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Abstract. We propose a smoothing quadratic regularization (SQR) method for solving box
constrained optimization problems with a non-Lipschitz regularization term that includes the lp
norm (0 < p < 1) of the gradient of the underlying image in the l2-lp problem as a special case.
At each iteration of the SQR algorithm, a new iterate is generated by solving a strongly convex
quadratic problem with box constraints. We prove that any cluster point of ϵ scaled first order
stationary points with ϵ > 0 satisfies a first order necessary condition for a local minimizer as ϵ goes
to 0, and the worst-case iteration complexity of the SQR algorithm for finding an ϵ scaled first order
stationary point is O(ϵ−2). Numerical examples are given to show good performance of the SQR
algorithm for image restoration.
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1. Introduction. In this paper, we consider the following minimization problem

min
l≤x≤u

f(x) := Θ(x) +
m∑
i=1

φ(|dTi x|p), (1.1)

where Θ : Rn → R+ is continuously differentiable, 0 < p ≤ 1, D = (d1, d2, . . . ,
dm)T ∈ Rm×n, φ : R+ → R+ is continuous with φ(0) = 0 and l ∈ Rn ∪ {−∞}n, u ∈
Rn ∪ {+∞}n with l < u. Problem (1.1) has many important applications in medical
and astronomical image restoration [5, 10, 12, 17, 18, 28, 29, 30] and film restoration
[22]. In (1.1), the first term measures how well the restored image is fitting the
observed data under the imaging system, the second term induces special properties of
the restored image, and the constraint can improve the restored image using a priori
information. Using a nonconvex nonsmooth non-Lipschitz regularization function∑m

i=1 φ(|dTi x|p) in the second term has remarkable advantages for the restoration of
piecewise constant images [10, 17, 29]. Typical choices of D for the potential function
include the identity matrix, first order difference operator, second order difference
operator or some overcomplete dictionary [24].

The success of model (1.1) with 0 < p < 1 in sparse optimization is related
to the non-Lipschitz property of the objective function. Local minimizers of (1.1)
with 0 < p < 1 have various nice properties over the minimizers of it with p = 1.
In image restoration, (i) it is shown in [6] that (1.1) with 0 < p < 1 promotes a
better gradient sparsity than it with p = 1; (ii) (1.1) with 0 < p < 1 is also more
robust with respect to noise; (iii) theoretical and numerical results show that local
minimizers of (1.1) with 0 < p < 1 have advantages in distinguishing zero and nonzero
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entries of coefficients in sparse high-dimensional approximation [1, 6, 7, 19] and bring
the restored image closed contours and neat edges [10, 17]. Moreover, in variable
selection, the lp potential function with 0 < p < 1 owns the oracle property [15, 23] in
statistics, while l1 does not; the problem (1.1) with 0 < p < 1 can be used for variable
selection at the group and individual variable levels simultaneously, while (1.1) with
p = 1 can only work for individual variable selection [20]. Thus, we focus on the
minimization problem (1.1) with 0 < p < 1 in this paper.

Theory and algorithms for some special cases of problem (1.1) with 0 < p < 1 have
been developed in the last few years. The lower bound theory [10, 11, 28, 30] ensures
that each component of Dx at any local minimizer of problem (1.1) is either zero or
not less than a positive constant, which implies the restored image closed contours
and neat edges in the imaging system. For the unconstrained version of problem (1.1),
the reweighted algorithms [25, 26] is proved to be globally convergent. Moreover, the
R-regularized Newton scheme is superlinearly convergent [18], and the trust region
Newton method converges to a scaled second order stationary point [9]. For problem
(1.1) with D being the identity matrix, the smoothing quadratic regularization (SQR)
algorithm for (1.1) without constraints and the interior point algorithm for (1.1) with
the nonnegative constraint converge to an ϵ scaled first order stationary point with
worst-case iteration complexity O(ϵ−2) [2, 3]. However, to the best of our knowledge,
for problem (1.1) with an arbitrary matrix D in the regularization term and arbitrary
vectors l and u in the constraint, there is no algorithm which can always find an ϵ
scaled first order stationary point in no more than O(ϵ−2) iterations.

The use of D and l, u in (1.1) brings problem (1.1) many advantages in image
restoration and reconstruction [9, 10, 21, 28, 29, 30, 31]. However, because the non-
Lipschitz potential function in (1.1) is neither separable with respect to components
of x nor concave in the feasible set, (1.1) is harder to solve than the problem with D
being the identity matrix and l = 0. Algorithms in [2, 3, 9, 18, 25, 26, 30] cannot be
directly extended to solve (1.1), and the lower bound theory in [10, 11, 28, 30] and
the definitions of the ϵ scaled stationary point in [2, 3] are invalid. Thus, (1.1) gives
many challenging problems in developing effective algorithms with nice convergence
theorems and computational complexity bounds.

In this paper, we generalize the subspace idea for unconstrained optimization in [9]
and define the first order necessary optimality condition and an ϵ scaled first order sta-
tionary point of problem (1.1). We prove that any cluster point of ϵ scaled first order
stationary points satisfies the first order necessary optimality condition as ϵ tending
to 0. Moreover, a new SQR algorithm with the worst-case complexity O(ϵ−2) is given
for solving (1.1). The updating techniques in the algorithm for approximating the
Lipschitz constant of the gradient of Θ is adopted from [4]. Though the framework of
the SQR algorithm in this paper is adopted from [2], the construction of the quadratic
subproblem and the updating scheme of the smoothing parameter are entirely differ-
ent, since the SQR algorithm in [2] can only be applied to the unconstrained problem
with φ(|dTi x|p) = φ(|xi|p), and its convergence and complexity analysis uses the sep-
arability of variables in the term

∑n
i=1 φ(|xi|p) without considering the feasibility of

iterates.

The rest of this paper is organized as follows. In section 2, using a smoothing
function of the objective function f in (1.1), we present an SQR algorithm for solving
(1.1). In section 3, we derive a first order necessary condition for a local minimizer
of (1.1), and define an ϵ scaled first order stationary point of (1.1). We prove that
any cluster point of ϵ scaled first order stationary points of (1.1) satisfies the first
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order necessary condition as ϵ tends to 0. In section 4, we show that the worst-case
complexity of the SQR algorithm for finding an ϵ scaled first order stationary point
of (1.1) is O(ϵ−2). In section 5, we report numerical experiments with one randomly
generated test example and two image restoration problems to validate the theoretical
results and show good performance of the proposed SQR algorithm.

Notations: Denote K = {0, 1, 2, . . .} and e = (1, 1, . . . , 1)T ∈ Rn. For x, l, u ∈
Rn, let ∥x∥ := ∥x∥2, x2 = (x2

1, . . . , x
2
n)

T and R = maxl≤x≤u ∥x∥. For a matrix
A ∈ Rr×n and an index set J ⊆ {1, . . . , r}, AJ denotes the submatrix of A whose

rows are indexed by J . For a subspace S ⊆ Rn, orthon(S) is a subset of Rn×dim(S),
in which the columns of each matrix form an orthonormal basis of S if dim(S)≥ 1 and
orthon(S) = 0n×1 if S = {0}.

2. Smoothing quadratic regularization method. In this section, we present
an SQR method for solving (1.1). The non-Lipschitz points of (1.1) are {x : dTi x =
0, for some i ∈ {1, . . . ,m}}. Throughout this paper, we need the following assump-
tions on Θ and φ:

• Θ : Rn → R is continuously differentiable and its gradient ∇Θ is globally
Lipschitz with a Lipschitz constant β̂;

• φ is differentiable and concave in (0,∞), φ′ is locally Lipschitz continuous
and there is a positive constant α such that for all t ∈ (0,∞),

0 ≤ φ′(t) ≤ α and |ξ| ≤ α ∀ξ ∈ ∂(φ′(t)), (2.1)

where ∂ means the Clarke generalized gradient [13].
Many data fitting functions and penalty functions in sparse image restoration and

reconstruction satisfy these conditions [10, 12, 17, 28, 29, 30]

2.1. Smoothing approximation. We define a smoothing function of the ob-
jective function f in (1.1). Using the gradient of the smoothing function we can
construct a quadratic approximation function of f [8, 27, 32].

Definition 2.1. [8] Let h : Rn → R be a continuous function. We call h̃ :
Rn × (0,∞) → R a smoothing function of h, if h̃(·, µ) is continuously differentiable
for any fixed µ > 0 and limz→x,µ↓0 h̃(z, µ) = h(x) holds for any x ∈ Rn.

According to the assumptions on Θ and φ, we can define a smoothing function
of f by using a smoothing function of the absolute value function. In particular, we
define a smoothing function of f as the following

f̃(x, µ) = Θ(x) +

m∑
i=1

φ(θp(dTi x, µ)) with θ(t, µ) =


|t| if |t| > µ

t2

2µ
+

µ

2
if |t| ≤ µ.

The function θ(t, µ) is a smoothing function of |t|, nondecreasing with respect to µ,
and

0 = argmin
t∈R

|t| = argmin
t∈R

θ(t, µ) = argmin
t∈R

φ(θp(t, µ)), ∀µ ∈ (0,∞).

Moreover, we have

|∇tθ
p(t, µ)| ≤ pθp−1(t, µ), |∇2

t θ
p(t, µ)| ≤ pθp−2(t, µ) when |t| ̸= µ. (2.2)

Specially, when |t| < µ, ∇2
t θ

p(t, µ) > 0, which means that θp(t, µ) is a convex smooth-
ing function of |t|p in (−µ, µ).
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Since φ′(t) ≥ 0 for all t ∈ (0,∞), f̃(x, µ) is nondecreasing with respect to µ for
any fixed x ∈ Rn. Denote

Φ(s) := φ(|s|p), Φ̃(s, µ) := φ(θp(s, µ)), (2.3a)

g(x, µ) := ∇xf̃(x, µ) = ∇Θ(x) +
m∑
i=1

Φ̃′(dTi x, µ)di, (2.3b)

where Φ̃′(s, µ) := ∇sφ(θ
p(s, µ)). From 0 ≤ θp(t, µ)− |t|p ≤ θp(0, µ) ≤ (µ2 )

p and (2.1),
we have

0 ≤ φ(θp(t, µ))− φ(|t|p) ≤ α(
µ

2
)p,

which gives

0 ≤ f̃(x, µ)− f(x) ≤
∑

|dT
i x|<µ

α(
µ

2
)p ∀x ∈ Rn, µ ∈ (0,∞). (2.4)

When |t| ̸= µ and φ is twice continuously differentiable at t, we have φ(θp(t, µ))
is twice continuously differentiable at t and

∇2
tφ(θ

p(t, µ)) = φ′′(s)s=θp(t,µ)(∇tθ
p(t, µ))2 + φ′(s)s=θp(t,µ)∇2

t θ
p(t, µ).

Thus, by (2.2) and the assumptions on φ, the following estimation on the elements in
∂t(∇tφ(θ

p(t, µ))) holds

max{|ξ| : ξ ∈ ∂t(∇tφ(θ
p(t, µ)))} ≤ 8αpµp−2 ∀t ∈ R, µ ∈ (0, 1].

Inspired by Talyer’s expansion, for any x+, x ∈ Rn,

φ(θp(dTi x
+, µ))− φ(θp(dTi x, µ))

≤∇tφ(θ
p(t, µ))t=dT

i xd
T
i (x

+ − x) + 4αpµp−2(dTi (x
+ − x))2.

(2.5)

Notice that φ(|t|p) is concave on R+ and R−, respectively. We have

φ(|t̂|p) ≤ φ(|t|p) +∇φ(|t|p)(t̂− t)

for any t̂, t ∈ R such that t̂t > 0. Hence, for any x, x+ ∈ Rn satisfying

(dTi x
+)(dTi x) > 0, |dTi x+| ≥ µ and |dTi x| ≥ µ,

by θ(s, µ) = |s| when |s| ≥ µ, we have

φ(θp(dTi x
+, µ)) ≤ φ(θp(dTi x, µ)) +∇tφ(θ

p(t, µ))t=dT
i xd

T
i (x

+ − x). (2.6)

Lemma 2.2. For x ∈ [l, u], s ∈ Rn and µ ∈ (0, 1], if l ≤ x + s ≤ u, s2 ≤
∥D∥−2

∞ µ2pe and the following inequality holds

Θ(x+ s) ≤ Θ(x) + ⟨∇Θ(x), s⟩+ β

2
∥s∥2 (2.7)

with β > 0, then

f̃(x+ s, µ)− f̃(x, µ) ≤ ⟨g(x, µ), s⟩+ β

2
∥s∥2 + 4αpµp−2

∑
|dT

i x|≤2µp

(dTi s)
2. (2.8)
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Proof. From s2 ≤ ∥D∥−2
∞ µ2pe, we have

|dTi s| ≤ ∥Ds∥∞ ≤ ∥D∥∞∥s∥∞ ≤ µp i = 1, 2, . . . ,m.

Then, |dTi x| > 2µp implies |dTi (x + s)| > µp and (dTi x)(d
T
i (x + s)) > 0 for i =

1, 2, . . . ,m, which together with (2.5) and (2.6) gives

m∑
i=1

φ(θp(dTi (x+ s), µ))−
m∑
i=1

φ(θp(dTi x, µ))

≤⟨
m∑
i=1

∇tφ(θ
p(t, µ))t=dT

i x, d
T
i s⟩+ 4αpµp−2

∑
|dT

i x|≤2µp

(dTi s)
2.

Thus, we obtain (2.8) from (2.7).
For x ∈ [l, u] and µ ∈ (0, 1], to achieve a potential reduction, we solve the following

strongly convex quadratic program in Rn:

min ⟨g(x, µ), s⟩+ β

2
∥s∥2 + 4αpµp−2

∑
|dT

i x|≤2µp

(dTi s)
2

s.t. s2 ≤ δ2µ2pe, l − x ≤ s ≤ u− x,

(2.9)

where δ = ∥D∥−1
∞ and g(x, µ) is defined in (2.3b).

SQR Algorithm.
Step 0: Initialization: Choose x0 ∈ [l, u], 0 < µ0 ≤ 1, β0 ≥ 1, 0 < σ < 1 and
η > 1. Set k = 0.
Step 1: New point calculation: Solve (2.9) with x = xk, µ = µk and β = βk for
sk, and let yk = xk + sk.
Step 2: Updating the regularization weight: If

Θ(yk)−Θ(xk) > ⟨∇Θ(xk), yk − xk⟩+ 1

2
βk∥xk − yk∥2,

let

βk+1 = ηβk, xk+1 = xk, µk+1 = µk

and return to Step 1; otherwise, let

βk+1 = βk, xk+1 = yk

and go to Step 3.
Step 3: Updating the smoothing parameter: Let

µk+1 =

{
µk if f̃(xk+1, µk)− f̃(xk, µk) < −µ2p

k

σµk otherwise.
(2.10)

Step 4: Constructing convergence sequence: Let

zk+1 =

{
xk if µk+1 = σµk

zk otherwise.
(2.11)

Increment k by one and return to Step 1.
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The proposed SQR algorithm is for the constrained optimization problem (1.1)
with an arbitrary D in the potential function φ, while the SQR method in [2] is for
unconstrained optimization problems with D being the identity matrix in the po-
tential function φ. Hence, the two SQR algorithms are entirely different. Specially,
the quadratic programs in the two algorithms have essential distinctions. In [2], the
quadratic program is an unconstrained problem and can be split into n one dimen-
sional problems to get a simple closed form solution. In this paper, the quadratic
program is a constrained problem and cannot have a closed form solution. The
convergence and complexity analysis for the SQR algorithm in this paper is more
comprehensive due to the existence of an arbitrary D in the non-Lipschitz potential
function and l, u in the constraints.

From Lemma 2.2, for xk ∈ [l, u] and µk ∈ (0, 1], by l − xk ≤ sk ≤ u − xk and
σ ∈ (0, 1), we have xk+1 ∈ [l, u] and µk+1 ∈ (0, 1]. Then, the proposed SQR algorithm
is well defined, and xk ∈ [l, u], µk ∈ (0, 1] for all k ∈ K.

Let {xk}, {yk}, {zk}, {µk} and {βk} be the sequences generated by the SQR
algorithm. Denote

Ns = {k ∈ K : βk+1 = βk}, T = {k ∈ K : µk+1 = σµk}. (2.12)

We call the kth iteration is successful if k ∈ Ns. Note that T ⊆ Ns.
Lemma 2.3. The sequence {f̃(xk, µk)} is non-increasing. Moreover, when k ∈

Ns, there are nonnegative vectors νk, γk and ρk such that

f̃(xk+1, µk+1)− f̃(xk, µk) ≤− βk

2
∥sk∥2 − 4αpµp−2

k

∑
|dT

i xk|≤2µp
k

(dTi s
k)2

− δµke
T νk − (xk − l)T γk − (u− xk)T ρk.

Proof. From the KKT condition of (2.9), the solution sk of the strongly convex
quadratic program (2.9) satisfies

g(xk, µk) + βks
k + 8αpµp−2

k

∑
|dT

i xk|≤2µp
k

(dTi s
k)di +Mks

k − γk + ρk = 0, (2.13a)

(sk)2 ≤ δ2µ2p
k e, l − xk ≤ sk ≤ u− xk, (2.13b)

Mk((s
k)2 − δ2µ2p

k e) = 0, (sk + xk − l)T γk = 0, (sk − u+ xk)T ρk = 0, (2.13c)

where Mk = diag(νk) with νk, γk, ρk ≥ 0.
On the one hand, when k ∈ Ns, x

k+1 = yk, from Lemma 2.2, (2.13a) and (2.13c),
we have

f̃(xk+1, µk)− f̃(xk, µk)

≤⟨g(xk, µk), s
k⟩+ βk

2
∥sk∥2 + 4αpµp−2

∑
|dT

i xk|≤2µp
k

|dTi sk|2

=− βk

2
∥sk∥2 − 4αpµp−2

k

∑
|dT

i xk|≤2µp
k

(dTi s
k)2 − (sk)TMks

k + (γk)T sk − (ρk)T sk

=− βk

2
∥sk∥2 − 4αpµp−2

k

∑
|dT

i xk|≤2µp
k

(dTi s
k)2 − δ2µ2p

k eT νk − (xk − l)T γk − (u− xk)T ρk

≤0.
(2.14)
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Since µk+1 ≤ µk and f̃(x, µ) is non-decreasing about µ for any fixed x ∈ Rn, the
results in this lemma holds for k ∈ Ns.

On the other hand, when k ̸∈ Ns, xk+1 = xk and µk+1 = µk, which implies
f̃(xk+1, µk+1) = f̃(xk, µk). Thus, f̃(x

k, µk) is nonincreasing for all k ∈ K.
Lemma 2.4. For all k ∈ Ns, if

f̃(xk+1, µk)− f̃(xk, µk) > −µ2p
k , (2.15)

then xk satisfies∥∥∥∥∥∥ZT
k (∇Θ(xk) +

∑
|dT

i xk|>2µp
k

Φ′(dTi x
k)di − γk + ρk)

∥∥∥∥∥∥
∞

≤ (
√
2nβk + δ−1)µp

k,

(xk − l)T γk ≤ µ2p
k , (u− xk)T ρk ≤ µ2p

k ,

l ≤ xk ≤ u, γk ≥ 0, ρk ≥ 0,

(2.16)

where Zk ∈orthon((span{di : |dTi xk| ≤ 2µp
k})⊥).

Proof. If one of the following five inequalities fails

βk

2
∥sk∥2 < µ2p

k , 4αpµp−2
k

∑
|dT

i xk|≤2µp
k

|dTi sk|2 < µ2p
k , (2.17a)

δ2µ2p
k eT νk < µ2p

k , (xk − l)T γk < µ2p
k and (u− xk)T ρk < µ2p

k , (2.17b)

by (2.14), we obtain f̃(xk+1, µk) − f̃(xk, µk) ≤ −µ2p
k . Hence, (2.15) implies all in-

equalities in (2.17) hold and then we only need to prove the estimation in (2.16) under
the conditions in (2.17).

First, from l ≤ xk ≤ u, γk ≥ 0, ρk ≥ 0, the second and third inequalities in
(2.17b) give

0 ≤ (xk − l)T γk ≤ µ2p
k , 0 ≤ (u− xk)T ρk ≤ µ2p

k . (2.18)

The first inequality in (2.17b) gives ∥νk∥1 ≤ δ−2. Then we obtain

∥Mks
k∥1 =

n∑
i=1

|νki ski | ≤ ∥νk∥1∥sk∥∞ ≤ δ−1µp
k. (2.19)

Moreover, (2.13a) can be rewritten as

g(xk, µk)− γk + ρk = −βks
k − 8αpµp−2

k

∑
|dT

i xk|≤2µp
k

(dTi s
k)di −Mks

k. (2.20)

Multiplying ZT
k to the both sides of (2.20), from the properties of Zk, we have

ZT
k (g(x

k, µk)− γk + ρk) = ZT
k (∇Θ(xk) +

∑
|dT

i xk|>2µp
k

Φ′(dTi x
k)di − γk + ρk), (2.21a)

ZT
k (−βks

k − 8αpµp−2
k

∑
|dT

i xk|≤2µp
k

(dTi s
k)di −Mks

k) = −βkZ
T
k s

k − ZT
k Mks

k. (2.21b)
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Then, from (2.20) and (2.21), we obtain∥∥∥∥∥∥ZT
k (∇Θ(xk) +

∑
|dT

i xk|>2µp
k

Φ′(dTi x
k)di − γk + ρk)

∥∥∥∥∥∥
∞

=
∥∥βkZ

T
k s

k + ZT
k Mks

k
∥∥
∞

≤βk∥ZT
k s

k∥∞ + ∥ZT
k Mks

k∥∞
≤βk∥sk∥1 + ∥Mks

k∥1 ≤ (
√
2nβk + δ−1)µp

k,

(2.22)

where we use that the columns of Zk are orthonormal. By (2.18) and (2.22), we obtain
the results in this lemma.

The following lemma presents some properties of the sequences {βk}, {µk} and
{f(xk)}.

Lemma 2.5. The following statements hold.
(i) βk ≤ β̄ := max{β0, ηβ̂} for all k ∈ K;
(ii) limk→∞ µk = 0;
(iii) limk→∞ f(xk) exists.

Proof. By Step 2 in the SQR algorithm, βk is updated when βk ≤ β̂, then
statement (i) can be easily proved by the assumption on Θ.

From (2.12), we have

∑
k∈T

µ2p
k <

∞∑
k=1

µ2p
0 σ2p(k−1) =

µ2p
0

1− σ2p
. (2.23)

Note that when k ∈ Ns\T , from (2.10), we have

µ2p
k < f̃(xk, µk)− f̃(xk+1, µk+1) and µk+1 = µk.

This, together with the nonincreasing property of f̃(xk, µk) and (2.4), gives∑
k∈Ns\T

µ2p
k <

∑
k∈Ns\T

(f̃(xk, µk)− f̃(xk+1, µk+1)) ≤ f̃(x0, µ0)− min
x∈[l,u]

f(x). (2.24)

Adding (2.23) and (2.24), we have

∑
k∈Ns

µ2p
k < f̃(x0, µ0)− min

x∈[l,u]
f(x) +

µ2p
0

1− σ2p
. (2.25)

If there are finite elements in Ns, then there is k̄ ∈ K such that k ̸∈ Ns ∀k ≥ k̄,
which implies that βk ≥ β0η

k−k̄ ∀k ≥ k̄. By η > 1, limk→∞ βk = ∞, which leads
a contradiction with the boundedness of {βk} given in (i). Thus, there are infinite
elements in Ns, which together with (2.25) gives limk→∞ µk = 0.

Since {f̃(xk, µk)} is nonincreasing, by (2.4) and xk ∈ [l, u], limk→∞ f̃(xk, µk)
exists. By virtue of limk→∞ µk = 0 and (2.4), we have

lim
k→∞

f̃(xk, µk) = lim
k→∞

f(xk) = lim
k→∞

f(zk).
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3. First order necessary condition. The scaled first order and second order
necessary conditions for unconstrained non-Lipschitz optimization have been studied
in [9, 11]. For the constrained non-Lipschitz optimization (1.1) with D = In, the
scaled first and second order stationary points are defined in [3, 16]. Inspired by the
subspace idea, we first derive a first order necessary condition for local minimizers of
constrained non-Lipschitz optimization (1.1), whereafter the scaled and ϵ scaled first
order stationary points of (1.1) are defined. Note that the results established in this
paper have no assumption on the matrix D.

First, we give some notations used in this section. for fixed x ∈ Rn and ϵ > 0,
denote

Dϵ
x = {di : i ∈ {1, 2, . . . ,m}, |dTi x| ≤ ϵ}.

For simplicity, we denote Dx := Dϵ
x when ϵ = 0. Obviously, dim(spanDx̄) = n implies

x̄ = 0, and f is non-Lipschitz at x̄ if Dx̄ is nonempty.

Now, we derive a first order necessary condition for local minimizers of (1.1)
using two matrices whose columns form orthonormal basis of spanDx̄ and (spanDx̄)

⊥,
namely,

Yx̄ ∈ orthon(spanDx̄) and Zx̄ ∈ orthon((spanDx̄)
⊥).

From the definitions of Dx̄ and Zx̄, we have ZT
x̄ dx̄ = 0 ∀dx̄ ∈ spanDx̄ and there

is a unique vector z̄ such that

x̄ = Zx̄z̄ and z̄ = ZT
x̄ x̄. (3.1)

Lemma 3.1. If x̄ is a local minimizer of (1.1), there are vectors γ, ρ ∈ Rn such
that x̄ satisfies

ZT
x̄ (∇Θ(x̄) +

∑
dT
i x̄ ̸=0

Φ′(dTi x̄)di − γ + ρ) = 0, (3.2a)

(x̄− l)T γ = 0, (u− x̄)T ρ = 0, (3.2b)

l ≤ x̄ ≤ u, γ ≥ 0, ρ ≥ 0. (3.2c)

Proof. Suppose x̄ is a local minimizer of (1.1). If dim(spanDx̄) = n, then x̄ = 0
and Zx̄ = 0n×1, which means the conditions in this lemma naturally holds for x̄ with
γ = ρ = 0n×1.

Now, we suppose dim(spanDx̄) = n− r < n, then Zx̄ ∈ Rn×r is a nonzero matrix,
x̄ ∈ [l, u] and there is an ηx̄ > 0 such that

9



f(x̄) =min
x

{f(x) : x ∈ [l, u], ∥x− x̄∥ ≤ ηx̄}

=min
y,z

{Θ(Yx̄y + Zx̄z) +
m∑
i=1

φ(|dTi (Yx̄y + Zx̄z)|p) :

Yx̄y + Zx̄z ∈ [l, u], ∥Yx̄y + Zx̄z − Zx̄z̄∥ ≤ ηx̄}

≤min
z

{Θ(Yx̄0 + Zx̄z) +
m∑
i=1

φ(|dTi (Yx̄0 + Zx̄z)|p) :

Yx̄0 + Zx̄z ∈ [l, u], ∥Yx̄0 + Zx̄z − Zx̄z̄∥ ≤ ηx̄}

=min
z

{Θ(Zx̄z) +
m∑
i=1

φ(|dTi Zx̄z|p) : Zx̄z ∈ [l, u], ∥Zx̄z − Zx̄z̄∥ ≤ ηx̄}

=min
z

{Θ(Zx̄z) +
∑

dT
i x̸̄=0

φ(|dTi Zx̄z|p) : Zx̄z ∈ [l, u], ∥Zx̄z − Zx̄z̄∥ ≤ ηx̄}.

In what follows, we will find the first order necessary condition for local minimizers
of (1.1) from the reduced optimization problem in Rr:

min
Zx̄z∈[l,u]

v(z) = Θ(Zx̄z) +
∑

dT
i x̄ ̸=0

φ(|dTi Zx̄z|p), (3.3)

where v(z) is continuously differentiable and its gradient is locally Lipschitz continuous
around z̄.

By (3.1) and (3.3),

v(z̄) = Θ(Zx̄z̄) +
m∑
i=1

φ(|dTi Zx̄z̄|p) = f(x̄).

Therefore, v(z̄) ≤ minz{v(z) : Zx̄z ∈ [l, u], ∥Zx̄(z − z̄)∥ ≤ ηx̄}.
Since Zx̄ ∈ Rn×r is of full column rank, z̄ is a local minimizer of

min
Zx̄z∈[l,u]

v(z).

By the KKT condition for a local minimizer of (3.3), z̄ satisfies

∇v(z̄)− ZT
x̄ γ + ZT

x̄ ρ = 0, (3.4a)

(Zx̄z̄ − l)T γ = 0, (u− Zx̄z̄)
T ρ = 0 (3.4b)

l ≤ Zx̄z̄ ≤ u, γ ≥ 0, ρ ≥ 0. (3.4c)

By (3.1), (3.2b) and (3.2c) can be obtained from (3.4b) and (3.4c).
From (3.1) and (3.3), we have

∇v(z̄) =ZT
x̄ (∇Θ(y)y=Zx̄z̄ +

∑
dT
i x̄ ̸=0

Φ′(dTi Zx̄z̄)di)

=ZT
x̄ (∇Θ(x̄) +

∑
dT
i x̄ ̸=0

Φ′(dTi x̄)di),
(3.5)

which together with (3.4a) gives (3.2a).
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In view of the first order necessary condition for local minimizers of (1.1) given
in Lemma 3.1, we define the scaled and ϵ scaled first order stationary points of (1.1).

Definition 3.2. We call x̄ a scaled first order stationary point of (1.1), if there
are vectors γ, ρ ∈ Rn such that x̄ satisfies (3.2) in Lemma 3.1.

Definition 3.3. For ϵ > 0, we call xϵ an ϵ scaled first order stationary point of
(1.1), if there are vectors γϵ, ρϵ ∈ Rn such that xϵ satisfies∥∥∥∥∥∥(Zϵ

xϵ)
T
(∇Θ(xϵ) +

∑
|dT

i xϵ|>ϵ

Φ′(dTi x
ϵ)di − γϵ + ρϵ)

∥∥∥∥∥∥
∞

≤ ϵ, (3.6a)

(xϵ − l)T γϵ ≤ ϵ, (u− xϵ)T ρϵ ≤ ϵ, (3.6b)

l ≤ xϵ ≤ u, γϵ ≥ 0, ρϵ ≥ 0. (3.6c)

where Zϵ
xϵ ∈ orthon( (spanDϵ

xϵ)⊥).
Definitions 3.2 and 3.3 are consistent at ϵ = 0. The next proposition validates

this consistence for ϵ tending to 0.
Proposition 3.4. Let xϵ be an ϵ (ϵ > 0) scaled first order stationary point of

(1.1). Then any cluster point of xϵ is a scaled first order stationary point of (1.1) as
ϵ → 0.

Proof. Suppose x̄ is a limit point of {xk} as k tending to ∞, where xk is an ϵk
scaled first order stationary point of (1.1) and limk→∞ ϵk = 0.

If dim(spanDx̄)= n, then x̄ = 0 and Zx̄ = 0n×1, which implies that x̄ is a scaled
first order stationary point. In what follows, we suppose that dim(spanDx̄)< n.

First, we prove that there is kx̄ ∈ K such thatDk ⊆ Dx̄ ∀k ≥ kx̄, whereDk := Dϵk
xk .

If not, there is a subsequence {xkj} ⊆ {xk} such that limj→∞ ϵkj = 0 and Dkj ̸⊆ Dx̄

for all j, by Dkj ⊆ {d1, d2, . . . , dm}, there is an element d ∈ Rn such that d ∈ Dkj but
d ̸∈ Dx̄. Then, |dTxkj | ≤ ϵkj , letting j tend to ∞, we have |dT x̄| = 0, which leads a
contradiction with d ̸∈ Dx̄.

Denote Zk ∈ orthon((spanDk)
⊥). Then, we can find matrices Zk and Zx̄ such

that Zk contains all columns of Zx̄ for all k ≥ kx̄.
From θ(t, ϵk) = |t| when |t| ≥ ϵk and by (3.6a), there are vectors γk, ρk ∈ Rn such

that ∥∥∥∥∥ZT
k (∇Θ(xk) +

m∑
i=1

Φ̃′(dTi x
k, ϵk)di − γk + ρk)

∥∥∥∥∥
∞

≤ ϵk,

from the inclusion property between Zx̄ and Zk, which gives∥∥∥∥∥ZT
x̄ (∇Θ(xk) +

m∑
i=1

Φ̃′(dTi x
k, ϵk)di − γk + ρk)

∥∥∥∥∥
∞

≤ ϵk.

By the definition on Zx̄, we have∥∥∥∥∥∥ZT
x̄ (∇Θ(xk) +

∑
dT
i x̄ ̸=0

Φ̃′(dTi x
k, ϵk)di − γk + ρk)

∥∥∥∥∥∥
∞

≤ ϵk. (3.7)

If {γk} and {ρk} are bounded, there exist subsequence {kj} ⊆ {k}, and γ, ρ ∈ Rn

such that limj→∞ γkj = γ and limj→∞ ρkj = ρ.
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Letting j tend to ∞, (3.6b), (3.6c) and (3.7) give∥∥∥∥∥∥ZT
x̄ (∇Θ(x̄) +

∑
dT
i x̄ ̸=0

Φ′(dTi x̄)di − γ + ρ)

∥∥∥∥∥∥
∞

= 0,

(x̄− l)T γ = 0, (u− x̄)T ρ = 0,

l ≤ x̄ ≤ u, γ ≥ 0, ρ ≥ 0,

(3.8)

which means that x̄ is a scaled first order stationary point of (1.1).
Next, we consider the case that {γk} or {ρk} are unbounded.
From (3.6b) and (3.6c), we have

lim
k→∞

(x̄− l)T γk = 0, lim
k→∞

(u− x̄)T ρk = 0. (3.9)

Denote Jx̄ = {i ∈ {1, 2, . . . , n} : x̄i = li or x̄i = ui}. From (3.9), l ≤ x̄ ≤ u, γk, ρk ≥
0, we have limk→∞ γk

i = limk→∞ ρki = 0 ∀i ̸∈ Jx̄. If Jx̄ = ∅, letting k tend to ∞, we
can also have (3.8). Then, we suppose Jx̄ ̸= ∅ and let Jx̄ = {t+1, . . . , n} without loss
of generality.

Letting k tend to ∞ in (3.7), we have

lim
k→∞

ZT
x̄ (γ

k − ρk) = ZT
x̄ (∇Θ(x̄) +

∑
dT
i x̄ ̸=0

Φ′(dTi x̄)di),

which follows

lim
k→∞

[Zx̄]
T
Jx̄
(γk

Jx̄
− ρkJx̄

) = ZT
x̄ (∇Θ(x̄) +

∑
dT
i x̄ ̸=0

Φ′(dTi x̄)di). (3.10)

From (3.10), there exist y ∈ Rn−t such that

[Zx̄]
T
Jx̄
y = ZT

x̄ (∇Θ(x̄) +
∑

dT
i x̸̄=0

Φ′(dTi x̄)di).

Then x̄ satisfies (3.8) with γ, ρ ∈ Rn, where γJx̄ = (y)+, ρJx̄ = y − (y)+ and the
other elements of γ and ρ are 0.

Therefore, x̄ is a scaled first order stationary point of (1.1).
Remark 3.1. Proposition 3.4 says that any cluster point of ϵ scaled first order

stationary points of (1.1) is a scaled first order stationary point of (1.1) as ϵ tends
to 0. Conversely, if x̄ is a scaled first order stationary point of (1.1) and {xk} is a
sequence converging to x̄, then there is a sequence {ϵk} such that xk is an ϵk scaled
first order stationary point of (1.1) and limk→∞ ϵk = 0. Thus, Proposition 3.4 gives
some hints on how to find a scaled first order stationary point of (1.1).

4. Worst-case complexity analysis. We are now ready to present the worst-
case complexity of the SQR algorithm for finding an ϵ scaled first order stationary
point of (1.1).

Theorem 4.1. Any accumulation point of {zk} is a scaled first order stationary
point of (1.1). Moreover, given any ϵ ∈ (0, 1], the proposed SQR algorithm obtains an
ϵ scaled first order stationary point of (1.1) defined in Definition 3.3 in no more than
O(ϵ−2) iterations.
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Proof. Without loss of generality, we suppose µ0 = 1. Let j be the smallest
positive integer such that

Cσp(j−1) ≤ ϵ and Cσp(j−2) > ϵ, (4.1)

where C = max{
√
2nβ̄ + δ−1, 2} with β̄ given in Lemma 2.5.

Denote tj be the jth element of T defined in (2.12). Then, we will prove that xtj

is an ϵ scaled first order stationary point of (1.1).
Note that

µk = σj−1 ∀ tj−1 + 1 ≤ k ≤ tj . (4.2)

Using 2µp
tj = 2σp(j−1) < ϵ, Dtj ⊆ Dϵ

tj , where

Dtj = {di : |dTi xtj | ≤ 2µp
tj}, Dϵ

tj = {di : |dTi xtj | ≤ ϵ}.

Then, we can find Ztj and Zϵ
tj such that Ztj ∈ orthon((spanDtj )

⊥) and Zϵ
tj ∈

orthon((spanDϵ
tj )

⊥).

From Lemma 2.4, (2.10) and (4.2), there are γtj , ρtj ∈ Rn such that xtj satisfies∥∥∥∥∥∥∥ZT
tj (∇Θ(xtj ) +

∑
|dT

i xtj |>2µp
tj

Φ′(dTi x
tj )di − γtj + ρtj )

∥∥∥∥∥∥∥
∞

≤ ϵ, (4.3a)

(xtj − l)T γtj < µ2p
tj ≤ ϵ2, (u− xtj )T ρtj < µ2p

tj ≤ ϵ2, (4.3b)

l ≤ xtj ≤ u, γtj ≥ 0, ρtj ≥ 0. (4.3c)

(4.3a) implies that∥∥∥∥∥∥∥(Zϵ
tj )

T (∇Θ(xtj ) +
∑

|dT
i xtj |>2µp

tj

Φ′(dTi x
tj )di − γtj + ρtj )

∥∥∥∥∥∥∥
∞

≤ ϵ. (4.4)

For all di such that |dTi xtj | ≤ ϵ, by the definition of Zϵ
tj , we have Z

ϵ
tjdi = 0. Then,

by 2µp
tj ≤ ϵ, (4.4) implies∥∥∥∥∥∥(Zϵ

tj )
T (∇Θ(xtj ) +

∑
|dT

i xtj |>ϵ

Φ′(dTi x
tj )di − γtj + ρtj )

∥∥∥∥∥∥
∞

≤ ϵ. (4.5)

Combining xtj ∈ [l, u], γtj , ρtj ≥ 0, (4.3b), (4.3c) and (4.5), we conclude that xtj

is an ϵ scaled first order stationary point of (1.1) and we need at most tj iterations to
find it.

Suppose there are sj successful iterations up to the tjth iteration. From Step 2
in the SQR algorithm and Lemma 2.5 (i), β̄ ≥ βtj ≥ β0η

tj−sj , which implies that
ηtj−sj ≤ β̄/β0. Then,

tj ≤ sj + logη β̄ − logη β0. (4.6)

Thus, in order to evaluate tj , we only need to evaluate sj .
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From (2.10), when k ∈ Ns\T ,

f̃(xk+1, µk+1)− f̃(xk, µk) ≤ −µ2p
k . (4.7)

Since there are at least sj − j + 1 successful iterations before the tjth iteration such

that (4.7) holds, from the nonincreasing of f̃(xk, µk), we have

f̃(xtj , µtj )− f̃(x0, µ0) ≤ −(sj − j + 1)σ2p(j−1). (4.8)

By the second inequality in (4.1), we have

j ≤ 1

p
logσ

ϵ

C
+ 2, σ2p(j−1) ≥ σ2pC−2ϵ2. (4.9)

(4.8) and (4.9) give

sj ≤
C2(f̃(x0, µ0)−minx∈[l,u] f(x))

σ2pϵ2
+

1

p
logσ

ϵ

C
+ 1. (4.10)

From (4.6) and (4.10), we have

tj ≤
C2(f̃(x0, µ0)−minx∈[l,u] f(x))

σ2pϵ2
+

1

p
logσ

ϵ

C
+ logη β̄ − logη β0 + 1.

Thus, the worst-case complexity of the proposed SQR algorithm for obtaining an ϵ
scaled first order stationary point of (1.1) is O(ϵ−2).

By (2.11), for any fixed j = 1, 2, . . ., zk = ztj+1 = xtj , ∀tj + 1 ≤ k ≤ tj+1. From
Lemma 2.5 (ii), (4.3b), (4.3c) and (4.5), any accumulation point of {zk} is a scaled
first order stationary point of (1.1).

Remark 4.1. Let µ0 = 1. Suppose the constant C in the proof of Theorem 4.1
is known. From the proof of Theorem 4.1, if j satisfies (4.1), then ztj+1 = xtj is an
ϵ scaled first order stationary point of (1.1). By (4.1) and (4.2), if k̄ ∈ K satisfies

Cµp

k̄
≤ ϵ and µk̄+1 = σµk̄, (4.11)

then zk is an ϵ scaled first order stationary point of (1.1) for all k ≥ k̄ + 1.
Though it is difficult to judge which iterate is an ϵ scaled first order stationary

point of (1.1) from Definition 3.3, we can use (4.11) to find an ϵ scaled first order
stationary point of (1.1) satisfying Definition 3.3.

To end this section, we apply the SQR algorithm and our analysis to the uncon-
strained non–Lipschitz optimization

min
x

Θ(x) +
m∑
i=1

φ(|dTi x|p). (4.12)

From the ideas in Lemma 3.1, if x̄ is a local minimizer of (4.12), then x̄ satisfies
(3.2a) with γ = ρ = 0, and the ϵ scaled first order stationary point of (4.12) is defined
as follows.

Definition 4.2. For ϵ ≥ 0, we call xϵ an ϵ scaled first order stationary point of
(4.12), if ∥∥∥∥∥∥(Zϵ

xϵ)T (∇Θ(xϵ) +
∑

|dT
i xϵ|>ϵ

Φ′(dTi x
ϵ)di)

∥∥∥∥∥∥
∞

≤ ϵ, (4.13)
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and xϵ a scaled first order stationary point of (4.12) if (4.13) holds with ϵ = 0, where
Zϵ
xϵ is defined in Definition 3.3.

The quadratic program (2.9) reduces to

min ⟨g(x, µ), s⟩+ β

2
∥s∥2 + 4αpµp−2

∑
|dT

i x|≤2µp

|dTi s|2

s.t. s2 ≤ δ2µ2pe.

(4.14)

Similar to the analysis above, we have the following corollary.
Corollary 4.3. Given any ϵ ∈ (0, 1], the proposed SQR algorithm obtains an ϵ

scaled first order stationary point of (4.12) defined in Definition 4.2 in no more than
O(ϵ−2) iterations.

5. Numerical Experiments. In this section, we report numerical results of
three examples to validate the theoretical results and show the good performance of
the proposed SQR algorithm. The numerical testing is performed using MATLAB
2009a on a Lenov PC (3.00GHz, 2.00GB of RAM). The strongly convex quadratic
subproblem (2.9) is solved by the projected alternating Barzilai-Borwein method in
[14] with the zero vector as the initial iterate. Throughout the numerical experiments,
we let µ0 = 1, β0 = 2, η = 1.1 and σ = 0.99 in the SQR algorithm.

Example 5.1 is a randomly generated test problem to support the iteration com-
plexity bound of the SQR algorithm for finding a scaled first order stationary point
of (1.1) given in Theorem 4.1.

Example 5.2 and Example 5.3 are two often used gray level image restoration
problems with intensity values ranging from 0 to 1. They are the Circles image of
size 64 × 64 and the Phantom image of size 256 × 256. Numerical results show that
the proposed SQR algorithm is robust and efficient for image restoration. We use the
peak signal-to-noise ratio (PSNR) to evaluate the quality of the restored image, i.e.

PSNR(xk) = −10 log10
∥xk − xo∥
nl × nw

,

where xo is the original image with the dimension nl×nw. Let xb be the corresponding
observed image. The CPU time reported is in seconds. For the regularization term,
we use two different potential functions

φ1(s) = λs, φ2(s) = λ
0.5s

1 + 0.5s
, where λ > 0. (5.1)

Example 5.1. A test example for complexity bound. In this example, we
solve (1.1) with Θ(x) = ∥x− b∥2, l = −2e, u = 2e, φ(s) := φ1(s) with λ = 0.2, and

D =


1 −1 0 0
0 0 1 −1
1 0 −1 0
0 1 0 −1

 .

We generate 20 samples of original signal s and vector b independently as the following
s=randn(4,1);s’=median([-2*ones(1,4);s’;2*ones(1,4)]);

b=s+normrnd(0,0.05,[4,1]);

With these 20 randomly generated vectors b, the average number of iterations for
obtaining an ϵ scaled first order stationary point of (1.1) with three different values of
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p and the stop criterion in Remark 4.1 is illustrated in Figure 5.1(a), where we define
C = 6.2. Moreover, the convergence of xk and Dxk with p = 0.5 are illustrated in
Figure 5.1(b)-5.1(c). The numerical presentation in Figures 5.1 is consistent with the
theoretical result in Theorem 4.1.

0 0.02 0.04 0.06 0.08 0.1
500

1000

1500

2000

2500

3000

3500

ε

k

 

 
p = 0.3

p = 0.5

p = 0.75

(a)

0 100 200 300 400 500 600 700 800
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

k

x
1
 , x

2
 , x

4

x
3

(b)

0 100 200 300 400 500 600 700 800
−3

−2

−1

0

1

2

3

k

d
1
Txk , d

4
Txk

d
2
Txk

d
3
Txk

(c)

Fig. 5.1: (a) Iteration complexity of the SQR algorithm for (1.1) with different values
of ϵ; (b) convergence of xk; (c) convergence of Dxk

Example 5.2. Circles image with size 64 × 64. In this example, we test
the proposed SQR algorithm using the 64× 64 Circles image [10, 17, 29]. We discuss
the restoration of the Circles image in two parts according to the class of observed
images.

A. Observed image with blurring and noise. In this part, the observed
image xb is that all the pixels are blurred by a two dimensional Gaussian function,
and then added a Gaussian noise. The blurring function is chosen to be

h(i, j) = e−2(i/3)2−2(j/3)2 ,

truncated such that the function has a support of 7 × 7, and the Gaussian noise is
with the mean of 0 and the standard deviation of 0.05. The original image and the
observed image are shown in Figure 5.2.
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Fig. 5.2: (a) original image; (b) observed image(PSNR=15.50)

Dependence on D. In order to show the importance of the difference operators
in image restoration, we choose φ := φ2, l = 0n×1, u = e and p = 0.5 in (1.1) and we
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test the SQR algorithm with D := D0 and D := D1 to restore the Circles image with
blurring and noise, where

D0 = In, and D1 =

(
L1 ⊗ I
I ⊗ L1

)
with L1 =


1 −1

1 −1
. . .

. . .

1 −1

 .

Figure 5.3(a) shows the convergence of PSNR(xk) with D = D0 and λ = 0.081,
which is the best choice of λ among 0.0001 : 0.0002 : 0.1 to let the SQR algorithm
find an xk with the highest PSNR before 500 iterations. Also with D = D0 and
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Fig. 5.3: (a) PSNR with D := D0; (b) PSNR with D := D1

λ = 0.081, f(x500) = 33.35 and f(xo) = 36.37. When D = D0, from our numerical
experiments, for almost all λ among 0.0001 : 0.0002 : 0.1, f̃(xk, µk) is monotone
decreasing, whereas, the PSNR is not monotonely increasing and f(xk) can decrease
below f(xo). Thus, the original image is not the optimal solution of (1.1) withD := D0

and λ among 0.0001 : 0.0002 : 0.1. However, when D = D1 and λ = 0.006, PSNR(xk)
is monotonely increasing as shown in Figure 5.3(b).

From this numerical experiment, we find that problem (1.1) with the zero order
difference operator seems not suitable for the restoration of this image, but using
the first order difference operator performs well. This shows the importance of the
research in this paper for image sciences.

In the sequel parts of this example, we shall choose D in (1.1) to be the first-order
difference operator D1.

Dependence on the constraints. In this part, we let p = 0.5, φ := φ2 with
λ = 0.015 and choose x0 = 0n×1. To show the influences of the constraints of (1.1) in
image restoration, we test the following three constraints:

Ω1 = {x : 0 ≤ x ≤ e}, Ω2 = {x : x ≥ 0}, Ω3 = Rn. (5.2)

For these three constraints, the convergence of PSNR(xk) by the SQR algorithm is
shown in Figure 5.4(a), from which we find that the model (1.1) with box constraints
Ω1 is the best.

Dependence on p. In this part, we consider the influence of the value of p in
(1.1) to restore the Circles image with blurring and noise. Let φ := φ2, l = 0n×1,

17



0 50 100 150 200 250 300 350 400 450 500
6

8

10

12

14

16

18

20

22

k

P
S

N
R

(x
k
)

 

 

Ω
1

Ω
2

Ω
3

(a)

0 50 100 150 200 250 300 350
16

17

18

19

20

21

22

k

P
S

N
R

(x
k )

 

 

p=0.25

p=0.5

p=0.75

p=1

(b)

Fig. 5.4: Convergence of PSNR(xk) for the Circles image: (a) with different con-
straints; (b) with different values of p

p 1 0.75 0.5 0.25
λ 0.017 0.018 0.016 0.022

PSNR(x200) 20.21 20.40 20.69 20.83

Table 5.1: The SQR algorithm for the Circles image with different values of p

u = e and x0 = 0. For each p, the parameter λ is also manually chosen in order to
obtain the best PSNR value. The PSNR values of (1.1) with different values of p by
the SQR algorithm are plotted in Figure 5.4(b). Moreover, the PSNR values at the
200th iteration are listed in Table 5.1. From Figure 5.4(b) and Table 5.1, we find that
solving (1.1) with a smaller value of p by the SQR algorithm can find higher PSNR
value.

Independence on initial iterate. In this part, we let p = 0.5, l = 0n×1, u = e
and φ := φ1 with λ = 0.006. We test the SQR algorithm with three different initial
iterates: the zero vector denoted by 0, the observed data projected on Ω1 denoted
by xΩ1

b , and a randomly generated vector in Ω1 denoted by xr. For the three initial
iterates, the corresponding results at the 300th iteration are given in Table 5.2. The
objective value with the original image is f(xo) = 13.44. We observe that the SQR
algorithm is stable with respect to the choice of initial iterates, in terms of the PSNR
values, objective values and CPU time.

At the end of this part, we should state that the PSNR of the restored image
by the SQR algorithm for (1.1) with D := D1 is better than the resorted images in
[10, 29] (PSNR=19.03 in [29] and PSNR=19.97 in [10]) for the Circles image with the
same blurring and noise.

B. Observed image with Gaussian noise. In this part, we generate the
observed image xb without blurring that all the pixels are contaminated by Gaussian
noise with mean of 0 and standard deviation of 0.1. Define p = 0.5, φ := φ2 with
λ = 0.15 and D := D1 in (1.1). Then f(xo) = 64.27, f(xb) = 172.43 and PSNR(xb) =
20.07.

With the three initial iterates used in Table 5.2, the numerical results of the
SQR algorithm for solving (1.1) to restore the Circles image with Gaussian noise are

18



x0 PSNR(x0) PSNR(x300) f(x0) f(x300) CPU
0 7.30 21.02 585.41 15.17 10.21

xΩ1

b 15.63 21.01 27.34 15.15 10.09
xr 5.04 20.72 799.50 15.23 10.16

Table 5.2: The SQR algorithm for the Circles image with different initial iterates

x0 PSNR(x0) PSNR(x600) f(x0) f(x600) CPU
0 7.30 34.24 794.42 71.89 80.49

xΩ1

b 22.57 34.26 139.82 71.59 79.85
xr 5.04 34.25 1.56e+3 71.89 73.94

Table 5.3: Stability of the SQR algorithm with different initial iterates for the Circles
image without blurring

given in Table 5.3, which shows that the SQR algorithm is stable with respect to the
initial iterates. Moreover, with x0 = xΩ1

b , the convergence of µk and PSNR(xk) are
illustrated in Figure 5.5. From the results in Table 5.3 and Figure 5.5, the PSNR of
the restored image by the SQR algorithm is also higher than the resorted images in
[17, 29] (PSNR=31.03 in [17] and PSNR=31.28 in [29]) for the Circles image with the
same Gaussian noise.
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Fig. 5.5: Convergence of PSNR(xk) and µk for the Circles image with Gaussian noise:
(a) PSNR(xk); (b) µk

For the three constraints in (5.2), the restored images by the SQR algorithm with
x0 = 0 at the 600th iteration are shown in Figure 5.6. We see that the quality of the
restored image with box constraint Ω1 is better than the other two restored images.

Example 5.3. Phantom image with size 256×256. In this example, we test
the proposed SQR algorithm using the 256× 256 Phantom image with blurring and
Gaussian noise as Example 5.2. Figure 5.7 gives the original and observed images.

Define φ := φ1, p = 0.5, D := D1 and λ = 0.009 in (1.1). With the three different
constraints in (5.2), we show the restored images by the SQR algorithm with x0 = 0
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Fig. 5.6: Restored images with different constraints: (a) Ω1(PSNR(x600)=34.26); (b)
Ω2 (PSNR(x600)=33.89); (c) Ω3(PSNR(x

600)=33.01)

in Figure 5.8, and the convergence of PSNR(xk) with x0 = xΩ1

b in Figure 5.9(a).
Similarly as the performance in Example 5.2, the box constraint Ω1 can provide a
better image restoration with higher PSNR value. Figure 5.9(b) shows convergence of

f(xk) and f̃(xk, µk) generated by the SQR algorithm with x0 = xΩ1

b for this 256×256
image.

50 100 150 200 250

50

100

150

200

250

(a)

50 100 150 200 250

50

100

150

200

250

(b)

Fig. 5.7: Phantom image: (a) original image; (b) observed image(PSNR=15.50)
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