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Abstract

We propose a smoothing trust region filter algorithm for nonsmooth nonconvex least
squares problems. We present convergence theorems of the proposed algorithm to a Clarke
stationary point or a global minimizer of the objective function under certain conditions.
Preliminary numerical experiments show the efficiency of the proposed algorithm for finding
zeros of a system of polynomial equations with high degrees on the sphere and solving
differential variational inequalities.
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1 Introduction

This paper considers the nonsmooth nonconvex least squares problem

min
x∈Rn

1

2
∥r(x)∥2, (1)

where r : Rn → Rm is a locally Lipschitz continuous function but not necessarily differentiable
and ∥ · ∥ is the Euclidean norm. This problem has many important applications in engineering
and economics, which includes constrained smooth nonlinear equations and nonsmooth equa-
tions as special cases.

Denote the objective function of (1) by f , that is, f(x) = 1
2∥r(x)∥

2. In general, f : Rn →
R+ is nonconvex and nonsmooth. In the presence of nonsmoothness and noncovexity, most
optimization methods only guarantee convergence to a Clarke stationary point of the objective
function f [8, 9, 16, 21].

The trust region method [17, 23] is a classic and widely used numerical method for optimiza-
tion problems and filter techniques are proposed in [20, 22] as a globalization strategy. In this
paper, we propose a smoothing trust region filter (STRF) algorithm to find a global minimizer
of (1) when r is nonsmooth and there is x∗ such that r(x∗) = 0. This algorithm combines
trust region methods [17, 23], filter techniques [20, 22] and smoothing approximations [6, 9, 11].
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Using a smoothing function r̃ of r, we can define a smoothing function f̃ of f and construct a
good quadratic approximation of f in a certain region at each iteration. In the proposed STRF
algorithm, the trust region method [17, 23] is used to find a low value of smoothing function f̃ ,
while the filter technique [20, 22] is used to build a filter by the original nonsmooth function r.
A new point is generated based on the new value of the smoothing function and the new filter at
the current step. To guarantee the convergence of the STRF algorithm to a Clarke stationary
point or a global minimizer, a new scheme is introduced to update the smoothing parameter by
using both the nonsmooth function f and the gradient of the smoothing function ∇f̃ . Note that
the proposed STRF is different from the smoothing trust region method in [11] and the filter
method in [22]. The smoothing trust region method [11] can reduce the objective values and
guarantee convergence to a Clarke stationary point, but has no convergence results to a global
minimizer. The filter method [20, 22] is a technique for finding a global minimizer of a twice
continuously differentiable function under certain conditions, but application to a nonsmooth
nonconvex minimization problem has not been investigated. The proposed STRF algorithm is a
novel combination of these optimization techniques for nonsmooth and nonconvex least squares
problems.

To verify the efficiency of the proposal STRF algorithm for finding global minimizers of
least squares problems, we compare the STRF algorithm with several codes in Matlab on the
following two challenging problems.

Spherical tϵ-designs:

A set XN of N points on the unit sphere is called a spherical t-design if the average value of
any polynomial of degree at most t over XN is equal to the average value of the polynomial
over the sphere. A spherical t-design provides an equal positive weight integration rule
which is the exact integral for any polynomial of degree at most t. Spherical t-designs
have many important applications in geophysics and bioengineering, and provide many
challenging problems in computational mathematics [2, 3, 4, 10, 14, 25]. It is shown in [14]
that finding a spherical t-design can be reformulated as a system of polynomial equations.
In this paper, we define a spherical tϵ-design which provides an integration rule with a set
Xϵ

N of N points on the unit sphere and positive weights satisfying (1−ϵ)2 ≤ minweight
maxweight ≤ 1.

The integration rule also gives the exact integral for any polynomial of degree at most
t. When ϵ = 0, the spherical tϵ-design reduces to the spherical t-design. Due to the
flexibility of choice for the weights, the number of points in the integration rule can be
less for making the exact integral for any polynomial of degree at most t. We show that
finding a spherical tϵ-design can be reformulated as a system of polynomial equations with
box constraints. Using the projection operator, the system can be written as a nonsmooth
nonconvex least squares problem (1) with zero residual.

Differential variational inequalities (DVI):

The DVI is a powerful mathematical paradigm for the increasing number of engineering
and economics problems that involve dynamics and equilibrium problems [12, 13, 15, 19,
24]. The time-stepping method is widely used for solving DVI, at each step of which, a
standard variational inequality problem (VIP) has to be solved efficiently. It is known
that a standard VIP can be reformulated as a system of nonsmooth equations [18], and
thus a nonsmooth nonconvex least-squares problem (1) with zero residual. We use a time-
stepping method with the STRF algorithm to solve several DVI. Preliminary numerical
experiments show that the STRF algorithm is robust in finding a global minimizer of (1)
at each time in the dynamic system.

This paper is organized as follows. In section 2, we introduce the STRF algorithm and show
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that the STRF algorithm converges to a Clarke stationary point or a global minimizer of the ob-
jective function in (1) under certain conditions. In section 3, we present numerical results of the
STRF algorithm for finding spherical tϵ-designs which is equivalent to finding zeros of a system
of polynomial equations with high degrees on the sphere, and solving differential variational
inequalities. Comparing with several algorithms and codes including fmincon, lsqnonlin,

fsolve in Matlab, the STRF is more efficient for solving nonsmooth nonconvex least squares
problems.

Throughout the paper, ∥ · ∥ represents the Euclidean norm, R+ = {α ∈ R|α ≥ 0} and
R++ = {α ∈ R|α > 0}.

2 A smoothing trust region filter (STRF) algorithm

We use the ideas in [22] to construct the filter, which partition r(x) into p sets {ri(x)}i∈Ij , j =
1, · · · , p, with {1, · · · ,m} = I1

∪
· · ·

∪
Ip. For readability and simplicity, we explain how to

construct the filter with a disjoint partition. Let

r(x) =

 rI1(x)
...

rIp(x)

 , θj(x) = ∥rIj (x)∥, j = 1, . . . , p, θ(x) =

 θ1(x)
...

θp(x)

 ,

where rIj : R
n → Rmj and

∑p
j=1mj = m.

Obviously, a vector x is a solution of (1) with f(x) = 0 if and only if θ(x) = 0.
At the kth iteration, the filter F is a subset of {θ(x0), θ(x1), . . . , θ(xk)}. A new trial point

x+k is acceptable for the filter F if and only if for any θ(xℓ) ∈ F there is j ∈ {1, . . . , p} such that

θj(x
+
k ) < θj(xℓ)− γmin{∥θ(x+k )∥, ∥θ(xℓ)∥}, (2)

where γ ∈ (0, 1/
√
p) is a positive constant.

We remove θ(xℓ) from the filter F if

∃ θ(xj) ∈ F , such that θ(xℓ)− γ∥θ(xℓ)∥e ≥ θ(xj), (3)

where e = (1, . . . , 1)T .
We say that a vector x dominates a vector y whenever θ(x) < θ(y). The inequality in (3)

implies that xj dominates xℓ. From the construction of the filter, if xℓ is removed from the
filter, xℓ will not be added back to the filter after the kth iteraton.

To overcome the nonsmoothness of r, we use a smoothing function r̃(·, µ) of r.

Definition 1. Let r : Rn → Rm be a locally Lipschitz continuous function. We call r̃ :
Rn × R++ → Rm a smoothing function of r, if for any fixed µ ∈ R++, r̃(·, µ) is continuously
differentiable in Rn and for any fixed x̂ ∈ Rn,

lim
x→x̂,µ↓0

r̃(x, µ) = r(x̂).

Using a smoothing function r̃, we can define a smoothing function f̃ of f by

f̃(x, µ) =
1

2
∥r̃(x, µ)∥2.

By Definition 1, for any fixed µ > 0, f̃(·, µ) is continuously differentiable in Rn and for any
fixed x̂ ∈ Rn

lim
x→x̂,µ↓0

f̃(x, µ) = f(x̂).
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In this paper, we assume that the smoothing function r̃ satisfies the following condition

|r̃i(x, µ)− ri(x)| ≤ κ(µ), i = 1, . . . ,m, (4)

where κ : R++ → R+ satisfies κ(µ1) ≤ κ(µ2) for µ1 ≤ µ2, and κ(µ) → 0 as µ → 0. Many
smoothing functions satisfy condition (4) [9]. In section 3, we give examples of the smoothing
function r̃ satisfying (4).

Using the smoothing function r̃, we can define the gradient of the objective function f̃ as
follows

g(x, µ) = ∇xf̃(x, µ) = J(x, µ)T r̃(x, µ), where J(x, µ) = ∇xr̃(x, µ).

The smoothing trust region method computes a trial point x+k = xk + dk for some step dk
by a quadratic approximation function

qk(d) = f̃(xk, µk) + g(xk, µk)
Td+

1

2
dTBkd (5)

of f̃(x, µ) in a trust region {xk + d | ∥d∥ ≤ ∆k}, where ∆k is the radius of the trust region and
Bk = J(xk, µk)

TJ(xk, µk) +
√
µkI.

Smoothing Trust Region Filter (STRF) Algorithm

Step 0: Initialization. Given constants 0 < ∆̄ < ∞, 0 < η1 < η2 < 1, 0 < γ1 < 1 < γ2,
0 < σ < 1, 0 < γ < 1/

√
p, 0 < β < ∞, an initial vector x0 ∈ Rn, the radius of a trust

region ∆0 ∈ (0, ∆̄), the smoothing parameter µ0 > 0, and filter F = {θ(x0)}.

Step 1: Define a trial point. Compute

dk = argmin∥d∥≤∆k
qk(d)

and set x+k = xk + dk.

Step 2: Evaluate the reduction at the trial step. If dk = 0, set xk+1 = xk, ∆k+1 = ∆k,
and go to Step 5. Otherwise, compute

ρk =
f̃(xk, µk)− f̃(x+k , µk)

qk(0)− qk(dk)
.

Step 3: Update the trust-region radius. Set

∆k+1 =


min{γ2∆k, ∆̄} if ρk ≥ η2, ∥dk∥ = ∆k,
γ1∆k if ρk ≤ η1,
∆k otherwise,

Step 4: Test to accept the trial step.

• x+k is acceptable for the current filter by (2): Set xk+1 = x+k and add θ(x+k ) to the
filter if ρk < η1. Update F by (3).

• x+k is not acceptable for the current filter: If ρk ≥ η1, set xk+1 = x+k . Otherwise,
set xk+1 = xk.

Step 5. Update the smoothing parameter. If min{f(xk), ∥∇xf̃(xk, µk)∥} ≤ βµk, set
µk+1 = σµk. Otherwise, set µk+1 = µk. Go to Step 1.
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Since Bk is a symmetric positive definite matrix, qk is strongly convex and dk in Step 1
is uniquely defined. The term

√
µkI in Bk plays a regularization role and ensures the non-

singularity of Bk, which yields the strong convexity of qk. Using the smoothing function r̃,
we can easily compute the matrix Bk and the function qk, and find the unique solution dk in
Step 1 of the STRF algorithm. When both smoothing and regularization techniques are used
in an algorithm, it is recommended to let the smoothing parameter go to zero faster than the
regularization parameter for good numerical performance [13].

The STRF algorithm is constructed based on the idea of the trust region filter algorithm in
[22]. However, the two algorithms have essential differences. The algorithm in [22] is applied
to smooth function r and has a decrease of the objective function f(xk+1) < f(xk) when
xk+1 = x+k and θ(x+k ) is not included in the filter. This is a key property for the convergence
of the algorithm in [22]. However, the STRF algorithm is applied to nonsmooth function r and
has a decrease of the smoothing function f̃(xk+1, µk) < f̃(xk, µk) when xk+1 = x+k and θ(x+k )
is not included in the filter. A decrease of the objective function is not guaranteed. To prove
the convergence of {f(xk)} generated by the STRF algorithm, an innovative proof is needed.

Now we investigate the convergence of the STRF algorithm. We first consider the case that
infinitely many values are added to the filter in the STRF algorithm.

Theorem 2. Assume that r̃ satisfies condition (4). If infinitely many values of θ(xk) are added
to the filter by the STRF algorithm, then

lim
k→∞

∥θ(xk)∥ = lim
k→∞

f(xk) = 0.

Proof. Let θk = θ(xk), θ
+
k = θ(x+k ) and θj,k = θj(xk), j = 1, . . . , p.

Let {ki} index the subsequence of iterations at which θki = θ+ki−1 is added to the filter.
Assume on contradiction that there exists a subsequence {kν} ⊆ {ki} such that ∥θkν∥ ≥ ϵ for
some ϵ > 0. By Step 4 and the construction of a filter (2) and (3), {θkν} is bounded. Hence
there exists a further subsequence {kτ} ⊆ {kν} such that

lim
τ→∞

θkτ = θ̄. (6)

Since {kτ} ⊆ {kν} ⊆ {ki} and ∥θkν∥ ≥ ϵ for all ν, we know that for all τ , min{∥θkτ−1∥, ∥θkτ ∥} ≥ ϵ
and θkτ is acceptable for the filter. Hence for each τ , there exists a j ∈ {1, · · · , p} such that

θj,kτ − θj,kτ−1 < −γmin{∥θkτ−1∥, ∥θkτ ∥} ≤ −γϵ. (7)

However, by (6), we get θj,kτ − θj,kτ−1 → 0, as τ → ∞. This is a contradiction. Hence, we
obtain

lim
i→∞

∥θki∥ = 0. (8)

Now, we prove the convergence of the whole sequence {∥θk∥} to zero. From f(xk) = 2∥θk∥,
it is to prove that the sequence {f(xk)} converges to zero.

We consider any ℓ ̸∈ {ki} and let ki(ℓ) be the last iteration before ℓ such that θki(ℓ) was added
to the filter. By the definition of {ki(ℓ)} and (8), we have

lim
ℓ→∞

f(xki(ℓ)) = 0. (9)

Moreover, we have µki(ℓ) → 0 as ℓ → ∞ by Step 5 of the STRF algorithm. Hence, using
µk+1 ≤ µk, we obtain µk → 0 as k → ∞.
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From the condition on the smoothing function (4), we derive

|f̃(xki(ℓ) , µki(ℓ))− f(xki(ℓ))| =
1

2
|∥r̃(xki(ℓ) , µki(ℓ))∥

2 − ∥r(xki(ℓ))∥
2|

=
1

2
|

m∑
j=1

(r̃2j (xki(ℓ) , µki(ℓ))− r2j (xki(ℓ)))|

≤ 1

2

m∑
j=1

|r̃j(xki(ℓ) , µki(ℓ))− rj(xki(ℓ))| · |r̃j(xki(ℓ) , µki(ℓ)) + rj(xki(ℓ))|

≤ 1

2

m∑
j=1

κ(µki(ℓ))|r̃j(xki(ℓ) , µki(ℓ)) + rj(xki(ℓ))|

≤ 1

2

m∑
j=1

κ(µki(ℓ))(κ(µki(ℓ)) + 2|rj(xki(ℓ))|)

≤ m

2
κ2(µki(ℓ)) + κ(µki(ℓ))∥r(xki(ℓ))∥1

≤ m

2
κ2(µki(ℓ)) + κ(µki(ℓ))

√
m∥r(xki(ℓ))∥2

≤ m

2
κ2(µki(ℓ)) + κ(µki(ℓ))

√
2mf(xki(ℓ)). (10)

Hence from (9) and µk → 0, we obtain

lim
ℓ→∞

f̃(xki(ℓ) , µki(ℓ)) = 0. (11)

By Step 2 and Step 4 of the STRF algorithm, if θ(xki(ℓ)+1) is not included in the filter, then we
have

f̃(xki(ℓ) , µki(ℓ))− f̃(xki(ℓ)+1, µki(ℓ)) ≥ 0,

which, together with (11), implies

lim
ℓ→∞

f̃(xki(ℓ)+1, µki(ℓ)) = 0. (12)

Using the similar argument in (10), we can show

|f̃(xki(ℓ)+1, µki(ℓ))− f(xki(ℓ)+1)| ≤
m

2
κ2(µki(ℓ)) + κ(µki(ℓ))

√
2mf̃(xki(ℓ)+1, µki(ℓ)) (13)

which, together with (12) and

lim
ℓ→∞

|f̃(xki(ℓ)+1, µki(ℓ))− f(xki(ℓ)+1)| ≤ lim
ℓ→∞

(
m

2
κ2(µki(ℓ)) + κ(µki(ℓ))

√
2mf̃(xki(ℓ)+1, µki(ℓ))) = 0,

we obtain
lim
ℓ→∞

f(xki(ℓ)+1) = 0. (14)

From (9) and (14), we can get

lim
k→∞

f(xk) = 0 and lim
k→∞

∥θ(xk)∥ = 0 (15)

by recurrence relations. We completes the proof.
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Now, we study the convergence of the STRF algorithm without assuming that infinitely
many values of θ(xk) are added to the filter.

We say that f has bounded level sets, if for any α ≥ 0, the level set {x | f(x) ≤ α} is
bounded.

If f has bounded level sets and condition (4) holds, then the smoothing function f̃ has
bounded level sets for any fixed µ > 0. In fact, using the argument in (10) and (13) with
condition (4) and µ ≤ µ0, for any α > 0, the following holds

{x | f̃(x, µ) ≤ α} ⊆ {x | f(x) ≤ α+
m

2
κ2(µ) + κ(µ)

√
2mα}

⊆ {x | f(x) ≤ α+
m

2
κ2(µ0) + κ(µ0)

√
2mα}. (16)

Lemma 3. Suppose that f has bounded level sets and ∇f̃(·, µ) is Lipschitz continuous for any
fixed µ > 0, then the sequence {µk} generated by the STRF algorithm satisfies

lim
k→∞

µk = 0. (17)

Proof. Let K contain all iterations at which µk+1 = σµk, namely,

K = { k | min{f(xk), ∥∇xf̃(xk, µk)∥} ≤ βµk}. (18)

If K is an infinite set, then limk→∞ µk = 0. Moreover, from Theorem 2, if infinitely many
values of θk are added to the filter, then limk→∞ µk = 0. Hence, in the following, we will prove
that K is an infinite set in the case when only finitely many values of θk are added to the filter.

Assume by contradiction that K is finite and only finitely values of θk are added to the filter.
Then there exists a nonnegative integer k̂, such that for all nonnegative integers j, θ(x+

k̂+j
) are

not added to the filter and µk̂+j = µk̂. This means

f̃(xk̂+j , µk̂)− f̃(xk̂+j+1, µk̂) ≥ 0, for j ≥ 0 (19)

and
min{f(xk̂+j), ∥∇xf̃(xk̂+j , µk̂)∥} > βµk̂, for j ≥ 0. (20)

By (16) and the assumption that f has bounded level sets, we know that f̃(·, µk̂) has bounded
level sets. Hence, in such case, the STRF algorithm reduces to Algorithm 4.1 for solving the
smooth optimization problem with the objective f̃(·, µk̂) in [23]. From the assumption of this

Lemma, ∇f̃(·, µk̂) is Lipschitz continuous, and thus Bk is bounded. Note that dk is the exact
solution of the minimization problem in Step 1 of the STRF algorithm. All conditions of
Theorem 4.6 in [23] hold. Similar to the proof of Theorem 4.6 in [23], we can show

lim
j→∞

∥∇xf̃(xk̂+j , µk̂)∥ = 0. (21)

This contradicts (20). Hence (17) holds.

Since r is locally Lipschitz continuous, f is locally Lipschitz continuous and almost every-
where differentiable. The Clarke subdifferential of f at x ∈ Rn can be defined by

∂f(x) = con{v |∇f(z) → v, f is differentiable at z, z → x},

where “con” denotes the convex hull. A vector x is called a Clarke stationary point of f if
0 ∈ ∂f(x). To show that any accumulation point of {xk} generated by the STRF algorithm
is a Clarke stationary point of f , we need functions ri, i = 1, . . . ,m to be regular and their
smoothing functions r̃i to satisfy the gradient consistency.
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Definition 4. [16] A function h : Rn → R is said to be regular at x ∈ Rn if for all v ∈ Rn, the
directional derivative exists and

h(x; v) = lim
t↓0

h(x+ tv)− h(x)

t
= lim sup

y→x,t↓0

h(y + tv)− h(y)

t
.

If h is regular at all x ∈ Rn, h is said to be regular.

Definition 5. [9] A smoothing function h̃ of h : Rn → R is said to satisfy the gradient consis-
tency if

con{v |∇xh̃(xk, µk) → v, for xk → x, µk ↓ 0} = ∂h(x), ∀x ∈ Rn.

Theorem 6. Assume that r̃i satisfies condition (4) and the gradient consistency, for i =
1, . . . ,m, f has bounded level sets and ∇f̃(·, µ) is Lipschitz continuous for any fixed µ > 0.
Then the sequences {xk} and {µk} generated by the STRF algorithm satisfy

lim inf
k→∞

∥∇xf̃(xk, µk)∥ = 0. (22)

In addition, if ri is regular for i = 1, . . . ,m, then any accumulation point of {xk} is a Clarke
stationary point of f .

Proof. We consider two cases. Case I. lim infk→∞ f(xk) = 0.
In this case, we have

lim inf
k→∞

∥r(xk)∥2 = lim inf
k→∞

m∑
j=1

r2j (xk) = 0.

From condition (4) and Lemma 3, we get µk → 0, and

0 ≤ lim inf
k→∞

|r̃j(xk, µk)| ≤ lim inf
k→∞

(|rj(xk)|+ κ(µk)) = 0, for j = 1, . . . ,m.

Since ri is Lipschitz continuous, the Clarke subdifferential ∂ri is bounded. Hence from the
gradient consistency of ri, we can get ∥∇xr̃i(xk, µk)∥ is bounded and

lim inf
k→∞

∥∇xf̃(xk, µk)∥ = lim inf
k→∞

∥∇xr̃(xk, µk)
T r̃(xk, µk)∥ = 0.

Case II. lim infk→∞ f(xk) > 0.
In this case, there exist k̄ and ϵ > 0, such that for k > k̄, f(xk) ≥ ϵ. By Lemma 3, µk → 0.

Thus from min{f(xk), ∥∇xf̃(xk, µk)∥} ≤ βµk, we have

lim inf
k→∞

∥∇xf̃(xk, µk)∥ = 0.

Hence we complete the proof for (22).
If ri is regular, then by Proposition 2.1 in [5], r̃2i is a smoothing function of r2i and satisfies

the gradient consistency. Since f(x) = 1
2

∑m
i=1 r

2
i (x) is a convex composite function of r2i (x),

f̃(x, µ) = 1
2

∑m
i=1 r̃

2
i (x, µ) is a smoothing function of f and satisfies the gradient consistency,

which means
con{v|∇f(xk) → v, f is differentiable at xk, xk → x}

= con{v|∇xf̃(xk, µk) → v, xk → x, µk ↓ 0}.

Hence, from (22), any accumulation point of {xk} is a Clarke stationary point of f .
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Example 1 To explain the smoothing approximation and gradient consistency, we consider the
following example. Let

r(x) = Mx+max(0, x) + q, whereM =

(
1 1
1 1

)
and q =

(
1

−1

)
.

At x̄ = (0, 0)T , r(x) and f(x) are not differentiable. Since r1 and r2 are convex, by Proposition
2.3.6 in [16], they are regular. By Corollary 3 in [16], the Clarke gradient of f(x) at x̄ is

∂f(x̄) =
1

2
(∂r21(x) + ∂r22(x))

= con{v |∇r1(x)r1(x) +∇r2(x)r2(x) → v, x1 ̸= 0, x2 ̸= 0, x → x̄}

= {
(

α1 1
1 α2

)(
1

−1

)
, α1, α2 ∈ [1, 2]}.

Since 0 ∈ ∂f(x̄), x̄ is a stationary point.
We use the smoothing function

φ(t, µ) =

{
max(0, t) if |t| > µ

2
t2

2µ + t
2 + µ

8 otherwise

for max(0, t), and
r̃(x) = Mx+Φ(x, µ) + q

for r(x) where Φ(x, µ) = (φ(x1, µ), φ(x2, µ))
T . It is easy to see that 0 ≤ φ′(t, µ) ≤ 1. In partic-

ular, φ′(−µ
2 , µ) = 0 and φ′(µ2 , µ) = 1. Hence, we find that f satisfies the gradient consistency,

that is,
con{v|∇xf̃(x, µ) = ∇r̃(x, µ)T r̃(x, µ) → v, x → x̄, µ ↓ 0} = ∂f(x̄).

Moreover, we have

|r̃i(x, µ)− ri(x)| = |φ(xi, µ)−max(0, xi)| ≤
µ

8
, i = 1, 2.

Hence the smoothing function r̃ satisfies (4).
More examples and results on the smoothing approximation, regularity and gradient con-

sistency can be found in [6, 7, 9].

3 Numerical results

In this section, we report numerical results of the STRF algorithm for solving nonsmooth
nonconvex least squares problems (1) with zero residual arising from spherical tϵ-designs and
differential variational inequalities which are described in the Introduction. Both problems are
highly nonlinear and have many stationary points at which the residual is not zero. We show
that all conditions used in the last section for convergence of the STRF algorithm hold for
these two problems. Numerical results show that the STRF algorithm is efficient and robust
for finding global minimizers of the problems.

We implemented the STRF algorithm in MATLAB 2012b on a Lenovo Thinkcenter PC
equipped with Intel Core i7-3770 3.4G Hz CPU, 8 GB RAM running Windows 7. The values
of parameters in the STRF algorithm are chosen as follows: ∆0 = 10−1, ∆ = 1012, η1 = 0.2,
η2 = 0.8, γ1 = 0.8, γ2 = 1.25, σ = 0.95, µ0 = 0.5, γ = 0.01, β = 10. We terminate the STRF
algorithm when min{f(xk), ∥∇f̃(xk, µk)∥} ≤ 10−10.
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Example 2 Spherical tϵ-design
Let Pt be the linear space of restriction of polynomials of degree ≤ t in 3 variables to the

unit sphere S2 = {x ∈ R3 |x21 + x22 + x23 = 1}.
A spherical tϵ-design with 0 ≤ ϵ < 1 on S2 is a set of points Xϵ

N := {x1, . . . ,xN} ⊂ S2 such
that the cubature rule with weights w = (w1, . . . , wN )T satisfying

4π

N
(1− ϵ) ≤ wi ≤

4π

N
(1− ϵ)−1, i = 1, . . . , N, (23)

is exact for all spherical polynomials of degree at most t, that is,

N∑
i=1

wip(xi) =

∫
S2
p(x)dω(x) ∀p ∈ Pt. (24)

When ϵ = 0, the spherical tϵ-design reduces to the spherical t-design that is an equally weighted
(wi =

4π
N ) cubature rule [14, 25]. Finding spherical t-designs provides many open and challenging

problems which attract considerable attention from pure and applied mathematicians.
Now we reformulate the problem finding a spherical tϵ-design, that is to find Xϵ

N and w such
that (23)-(24) hold, as a nonlinear least squares problem (1).

Let {Yℓ,k, k = 1, . . . , 2ℓ + 1, ℓ = 0, . . . , t} be a set of L2-orthonormal basis functions of Pt,
where Yℓ,k is a spherical harmonic of degree ℓ. The dimension of Pt is dt = (t + 1)2. Define
Y(XN ) ∈ RN×dt with elements

Yi,ℓ2+k(XN ) = Yℓ,k(xi), i = 1, . . . , N, k = 1, . . . , 2ℓ+ 1, ℓ = 0, . . . , t.

Let a = 4π(1−ϵ)
N e and b = 4π(1−ϵ)−1

N e where e = (1, . . . , 1)T ∈ RN .

Proposition 7. The set Xϵ
N := {x1, . . . ,xN} ⊂ S2 is a spherical tϵ-design if and only if

Y(Xϵ
N )Tw −

√
4πe0 = 0 and w −mid(a,w, b) = 0, (25)

where e0 = (1, 0, . . . , 0)T ∈ R(t+1)2 and

(mid(a,w, b))i = mid(ai, wi, bi) =


ai, wi < ai
wi, ai ≤ wi ≤ bi
bi, wi > bi

i = 1, . . . , N.

Proof. It is easy to see that w−mid(a,w, b) = 0 if and only if a ≤ w ≤ b. Hence, we only need
to prove the equivalence between (24) and the first equality in (25).

Assume (24) holds. Since Y0,1(x) is a spherical harmonic of degree 0,
∫
S2 Y0,1(x)

2dω(x) = 1

and
∫
S2 dω(x) = 4π, we have Y0,1(x) ≡ 1/

√
4π and

N∑
i=1

wiY0,1(xi) =

∫
S2
Y0,1(x)dω(x) = Y0,1(x)

∫
S2
dω(x) =

√
4π.

Moreover, from that {Yℓ,k, k = 1, . . . , 2ℓ + 1, ℓ = 0, . . . , t} is a set of L2-orthonormal basis
functions of Pt, we obtain

N∑
i=1

wiYℓ,k(xi) =

∫
S2
Yℓ,k(x)dω(x) =

√
4π

∫
S2
Yℓ,k(x)Y0,1(x)dω(x) = 0

for k = 1, . . . , 2ℓ+ 1, and 1 ≤ ℓ ≤ t. This implies the first equality in (25).
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Now we assume that the first equality in (25) holds. Then we obtain that

N∑
i=1

wiY0,1(xi) =
√
4π =

∫
S2
Y0,1(x)dω(x),

and
N∑
i=1

wiYℓ,k(xi) = 0 =

∫
S2
Yℓ,k(x)dω(x), for ℓ = 1, . . . , t, k = 1, . . . , 2ℓ+ 1.

Moreover, for any p ∈ Pt, there exists a unique group of numbers pℓ,k satisfying

p =

t∑
ℓ=0

2l+1∑
k=1

pℓ,kYℓ,k.

Hence (24) is derived as the following∫
S2
p(x)dω(x) =

t∑
ℓ=0

2ℓ+1∑
k=1

pℓ,k

∫
S2
Yℓ,k(x)dω(x)

=
t∑

ℓ=0

2ℓ+1∑
k=1

pℓ,k

N∑
i=1

wiYℓ,k(xi)

=
N∑
i=1

wi

t∑
ℓ=0

2ℓ+1∑
k=1

pℓ,kYℓ,k(xi) =
N∑
i=1

wip(xi).

We represent the points xi ∈ S2 using spherical coordinates with angles θi, φi. Since (25)
is rotationally invariant with respect to Xϵ

N , we fix x1 at the north pole and x2 on the zero
meridian as [14]

x1 =

 0
0
1

 , x2 =

 sin(θ2)
0

cos(θ2)

 , xi =

 sin(θi) cos(φi)
sin(θi) sin(φi)

cos(θi)

 , i = 3, . . . , N.

Let xθ = (θ2, . . . , θN )T , xφ = (φ3, . . . , φN )T , x = (xTθ , x
T
φ , w

T )T ∈ R3N−3 and

r(x) =

(
rI1(x)
rI2(w)

)
=

(
YT (xθ, xφ)w −

√
4πe0

w −mid(a,w, b)

)
. (26)

A solution of r(x) = 0 defines a spherical tϵ-design. To use the STRF algorithm, we need a
smoothing function r̃ of r and the Jacobian of r̃. Since rI1 : R3N−3 → R(t+1)2 is continuously
differentiable, we only define a smoothing function of rI2 : RN → RN as follows:

(r̃I2(w, µ))i =


wi − ai wi < ai − µ,

wi − 1
4µ(wi − ai)

2 − 1
2(wi − ai)− µ/4− ai ai − µ < wi < ai + µ,

0 ai + µ ≤ wi ≤ bi − µ,
wi +

1
4µ(wi − bi)

2 − 1
2(wi − bi) + µ/4− bi bi − µ < wi < bi + µ,

wi − bi wi > bi + µ.

It is easy to verify that

|r̃i(x, µ)− ri(x)| ≤
µ

4
, i = 1, . . . , N.
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Hence the smoothing function r̃ satisfies condition (4). Moreover, the function rI2 is Lipschitz
continuous and regular, which implies the smoothing function r̃I2 satisfies the gradient con-
sistency. Since ∥rI2∥2 is continuously differentiable and has bounded level sets, the objective
function f(x) = 1

2∥r(x)∥
2 is continuously differentiable and has bounded level sets. Hence all

conditions on r and f in the last section hold. It is worth noting that r is not differentiable,
we cannot have a simple and explicit derivative of f . Using the smoothing function r̃, we
have ∇f̃(x, µ) = ∇xr̃(x, µ)

T r̃(x). Thus we can easily construct the quadratic function (5) and
compute the minimizer dk.

The function f is nonconvex with many stationary points. It is hard to find a global mini-
mizer of f by using most existing methods. We use this example to test the STRF algorithm and
compare it with the smoothing trust region (STR) algorithm [11] and fmincon, lsqnonlin,

fsolve codes in Matlab. To guarantee the fairness of the comparison, we use same paramete
in the STR algorithm and the STRF algorithm, and same initial points for all algorithms and
codes.

First we generate N points distributed evenly on the whole sphere. The points are gen-
erated by “The Recursive Zonal Equal Area (EQ) Sphere Partitioning Toolbox” proposed by
P. Leopardi, which could be downloaded from http://sourceforge.net/projects/eqsp/. Next, we
add a small random perturbation on the points to create more initial point sets with the same
cardinalities. All the perturbation obeys a uniform distribution with expectation as 0.1. We
choose initial weights w0

i = 4π
N , i = 1, . . . , N .

In Table 1 we show numerical results for finding spherical t0.1-designs with different t and
N points on the sphere. The final value of the objective function f(x) and the CPU time
(CPUtime) are reported in the table. Compared with other methods, the STRF algorithm can
find a good numerical global minimizer efficiently.

Table 1: Values of r(x)(CPUtime) for spherical tϵ-design with ϵ = 0.1

t, N fmincon lsqnonlin fsolve STR STRF

4, 12 1.41e-07(1.39) 1.91e-05(0.281) 3.28e-15(0.185) 2.64e-03(1.94) 7.78e-11(0.038)

9, 45 8.54e-07(10.1) 2.00e-04(2.29) 3.96e-06(1.89) 6.81e-03(6.26) 9.39e-11(0.35)

12, 80 1.16e-06(52.5) 3.19e-04(13.8) 3.95e-06(15.8) 1.01e-2(12.1) 7.12e-11(0.888)

14, 105 1.61e-06(107) 4.99e-03(66.1) 3.68e-06(46.8) 1.06e-3(22.3) 9.68e-11(2.07)

19, 190 7.66e-06(492) 1.1e-02(189) 2.78e-07(207) 3.06e-04(70.5) 9.79e-11(12.1)

21, 235 1.91e-06(856) 1.18e-04(193) 3.98e-08(310) 1.89e-03(115) 9.35e-11(98)

24, 305 2.30e-05(2064) 6.13e-04(382) 8.66e-07(689) 1.56e-03(220) 9.05e-11(36)

Note that there is no theoretical result which proves the existence of a spherical t-design with
N ≤ (t+ 1)2 points for arbitrary t. In [10], using a computational algorithm based on interval
arithmetic, Chen-Frommer-Lang proved the existence of a spherical t-design with N = (t+ 1)2

points on the unit sphere S2 ⊂ R3 for t = 1, 2, . . . , 100. In [25], Sloan and Womersley, conjec-
tured the existence of a spherical t-design with N = ⌈(t+ 1)2/2⌉+ 1 points on the unit sphere
S2 ⊂ R3 for some small t, where ⌈·⌉ denotes rounding up to the nearest integer. We believe that
with the flexibility of choice for the weights, the number of points for a spherical tϵ-design can
be less than (t+1)2/2. To see the minimum number of points for a spherical tϵ-design, we solve
the least squares problem with r(x) defined in (26) for ⌈(t+ 1)2/3⌉+ 1 ≤ N ≤ ⌈(t+ 2)2/2⌉+ 1
with different ϵ and t. Figure 1 shows the minimal values N such that f(xk) ≤ 10−10 with
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Figure 1: Possible minimal number N of points for spherical tϵ-designs

t = 21, 25 and ϵ = 10−α, α = 0.5+ i×0.1, i = 0, 1, . . . , 11. From Figure 1, we see that the bigger
value of ϵ we choose, the smaller number of points for a spherical tϵ-design we need.

Example 3 Differential variational inequalities (DVI)
Given a ∈ Rk ∪ {−∞}k and b ∈ Rk ∪ {+∞}k, A ∈ Rν×ν , B ∈ Rν×k, c(t) ∈ Rν and a

continuously differentiable function F : Rk ×Rν → Rk, we consider the following DVI:
ẋ(t) = Ax(t) +By(t) + c(t) t ∈ [0, T ]
y(t) ∈ SOL(x(t)) t ∈ [0, T ]
x(0) = x0 ∈ Rν ,

(27)

where SOL(x(t)) is the solution set of the variational inequality, which contains y(t) ∈ [a, b]
such that

(v − y(t))TF (y(t), x(t)) ≥ 0, for all v ∈ [a, b].

It is easy to verify that y(t) ∈SOL(x(t)) if and only if

r(y(t)) = y(t)−mid(a, y(t)− F (y(t), x(t)), b) = 0. (28)

For a fixed t and x(t), f(y(t)) = 1
2∥r(y(t))∥

2 is a nonsmooth nonconvex function. We can
use the smoothing function of the “mid” function in Example 2 to define a smoothing function
r̃(y(t), µ) of r(y(t)), and a smoothing functions f̃(y(t), µ) of f(y(t)).

The time-stepping method [24] with the STRF algorithm for solving the DVI begins with
the division of the time interval [0, T ] into Nh subintervals

0 = th,0 < th,1 < · · · < th,Nh
= T,

where th,i+1 − th,i = h = T/Nh, i = 0, . . . , Nh − 1. Starting from a given vector xh,0 = x0 ∈ Rν ,
we compute yh,0 ∈ SOL(xh,0) by the STRF algorithm and two finite families of vectors

{xh,1, xh,2, · · · , xh,Nh} ⊂ Rν and {yh,1, yh,2, · · · , yh,Nh} ⊂ Rk

by the recursion: for i = 0, 1, · · · , Nh − 1,

xh,i+1 = xh,i + h
{
A(θxh,i + (1− θ)xh,i+1) +Byh,i+1 + c(th,i+1)

}
,

yh,i+1 ∈ SOL(xh,i+1),
(29)
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Figure 2: x(t) for Nh = 20, 50, 100

where θ ∈ [0, 1] is a scalar.
In the numerical experiments, we set θ = 0, a = −2e ∈ Rk and b = 2e ∈ Rk, A =(
1 −1
1 −1

)
, B = 1

k

(
eT

eT

)
, c(t) = (4 sin(20πt), 4 cos(20πt))T and F (y(t), x(t)) = My(t) +

Qx(t), where

M = E ⊗ C =


C C . . . C
C C C
...

...
C . . . C

 , with C =

(
1 1
1 0

)
,

E ∈ R
k
2
× k

2 with all entries 1, and Q = (e, e). Here ⊗ is the Kronecker tensor product. Let
x(0) = (1, 1)T and we select different time step sizes as h = 1/20, 1/50, 1/100 for T = 1, and
k = 100. For each time step th,i+1 , i = 1, . . . , Nh − 1, we solve the least squares problem for
y(th,i+1) with

r(y) = y −mid(a, y − F i+1(y), b) = 0,

where

F i+1(y) = (M + hQ(I − hA)−1B)y +Q(I − hA)−1xh,i + hQ(I − hA)−1c(th,i+1)

by using the STRF algorithm with the initial vector yh,i.
In Figure 2 we report numerical solution of x(t) obtained by the time-stepping method with

the STRF algorithm as its inner solver. In this experiment, the STRF algorithm can find yh,i+1

satisfying f(yh,i+1) ≤ 10−10 for i = −1, . . . , Nh − 1 efficiently. Thus the time-stepping method
with the STRF algorithm can solve the DVI efficiently.
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