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Abstract—A neural network based on smoothing approxima-
tion is presented for a class of nonsmooth, nonconvex constrained
optimization problems, where the objective function is nonsmooth
and nonconvex, the equality constraint functions are linear and
the inequality constraint functions are nonsmooth, convex. This
approach can find a Clarke stationary point of the optimization
problem by following a continuous path defined by a solution
of an ordinary differential equation. The global convergence is
guaranteed if either the feasible set is bounded or the objective
function is level-bounded. Specially, the proposed network does
not require (i) the initial point to be feasible; (ii) a prior penalty
parameter to be chosen exactly; (iii) a differential inclusion to
be solved. Numerical experiments and comparisons with some
existing algorithms are presented to illustrate the theoretical
results and show the efficiency of the proposed network.

Index Terms—Nonsmooth nonconvex optimization, neural net-
work, smoothing approximation, Clarke stationary point, vari-
able selection, condition number.

I. INTRODUCTION

The approach based on the use of analog neural networks for
solving nonlinear programming problems and their engineer-
ing applications have received a great deal of attention in the
last two decades. See [1]-[12], etc., and references therein. The
neural network method is effective and particularly attractive
in the applications where it is of crucial importance to obtain
the optimal solutions in real time, as in some robotic control,
signal processing and compressed sensing. Artificial neural
networks can be used to model the dynamics of a system [13]
and implemented physically by designed hardware such as
specific integrated circuits where the computational procedure
is distributed and parallel. Some dynamical properties of
differential equation or differential inclusion networks make
remarkable contributions to their applications in optimization
[14]-[17].

In this paper, we consider the following constrained nons-
mooth nonconvex minimization problem

f(z)
s.t. Ax =0,

min 1
o) <0, M
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where x € R", f : R® — R is locally Lipschitz, but not
necessarily differentiable or convex, A € R"™ " is of full
row rank, b € R", g : R® — R™ and g; is convex but not
necessarily differentiable, i = 1,2,--- ,m.

Nonsmooth and nonconvex optimization problem arises in a
variety of scientific and engineering applications. For example,
the constrained nonsmooth nonconvex optimization model

-
min | Az = b3+ A Y e(ld] ), )
=1
where A > 0, r is a positive integer, d; € R", C is a closed
convex subset of R™ and ¢ is a given penalized function.
Problem (2) attracts great attention in variable selection and
sparse reconstruction [18]-[22]. Moreover, the problem of
minimizing condition number is also an important class of
nonsmooth nonconvex optimization problems, which has been
widely used in the sensitivity analysis of interpolation and
approximations [23].

Recently, some discrete iterative algorithm, statistical al-
gorithms and dynamic subgradient algorithms are proposed
for constrained nonsmooth nonconvex optimization problems.
Among them, the smoothing projected gradient method [24]
is a discrete iterative method, which uses smoothing approxi-
mations and has global convergence. The sequence quadratic
programming algorithm based on gradient sampling (SQP-
GS) [25] is a statistical method, which uses a process of
gradient sampling around each iterate z*, and have global
convergence to find a Clarke stationary point “with probability
one”. The network in [7] uses exact penalty functions to find
a Clarke stationary point via a differential inclusion. To avoid
estimating an upper bound of the Lipschitz constant of the
inequality constrained functions over a compact set needed
in [7], Liu and Wang [9] propose another network to solve
nonconvex optimization problem (1). A neural network via
smoothing techniques is proposed in [12] for solving a class
of non-Lipschitz optimization, where the objective function is
non-Lipschitz with specific structure and the constraint is so
simple such that its projection has a closed form. Moreover,
the network in [12] is to find a scaled stationary point of the
considered problem, which may not be a Clarke stationary
point of Lipschitz optimization. Although these methods can
efficiently solve some nonsmooth, nonconvex optimization
problems, some difficulties still remain. For instance, the
statistical gradient sampling methods relay on the number
of the individuals largely and require that the functions are



differentiable at all iterates for global convergence analysis;
the algorithms based on projection methods have difficulties in
handling complex constraints; the dynamic subgradient meth-
ods need exact penalty parameters and solutions of differential
inclusions.

The main contributions of this paper are as follows. First,
the proposed network can solve the nonconvex optimization
problem with general convex constraints without needing to
give the exact penalty parameter in advance. To find an exact
penalty parameter, most existing results need the Lipschitz
constants of the objective and constraint functions and the
boundedness of the feasible region [4], [7], [9]. However, esti-
mating these values is very difficult in most cases. Moreover,
too large penalty parameter may bring numerical overflow in
calculation and let the network ill-conditioned. To overcome
these difficulties, smoothing method is introduced into the
network, which leads the differentiability of the approximated
objective and penalty functions. Then the penalty parameter
can be updated on line following some values, such as the
gradient information of the approximated functions and the
smoothing parameter. Second, by the smoothing methods, the
proposed network is modeled by a differential equation not
differential inclusion and can be implemented directly by
circuits and mathematical softwares. For the networks modeled
by a differential inclusion, one needs to know the element in
the right hand set-valued map which equals to @(t) almost
everywhere. This is crucial for the implementation of networks
and relays on the geometry property of the set-valued map.
Third, the smoothing parameter in the proposed network is
updated continuously, which is different from the updating
rules in the previous iterative algorithms. Fourth, the proposed
network does not need large sampling for approximation,
which is used in the statistical optimization methods.

This paper is organized as follows. In Section II, we define
a class of smoothing functions and give some properties of
smoothing functions for the composition of two functions.
In Section III, the proposed neural network via smoothing
techniques is present. In Section IV, we study the existence
and limit behavior of solutions of the proposed network. In
Section V, some numerical results and comparisons show that
the proposed network is promising and performs well.

Let || - || denote the 2-norm of a vector and a matrix. For a
subset U C R™, let int(U), bd(U) and U® denote the interior,
boundary and complementary sets of U, respectively.

II. SMOOTHING APPROXIMATION

Many smoothing approximations for nonsmooth optimiza-
tion problems have been developed in the past decades [26]-
[30]. The main feature of smoothing methods is to approxi-
mate the nonsmooth functions by parameterized smooth func-
tions.

Definition 2.1: Let h : R™ — R be locally Lipschitz. We
call i : R™ x [0,00) — R a smoothing function of A, if h
satisfies the following conditions.

(i) For any fixed € (0,00), h(-,p) is continuously

differentiable in R"™, and for any fixed z € R", iL(l, )
is differentiable in (0, 00).

(ii) For any fixed 2 € R™, lim,, o h(x, 1) = h(z).

(iii) {lim, 40 Voh(z, 1)} C Oh(x).

(iv) There is a positive constant xj > 0 such that
IV h(x, )| < w7, V€ (0,00), 2 € R™

From (iv) of Definition 2.1, for any p > iz > 0, we have
|]~”L(x,,u)—il(.%',ﬂ)| < /i;l(u—/j), Va eR",

letting 2 | O in the above inequality and from (ii) of Definition
2.1, it gives

\h(z, 1) — h(z)| < ki, Ype(0,00), xzeR" (3)
For any fixed z,2 € R", from (3), we obtain
|1 (=, 1) = h(@)| <|h(z, 1) = h(2)| + |h(z) = ()]
<tjpp+|h(z) = h(z)],
which implies

lim  h(z, p) = h(z). (4)
z—x,pul0

The following proposition gives four important properties

for the compositions of smoothing functions. The proof of

Proposition 2.1 can be found in Appendix.

Proposition 2.1: (a) Let fl, ceey fm be smoothing func-
tions of fi,..., fm, then > _" | aif; is a smoothing func-
tion of 370 ) aif; with fis~m 5 = 350 ik, when
a; > 0 and f; is regular [31] for any i =1,2,...,m.

(b) Let ¢ : R™ — R be locally Lipschitz and 7 : R — R be
continuously differentiable and globally Lipschitz with a
Lipschitz constant ly. If ¢ is a smoothing function of ¢,
then v)(¢) is a smoothing function of ¥(¢) with Ky z) =
lwligg.

(c) Let o : R™ — R be regular and ¢ : R — R™ be
continuously differentiable. If ¢ is a smoothing function
of ¢, then $(v)) is a smoothing function of (v) with
Fg(w) = K-

(d) Let ¢ : R™ — R be locally Lipschitz and ¢ : R — R be
globally Lipschitz with a Lipschitz constant [,,. If ¢ and
v are smoothing functions of ¢ and v, 9(-, ;1) and @(-, 1z)
are convex, and (-, ;1) is non-decreasing, then 1(¢) is a
smoothing function of ¥ (y) with Kiz) = g+ lpke.

Example 2.1: Four popular smoothing functions of ¢(s) =

max{0, s} are

~ o - 1
¢1(83 /.L) = st+p 1H(1—|—€_E)7 (;52(8,/1) = §(S+ 52 + 4/-1’2)7

max{0, s} if|s| > u
S, 1) = 2
®3(s, 1) (s 4w if]s] < .
ap
B s+—-e w ifs>0
¢4(57:U’) = o’ s .
—e n if s < 0.
2
It is easy to find that the four functions satisfy the four
conditions in Definition 2.1 with kg, = In2, kg, = 1,

Ky = 1/4 and kg, =1 Fori=1,234, g?)i(s,u) is convex
and non-decreasing for any fixed 1 > 0, and non-decreasing
for any fixed s € R. Moreover, we note that the four smoothing



functions have a common property that

- 1
Vsi(s, n) > 3

Since |s| = max{0, s} +max{0, —s}, then we can also obtain
some smoothing functions of |s| by the above smoothing
functions of max{0, s}, where one frequently used is

Vs €[0,00), € (0,400). (5

|s] if |s] >

(s, ) = (6)

NIE NIE

2
H+4 if |s] <

Note that 6(-,x) is convex for any fixed p > 0, (s, ) is
non-decreasing for any fixed s € R and x; = 1/4.

Among many existing smoothing methods, simple structure
is one of most important factors for the neural network
design. For example, ¢s(s, 1) is a better choice for ¢(s). High
order smoothness and maintaining the features of the original
nonsmooth function as much as possible are also crucial for the
produced smoothing function. See [26]-[30] for other smooth-
ing functions and relative analysis. Moreover, the scheme on
updating the smoothing parameter will affect the convergence
rate. How to choose a better performance smoothing function
and scheme of updating smoothing parameter gives us a topic
for further research.

III. PROPOSED NEURAL NETWORK

Denote the feasible set of (1) by X = X; N X5, where
Xy ={a] Az = b} and Xy = {2z g(z) < 0}. We always
assume the following conditions hold in this paper.

(A1) There is & € X3 Nint(Xy).
(A2) The feasible region X is bounded.

Let ¢ = AT(AAT)", P = I, — AT(AAT)7 14,
g(z) = Y max{0,g;(x)}. In what follows, we use a
smoothing function ¢ of max{0, s} given in Example 2.1.
Since maX1§i54{Kl$i} <1, we let 55 = 1 in our following
theoretical analysis.

Let f : R" x [0,00) — R be a smoothing function of f and
the smoothing function of ¢ be given as

qla, ) = Z O(Gi(x, 1), ), (7)

where g; : R® x (0,00) — R is a smoothing function of g;,
t=1,2,--- ,m. Since g; is convex, g;(x, u2) > g;(x, pu1) for
e > p1 > 0 in most smoothing functions, which implies

gl(x7ﬂ)2gl(x)7 VLCERn, ,U,E(0,00), i=1,...

, M.
®)
Thus, we suppose §;(-, 1) is convex and g;(x,-) is non-
decreasing and denote
k= max {rg}
From (c) of Proposition of 2.1, we get that ¢ is a smoothing
function of ¢ with

KQZMH(Z)—FZK/% :m—|—Z/£§i <m(l+k). (9
j i=1

From condition (A1), we denote

—maxi<;<m gz(‘%)

2k +4(m — 1)
Remark 3.1: 1f g1,. .., gm are smooth, we can define pp =
1form:1andu0=%f’l”)gi(z), for m > 1.

The affine equality constraints are very difficult to handle
in optimization, especially in large dimension problems. One
of the most important methods is the projection method.
However, when the matrix dimension m is large and the
structure of A is not simple, it is difficult and expensive to
calculate P. We should state that the proposed network in
this paper is applicative for the problems where the matrix P
can be calculated effectively. Then, we consider the following
unconstrained optimization problem

_ Imaxi<i<m gz(i')

ﬂ = 4 ;

Mo =

min  f(Pxz + ¢) + oq(Pz + ¢), (10)

where o > 0 is a positive penalty parameter. It is known that
if f and g are smooth, there is a 6 > 0 such that for all 0 > &,
if #* € X is a stationary point of (10), then Pz*+c=2z*is a
stationary point of (1) [32, Theorem 17.4]. However, choosing
such & is very difficult. To overcome these difficulties, we
adopt a parametric penalty function defined as

((PVaf (@, 1), PVoq(w, 1)) + ABp) |l — &
max{ﬁ27||Pqu~(x7u)||2Hx—§3H2} (117)

oz, 1) =

where A is a positive parameter defined as
N 2q(ug) + 4m(1 + K)o
Brio .

The main goal of this paper is to present a stable and
continuous path u € C'[0,00), which leads to the set X*
of the Clarke stationary points' of (1) from any starting point
o € R".

We consider the following network modeled by a class of
ordinary differential equations (ODEs)

a(t) = —P(Vuf (u(t), v(t)) + o (u(t), v(t) Vud(ult), v(t))),
u(0) = Pzg + ¢,

12)
where zo € R™ and v(t) = poe™".
In order to implement (12) by circuits, we can use the

reformulated form of (12) as following

u(t) = =P(Vuf(u(t), v(t)) + o(u(®), v(t)) Vug(u(t), v(t))),
o(t) = —v(t)
u(0) = Pz + ¢, v(0) = po.

13)
(13) can be seen as a network with two input and two
output variables. A simple block structure of the network (13)
implemented by circuits is presented in Fig. 1. The blocks
PV, f and PV,q can be realized by matrix P, V. f(u,v)
and V,q(u, v) based on the adder and multiplier components.

'2* is called a Clarke stationary point of (1) if * € X and there is a
&* € 0f(x*) such that

(z —x*, &%) >0, Vo eX.



Fig. 1: Schematic block structure of a neural network described
by (12)

Fig. 2: Circuit implementation of term ¢s(s, /) by circuits

Fig. 2 and Fig. 3 show the implementation methods on ¢3(s, V)
and V,¢3(s,v), which give some hints on how to implement
Vuf(u,v) and V,G(u,v). o is a block with scalar output
based on the information of u, v, V., f(u,v) and V,q(u, v).
A detailed architecture flow structure of the block o is given
in Fig. 4, where F; and (); denote the ith output of the blocks
PV, f and PV ,q, respectively. From Figs. 1-4, we can see
that network (12) can be implemented by the adder, multiplier,
divider and comparator components in circuits. Through the
expression of o(u, ) looks complex, it can be realized based
on the existing blocks PV, f and PV, q, which shows that it
will not bring expensive components in circuit implementation.
The readers can refer to [33] for the detailed techniques on
this topic.

IV. EXISTENCE AND LIMIT BEHAVIOR

In this section, we study the existence and limit behavior of
the solutions of (12). For readability, we put the proof of all
theoretical results in Appendix.

Theorem 4.1: For any xy € R", (12) has a solution u €
C10, 00). Moreover, there is a p > 0 such that for any solution
u of (12) in C*[0, 00), we have sup;c( o) [[u(t)]| < p.

Remark 4.1: We know that a finite penalty parameter
is very important for implementation. From Theorem 4.1,
o(u(t),v(t)) is uniformly bounded on [0, o).

Fig. 3: Circuit implementation of term V,¢s(s, ) by circuits

a

Fig. 4: Circuit implementation of term o (u, ) by circuits

Furthermore, locally Lipschitz property of the proposed
smoothing functions can guarantee the uniqueness of the
solution of (12).

Proposition 4.1: When V, f(-, ) and V,q(-, p) are locally
Lipschitz for any fixed p € (0, ug], then (12) has a unique
solution.

The following theorem shows the feasibility and limit
behavior of u(t) as t — oo.

Theorem 4.2: Any solution u(t) of (12) in C[0, 00) satis-
fies {limy o0 u(t)} C X.

Note that ¢ is convex on R™ and Oq(z) exists for all
x € R™ From [31, Corollary 1 of Proposition 2.3.3 and
Theorem 2.3.9], we have the expression of dg(x), and from
[31, Corollary 1 and Cororllary 2 of Theorem 2.4.7], the
normal cones to the three sets can be expressed as follows:

Ny, (z) ={AT¢ | €€ R™}, Vo eX,
Nx,(z) = Ur>o70q(x), Vo € Xo,
Nx(z) = Nx, (z) + Nx, (z), Vo € X.

Theorem 4.3: Any solution u(t) of (12) in C[0, 00) satis-
fies

() u(t) € L?[0,00);
(i) lim¢_ oo f(u(t)) exists and limy_, o ||4(t)|| = 05
(i) {lim; oo u(t)} € X*, where X* is the set of Clarke
stationary points of (1).

Remark 4.2: If the objective function f is level-bounded’,
there is R > 0 such that ||z — 2||> < R holds for all z €
{z : f(z) < f(2)}. By adding constraint ||z —#||? < R to the
original optimization problem, the extension problem satisfies
assumption (A2) and has the same optimal solutions as the
original problem.

Remark 4.3: If f is pseudoconvex on X2, which may be
nonsmooth and nonconvex, from Theorem 4.2 and Theorem
4.3, any solution of (12) converges to the optimal solution
set of (1). Some pseudoconvex functions in engineering and
economic problems are given in [11], [34].

"We call f is level-bounded, if the level set {z € R™|f(z) < n} is
bounded for any 1 > 0.
2We call f is pseudoconvex on X if for any 2/, =’/ € X, we have

() € 9g(a’) : (C(a"),2" —a’) 2 0= f(a") > f(2').



Network (12) reduces to

W(t) = =V f(u(t), v(t)) — o (u(t), v(t)) Vug(u(t), v(t)),
Ug = Io
(14)
for a special cases of (1), that is

f(z) s.t.

Similarly, we can obtain that the conclusions of Theorem 4.3
hold for (14) to solve (15).
Moreover, when we consider problem

f(z) s.t. Az =b,

which is also a special form of (1), the feasible region X is
unbounded. When f is level-bounded, we can use the analysis
in Remark 4.2 to solve it and we can obtain the results in
Theorems 4.1-4.3 with the simpler network

{u(t) = =PV, f(u(t),v(t)),

min g(z) <0. (15)

min (16)

17
ug = Pxg + c. (17)

Corollary 4.1: For any xy € R", if f is level-bounded and
o < 1, the conclusions of Theorem 4.3 hold for (17) to solve
(16).

Remark 4.4: If we can find an exact parameter ¢ such that
the solutions of (10) are just the solutions of (1), then we can
define

o(x,p) =6,

which brings (12) a simpler structure. All the results in this
paper can be obtained by similar proofs.

Remark 4.5: From the proof of the above results, it is not
too rigorous for the choose of py and A. Actually, all the
results hold with

—maxi<;<m gi(i‘) \ > QQ(UO>
26+4(m—1) 7 T po

po < +4m(1 + k).

V. NUMERICAL EXAMPLES

In this section, we use five numerical examples to illustrate
the performance of network (12) and compare it with the
network in [9], Lasso, Best Subset and IRL1 methods in [36],
and the SQP-GS algorithm in [25]. The numerical testing was
carried out on a Lenovo PC (3.00GHz, 2.00GB of RAM) with
the use of Matlab 7.4. In our report for numerical results, we
use the following notations.

o SNN: Use codes for ODE in Matlab to implement (12). We
use odel5s for Examples 5.1-5.3, and ode23 for Examples
5.4-5.5.

ug,, : numerical solution of SNN at the kth iteration.

Z: numerical solution obtained by the corresponding algorithms.
time: CPU time in second.

fea-err(z): value of the infeasibility measure at x, which is
evaluated by fea-err(z)=||Az — b|| + >_1_, max{0, g:(z)}.

e 6(s,p): a smoothing function of 6(s) = |s| given in (6).

We choose v(t) = pge™t in Examples 5.1-5.3 and v(t) =
toe~ " in Examples 5.4-5.5. It is trivial to get all results in
Sections IV for v(t) = ppe~** by resetting t = at.

Example 5.1: [35] Find the minimizer of a nonsmooth

Rosenbrock function with constraints:
8\3:% — x| + (1 — 1)2
s.t. z1 — V2xy =0, x%+|x2|f4§0.

min

(18)

x* = (g, )T is the unique optimal solution of (18) and
the objective function is nonsmooth at z* with the optimal
value f(z*) = %

It is easy to see & = (0,0)7 € X; N int(Xy). Let the
smoothing functions of f and ¢ be

f(‘r’:u) = 85(1?% - xQHu) + (1 - JUl)Qa
(j(I,HJ) = &2(1’% + é(IQMU’) - 47#)3

where q~52 is defined in Example 2.1. In [35], Gurbuzbalaban
and Overton state that it is an interesting topic that whether
the solution obtained by their proposed algorithm is the
global minimizer, but not the other Clarke stationary points.
Besides x*, (18) has another Clarke stationary point (0,0)7.
We test the SNN with the 491 different initial points in
[—5,5] x [—5,5], where 441 initial points are xy = (=5 +
0.5i, =5+ 0.55)%, 4,5 = 0,1,...,20 and the other 50 initial
points are also in [—5, 5] x [—5,5] and uniformly distributed
on the vertical centerline of z* and (0,0)T. Through this
numerical testing, we suggest for this example that

if |ug —¥|| < ||lxol|, then lim wu(t) = x™,
t—o0
otherwise  lim wu(t) = (0,0)7.
t—o00

However, we can not obtain this result by a theoretical proof.

Fig. 5: Convergence of the network in [9](left); Convergence of the
SNN(right)

Recently, Liu and Wang [9] proposed a one layer recurrent
neural network to solve nonsmooth nonconvex optimization
problems, which improves the network in [7]. We test the
network in [9] to solve (18), where we choose o = 73 and
¢ = 10~1. With initial point (v/2/4,1/4)T, the left figure of
Fig. 5 gives the convergence of the solution of network in [9],
while the right figure of Fig. 5 gives the convergence of the
solutions of the SNN. From these two figures, we can find that
the SNN is more robust than the NN in [9] for solving (18).
However, we should state that the network in [9] can also find
the minimizer of (18) with some initial points.

Example 5.2: We consider a nonsmooth variant of Nes-



terov’s problem [35]
min  4|ze — 2|z | + 1| + |1 — 24|

19
st 2y —xp =1, 23 4+ |2o| —4 <0. (19)

z* = (1,1)7 is the unique optimal solution of (19) and
f(z*) = 0. The objective function and the inequality con-
strained function are nonsmooth.

From Example 2 of [35], #* and (0,—1)7 are two Clarke
stationary points of (19) without constraints. By simple calcu-
lation, the two points are also Clarke stationary points of (19).
We choose the smoothing function

.fN(x’/”L) = é(l’g - 25(%1,/1,) + 1;:“‘) + é(l - xla/u’)

for f and ¢(x, u) for ¢(z) given in Example 5.1.

We choose # = (0, —1)T € XyNint(Xy). The left figure of
Fig. 6 shows the convergence of |u;, — x*|| with 40 differ-
ent initial points, which are (10cos(4r),10sin(%))”, i =
0,1,...,39. The SNN performs well for solving (19) from
any of the 40 initial points, which are on the boundary of the
circle with center (0,0)” and radius 10. The right figure of
Fig. 6 shows the solution of the SNN with 2y = (—10,0)7,

which converges to =*.

\

4 _
frm

Fig. 6: ||u(tr) — x™|| with 40 given initial points(left); the solution
of SNN with the initial point xo = (—10,0)7 (right)

—u)

EINE]
k

Example 5.3: In this example, we consider

K(Q(z))

s.t. 0<z<1, 17z =1,
where 1 = (1,...,1)T € R", Q(z) = Y1, 2:Qi, Q; are
given matrices in S, ", the cone of symmetric positive definite
m X m matrices.

min
(20)

This example comes from an application of minimizing
condition number. It is difficult to evaluate the Lipschitz
constant of x(Q(z)) over the feasible region. From the con-
straints in (20), when z € X, Q(z) € S/, *. Then the
condition number of Q(z) is defined by k(Q(x)) = %,
where A1 (Q(x)),...,A\n(Q(x)) are the non-increasing or-
dered eigenvalues of (). In this example, we want to find
a matrix in co{Q1,...,Qn} such that it has the smallest
condition number, where “co” denotes the convex hull.

For given [,u € Ry, with [ < u, the following Matlab
code is used to generate Q1,...,Q, € S;iT.

R=randn (m,n); [U,D,V]=svd(R(:,1+mx (i-1) :mx1i));
for jJ=1:m

D(j,j)=median([1l, u, D(3,3)1);

[Lu] [ M(Q(2)) [ A20(Q(7)) | £(Quo)) | £(Q(Z))
[0.5,64] | 31.6774 | 10.6844 | 26.5687 | 2.9648
[5,50] | 29.5896 | 11.9007 82545 | 2.4864
20,30] | 27.5574 20.556 14803 | 1.3406
24,26] | 252444 | 24.1842 1.0820 | 1.0438

TABLE I: Numerical results of the SNN for Example 5.3

end
Q=U’ xD%U;

We choose & € Xy Nint(Xp) with &; = . We use the
smoothing function of the objective function given in [23],
specially,

- (37, eri(Q@)/ 1y

%

flw,p) = TIn(X ", e M QED/my

We define G(x, 1) = 32", ¢s(gi(x), j1), where ¢ is defined
in Example 2.1, g;(z) = —z; and gn4i(x) = Tpyy — 1, 1 =
1,2,...,n.

Table I presents the numerical results using the SNN to
solve (20) with n = 10, m = 20 and initial point zyg =
(0.5,0.5,0,...,0)7. When [ = 0.5 and u = 64, the left figure
of Fig. 7 shows the convergence of A1 (Q(uz)), Aao(Q(ut))
and x(Q(u¢)) of the SNN with this initial point.

It is known that the condition number function & is nons-
mooth nonconvex.  is not differentiable at = when @Q(x) has
multiple eigenvalues. In order to show the effectiveness of the
SNN, we consider a special case, in which we generate ()
byl=u=30,Q; byl =5 and u =50 for i = 2,...,10.
Then, the optimal solution of (20) is #* = (1,0,...,0)? and
k(Q(x*)) = 1. The right figure of Fig. 7 shows the eigenvalues
of Q(x) at initial point g = ug = (0.1,...,0.1)7 and Z
obtained by the SNN.

—— K(Q(y)=2.9685
— =y (Q)=31765
—— Q10701 5
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99
2| ¢

00

0 eigenvalues of Q(u;) and K{Q(u,)=2.2320|
* _eigenvalues of Q(X ) and x(Q(X ))=1.0015|

and

Fig. 7: Convergence of M(Q(ut)), A20(Q(u(t)))
; ,20

k(Qu(t)))(left); Xi(Q(uo)) and XNi(Q(T)), i = 1,...
(right).

Example 5.4: In this example, we test our proposed net-
work into the Prostate cancer problem in [36]. The date
is consisted of the records of 97 men, which is divided
into a training set with 67 observations and a test set with
30 observations. The predictors are eight clinical measures:
Icavol, Iweight, age, Ibph, svi, Icp, pleason and pgg45. In this
example, we want to find fewer main factors with smaller
prediction error, where the prediction error is the mean square
error of the 30 observations in the test set. Then the considered



SNN LASSO | BS | IRLI z SQP-GS SNN
A 6.5 6.875 18.95 n time f(z) fea-err(z) time f (@) fea-err(x)
Z1 0.6524 | 0.6817 | 0.7641 | 0533 | 0.740 | 0.619 ég égi; 8522; . 88% 6 ?g%g 8%2431; iiigig
;z 0'23 %0 0'207 o7 0'13 671 0. })69 0%16 0‘%36 64 | 6650 | 02802 | 8.88E-16 | 59176 | 02803 | 1.77E-15
2
Za 0.0878 0 0 0.002 0 0.100 9;0 time ;%P))_GS fea-err(z) time f(sg)N fea-err(Z)
€5 0.1599 | 0.0957 0 0.094 0 0.186 16 | 136.1 | 0.2337 0 0.6120 | 0.2337 0
To 0 0 0 0 0 0 3 | 6238 | 0.2642 0 12501 | 0.2642 0
Z7 0 0 0 0 0 0 64 | 6795 | 0.2801 | 8.88E-16 | 23482 | 0.2801 | 8.88E-16
s 0 0 0 0 0 0
N~ 4 3 2 4 2 4 TABLE III: The SQP-GS and the SNN for Example 5.5
Error 0.4321 | 0.4389 | 0.4772 0.479 0.492 | 0.468
3 ]
TABLE II: Variable selection by the SNN, Lasso, Best subset 7 T tme 339@) feaerr@ | 1 time xj‘%(j) Tea-ert(z)
and Iterative Reweighted /; norm methods 16 1 09674 1 02337 0 256 | 7.545 | 0.2930 0
32 | 22694 | 0.2642 0 1024 | 82.17 | 0.2973 | 2.88E-16
64 | 8.7204 | 0.2802 | 2.66E-15 | 4096 | 387.1 | 0.3392 | 3.38E-14

0 F) 10 150 m % w 0 E) ) 15 m 2 E)
«

Fig. 8: Convergence of u(t;) and prediction error

optimization is modeled as
8

3|z

i Az —b||? + A u

min Az - b]" + Zl+3|iz| @1
s.t. 0<z; <1, 1=1,2,...,8,

where A € R67*8 b € RS, The objective function is
nonsmooth and nonconvex.

Choose & = (0.5,...,0.5)7 and v(t) = poe *. With
initial point 2o = (0,...,0)%, the numerical results of using
the SNN for solving (21) with different values of A are listed
in Table II, where N* is the number of nonzero elements in
Z. The results with three famous methods LASSO , BS (Best
Subsets) and IRL1 ( Iterative Reweighted /; norm) [36] are
also given in Table II. We can find that the SNN can find the
main factors with smaller prediction error. Additionally, the
solution u(t)) of the SNN and the prediction error along this
solution with A = 6.5 are illustrated in Fig. 8.

Example 5.5: We consider the following nonsmooth non-
convex optimization

min | Ha —p|? +0.002 > v(z;)
i=1
s.t. 1TJ;=7,0§33§1,

(22)

where H = (H;j)nxn, P = (Pi)nx1 are defined as H;; =
e=20/3)°=2G/3° p. = 1/i,i,j =1,2,...,n, v=1Tp and
¢ R — R is defined by ¢(s) = 1$057‘5"|

Optimization problem (22) arises frequently in a number
of engineering and economic applications, including image
restoration, signal processing, system identification, filter de-

sign, regression analysis and robot control [18]-[23].

TABLE IV: The SNN for Example 5.5 with 2% and 3 in (23)

Choose & = ZLe and v(t) = poe . We define the

smoothing functions (z, ) = ¥(0(z, 1)) of ¢ and §(x, )
of ¢ with the format given in Example 5.1. Let

$0—(7’1 )T€X1UX2,
xof(r() O)Texmxg.

Table III shows numerical results of the SQP-GS [25] and
the SNN for solving (22) with initial points z$ and z2. From
this table, we can see that the SNN performs better than
the SQP-GS in the sense that the SNN can obtain almost
same values of f(Z) and fea-err(Z) with much less CPU
time. In [25], the SQP-GS needs the objective function to
be differentiable at the initial point. Table IV shows that the
SNN is effective with initial point 3, at which the objective
function is not differentiable. Table IV also illustrates that the
SNN performs well for solving (22) with high dimensions.

Since there is an affine equality constraint in (22), the
proposed network is very sensitive and the computation time
is long when the dimension n is large. To the best of our
knowledge, it is an open and interesting problem on how to
solve the large dimension nonsmooth nonconvex optimization
problem with affine equality constraints effectively and fast.

=peX,
o=D"D 23)

VI. CONCLUSIONS

In this paper, we propose a neural network described by
an ordinary differential equation, to solve a class of nons-
mooth nonconvex optimization problems, which have wide
applications in engineering, sciences and economics. Based
on the closed form expression of the project operator on
the constraints defined by a class of affine equalities, we
choose the neural network with projection. Additionally, the
penalty function method is also introduced into our system
to handle the convex inequality constraints. To avoid solv-
ing the differential inclusion and overcome the difficulty in
choosing the exact penalty parameter, we make use of the
smoothing techniques to approximate the nonsmooth functions
and construct a continuous function to replace the fixed
parameter. Only with the initial point belonging to the equality
constraints, which can be calculated easily by the project
operator, we can prove theoretically that any solution of the




proposed network converges to the critical point set of the
optimization problem. Finally, in order to show the efficiency
and superiority of the proposed network, some numerical
examples and comparisons are presented, including the Rosen-
brock function, the Nesterov’s problem, the minimization
of condition number, and a familiar optimization model in
image restoration, signal processing and identification. By the
numerical experiments, it is as expected that the proposed
network in this paper performs better than the neural network
method in [9], the two famous iterative algorithms Lasso and
IRL1, and the well-known statistical optimization algorithms
Best Subset and SQP-GS [25]. There are two possible reasons
why the proposed network can provide better numerical results
than these existing methods. The first is that the smoothing
parameter is updating continuously in the proposed network
and the global convergence can also be guaranteed. The second
reason is that the continuous penalty parameter o(u(t),v(t))
controls the proposed network and let it solve the constrained
optimization effectively. However, we can not prove these two
reasons in theory, which inspires us to explore the reasons in
further work.

VII. APPENDIX

Proof of Proposition 2.1 1t is easy to see that these compo-
sitions satisfy (i) and (ii) of Definition 2.1. We only need to
consider (iii) and (iv) of Definition 2.1. By the chain rules of
the subgradient in [31], (a) holds naturally.

(b) Condition (iii) of Definition 2.1 is derived as the
following

{_lim Vo (0(5(0)}

Z—a

:sz(s)s=w(x){ziirﬁt¢0 Vz@(za :U')}

gvs¢(5)s:¢(w)a@(x) = 3(1/1 © (p)(CC),

where we use {lim. ., ,10V.¢(2, 1)} C Op(x) and [31,
Theorem 2.3.9 (ii)].
Condition (iv) of Definition 2.1 follows from

|V,ﬂ/)(¢)(l‘,u))| < |v8¢(5)s:¢(z,u)|‘vu¢($vU)‘ < lw’%-

Similar to the analysis in (a), we omit the proof of (c).

(d) Denote ¢ o G(x, 1) = ¥(P(x, p), ). For any fixed
©u > 0, since 1[)(, u) is convex and non-decreasing, and
@(-, p) is convex , we get that ¥ o @(-, 1) is convex. Hence,
for any fixed > 0, z,v € R" and 7 > 0, we have

pool Ao n) ZVofh) o iy (fo gz ), ).

Let z — 2 and p | 0, and then passing 7 to O in the above
inequality, we have

V() (z;0) > ( lim  V.(po@)(z pn),v), YueR"™

z—a,ud0

By the definition of the subgradient, we obtain
{ lim V.(do@)(zn)}C 0(p()),
z—x,1ud0

which proves that Yo ¢ satisfies (iii) of Definition 2.1.

Condition (iv) of Definition 2.1 follows from

IVud (@@, 1), )] < kg + Ly

]

In order to give the proof of Theorem 4.1, we need the
following preliminary analysis.

For a given x € R", denote

I*(z) = {ilgi(x) > 0,}, I°(x) = {i] gi(x) = 0},

We need the following lemmas to obtain our main results.
Lemma 7.1: The following inequality holds

<$—j7vz§($aﬂ)> Zﬁ7 V$¢X27 He (07 ,U/O]
Proof: For any x ¢ Xo, I (x) # 0. (8) implies

From (iv) of Definition 2.1, we have
(25)

From the convexity of g;(-, u), (24) and (25), for any i €
I (x), we have

<.’L’ - Z,IA37VI§Z(£C,,U,)> > gi($7ﬂ) - gl(:a//') 2 4ﬁ — K. (26)

For u < pp, (5) and (26) imply that for any z ¢ Xy, i €
I* (),

. e 1
(@ =&, Vad(gi(z, p), ) 2 5 (48 — kp). 27)
When 0 < po, §i(d,p) <0, =1,2,...,m. Since ¢(-, )
is convex and ¢(s, -) is non-decreasing, forall i = 1,2, ...,m,
we obtain

(= Voo (i, 1), 1))
>¢(gi(w, p), 1) — A(Gi(2, 1)y ) = —pu

Combining (27) and (28), when = ¢ X5 and p < pg, we
obtain

(28)

(48 — kp) — (m = 1)p = B.

N |

(x =& Vag(a, 1) =

|

Lemma 7.2: For any xg € R", there is a T' > 0 such that

(12) has a solution u € C*[0,T). Moreover, any solution of
(12) in C'0,T) satisfies u(t) € X; for all ¢ € [0,T).

Proof: Since the right hand function in the system (12)
is continuous, there are a 7> 0 and u € C'[0,T) such that
u(t) satisfies (12) for all ¢ € [0,T'), see [37]. Differentiating
]| Au(t) — b||* along this solution, from AP = 0, we obtain

d1

dt 2

which derives that ||Au(t) —b||? = || Aug —b||?, Vt € [0,T).

Since ug = Pxg + ¢ € Xy, we get ||Aug — b||> = 0. Hence,

|| Au(t) — b]|?> = 0 and u(t) € Xy, Vt € [0,T). [ |

Lemma 7.3: The level set {x € Xi|q(x,puo) < n} is
bounded for any 1 > 0.

Proof: First, we prove that for any n > 0, the level set
I' = {z € X1 | maxi<i<m Gi(z, po) < n} is bounded. Since

[Au(t) = blI* = (AT (Au(t) - b), u(t)) =0,



X is bounded and T is a subset of X;, I'( X5 is bounded. In
order to prove the boundedness of I', we need to consider the
set (XS, Assume on contradiction that there exist 7 > 0
and a sequence {x}} C X; (XY such that

max gz(fﬂk>uo) <7 and (29)

li =
R Jim ey = oo

Denote 9 (7) = maxi<i<m §i((1 — 7)& + Tk, o), k =

1,2,.... Since g;(-,po) is convex, i = 1,2,...,m, ¢y is
convex on [0,+00), k = 1,2,.... From (3) and pg < %,
fork=1,2,...,

= < oty < —
¥x(0) ax gi(Z, 110) R 9i(%) + kg, o < —28,

1) = i > i 0.
V(1) = max gi(zx, po) 2 max gi(zi) >
Then, for each k = 1,2,..., there exists 7, € (0,1) such

that

(k) = max Gi((1 = 7)Z + Tk, po) = 0. (30)

<is<m

Since 1 is convex, Vi is non-decreasing, k = 1,2,....

From the mean value theorem, for each £ = 1,2, ..., there
exists 73 € [0, 7%] such that
. Tk ) — 0 2
V(1) > Vi (7x) = %}c%() > 2 (3D

Using the non-decreasing of g;(x
1,2,...,m, we have

,+) and (30), for all ¢ =

i (1 —7m)Z + mpr) < §i((1 — 7%)T + Tk, o) <0,

which implies that (1 — 7)) + Tpar € Xo, k = 1,2,.
Combining this with (1 —7)% + 1pxr € X1, k=1,2,..., we
have

(1 —7,)T + ey € X

k=1,2,.... (32)

Since X is bounded, there exists R > 0 such that ||z — 2| <
R, Vz € X. Hence, (32) implies

||(1—7'k)()3'+7'kxk—£i'||:TkH.’i'—{EkHgR, k:1,2,....

Since limy_, o || Z|| = oo, from the above inequality, we ob-
tain limy_, o 7, = 0. Owning to (31), limy—, o Vb (1) = 00.
From the convex inequality of vy, for all k =1,2,...,

U (1) > () + (1 — 7)) Vr(mr) = (1 — 7)) Vb (1),

which follows that limy_, o maxi<;<m Gi(Tk, o) =
limg 00 9% (1) = co. This is a contradiction to (29). Hence,
the level set {z € X; | maxi<;<m G:i(z, o) < n} is bounded
for any 1 > 0.

From the definition of ¢ and non-decreasing of é(s
obtain

,1), wWe

m
q(z, o) = ;maX{O,gi(x,uo)} > max §i(z, po)- (33)
Thus, for any n > 0, {z € Xi|G(z,pm) <
nt C {z € Xi|maxi<icmGi(z,p0) < n}. Since
{z € Xi| maxi<i<m §i(x, o) < n} is bounded, {z €
Xy | 4(z, po) < n} is bounded. |
Proof of Theorem 4.1 From Lemma 7.2, there is a T" > 0
such that (12) has a solution u(t) € C*[0,T), where [0,7) is

the maximal existence interval of . We suppose T' < oc.
Differentiating §(u(t), v(t)) + rgqv(t) along this solution of
(12), we have

& (@lt), (1) + rgp(0) = (Tud(), i) + (Vo(1) + rg)
From V,§(t) + kg > 0, #(t) < 0 and P? = P, we have
@(t),v(8)) + g (1)
<(VLd(), ~P(Vuf () + o0 V.d(1) G
<|(PV.q(t), PV f(8))] = o (&) PVud(t)]>.

Since u(t) € Xy, we have P(u(t) — &) = u(t) — &, Vt €
[0, 7). Meantime, if u(t) € X; NX§ for some ¢ € [0,7T), from
Lemma 7.1, we have

(u(t) — &, PVuq(u(t), v(t)))
=(u(t) = 2, Vuq(u(t), v(t)) = 5,
which implies that || PV, G(u(t), v(t))|[||u(t) — Z|| > 8.

Thus, for any ¢ € [0,T) such that u(t) € X; NXS, we have
max{A%, | PVuq(u(t), v(t))|*[lu(t) — &%}
=[PVug(u(t), v(t))|*|ult) - 2>
Since u(t) € Xy, Vt € [0,T), using the above result, the
definition of o (u,v) and (34), when u(t) ¢ Xo, we find
d .
7 (A(u(?), v (1)) + rgr(t)) < —ABv(?).

This implies that g(u(t),v(t)) + kgv(t) is a non-increasing
function of + when u(t) € X§. On the other hand, when u(t) €
Xo, G(u(t),v(t)) < kgr(t) < kgpo. Thus,

(35)

q(u(t),v(t)) <max{q(uo, po) + Kgtto, kgpo}
<q(uo) + 2K4p0, VYVt € [0,T).

From Definition 2.1, for all ¢ € [0,T),
q(u(t), po) < q(u(t), v(t)) + rglv(t)
Thus, for all ¢ € [0,T),
q(u(t), po) < qluo) + 3kgho.

Form Lemma 7.3, u : [0,7) — R™ is bounded. Then this
solution of (12) can be extended. Therefore, this solution of
(12) exists globally.

Similarly, we can obtain §¢(u(t),po) < gqlug) +
3kgpo, Yt € [0,00). Thus, u : [0,00) — R™ is uniformly
bounded, which means that there is a p > 0 such that
lu(t)]| < p, ¥t > 0.

Proof of Proposition 4.1

Denote u, v € C*[0, 00) two solutions of (12) with an initial
point uy = Pz + ¢ and suppose there exists ¢ such that
t = inf;>0 u(t)#0(t) t- From Theorem 4.1, there is a p > 0
such that |lu(?)|| < p, [[o(®)|| < p, VE > 0.

Denote 7(z,p) = —P(Vyf(z,p) + oz, p)Vaq(z, p)).
When V. f(-, ) and V,q(-, 1) are locally Lipschitz for any
i € (0,00), o(-, ) is locally Lipschitz for any p € (0,00).
Then (-, ut) is locally Lipschitz for any p € (0, 00).

Since u(t), v(t) and v(t) are continuous and bounded on

— Hol-



[0,00), there is an L such that for any ¢ € [£,1 + 1],

[l (u(®), v(t)) = r(v(®), v(E)]] < Llu(t) — (@)

Differentiating 3 ||u(¢)—v(t)||* along the two solutions of (12),
we have

— 5 lu®) —v®I* < Lilu(t) —v®]?, vt € [f,{+1].

Applying Gronwall’s inequality into the integration of the
above inequality, it gives u(t) = v(t), Vt € [£,t + 1], which
leads a contradiction.ll

Proof of Theorem 4.2 Let u € C'[0,00) be a solution of
(12) with initial point zo. When u(t) € Xz, from (35), we
have

d

dt

Integrating the above inequality from 0 to ¢, we get

(G(t) + rqr(t)) < =ABuv(t) = —ABuoe ™", vt > 0. (36)

q(u(t), v(t)) + rgqr(t) — G(uo, po) — Kgho
< - /\B,uo/ e *ds = —ABuo(l —e™ ).
0

Owning to §(t) + kgr(t) > g(u(t)) > 0, Vt > 0, we obtain

0 < q(uo, o) + Kgio — ABpo(1 —e™"). (37)
From (3) and (9), we have
q(uo) +2m(1 + K)po = G(uo, o) + Kgho,
then
A = 2atuo) +Am(1+ K)o 2(q(uo, po) + Kapto) 3.

Bro Bro
(37) and (38) lead to ¢t < In 2.

Therefore, u(t) hits the feasible region X5 in finite time.

For t > In2 and u(t) ¢ X». Denote f = SUPg<s<t,u(s)cXs S
Then, u(s) & Xy when s € (£, t]. Integrating (36) from  to t,
we get

q(u(t), v(t)) + rqr(t)
¢

<G(u(t),v(t)) + rgv(t) — )\ﬂﬂo/i e °ds (39)
<2kav(t) + A\B(v(t) — v(i)).
Applying A > 2k4/8 to (39), we get

q(u(t)) <q(u(t), v(t)) + v (t) 40)

<L2pkgv(t) + 2k5(v(t) — v(1)) = 2kq0(t).

Moreover, combining (40) with g(u(¢)) < 0 when u(t) €
X5, we have that

q(u(t)) < 2rqu(t),

Passing to the suplimit of the above inequality, we obtain

Vt > In2.

0 <limsupq(u(t)) < lim 2xk5v(t) = 0.
t—o0 t—ro0

Therefore, we deduce that lim;_,~, ¢(u(t)) = 0, which means
{lim, oo u(t)} C X,. Combining this with u(t) € Xi,
Vt € [0,00), we have {lim;,oc u(t)} CX. W

To prove the global convergence of (12) to the Clarke

stationary point set of (1), we need a lemma on the relationship
between the normal cones and the subgradients.

Lemma 7.4: If limyg_, o pr = 0 and limy,_, o zp, = 2* € X,
then

{klijgo P(Vaf(@k, 1) + 0 (2, e) Vod(zr, i) }
Cof(z*) + Nx(z*).

Proof: From (iii) of Definition 2.1, we have
{ lim V.q(wg, px)} C Oq(z™).
k—o00

If 2% € bd(X2), q(z*) = 3 ;e f0(,+[0, 1]0gi (™). Since g; is
convex, for any 7 > 0,
Toq(x*) = Y [0,7]0gi(x").
i€10(x*)
Since limg_,o, x = x*, we have 0 < o(zg, pug) < 00, k =
1,2,.... Thus,
{kILII;O P(Vof @k, ) + (2, 1) Vo (Th, i)}
CP(Of(z*) + [0,00)0q(z")).

For any fixed 7 > 0, since AT(AAT)"1A(-0f(z*) —
T0q(x*)) C Nx,(z*), we have

POf(z") +70q(x7))
=0f(x*) + 10q(x*) — AT (AAT) L A(Of (x*) + TOq(x*))
COf(x%) + Nx, (27) + Nx,(27) = 0f («7) + Nx (7).

|

Proof of Theorem 4.3 From Theorem 4.1, there is a p > 0
such that |Ju(t)|| < p for all ¢ > 0 which implies that there is
R > 0 such that ||u(t) — #|| < R for all ¢ > 0. Since f and ¢
are locally Lipschitz, there exist /¢ and [, such that ||£|| < Iy,
9]l < Ly, ¥€ € OF(2). 1 € dal), 2] < p. From (i) of Def:
inition 2.1, we confirm that limsup,_, . ||V f(u(t), v(t))] <
Iy and limsup,_, ., [|VuG(u(t),v(t))|| <[4, which means that

there~are l7 and I such that ||V, f(u(t),v(t))| < I7 and
IVug(u(t), v(0) < g, vt = 0.

(i) From (12) and P2 = P, we have

(Vuf (u(t) v(1) + o (u(t), v(1)) Vug(u(t), v(1)), u(t))
=~ [P(Vuf(u(t),v(t) + o(u(t), v(t))Vuq(u(t), v(t)))|

= — flu(t)|?
(41)

Caleulating & F(u(t), v(t)) + olu(t), v(t)) %alu(t), (1))
along this solution of (12), from (41), we obtain

R0, 10) + o (u(t) v(2) S dult), (1)

’ 42)
= — )| + (V. f(t) + o (t) V() ().
On the other hand, we have
if(u(t), v(t)) = o(u(t), V(t))id(u(t), v(t))
dt dt
(43)

=— |PV.F@®)|? + * ()| PV.La(t))])?
+ (Vo f(t) = a(t) Vo q(t)o(t).



Adding (42) and (43) gives

2% F(u(t) v(1)) =~ [a(t)|? ~ | PY.FOI
+29, F(©)5(t) + 0> ()] PY.G())]%
(44)

From the definition of o(z, ) in (12), for all ¢ € [0, c0),
we get

o (), v(0) [PV ud(u(t), 1))
PV F (), PY i, )|

n ABv(t)[|u(t) — &P |1PVug(u(t), v(t))]]
B2 ’
<[PV f(ult), v(t)] + ov(t),
where o = Ml Substituting (45) into (44) and using || P|| =
1, we have

2% (F(u(t), v(t) + 5 (1)

< — [[a(®)|]* + 20l j(t) + V().

(46)

Let & = 20l o + 922“ il Integrating (46) from 0 to ¢, we have

t
/ s
0

<2f(uo, o) — 2f (u(t), v(t)) + 2k o — 26 /(1) +
<2f(uo) —2 min f(z)+ 4k puo + 6.
llzll<p
(ii) Let

w(t) = 2f (u(t), v(t)) + 2k ju(t) + 20l j(t) + %Q%Z(t).

From (46) and v(t) = poe™t, we have

(t) < —lla@)|* <o. 47)

%U}
In addition, we have w(t) > 2minj,|<, f(x). Since w(t) is
bounded from below and non-increasing on [0, c0), we have

lim w(t) exists and

t—o0

. _
lim Ew(t) =0. (48)

t—o0

From (3) and lim;_, o v(t) = 0, we have
Jim f(u(t)) = lim F(u(t), v(1))  exisis.

Moreover, (47) and (48) imply that lim;_, . ||a(t)|| = 0.

(iii) If z* € {lim; o u(t)}, there exists a sequence {¢x}
such that limg oo u(ty) = z* and limg_oov(ty) = 0
as limy_,.otpz = oo. From Theorem 4.2, we know that
z* € X. From Lemma 7.4 and result (ii) of this theorem,
we get 0 € Of (x*) + Nx(z*), which implies that there exists
& € Of(z*) such that ({,x — 2*) > 0, Vo € X. Thus, z* is a
Clarke stationary point of (1).l

Proof of Corollary 4.1 Denote u : [0,T) — R™ a solution
of (17) with initial point zg, where [0,T) is the maximal
existence interval of ¢. From Theorems 4.1, 4.2 and 4.3,
we only need to prove the boundedness of wu(t) on [0,7).
Differentiating f(u(t), v(t)) along this solution of (17), from

P2 = P, we have

< Fu(t), v(1)) =(Vf (1), ~PY (1)) + (V0 F (1), 5(1)
<~ IPVLFIP — p(0),

which follows that 4 (f(u(t),v(t)) + kpv(t)) < 0. Thus,

flu(t), v(t))+rr(t) < f(uo,l/o)—H*ifl/o, Vt € [0,T). Similar
to the analysis in Theorem 4.1, when f is level-bounded, we
get that u(¢) is bounded on [0,7").H
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