−1. Using the
Krawczyk operator with B = (mid[dF])−1 we can verify the existence of a fixed point
of z−BF(z), which is a solution of F(z) = 0. For more details see [6].
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To prove the existence of well conditioned spherical t-designs in [XN ], we have to
show that all matrices Ht(XN ) are well conditioned for XN ∈ [XN ]. To show it, we
compute interval enclosures of Ht such that

{Ht(XN ), XN ∈ [XN ]} ⊆ [Ht(XN )] ,

where [Ht(XN )] denotes an interval of symmetric matrices. To verify all matrices in
[Ht(XN )] are nonsingular, the following lemma was used in [6].

Lemma 4.2. [6] Let [A] ∈ IRn×n be an interval matrix and let M ∈ Rn×n. Then,
if

‖In −M [A] ‖∞ < 1, (4.5)

then M as well as all matrices A ∈ [A] are non-singular.

Noting that Ht(XN ) is symmetric, we only need to consider all symmetric matrices
in the interval. This allows us to use a preconditioning technique to provide a sharp
error bound for the determinant of all symmetric matrices in the interval.

Proposition 4.3. Let U be a nonsingular upper triangular matrix. Assume that

‖In −UT [A]U‖∞ ≤ r < 1. (4.6)

Let β =
(

N

Π
j=1

Ujj

)−2

. Then

0 < β(1− r)N ≤ det (A) ≤ β(1 + r)N , for A ∈ [A] and AT = A. (4.7)

Proof. We consider a symmetric matrix A ∈ [A]. Noting that UT AU preserves the
symmetric structure, we denote its (real) eigenvalues by λi(UT AU). Since

max
1≤i≤N

| 1− λi(UT AU) |= ρ
(
In −UT AU

) ≤ ‖In −UT AU‖∞ ≤ r,

where ρ is the spectral radius, we have

0 < 1− r ≤ λi(UT AU) ≤ 1 + r, i = 1, . . . , N.

Hence,

(1− r)N ≤ det
(
UT AU

) ≤ (1 + r)N
.

Noting that det (U) det
(
UT

)
=

(
N

Π
j=1

Ujj

)2

= β−1, from

0 < (1− r)N ≤ β−1 det (A) ≤ (1 + r)N
,

we obtain (4.7). ¤
To overcome the problem of overflow, in the computation we consider log det (A)

instead of det (A) . Letting

b = log β + N log (1− r) and b = log β + N log (1 + r) ,
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we obtain from Proposition 4.3

log det (A) ∈ [
b, b

]
, A ∈ [A] and AT = A. (4.8)

Applying Proposition 4.3 and the above results to A = Ht(XN ), we obtain the interval
for log det(Ht(XN )) with a preconditioning matrix U

[log det (Ht(XN ))] ⊆ [
b, b

]
(4.9)

for all XN ∈ [XN ].

In an actual computation, we choose U such that (U−1)T U−1 ≈ mid[Ht]. We
conduct all operations in machine interval arithmetic and get an interval containing
‖In −UT [Ht]U‖∞, with (U−1)T U−1 the Cholesky factorization of mid[Ht]. If the
upper bound r of the interval satisfies r < 1, then we have computationally proved
that (4.9) holds.

4.2. Numerical results. Based on the code in [6] and INTLAB [25] we have
used the numerical verification technique to prove the existence of a spherical t-design
close to the computed point set for N = (t + 1)2 points for t up to 60. As in [6],
we choose to work with Gt(XN ) rather than Ht(XN ), noting that det(Ht(XN )) =
det(Gt(XN )). As starting point set X̂N to solve problem (4.2) we use the extremal
systems from [28] without any additional constraints. In Figure 4.1 we report, for
each t, the maximum diameter of various interval quantities computed with the nu-
merical verification algorithm. Here, max diam([z]) represents the diameter of the
interval contains a true spherical design. We see that the diameter of the interval
increases as t increases, but it is still less than 10−9 radians for the largest values
of t. Furthermore, in Figure 4.2, the diameters diam( [log det(Gt(XN ))] ) are less
than 10−1 for the largest t, yet the middle point value of [log det(Gt(XN ))] is over
104 for the largest t. This implies that the estimate (4.9) is relatively tight given the
large size of log det(Gt(XN )). Note that Figure 4.2 does not show the middle values
mid[log det(G1)] = −4.5789, mid[log det(G2)] = −3.2150 as the values are in this
case negative.
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Fig. 4.1: The maximum diameters of the interval [z] containing spherical coordinates
corresponding to a true spherical t-design
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Fig. 4.2: Middle point values of [log det(Gt(XN ))] and diameters of [log det(Gt(XN ))]

5. Well conditioned spherical t-designs and their geometry. In this sec-
tion we concentrate on the geometrical properties of extremal spherical t-designs.
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Some properties are known theoretically, while other properties suggested by the
known properties of the extremal fundamental systems [15, 16, 22] have not been
proved.

The points of an extremal fundamental system of N = (t + 1)2 are known the-
oretically, see Reimer [22, Theorem 6.13], to be well separated, with the separation
distance δXN

satisfying:

δXN := min
xi,xj∈XN ,i 6=j

dist (xi,xj) ≥ π

2t
≥ π

2
√

N
. (5.1)

The argument uses the Lagrange polynomials `j , which are the polynomials of degree
t such that `j(xj) = 1 and `j(xi) = 0 for i 6= j. For extremal fundamental systems
it is known that |`j(x)| ≤ 1 (see (6.1) below), so that |`j | attains its maximum value
of 1 at xj . Noting that `j when restricted to the great circle through xi and xj is a
trigonometric polynomial of degree at most t, the bound (5.1) follows as a consequence
of a result of Riesz, see, for example, Reimer [22, Lemma 6.12].

For extremal spherical t-designs, which must satisfy the additional nonlinear sys-
tem of constraints, the argument fails, since the maximum of |`j | no longer occurs at
xj , but nearby, with a value (slightly) larger than one. Nevertheless, for the calcu-
lated extremal spherical t-designs, Figure 5.1 shows that the points are well separated.
Figure 5.1 reports the separation distance for our well conditioned spherical t-designs

0 10 20 30 40 50 60
0.02

0.2

2

Degree t

Separation distance

 

 
Separation distance
π/2t
2π/(2t+1)

Fig. 5.1: The separation distance for well conditioned spherical t-designs with N =
(t + 1)2

as a function of t. The separation distance is close to 2π/(2t + 1).

Spherical t-designs considered as quadrature rules have equal quadrature weights
wj = 4π/N, j = 1, . . . , N . Consequently, we can adopt the results of Reimer and
Yudin [22, Theorem 6.21], which states that if a positive weight cubature formula
defined by a point set XN is exact for all p ∈ Pt, then the mesh norm hXN

satisfies

hXN
≤ cos−1(zt),
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where zt is the largest zero of the Legendre polynomial Pdt/2e. From [15, 22] we know
that

π

2 dt/2e+ 1
≤ cos−1(zt) ≤ 2π

2 dt/2e+ 1
. (5.2)

A better upper bound on the mesh norm for positive weight cubature rules with

0 10 20 30 40 50 60
0.0316

3.2

Degree t

Mesh norm

 

 
Mesh norm
4.8097/t
2π/(2t+1)

Fig. 5.2: The mesh norm of well conditioned spherical t-designs with N = (t + 1)2

degree of precision t is [28]

hXN ≤ 2j0
t
' 4.8097

t
,

where j0 is the smallest zero of the Bessel function J0. Figure 5.2 gives the mesh
norms for the calculated extremal spherical t-designs. The computed mesh norms are
smaller than the latter bound, and smaller than 2π/(2t + 1).

The mesh norm is the covering radius for covering the sphere with identical spher-
ical caps of the smallest possible radius centered at the points in XN , while the sep-
aration distance δXN

is twice the packing radius, so hXN
≥ δXN

/2. The mesh ratio
ρXN

defined by

ρXN
:=

2hXN

δXN

≥ 1

is a good measure of the quality of the geometric distribution of XN : the smaller ρXN

is, the more uniformly are the points distributed on S2 [16].

Figure 5.3 shows that the mesh ratio satisfies ρXN
< 2 for all the well conditioned

spherical t-designs with N = (t + 1)2 points and t = 1, . . . , 60.

A reasonable conjecture is that ρXN
is bounded above by a constant close to

2, since natural bounds on S2 for δXN
and hXN

, supported by the computational
experiments, take the form

δXN
≥ CδN

− 1
2 ,
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Fig. 5.3: The mesh ratio of well conditioned spherical t-designs with N = (t + 1)2

and

hXN
≤ ChN− 1

2

which together would give the uniform bound

ρXN ≤ 2Ch

Cδ
independent of N. (5.3)

6. The Lebesgue constant for interpolation. In this section we consider
polynomial interpolation with respect to the computed well conditioned spherical
designs, and discuss the Lebesgue constants for interpolation. The Lebesgue constant
(defined in (6.3)) plays a similar role to the condition number of a matrix: errors in
the data can be magnified in the interpolation process by at most a factor equal to
the Lebesgue constant. In this section we show that our well conditioned spherical
designs lead to small Lebesgue constants.

Given a fundamental system XN = {x1, . . . ,xN} ⊂ S2 for Pt with N = (t + 1)2,
we define the kernel polynomial [27]

gi(x) :=
t∑

`=0

2` + 1
4π

P`(x · xi) =
t + 1
4π

P
(1,0)
t (x · xi) ∈ Pt, i = 1, . . . , N,

where P
(1,0)
t (z), z ∈ [−1, 1] is the Jacobi polynomial (in the notation of Szegö [31])

corresponding to the weight function (1−z). Furthermore, we define the vector valued
function g : S2→ RN by

g(x) =




g1(x)
...

gN (x)


 =

t + 1
4π




P
(1,0)
t (x · x1)

...
P

(1,0)
t (x · xN )


 .
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Then the matrix Gt(XN ) in (2.9b) can be written as [33]

Gt(XN ) = [ g (x1) , . . . ,g (xN ) ].

The Lagrange polynomials {`1, . . . , `N} are defined, as usual, by

`j ∈ Pt, `j(xi) = δji, i, j = 1, . . . , N,

where δji is the Kronecker delta. An explicit representation for `j is

`j(x) =
det

(
Gt

(
x1, . . . ,xj−1,x,xj+1, . . . ,xN

))

det
(
Gt

(
x1, . . . ,xj−1,xj ,xj+1, . . . ,xN

)) . (6.1)

For given f ∈ C
(
S2

)
the classical expression for the interpolant Λtf , defined by

Λtf ∈ Pt, Λtf (xj) = f (xj) , j = 1, . . . , N,

is

Λtf =
N∑

j=1

f (xj) `j . (6.2)

From this it follows easily that

‖Λt‖ := sup
f∈C(S2)

‖ Λtf ‖∞
‖ f ‖∞ = max

x∈S2

N∑

j=1

|`j(x)| , (6.3)

the usual expression for the Lebesgue constant for interpolation.

We note from (6.2) that if there are data errors, so that f(xj) is replaced by
f(xj) + εj , then Λtf is replaced by

Λtf +
N∑

j=1

εj`j , (6.4)

giving an additional pointwise error of
∑N

j=1 εj`j(x), and hence using (6.3) a uniform
bound of ‖Λt‖ ‖ε‖∞, where ε = [ε1, . . . , εN ]T , for the additional approximation error
arising from data errors. Thus the Lebesgue constant is also a stability constant.

Define the vector valued function l : S2 → RN by

l(x) =




`1(x)
...

`N (x)


 .

As pointed out by [33], a concrete representation for l(x) is l = G−1
t g. Thus (6.3)

can be written as

‖Λt‖ = max
x∈S2

‖l(x)‖1 = max
x∈S2

∥∥G−1
t g(x)

∥∥
1
. (6.5)
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The last equality suggests that maximizing det(Gt(XN )) (or equivalently, minimizing
det(G−1

t (XN )) subject to the spherical t-design condition will lead to a relatively
small value of the Lebesgue constant.

For an extremal fundamental system the explicit representation (6.1) gives im-
mediately

‖`j‖∞ = 1, j = 1, . . . , (t + 1)2,

and hence from (6.3)

‖Λt‖ ≤ (t + 1)2.

This argument breaks down for extremal spherical designs, but in any case this
upper bound, which in practice is very loose, still seems to hold.

0 10 20 30 40 50 60
10

0

10
1

10
2

10
3

10
4

Degree t

Lebesgue constants for interpolation 

 

 
Lebesgue constant

(t+1)2

(t+1)

t1/2

0.8025(t+1)1.12

Fig. 6.1: The Lebesgue constant of well conditioned spherical t-designs with N =
(t + 1)2

Figure 6.1 reports the Lebesgue constant of the computed well conditioned spher-
ical t-designs, showing it to lie between (t + 1)2 and

√
t, and lying rather close to

(t + 1). Note that
√

t is the growth rate of the Lebesgue constant for orthogonal
projection [11], which is known to be a lower bound for the Lebesgue constant for in-
terpolation [33]. Nonlinear data fitting estimates the growth of the Lebesgue constant
in Figure 6.1 as 0.8025(t + 1)1.12.

It is natural to compare the computed Lebesgue constants with those obtained in
[28] for extremal systems, see http://web.maths.unsw.edu.au/˜rsw/Sphere. In practice
they are almost indistinguishable, indicating that the added constraint of XN being
a spherical t-design has not had any detrimental effect on the Lebesgue constants.
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One can also compare the new results with the least possible Lebesgue constants for
polynomial interpolation, computed in [33]. For all available values of t the present
Lebesgue constants are within a factor of 2 of the least possible Lebesgue constants.

7. Application to numerical integration and interpolation. In this section
we use the computed well conditioned spherical t-designs with N = (t + 1)2 points to
evaluate integration and interpolation for a well known test function on S2.

We consider one of the Franke functions as adapted by Renka to the three dimen-
sion case [24]:

f (x, y, z) = 0.75 exp(−(9x− 2)2/4− (9y − 2)2/4− (9z − 2)2/4)
+0.75 exp(−(9x + 1)/49− (9y + 1)/10− (9z + 1)/10)
+0.5 exp(−(9x− 7)2/4− (9y − 3)2/4− (9z − 5)2/4)
−0.2 exp(−(9x− 4)2 − (9y − 7)2 − (9z − 5)2), (x, y, z) ∈ S2.

The value of the integral on S2 computed by Maple to 20 significant digits is
∫

S2
f(x)dω(x) = 6.6961822200736179523.

We show the absolute error of the equal weight quadrature rule applied to f in
Figure 7.1 as a function of t. The absolute error decreases dramatically to around
10−9 at t = 60. And the nonlinear fitting curve is exp(−0.3038t − 1.4699), which is
a rapidly decaying function. As expected, the high degree spherical t-designs deal
successfully with a complicated function as long as it is smooth.
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Fig. 7.1: The absolute error

The uniform error of interpolation is estimated by

‖f(x)− Λtf(x)‖∞ ≈ max
x∈X

|f(x)− Λtf(x)|, (7.1)
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where X is a large, but finite, set of well distributed points over the sphere, for
instance the Bauer points [5], with 10000 points. The uniform errors using the well
conditioned spherical t-designs are shown in Figure 7.2.
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Fig. 7.2: Uniform interpolation error for the Franke function

8. Conclusion. This paper introduces the concept of extremal spherical t-designs
for N ≥ (t + 1)2. This is a new class of well conditioned spherical t-designs for which
the determinant of a certain matrix is maximized. We provide a new sufficient con-
dition for a stationary point of the variational characterization introduced by [29] to
be a spherical t-design, and extend the spherical design characterization of [6, 7] in
terms of a non-linear system to N ≥ (t + 1)2. We show how in practice to compute
an interval within which a well conditioned spherical design is guaranteed to lie, and
how to place close upper and lower bounds on the determinant. Numerical results
show that the computed well conditioned spherical t-designs have good properties for
integration and interpolation on the sphere. The computed well conditioned spherical
t-designs may be found on the web site http://web.maths.unsw.edu.au/˜rsw/Sphere.

Acknowledgments. The support of the Research Grants Council of Hong Kong
and Australian Research Council is gratefully acknowledged. The authors acknowl-
edge the support of the Hong Kong Polytechnic University. The authors would like
to thank Prof. Andreas Frommer and Prof. Bruno Lang for their code for verifying
the existence of spherical t-designs.

REFERENCES

[1] G. Alefeld and J. Herzberger, Introduction to Interval Computations, Computer Science
and Applied Mathematrics, Academic Press, New York, 1983.

[2] B. Bajnok, Construction of spherical t-designs, Geom. Dedicata, 43 (1992), pp. 167–179.
[3] E. Bannai, Spherical designs and group representations, Contemp. Math., 34 (1984), pp. 95–

108.

24



[4] E. Bannai and E. Bannai, A survey on spherical designs and algebraic combinatorics on
spheres, European J. Combin., 30 (2009), pp. 1392–1425.

[5] R. Bauer, Distribution of points on a sphere with application to star catalogs , J. Guidance,
Control, and Dynamics, 23 (2000), pp. 130–137.

[6] X. Chen, A. Frommer and B. Lang, Computational existence proof for spherical t-designs,
to appear in Numer. Math..

[7] X. Chen and R. S. Womersley, Existence of solutions to systems of undetermined equations
and spherical designs, SIAM J. Numer. Anal., 44 (2006), pp. 2326–2341.

[8] X. Chen, R. S. Womersley and J. Ye, Minimizing the condition number of a Gram matrix,
Preprint, The Department of Applied Mathematics, The Hong Kong Polytechnic Univer-
sity, January, 2010.

[9] P. Delsarte, J. M. Goethals and J. J. Seidel, Spherical codes and designs, Geom. Dedicata,
6 (1977), pp. 363–388.

[10] G. H. Golub and C. F. Van Loan, Matrix Computations, Second ed., The Johns Hopkins
University Press, Baltimore, MD, 1989.

[11] T.H. Gronwall, On the degree of convergence of Laplace’s series, Trans. Amer. Math. Soc.
15 (1914), pp. 1–30.

[12] W. Freeden, T. Gervens and M. Schreiner, Constructive Approximation on the Sphere and
Application to Geomathematics, Clarendon Press, Oxford, 1998.

[13] R. H. Hardin and N. J. A. Sloane, McLaren’s improved snub cube and other new spherical
designs in three dimensions, Discr. Comput. Geom., 15 (1996), pp. 429–441.

[14] K. Hesse and P. Leopardi, The Coulomb energy of spherical energy designs on S2, Adv.
Comput. Math., 28 (2008), pp. 331–354.

[15] K. Hesse and I. H. Sloan, High-order numerical integration on the sphere and extremal point
systems, J. Comput. Techn., 9 (2004), pp. 4–12.

[16] K. Hesse, I. H. Sloan and R. S. Womersley, Numerical integration on the sphere, Handbook
of Geomathematics, edited by Willi Freeden, Zuhair Nashed and Thomas Sonar, to be
published by Springer Verlag in 2010.

[17] J. Korevaar and J. L. H. Meyers, Spherical Faraday cage for the case of equal point charges
and Chebyshev-type quadrature on the sphere, J. Integral Transforms Special. Funct., 1
(1993), pp. 105–117.

[18] R. Krawczyk, Newton-Algorithmen zur Bestimmung von Nullstellen mit Fehlerschranken,
Computing, 4 (1969), pp. 187–201.

[19] R. E. Moore, A test for existence of solutions to nonlinear systems, SIAM J. Numer. Anal.,
14 (1977), pp. 611–615.

[20] C. Müller, Spherical Harmonics, vol. 17 of Lecture Notes in Mathematics, Springer Verlag,
Berlin, New-York, 1966.

[21] J. Nocedal and S. J. Wright, Numerical Optimization, 2nd edition, Springer, Berlin, 2006.
[22] M. Reimer, Multivariate Polynomial Approximation, Birkhäuser Verlag, Berlin, 2003.
[23] , Interpolation on the sphere and bounds for the Lagrangian square sums, Resultate

Math., 11 (1987), pp. 144–166.
[24] R. J. Renka, Multivariate interpolation of large sets of scattered data, ACM Trans. Math.

Software, 14 (1988), pp. 139–148.
[25] S. M. Rump, INTLAB – INTerval LABoratory, in Developments in Reliable Computing,

T. Csendes, ed., Dordrecht, 1999, Kluwer Academic Publishers, pp. 77–104.
[26] P. D. Seymour and T. Zaslavsky, Averaging sets: A generalization of mean values and

spherical designs, Adv. Math., 52 (1984), pp. 213–240.
[27] I. H. Sloan and R. S. Womersley, Constructive polynomial approximation on the sphere, J.

Approx. Theory, 103 (2000), pp. 91–118.
[28] , Extremal systems of points and numerical integration on the sphere, Adv. Comput.

Math., 21 (2004), pp. 107–125.
[29] , A variational characterisation of spherical designs, J. Approx. Theory, 159 (2009), pp.

308–318.
[30] N. J. A. Sloane, Spherical designs. web.research.att.com/~njas/sphdesigns/dim3/.
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