
Sparse Solutions of Linear Complementarity Problems

Xiaojun Chen∗ Shuhuang Xiang†

August 8, 2014

Abstract

This paper considers the characterization and computation of sparse solutions and least-
p-norm (0 < p < 1) solutions of the linear complementarity problems LCP(q,M). We
show that the number of non-zero entries of any least-p-norm solution of the LCP(q,M)
is less than or equal to the rank of M for any arbitrary matrix M and any number p ∈
(0, 1), and there is p̄ ∈ (0, 1) such that all least-p-norm solutions for p ∈ (0, p̄) are sparse
solutions. Moreover, we provide conditions on M such that a sparse solution can be found
by solving convex minimization. Applications to the problem of portfolio selection within
the Markowitz mean-variance framework are discussed.

Keywords: Linear complementarity problem, sparse solution, nonconvex optimization,
restricted isometry property.
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1 Introduction

Given an n× n matrix M and an n-dimensional vector q, the linear complementarity problem
(LCP) is to find x ∈ Rn such that

Mx+ q ≥ 0, x ≥ 0 and xT (Mx+ q) = 0.

We denote the problem by LCP(q,M), its solution set by SOL(q,M) and its feasible set by
FEA(q,M) = {x |Mx + q ≥ 0, x ≥ 0}. The LCP has many applications in engineering and
economics. Moreover, the LCP plays a key role in optimization theory and presents optimality
conditions for constrained quadratic programs [10, 13].

The solution set SOL(q,M) often has an infinite number of solutions when it is nonempty.
Finding a special solution in the solution set for different goals has a long and rich history.
Most readers are familiar with the least norm solution, which is defined by

min ∥x∥22
s.t. x ∈ SOL(q,M).

(1.1)

For the monotone LCP where M is positive semi-definite, it is known that the solution set
SOL(q,M) is a convex polyhedra and has a unique least norm solution. Algorithms for finding
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the least norm solution of the monotone LCP have been studied extensively [10]. It is worth
noting that some attractive interior point methods are developed to find a maximal solution
that has the number of positive components in (x, s) with s = Mx+ q is maximal [19].

In this paper, we consider the sparsity of solutions of the LCP. We call x̄ ∈SOL(q,M) a
sparse solution of the LCP(q,M) if x̄ is a solution of the following optimization problem

min ∥x∥0
s.t. x ∈ SOL(q,M),

(1.2)

where ∥x∥0 =number of nonzero components of x.
Sparse solutions of the Z-matrix LCP(q,M) have been studied [7, 10] and used in dynamic

linear complementarity systems [8, 18]. A square matrix is called a Z-matrix if its off-diagonal
entries are non-positive. A vector x̄ ∈ SOL(q,M) is called a least element solution of the
LCP(q,M), if x̄ ≤ x for all x ∈ SOL(q,M). If M is a Z-matrix, and SOL(q,M) ̸= ∅, then
SOL(q,M) has a unique least element solution which is the unique sparse solution of the
LCP(q,M) and the unique solution of the following linear program [7, 10]

min eTx
s.t. Mx+ q ≥ 0, x ≥ 0,

(1.3)

where e is the vector whose all entries are one. In other words, if M is a Z-matrix, then the
unique least ℓ1 norm solution in the feasible set FEA(q,M) is the unique sparse solution in
the solution set SOL(q,M). Moreover, if M is a positive semi-definite Z-matrix, then the least
element solution is the least norm solution of the LCP(q,M). However, little theoretical results
and algorithms are known for sparse solutions of the LCP(q,M) when M is not a Z-matrix.

The function ∥x∥0 is discontinuous and brings difficulties to analyze the models and algo-
rithms. The ℓp (0 < p < 1) norm

∥x∥pp =
n∑

i=1

|xi|p

has been used as a continuous approximation function to ∥x∥0 in sparse approximation and
representation. The concavity of ∥x∥pp can provide desirable sparsity. Hence it is interest-
ing to study the relation between the sparse solutions of (1.2) and solutions of the following
optimization problem

min ∥x∥pp
s.t. x ∈ SOL(q,M).

(1.4)

We call a solution of (1.4) a least-p-norm solution.
It is known that finding a sparse solution of a system of linear equations is NP-hard [1, 3, 4].

Recently, Ge et al show that finding a solution of

min ∥x∥pp
s.t. Ax = b, x ≥ 0

(1.5)

for 0 < p < 1 is also NP-hard [14], where A ∈ Rm×n, b ∈ Rm. From [1, 3, 4, 14], we can say
that finding a sparse solution and a least-p-norm solution of the LCP(q,M) is NP-hard, since
we can construct M , q such that

S := {x |Mx+ q = 0, x ≥ 0} ⊆ SOL(q,M),

and solving minx∈S ∥x∥0 is NP-hard by using the argument in [14]. Sparse solutions of linear
equations have been studied extensively in the last decades [1, 3, 4, 14, 16]. Candes and Tao
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give sufficient conditions on the coefficient matrix A such that a sparse solution of the system
of linear equations can be found by ℓ1 minimization.

In contrast with the fast development in sparse solutions of optimization and linear equa-
tions, sparse solutions of the LCP seem to lack theory and algorithms.

The aim of this paper is to present properties of the sparse solutions and least-p-norm
solutions of the LCP(q,M) and computation methods for finding the sparse solutions. In
particular, we show that the number of non-zero entries of any least-p-norm solution of the
LCP(q,M) is less than or equal to the rank of M for any matrix M and any number p ∈ (0, 1),
and there is p̄ ∈ (0, 1) such that all least-p-norm solutions of (1.4) for p ∈ (0, p̄) are sparse
solutions of (1.2). Moreover, we provide conditions on M such that a sparse solution can be
found by solving convex minimization.

This paper is related to the problem of finding sparse solutions to quadratic programs.
Due to the optimality conditions, sparse solutions of the LCP are sparse solutions of convex
constrained quadratic programs, which have important applications in portfolio optimization.
The classic Markowitz portfolio optimization is formulated as the following quadratic program
[17]

min wTCw
s.t. eTw = 1, rTw = ρ,

w ≥ 0
(1.6)

where C is the covariance matrix of the return on the assets in the portfolio, w is the vector
of portfolio weights that represent the amount of capital to be invested in each asset, r is the
vector of expected returns of the different assets and ρ is a given total return. Sparsity is
important for investors who often want to select limited assets for their investment. However,
finding a sparse solution of (1.6) is a challenging problem for which many approaches have
been proposed such as penalty regularized optimization, mixed integer quadratic programs,
quadratic programs with constraints ∥w∥0 ≤ k for a given integer k [2, 5]. Since C is a
symmetric positive semi-definite matrix, problem (1.6) is equivalent to the LCP(q,M) with

M =

(
C −BT

B 0

)
, B =


eT

rT

−eT

−rT

 , q =


0
−1
−1
1
1

 , x =

(
w
y

)
,

where y is the Lagrange multiplier. Hence, sparse solutions of the Markowitz mean-covariance
portfolio optimization are closely related to sparse solutions of the LCP.

It is easy to see that q ≥ 0 if and only if x = 0 is the unique least-p-norm solution and the
unique sparse solution. To avoid the triviality, we assume that x = 0 is not a solution of the
LCP(q,M). Moreover, we assume the solution set SOL(q,M) is nonempty.

In section 2, we will show the sparsity of solutions of (1.2) and (1.4) for an arbitrary
matrix M . In section 3, we study the sparsity of solutions of (1.2) and (1.4) for a symmetric
positive semi-definite matrix M . In section 4, we show that if M is positive semi-definite and
M + MT satisfies restricted orthogonality [4], then a sparse solution of the LCP(q,M) can
be found by solving convex minimization. In section 5, we propose a computation procedure
for finding a sparse solution of convex quadratic programs by solving quadratic programs and
linear programs.

For a solution x̃ ∈SOL(q,M), we define the following index set:

J = {i : x̃i > 0}.
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We define the diagonal matrix D whose diagonal elements are

Dii =

{
1, i ∈ J
0, otherwise.

Let Jc denote the complementarity set of J and |J | the number of elements of J . Let e denote
the vector whose all entries are one.

2 Arbitrary matrix M

From [10, p.98, 144], the solution set SOL(q,M) of an arbitrary LCP(q,M) is a union of a
finite number of convex polyhedra. Since a convex polyhedron has only finite many extreme
points, there are only finite many extreme points in the solution set SOL(q,M). We say x is
an extreme point of SOL(q,M) if x does not lie in any open line segment joining two points of
SOL(q,M). In general, SOL(q,M) is not a convex set. If x is an extreme point of SOL(q,M),
then x is an extreme point of a convex polyhedron.

Lemma 2.1 All least-p-norm solutions of the LCP(q,M) are extreme points of SOL(q,M).

Proof: Let x̃ be a least-p-norm solution. Suppose there exist y, z ∈ SOL(q,M) such that
x̃ = λy + (1 − λ)z for some 0 < λ < 1. Recall that tp is strictly concave for t ≥ 0. Then it
follows

∥x̃∥pp =
n∑

j=1

(λyj + (1− λ)zj)
p ≥ λ

n∑
j=1

ypj + (1− λ)
n∑

j=1

zpj = λ∥y∥pp + (1− λ)∥z∥pp ≥ ∥x̃∥pp,

where the last inequality uses that x̃ is a least-p-norm solution. Furthermore, the above equal-
ities hold if and only if y = z = x̃, which indicates that x̃ is an extreme point of SOL(q,M).

Theorem 2.1 Let x̃ and x̄ be a least-p-norm solution and a sparse solution of the LCP(q,M).
Then ∥x̃∥0 ≤ rank(M) for p ∈ (0, 1). Moreover, there is a p̄ ∈ (0, 1) such that ∥x̃∥0 = ∥x̄∥0 for
all p ∈ (0, p̄).

Proof: Note that we can choose a permutation matrix U ∈ Rn×n such that

UDUT =

(
IJ,J 0
0 0

)
and UMUT =

(
MJ,J MJ,Jc

MJc,J MJc,Jc

)
.

Thus

U(I −D +DM)UT =

(
MJ,J MJ,Jc

0 I

)
. (2.1)

Since the LCP(Uq, UM) and the LCP(q,M) are equivalent, without loss of generality, we
assume U = I in (2.1), J = { 1, 2, . . . , k } and

M =

(
MJ,J MJ,Jc

MJc,J MJc,Jc

)
, x̃ =

(
x̃J
0

)
, q =

(
qJ
qJc

)
.
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Note that x̃J > 0. It follows MJ,J x̃J + qJ = 0. If rank(M·,J) < |J |, then there exists a nonzero
vector h ∈ R|J | such that M·,Jh = 0, i.e., MJ,Jh = 0 and MJc,Jh = 0. Furthermore, by x̃J > 0,
we can choose a sufficiently small real positive number δ0 such that for all |δ| ≤ δ0,

x̃J + δh > 0,
MJ,J(x̃J + δh) + qJ = MJ,J x̃J + qJ = 0,
MJc,J(x̃J + δh) + qJc = MJc,J x̃J + qJc ≥ 0.

Hence ([x̃J + δh]T , 0)T ∈ Rn
+ is also a solution of the LCP(q,M) for |δ| ≤ δ0. Notice that x̃ is

a least-p-norm solution of the LCP(q,M). It leads to

∥x̃∥pp = min
t∈(−δ0,δ0)

∥([x̃J + th]T , 0)T ∥pp =: f(t), 0 < p < 1.

It is impossible since

f ′′(t) = p(p− 1)

|J |∑
i=1

(x̃i + th)p−2(hi)
2 < 0.

Hence we have rank(M·,J) ≥ |J |, which implies that ∥x̃∥0 ≤rank(M).
Now we prove the second part of this theorem.
We show that there is a number p̄ ∈ (0, 1) such that any least-p-norm solution x̃ is a sparse

solution for p ∈ (0, p̄).
By Lemma 2.1, all least-p-norm solutions of the LCP(q,M) are extreme points of SOL(q,M)

for p ∈ (0, 1). Let
{
x1, x2, . . . , xm

}
be the set of extreme points of SOL(q,M). Then we have

for all x̄
∥x̄∥pp ≥ min{∥x1∥pp, ∥x2∥pp, . . . , ∥xm∥pp} = ∥x̃∥pp. (2.2)

If there is not a number p̄ ∈ (0, 1) such that any least-p-norm solution x̃ is a sparse solution
for p ∈ (0, p̄), then there are a sequence {pi}, pi > 0, pi → 0 as i → ∞ and a sequence {xji} of
extreme points of SOL(q,M) such that xji is a least-p-norm solution and

∥xji∥0 > ∥x̄∥0. (2.3)

Since there are only finite many extreme points in SOL(q,M), without loss of generality, we
assume xji = xj . However, we cannot have (2.3), since (2.2) implies

∥x̄∥0 = lim
pi↓0

∥x̄∥pipi ≥ lim
pi↓0

∥xj∥pipi = ∥xj∥0.

Hence, the second part of this theorem holds. Moreover, this together with ∥x̃∥0 ≤ rank(M)
for p ∈ (0, 1) implies ∥x̄∥0 ≤ rank(M). We complete the proof.

From Lemma 2.1 and Theorem 2.1, we can have the following corollary.

Corollary 2.1 There is an extreme point x̄ of SOL(q,M) such that x̄ is a sparse solution of
the LCP(q,M).

We use the following example to explain Theorem 2.1.
Example 2.1 Consider the LCP(q,M) with

M =

 1 3 0
1 3 0
1 0 0

 , q =

 −4
−4
−1

 .
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The solution set: SOL(q,M)=S1
∪
S2 where

S1 =
{
(x1, x2, 0)

T : x1 + 3x2 = 4, x1 > 1, x2 ≥ 0
}
, S2 =

{
(1, 1, x3)

T : x3 ≥ 0
}
.

The sparse solution: x̄ = (4, 0, 0)T .
The least-p-norm solutions: x̃ = (1, 1, 0)T for p > 1

2 ; x̃ = (1, 1, 0)T or x̃ = (4, 0, 0)T for
p = 1

2 ; and x̃ = (4, 0, 0)T for 0 < p < 1
2 .

The number of non-zero components in the sparse solution and all least-p-norm solutions
is one or two, which is less than or equal to rank(M)=2. Moreover, ∥x̃∥0 = ∥x̄∥0 for all
least-p-norm solutions with p ∈ (0, 12).

Let us consider other LCP(q,M) with

M =


1 3 0 0 1
1 3 0 0 1
1 0 0 0 1
0 1 0 0 1
3 3 0 0 1

 , q =


−4
−4
−1
−1
−6

 .

The solution set: SOL(q,M)=S1
∪
S2
∪
S3 where

S1 =
{
(1, 1, x3, x4, 0)

T : x3 ≥ 0, x4 ≥ 0
}
, S2 =

{
(1, x2, 0, 0, 3− 3x2)

T : 0 ≤ x2 ≤ 1
}

S3 =
{
(0, 0, x3, x4, 6)

T : x3 ≥ 0, x4 ≥ 0
}
.

The sparse solution: x̄ = (0, 0, 0, 0, 6)T .
The least-p-norm solutions: x̃ = (1, 1, 0, 0, 0)T for p > 1

log2 6
; x̃ = (1, 1, 0, 0, 0)T or x̃ =

(0, 0, 0, 0, 6)T for p = 1
log2 6

; and x̃ = (0, 0, 0, 0, 6)T for 0 < p < 1
log2 6

.
The number of non-zero components in the sparse solution and all least-p-norm solutions

is less than or equal to rank(M)=2. Moreover, ∥x̃∥0 = ∥x̄∥0 for all least-p-norm solutions with
p ∈ (0, 1

log26
).

3 Symmetric positive semi-definite matrix M

If M is a positive semi-definite matrix and the feasible set FEA(q,M) is nonempty, then the
solution set is nonempty and convex [10]. The convexity of the solution set with the following
lemma provides more desirable properties of sparse solutions and least-p-norm solutions of the
LCP(q,M).

Lemma 3.1 [10, Theorem 3.1.7,Theorem 3.4.4] Let M be symmetric positive semi-definite.
Then Mx1 = Mx2 for any x1, x2 ∈ SOL(q,M) and the columns of M·,α are linear dependent
for each index set α with detMα,α = 0.

Theorem 3.1 Suppose that M is symmetric positive semi-definite. Let x̄ be a sparse solution
of the LCP(q,M). With the index set J and diagonal matrix D, the following statements hold.

(i) MJ,J is nonsingular;
(ii) x̄ = −(I −D +DM)−1Dq;
(iii) ∥x̄∥1 ≤ L∥q∥1,

where L = max
{
∥M−1

α,α∥1 : Mα,α is nonsingular for α ⊆ {1, . . . , n}
}
;

(iv) There is no another solution x ∈ SOL(q,M) with α = {i : xi > 0} such that α ⊆ J .
The statements also hold for any least-p-norm solution of the LCP(q,M).
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Proof: (i) Following the proof of Theorem 2.1, without loss of generality, we assume U = I
in (2.1), J = { 1, 2, . . . , k } and

M =

(
MJ,J MJ,Jc

MJc,J MJc,Jc

)
, x̄ =

(
x̄J
0

)
, q =

(
qJ
qJc

)
.

Note that x̄J > 0. It follows MJ,J x̄J + qJ = 0. If MJ,J is singular, then from Lemma 3.1, the
columns of M·,J are linearly dependent, and there exists a nonzero vector h ∈ R|J | such that
M·,Jh = 0. Define

τ = min
hi ̸=0,1≤i≤|J |

x̄i
|hi|

.

It is easy to verify that

x̄J ± τh ≥ x̄J − τ |h| ≥ 0, MJ,J(x̄J ± τh) + qJ = 0, MJc,J(x̄J ± τh) + qJc ≥ 0.

Hence ([x̄J ± τh]T , 0)T ∈ Rn
+ is also a solution of the LCP(q,M) but ∥x̄J − τh∥0 < ∥x̄∥0 or

∥x̄J + τh∥0 < ∥x̄∥0. Hence, these together imply that MJ,J is nonsingular.
(ii) From the nonsingularity of MJ,J , expression (2.1) with U = I implies that I−D+DM

is nonsingular and

(I −D +DM)−1D =

(
MJ,J MJ,Jc

0 I

)−1

D =

(
M−1

J,J 0

0 0

)
. (3.1)

From (I −D)x̄+D(Mx̄+ q) = 0 and (3.1), we obtain the desired results.
(iii) From (3.1), we have

∥(I −D +DM)−1D∥1 ≤ max
{
∥M−1

α,α∥1 : Mα,α is nonsingular for α ⊆ {1, . . . , n}
}
,

which together with (ii) implies (iii).
(iv) Assume that there is another solution x̂ ∈ SOL(q,M) with α = {i : x̂i > 0} such that

α ⊆ J . From the proof of (i), without loss of generality, assume

M =

 Mα,α Mα,β Mα,Jc

Mα,β Mβ,β Mβ,Jc

MJc,α MJc,β MJc,Jc

 , q =

 qα
qβ
qJc

 , J = α ∪ β.

It is easy to verify that both x̂J and x̄J are solutions of the LCP(qJ ,MJ,J). However MJ,J

is nonsingular and positive definite, and the LCP(qJ ,MJ,J) has a unique solution. This is a
contradiction.

Using the same argument and the proof of Theorem 2.1, we can see the same statements
hold for any least-p-norm solution x̃ of SOL(q,M).

Corollary 3.1 All sparse solutions of the LCP(q,M) are extreme points of SOL(q,M) if M
is symmetric positive semi-definite.

Proof: Let x̄ be a sparse solution. Assume that there exist y, z ∈ SOL(q,M) such that
x̄ = λy + (1− λ)z for some 0 < λ < 1. Since x̄ is a sparse solution, this means x̄, y, z have the
same support sets. However, from (iv) of Theorem 3.1 the support sets of x̄, y, z are same if
and only if x̄ = y = z. This is a contradiction. Hence x̄ is an extreme point of SOL(q,M).
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From Theorem 2.1 and Theorem 3.1, if M is symmetric positive semi-definite, the number
of non-zero components of any sparse solution and least-p-norm solution of the LCP(q,M) is
less than or equal to max {rank(Mα,α) : α ⊆ {1, 2, . . . , n}} . We use the following example to
explain the sparsity.
Example 3.1 Consider the LCP(q,M) with

M =

(
1 1
1 1

)
, q =

(
−1
−1

)
.

It is easy to see max {rank(Mα,α) : α ⊆ {1, 2}} = 1.
The solution set: SOL(q,M) = {(x1, x2)T : x1 + x2 = 1, x1, x2 ≥ 0}.
The sparse solution: x̄ = {(1, 0)T , (0, 1)T }.
The least-p-norm solution: x̃ = {(1, 0)T , (0, 1)T } for 0 < p < 1.
For p = 1, each solution in SOL(q,M) is the least ℓ1 norm solution. For p > 1, (12 ,

1
2)

T is
the least ℓp norm solution.

Let us consider other LCP(q,M) with

M =

 5 −1 1
−1 1 1
1 1 2

 , q =

 −4
0

−2

 ,

and max {rank(Mα,α) : α ⊆ {1, 2, . . . , 3}} = 2.
The solution set: SOL(q,M) = {(x1, x2, x3)T : x1 = λ + (1 − λ)23 , x2 = λ, x3 =

(1− λ)23 , 0 ≤ λ ≤ 1}.
The sparse solution: x̄ = {(23 , 0,

2
3)

T , (1, 1, 0)T }.
The least-p-norm solution: x̃ = {(23 , 0,

2
3)

T } for 0 < p < 1, which is also the least ℓ1 norm
solution and the least ℓp norm solution for p ≥ 1.

Remark 1 The sparsity of solutions of the LCP(q,M) is sensitive with the data (q,M).
Consider the following LCP(q,M) with a symmetric positive semi-definite matrix

M =

 2 1 3
1 1 0
3 0 9

 , q =

 −2
−1
−3

.
The sparse solution is x̄ = (1, 0, 0)T with ∥x̄∥0 = 1. However, for q + εe with 0 < ε < 3

2 , the
sparse solution is x̄ = (1 − 2ε/3, 0, ε/9)T with ∥x̄∥0 = 2. It is known that the solvability of
the monotone LCP(q,M) is stable for nonnegative noise in q, since the feasibility implies the
solvability for the monotone LCP(q,M). However, the sparsity of solutions of the monotone
LCP(q,M) can change with any small positive noise in q.

4 Computation of sparse solutions

In this section, we show that we can find a sparse solution of the LCP(q,M) where M is a
positive semi-definite matrix by solving a convex quadratic program and a linear program if the
matrix M + MT satisfies the s-restricted isometry property (RIP) and s,s’-restricted
orthogonality (RO). An m×n matrix A is said to satisfy the s-RIP with a restricted isometry
constant δs if for every m× |Λ| submatrix AΛ of A and for every vector z ∈ R|Λ| with |Λ| ≤ s,

(1− δs)∥z∥22 ≤ ∥AΛz∥22 ≤ (1 + δs)∥z∥22. (4.1)
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Moreover, A is said to satisfy the s,s’-RO with a restricted orthogonality constant θs,s′ for
s + s′ ≤ n if for all submatrices AΛ ∈ Rm×|Λ|, AΛ′ ∈ Rm×|Λ′| of A with |Λ| ≤ s, |Λ′| ≤ s′ and
for all vectors z ∈ R|Λ|, z′ ∈ R|Λ′|

|(AΛz,AΛ′z′)| ≤ θs,s′∥z∥2∥z′∥2 (4.2)

holds for all disjoint sets Λ and Λ′.
The concepts of s-RIP and s,s’-RO were introduced by Candes and Tao [4] and are used in

many applications of sparse representations.
The LCP(q,M) can be equivalently written as a quadratic program

min xTMx+ qTx
s.t. Mx+ q ≥ 0, x ≥ 0

(4.3)

in the sense that x∗ a solution of the LCP(q,M) if and only if x∗ is an optimal solution of (4.3)
with the optimal value of zero. If M is a positive semi-definite matrix, then (4.3) is a convex
quadratic program.

From Theorem 3.1.7 in [10], the solution set SOL(q,M) for a positive semi-definite matrix
M equals to

SOL(q,M) =
{
x ∈ Rn

+ |Mx+ q ≥ 0, (M +MT )x = c, qTx = γ
}
, (4.4)

where c = (M +MT )x∗, γ = qTx∗ and x∗ is an arbitrary solution of the LCP(q,M).
We consider the following linear program

min eTx
s.t. Mx+ q ≥ 0, x ≥ 0, (M +MT )x = c, qTx = γ.

(4.5)

Theorem 4.1 Suppose that M is positive semi-definite. Let x̂ be a solution of the linear
program (4.5) with ∥x̂∥0 ≤ s.

(i) If (M +MT ) satisfies the RIP with a restricted isometry constant δ2s < 1, then x̂ is the
unique sparse solution of the LCP(q,M).

(ii) If (M +MT ) satisfies the RIP and RO with

δs + θs,s′ + θs,2s′ < 1, (4.6)

then x̂ is the unique solution of the linear program (4.5) and the unique sparse solution
of the LCP(q,M).

Proof: (i) From (4.4), we know that x̂ is a solution of the LCP(q,M). Assume on contradiction
that there is a sparse solution of the LCP(q,M) such that x̄ ̸= x̂. Then ∥x̄∥0 ≤ ∥x̂∥0 ≤ s and
(M+MT )(x̂− x̄) = 0. Let the support set of x̂− x̄ be K. Then |K| ≤ 2s. Hence ∥x̂− x̄∥0 ≤ 2s,
which together with the RIP, yields

(1− δ2s)∥x̂− x̄∥22 = (1− δ2s)∥(x̂− x̄)K∥22

≤ ∥(M +MT )K(x̂− x̄)K∥22 = ∥(M +MT )(x̂− x̄)∥22 = 0.

This is contradiction to x̂ ̸= x̄. Therefore x̂ is the unique sparse solution of the LCP(q,M).
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(ii) From Theorem 1.3 in [4], x̂ is the unique solution of the following linear program

min ∥x∥1
s.t. (M +MT )x = c.

(4.7)

Since the convex feasible set of (4.5) is contained in the convex set {x | (M +MT )x = c}, x̂ is
also the unique solution of the linear program (4.5).

From Lemma 1.1 in [4], the condition in (4.6) implies δ2s < 1. Hence, from (i) of this
theorem, x̄ is the unique sparse solution of the LCP(q,M).

Corollary 4.1 Suppose that M is symmetric positive semi-definite. Let x̂ with ∥x̂∥0 ≤ s be a
solution of the linear program

min eTx
s.t. x ≥ 0, Mx = c, qTx = γ,

(4.8)

where c = Mx∗, γ = qTx∗ and x∗ is an arbitrary solution of the LCP(q,M).

(i) If M satisfies the RIP with a restricted isometry constant δ2s < 1, then x̂ is the unique
sparse solution of the LCP(q,M).

(ii) If M satisfies the RIP and RO with (4.6) then x̂ is the unique solution of the linear
program (4.8) and the unique sparse solution of the LCP(q,M).

Proof: From Theorem 3.1.7 in [10], the solution set SOL(q,M) for a symmetric positive semi-
definite matrix M equals to

SOL(q,M) =
{
x ∈ Rn

+ |Mx = c, qTx = γ
}
. (4.9)

Following the proof of Theorem 4.1, we can obtain the desirable results.

Example 4.1 Consider the LCP(q,M) with

M =

 0.4 −0.3 0.1
−0.3 0.3 −0.3
0.1 −0.3 0.7

 , q =

 −0.4
0.3

−0.1

.
The solution set is SOL(q,M) =

{
(1, 0, 0)T + λ(2, 3, 1)T : λ ≥ 0

}
.

The restricted isometry constants are δ1 = 0.4901 and δ2 = 0.8421. From (i) of Corollary
4.1, x̄ = (1, 0, 0)T is the unique sparse solution of the LCP(q,M).

Remark 2. For an m×n matrix A, the concept of Spark(A) is also often used in the study
of sparse solutions, which is defined as the smallest possible number such that there exists a
subgroup of columns from A that are linearly dependent [11].

Suppose that M is positive semi-definite. Let x̂ be a solution of the LCP(q,M) with
∥x̂∥0 ≤ 1

2Spark(M +MT ). Then x̂ is a sparse solution of the LCP(q,M). This statement can
be shown as follows.

Suppose x′ is another solution of the LCP(q,M), then from (4.4), (M +MT )(x̄− x′) = 0,
which implies ∥x̄− x′∥0 ≥Spark(M +MT ) and

∥x′∥0 ≥ Spark(M +MT )− ∥x̂∥0 ≥
1

2
Spark(M +MT ) ≥ ∥x̂∥0.
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Similarly, if ∥x̂∥0 < 1
2Spark(M+MT ), then x̂ is the unique sparse solution of the LCP(q,M).

For a symmetric positive semi-definite M , if x̂ is a solution of the LCP(q,M) with ∥x̂∥0 ≤
1
2Spark(M) then x̂ is a sparse solution of the LCP(q,M). Moreover, the strict inequality implies
the uniqueness.

Example 4.2 Consider the LCP(q,M) with

M =

 1 1 1
1 1 1
1 1 1

 , q =

 −1
−1
−1

 .

The solution set: SOL(q,M) =
{
(x1, x2, x3)

T : x1 + x2 + x3 = 1, x1 ≥ 0, x2 ≥ 0, x3 ≥ 0
}
.

Spark(M) = 2, and (1, 0, 0)T , (0, 1, 0)T , (0, 0, 1)T are sparse solutions of the LCP(q,M).

5 Sparse solutions of quadratic programs

In this final section, we apply theorems in the last sections to sparse solutions of the following
quadratic program

min 1
2z

THz + cT z
s.t. Az ≥ b

z ≥ 0
(5.1)

where H ∈ Rm×m is positive semi-definite, c ∈ Rm, A ∈ Rk×m, b ∈ Rk. This quadratic program
includes the Markowitz mean-covariance portfolio optimization problem (1.6) as a special case.
Let SQP be the solution set of (5.1). We say z̄ is a sparse solution of the quadratic program
(5.1) if

∥z̄∥0 = min{ ∥z∥0 : z ∈ SQP }.

The quadratic program (5.1) is equivalent to the LCP(q,M) with

M =

(
H −AT

A 0

)
, q =

(
c
−b

)
, x =

(
z
y

)
,

where y ∈ Rk is the Lagrange multiplier. Note that M +MT =

(
H 0
0 0

)
. The solution set

SOL(q,M) equals to

SOL(q,M) =
{
x ∈ Rn

+ |Mx+ q ≥ 0, Hz = w, qTx = γ
}
,

where w = Hz∗, γ = qTx∗ and x∗ = (z∗, y∗) is an arbitrary solution of the LCP(q,M).
We consider the following linear program

min eTx
s.t. Mx+ q ≥ 0, x ≥ 0, Hz = w, qTx = γ.

(5.2)

Let x̂ = (ẑ, ŷ) be a solution of the linear program (5.2) with ∥ẑ∥0 ≤ s. According to Theorem
4.1, we have the following statements.

(i) If H satisfies the RIP with a restricted isometry constant δ2s < 1, then ẑ is the unique
sparse solution of the quadratic program (5.1).
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(ii) If H satisfies the RIP and RO with (4.6) then ẑ is the unique sparse solution of the
quadratic program (5.1) and all solutions x∗ = (y∗, z∗) of the linear program (5.2) have
the same component z∗ = ẑ.

Based on the statements above and (4.3), we propose the following procedure to find a
sparse solution of (5.1).

1. Find a solution x∗ of the LCP(q,M) by solving the following quadratic program

min zTHz + cT z − bT y
s.t. Az ≥ b, Hz −AT y ≥ −c, z, y ≥ 0.

(5.3)

2. Find a solution of the linear program (5.2).

We use the following code in Matlab to generate a solution z ∈ Rm with ∥z∥0 = s of (5.1),
a positive semi-definite matrix H, a matrix A ∈ Rk×m, and vectors c ∈ Rm, b ∈ Rk.

k=fix(m/5); s=fix(m/3); z=zeros(m,1); P=randperm(m);

z(P(1:2*s+m/10))=abs(randn(2*s+m/10,1)); H=randn(m,m); H=H*diag(z)*H’;

A=randn(k-1,m); A=[A;-ones(1,m)]; z=zeros(m,1);

z(P(1:s))=abs(randn(s,1)); b=A∗z; c=-H∗z.

For each m, k, s, we generated 100 independent test problems by the code. The convex
quadratic program (5.3) and the linear program (5.2) are solved by the Matlab code quadprog
and linprog with initial iterate x0 =zeros(n, 1). Preliminary numerical results are reported
in Table 1. In the last line of Table 1, we report ∥zLP ∥0, n1;n2 where zLP is the numerical
solution of the linear program (5.2), n1 is the average of ∥zLP ∥0 for the 100 test problems and
n2 is the number of test problems with ∥zLP ∥ ≤ s.

Table 1: 100 independent tests for each (m, k, s)
m 80 90 100 110 120 130 140 150

k 16 18 20 22 24 26 28 30

rank(H) 60 69 76 83 92 99 106 115

s 26 30 33 36 40 43 46 50

∥zLP ∥0 25.9; 100 30; 100 33; 99 35.9; 100 40.2;98 42.9;100 46.2;99 50.3; 99

The numerical testing is performed using MATLAB R2011b on a Lenovo PC (Intel Quad
CPU Q9550, 2.83GHz, 4.00GB of RAM). The numerical results are encouraging for the study
of sparse solutions of the LCP, although the matrix H generated by the Matlab code may not
satisfy the RIP and RO conditions.
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