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Abstract. The article considers a particular class of optimization problems involving set-valued
stochastic equilibrium constraints. A solution procedure is developed by relying on an approximation
scheme for the equilibrium constraints, based on regularization, that replaces them by equilibrium
constraints involving only single-valued Lipschitz continuous functions. In addition, sampling has the
further effect of replacing the ‘simplified’ equilibrium constraints by more manageable ones obtained
by implicitly discretizing the (given) probability measure so as to render the problem computationally
tractable. Convergence is obtained by relying, in particular, on the graphical convergence of the
approximated equilibrium constraints. The problem of estimating the characteristics of a demand
model, a widely studied problem in micro-economics, serves both as motivation and illustration of
the regularization and sampling procedure.
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1. Introduction. Solving mathematical optimization involving equilibrium con-
straints is generally challenging and the design of solutions procedures to deal with
such problems when the equilibrium constraints involve set-valued stochastic map-
pings brings along a new level of difficulty. This article, considers a particular case
which enables us to deal with a specific instance, see §4, of the ‘inverse’ problem in
micro-economics: given that prices and the decisions of the agents can be observed,
is it possible to infer their utility functions?

Specifically, we consider the following mathematical program with stochastic equi-
librium constraints (MPSEC):

(1.1)
min x∈X

1
2 ⟨x,Hx⟩+ ⟨c, x⟩

subject to AtE[St(ξ, x)] ∋ bt, t = 1, . . . , T,

where c ∈ IRν , At ∈ IRm×n, bt ∈ IRm, H is a positive semi-definite ν × ν-matrix,
X ⊆ IRν is a compact set and ξ : Ω → Ξ ⊆ IRℓ is a random vector with realizations
as ξ (without boldface) and (Ξ,F , P ) the induced probability space,

(1.2) St(ξ, x) = argmaxy { ⟨y, ut(ξ, x)⟩ | ⟨e, y⟩ ≤ 1, y ≥ 0 } ⊆ IRn,
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ut : Ξ× IRν → IRn is a given continuous function, and e = (1, . . . , 1) ∈ IRn, and

E[St(ξ, x)] = {E[s(ξ, x)] | s(ξ, x) ∈ St(ξ, x), s(·, x) P -summable selection of St(·, x)}

is Aumann’s expected value [1] with respect to ξ.

This problem-type (1.1) is part of an important family of problems in economics
which, in particular, includes the pure characteristics demand model which seeks to
estimate the parameters in the consumers’ utility function [3, 10, 14]. In such a
model, the constraint AtE[St(ξ, x)] ∋ bt, with At the identity matrix, represents the
market share equations, ut determines the consumer’s utility in market ‘t’ and the jth
component(s) of the solution(s) in St(ξ, x) of (1.2) is the probability that the consumer
purchases product j in market t given the observed environment ξ. The linear program
(1.2) models the consumer’s decision choice, in market t, to acquire the product
or products, that yields the highest utility given environment ξ. The variable x
consists of two parts x1 ∈ IRν1 and x2 ∈ IRν2 : x1 describes the product characteristics
or demand shock that is observed by the providers (firms) and consumers, but not
explicitly available in the data, and x2 models the consumer’s preferences or taste for
the observed product characteristics and its price. The pure characteristics demand
model is to estimate x2 and minimize the demand shock or error x1. The objective
function in this model has H = diag(H1,H2) and c = 0, where H1 is a ν1×ν1 positive
definite matrix and H2 is the ν2 × ν2 zero matrix.

There are quite a number of challenges one has to deal with to solve such a
problem. To begin with the solution of (1.2), for any fixed (ξ, x) is not necessarily
unique, in fact, in general, it’s set-valued. Consider a simple example with ut(ξ, x) =
(ξ1 + x, ξ2) ∈ IR2, where ξ1 ∈ IR and ξ2 > 0. The solution set has the form

St(ξ, x) =

 (1, 0) x > ξ2 − ξ1,
{(α, 1− α) |α ∈ [0, 1]} x = ξ2 − ξ1,
(0, 1) x < ξ2 − ξ1.

One cannot find a single-valued function s(ξ, x) ∈ St(ξ, x) which is continuous with re-
spect to x. The use of a sample average approximation (SAA) scheme to approximate
the market share equations as proposed in the existing literature becomes intractable.
Another major difficulty comes from the fact that all solution sets St(ξ, x), t = 1, . . . , T
also share the same x-variables.

Market share equations play an important role in economics [3, 10, 14]. The ‘in-
verse’ problem, from consumers choices evince their utility functions is a fundamental
issue in economics. In the pure characteristics demand model, even when approximat-
ing, the market share equations for the unobserved product characteristics, finding
best estimates by relying on a nested fixed-point approach has been proposed in the
existing econometrics literature but it is known that such an approach is computa-
tionally ineffective. Recently, Pang et al. [14] proposed a mathematical programming
with linear complementarity constraints (MPLCC) approach for the pure character-
istics demand model with a finite number of observations ξi, i = 1, . . . , N . Their
approach provides a promising computational method to estimate the consumer util-
ity under the additional condition that in any market t, the optimal choice of each
individual consumer is guaranteed to purchase just one single product in each ξ-
environment. They rely extensively on this property of the (basic) optimal solution of
(1.2) in their development. This condition and the use of such basic solution with a
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finite number of observations ξi, i = 1, . . . , N for (1.1)-(1.2) can be expresses in terms
of the following mathematical program with linear equilibrium constraints
(1.3)

min x∈X
1
2 ⟨x,Hx⟩+ ⟨c, x⟩

subject to At
1
N

∑N
i=1 Ŝt(ξ

i, x) ∋ bt, t = 1, . . . , T, ξi ∈ Ξ, i = 1, . . . , N,

where

Ŝt(ξ, x) = {argmin∥s∥0 | s ∈ St(ξ, x)},

here ∥s∥0 denotes the number of nonzero entries of s. With the constraints ⟨e, y⟩ ≤ 1
and y ≥ 0, clearly, the linear program (1.2) has always a basic optimal solution
s(ξ, x) and it’s taken for granted that any basic optimal solution has just a single
variable taking on the value 1 while all others are 0 when max1≤i≤n ui(ξ, x) > 0.

One could refer to a solution of this type, s(ξ, x) ∈ Ŝt(ξ, x) as a ‘sparse solution’ of
(1.2). However, the use of such ‘sparse solutions’ raises questions when there is, in
fact, a multiplicity of solutions. For example, when (ut(ξ, x))j = max1≤i≤n(ut(ξ, x))i,
j = 1, 2, 3, why would the probability that a consumer purchases one of the three
products be 1 and 0 for the two others? Should the choice probability not be 1/3,
for example, for each one of the three products? Other question arise about the
consistency of the solutions of the MPLCC problem (1.3) to the given problem (1.1)
as the sample size N goes to infinity.

Motivated by the MPLCC approach [14] and the preceding questions, we refor-
mulate problem (1.1) as the following mathematical program with stochastic linear
complementarity constraints (MPSLCC)

(1.4)
min x∈X

1
2 ⟨x,Hx⟩+ ⟨c, x⟩

subject to AtE[St(ξ, x)] ∋ bt, t = 1, . . . , T,

where St(ξ, x) consists of all the solutions to

(1.5)
0 ≤ y(ξ, x) ⊥ −ut(ξ, x) + γ(ξ, x)e ≥ 0
0 ≤ γ(ξ, x) ⊥ 1− ⟨e, y(ξ, x)⟩ ≥ 0

for some γ(ξ, x) ∈ IR or, equivalently, the linear complementarity problem (LCP):

(1.6) 0 ≤
(

y
γ

)
⊥ M

(
y
γ

)
+

(
−ut(ξ, x)

1

)
≥ 0

with the positive semidefinite matrix

M =

(
0 e
−e 0

)
∈ IR(n+1)×(n+1).

For fixed (t, ξ, x) and with qt(ξ, x) = (−ut(ξ, x), 1) ∈ IRn+1, let’s denote the comple-
mentarity problem (1.6) by LCP(qt(ξ, x),M) and by

S(qt,M) = {s ∈ IRn
∣∣ for some γ ≥ 0, (s, γ) solves LCP(qt(ξ, x),M)

}
,

i.e., the solution set projected on the s-space1.

1To lighten up the notation, when no confusion is possible, we usually simply write qt instead of
the more precise, but cumbersome, qt(ξ, x).
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It will be shown that, cf. proof of Theorem 2.3, the solution set S(qt,M) is
bounded. With Mε = M + εI, ε > 0, it also implies that the LCP(qt(ξ, x),M

ε) has
a unique solution, which is then denoted by zεt = (sεt , γ

ε
t ). It converges to the least

norm solution of the LCP(qt(ξ, x),M) as ε ↓ 0 [8, Theorem 5.6.2]. Moreover, for any
fixed ε > 0, the function qt 7→ zεt is globally Lipschitz continuous (with qt = qt(ξ, x))
and continuously differentiable at qt if and only if for no j, (zεt )j = 0 = (Mzεt + qt)j
[6],[7, Lemma 2.1]; a nondegenerary condition. These engaging properties motivate
us to consider a regularized version of MPSLCC: with zεt the unique solution of the
regularized LCP(qt(ξ, x),M

ε)

(1.7) 0 ≤ z⊥Mεz + qt(ξ, x) ≥ 0, where qt(ξ, x) =

(
−ut(ξ, x)

1

)
,

the formulation of our problem becomes,

(1.8)
min x∈X

1
2 ⟨x,Hx⟩+ ⟨c, x⟩

subject to ∥AtE[sεt (ξ, x)]− bt∥ ≤ r(ε), t = 1, . . . , T,

and the SAA-version of the regularized MPSLCC

(1.9)
min x∈X

1
2 ⟨x,Hx⟩+ ⟨c, x⟩

subject to ∥At
1
N

∑N
i=1 s

ε
t (ξ

i, x)− bt∥ ≤ r̂(ε,N), t = 1, . . . , T,

where r(ε) ↓ 0 as ε ↓ 0, r̂(ε,N) → r(ε) as N → ∞ for any fixed ε > 0.

The advantage of working with (1.8) and (1.9) is that one can replace the set-
valued mapping by a single valued function. Problem (1.9) is a mathematical program
with a convex quadratic objective function and globally Lipschitz continuous inequal-
ity constraints. Moreover, we can have a closed form for zεt , see Lemma 2.2. The main
contribution of this paper is to propose an efficient approach, via the SAA-version of
the regularized MPSLCC, to find a solution of the mathematical program with sto-
chastic equilibrium constraints (1.4) and to show that a sequence of solutions {xε

N} of
the SAA regularized stochastic MPSLCC (1.9) converges to a solution of the (given)
problem (1.4) as N → ∞ and ε ↓ 0.

In Section 2, we derive various properties of the solution functions sεt and their
convergence to the solution set St(ξ, x̄) as ε ↓ 0 and x → x̄. In particular, we provide a
closed form of the solution functions which is used to prove the graphical convergence
of the real-valued function sεt to the set-valued mapping St(·). In Section 3, we prove
the existence of solutions to the MPSLCC (1.4) and the SAA regularized MPSLCC
(1.9). We show that any sequence of solutions of (1.9) has a cluster point as ε ↓ 0 and
N → ∞, and that any such cluster point is a solution of the MPSLCC (1.4) (a.s.). In
Section 4, we use the pure characteristics demand model to illustrate the MPSLCC
(1.4) and the SAA regularized method.

Throughout the paper, ∥ · ∥ stands for the ℓ2 norm, e denotes the vector whose
elements are all 1, |J | is the cardinality of a set J and u+ denotes the vector whose
components (u+)i = max(0, ui), i = 1, · · · , n.

2. Solution function of the regularized LCP. Let’s now concern ourselves
with the properties of the function sεt generated from the solution of LCP(qt(ξ, x),M

ε).

Lemma 2.1. Problems (1.1) and (1.4) are equivalent.
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Proof. The LCP (1.5) consists exactly of the KKT-conditions for (1.2) with
solution sεt if and only if zεt = (sεt , γ

ε
t ) is a solution of (1.5) for some γε

t ≥ 0.

For simplicity’s sake, in the remainder of this section, we concentrate on the
‘solution’ function zε = (sε, γε) generated by the regularized linear complementarity
problem LCP(qt,M

ε) with qt := (−ut(ξ, x), 1) ∈ IRn+1 for fixed t, ξ and x; in this
section, we drop making reference to these quantities to simplify notations and the
presentation. Our first aim will be to show that for given u, sε(q) and zε(q) are
uniquely determined and even comes with a closed form expression. Note that ui =
−qi, i = 1, · · · , n and qn+1 = 1, and we have

∥(−q)+∥1 = −
∑
qi≤0

qi =
∑
ui≥0

ui = ∥u+∥1.

Lemma 2.2. Given ε > 0, the function zε is uniquely determined by the solution
of the regularized LCP(q,Mε) and is completely described as follows:
Let qk1 ≤ qk2 ≤ · · · ≤ qkn , set

αj = −
∑j

i=1
qki + (j + ε2)qkj − ε, j = 1, . . . , n

and J = {j |αj ≤ 0, j = 1, . . . , n}, J = |J |, σ =

J∑
i=1

qki .

(a) If ∥(−q)+∥1 ≥ ε, the solution (sε, γε) of the LCP(q,Mε) has the form

(2.1) sεkj
=

{
σ−(J+ε2)qkj

+ε

Jε+ε3 if j ∈ J ,

0 if j ̸∈ J ,
γε =

−σ − ε

J + ε2
.

(b) If ∥(−q)+∥1 ≤ ε, the solution takes the form

(2.2) for j = 1, . . . , n, sεkj
=

{
−qkj/ε if qkj < 0,

0 if qkj ≥ 0,
γε = 0.

(c) If ∥(−q)+∥1 = ε, σ = −∥(−q)+∥1 and J = {j
∣∣ qkj ≤ 0, j = 1, . . . , n}, that is,

formulas (2.1) and (2.2) are consistent.

Moreover, in all cases,
∑n

j=1 s
ε
j ≤ 1 + ε∥(−q)+∥1.

Proof. Let zε = (sε, γε), i.e., the solution (vector) of LCP(q,Mε). Without loss
of generality, assume q1 ≤ q2 ≤ · · · ≤ qn, i.e., kj = j.

(a) ∥(−q)+∥1 ≥ ε: We show, first, that for j ∈ J : sεj ≥ 0 and (Mεzε)j + qj =
εsεj + γε + qj = 0. From αj ≤ 0, j ≤ J , qJ − qj ≥ 0, and αJ ≤ 0, we have

(Jε+ ε3)sεj = σ − (J + ε2)qj + ε+ αJ − αJ = (J + ε2)(qJ − qj)− αJ ≥ 0

(J + ε2)(εsεj + γε + qj) = σ − (J + ε2)qj + ε− σ − ε+ (J + ε2)qj = 0.

The next step is to show that (Mεzε)j + qj = γε + qj > 0 when j ̸∈ J . By the
definition of J and J , one has αJ+1 > 0, j ≥ J + 1 and qj ≥ qJ+1. Hence,

(J + ε2)(γε + qj) = −σ − ε+ (J + ε2)qj − αJ+1 + αJ+1(2.3)

= −σ − ε+ (J + ε2)qj +
(
σ + qJ+1 − (J + 1 + ε2)qJ+1 + ε

)
+ αJ+1

= (J + ε2)(qj − qJ+1) + αJ+1 > 0.
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Finally, we show that γε ≥ 0 and (Mεzε)n+1 + 1 = 1 + εγε −
∑n

i=1 s
ε
i = 0. Let

j0 = max{j
∣∣ qj < 0}; such an index is guaranteed to exist since ∥(−q)+∥1 ≥ ε.

Actually, we are going to establish that qj ≤ 0 for all j ∈ J . Assume for contradiction
purposes that qj > 0 for some j ∈ J . Of course, then j > j0 and

αj = −
j0∑
i=1

qi − ε+

j∑
i=j0+1

(qj − qi) + (j0 + ε2)qj

= ∥q+∥1 − ε+

j∑
i=j0+1

(qj − qi)− (j0 + ε2)qj ≥ 0,

which contradicts the definition of J . Hence, qj ≤ 0 for j ∈ J , which together with
∥(−q)+∥1 ≥ ε implies 0 < −σ ≤ ∥(−q)+∥1.

Let’s now show that −σ ≥ ε. Note that qj ≤ 0, j = 1, . . . , J and J ≤ j0. If j0 = J ,
then by definition of j0, one has −σ = ∥(−q)+∥1 ≥ ε. If j0 > J , from qJ+1 < 0 and

αJ+1 = −
∑J

i=1 qi − ε− qJ+1 + qJ+1 + (J + ε2)qJ+1

= −σ − ε+ (J + ε2)qJ+1 ≥ 0,

and, thus, −σ ≥ ε. Moreover,
∑J

i=1 qi = σ yields
∑n

i=1 s
ε
i = (J − εσ)/(J + ε2) and

(Jε+ ε3)
(
1 + εγε −

n∑
i=1

sεi
)
= Jε+ ε3 + ε2(−σ − ε) + ε2σ − Jε = 0.

Hence, the solution has the explicit form (2.1).

(b) ∥(−q)+∥1 ≤ ε: If ∥(−q)+∥1 = 0, then q ≥ 0 and (2.2) holds with zε = 0. If
∥(−q)+∥1 > 0, then j0 ≥ 1. For j ≤ j0, s

ε
j = −qj/ε > 0, γε = 0 and

(Mεzε)j + qj = εsεj + γε + qj = −qj + qj = 0.

For j > j0, one has qj ≥ 0, sεj = 0, γε = 0 and (Mεzε)j + qj = εsεj + γε + qj ≥ 0, and
for j = n+ 1, γε = 0 and

(Mεzε)n+1 + 1 = 1 + εγε −
n∑

i=1

sεi = 1 +
(
−

j0∑
i=1

qi
)
/ε ≥ 0.

(c) ∥(−q)+∥1 = ε: For j > j0,

αj = −
j0∑
i=1

qi − ε+

j∑
i=j0+1

qi + (j + ε2)qj > 0,

and for j ≤ j0, αj = −
∑j

i=1 qi − ε + (j + ε2)qj ≤ 0. Hence σ = −∥(−q)+∥1 and
J = {j

∣∣ qj ≤ 0}. Moreover, in this case

sεj =

{(
σ − (J + ε2)qj + ε)/(Jε+ ε3) = −qj/ε if j ∈ J ,

0 if j ̸∈ J ,
, γε =

−σ − ε

J + ε2
= 0,
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which implies that formulas (2.1) and (2.2) coincide.

Moreover, in case (a),

n∑
i=1

sεi ≤ 1 + (ε/J)∥(−q)+∥1 ≤ 1 + ε∥(−q)+∥1

and
∑n

i=1 s
ε
j ≤ 1 for (b) and (c) which completes the proof.

The following theorem shows that the unique solution zε(q) of the regularized
LCP(q,Mε) is componentwise monotonically convergent to the least norm solution of
the LCP(q,M) with O(ε).

Theorem 2.3. Let zε(q) = (sε(q), γε(q)) be the unique solution of the LCP(q,Mε)
and z(q) = (s(q), γ(q)) be the least norm solution of the LCP(q,M). Then for fixed
q, we have limε↓0 ∥zε(q)− z(q)∥ = 0. Moreover, there are positive constants ε̄, κ1, κ2,
such that for any ε ∈ (0, ε̄),

(2.4) 0 ≤ sε(q)− s(q) ≤ κ1 e and 0 ≤ γ(q)− γε(q) ≤ κ2ε.

Proof. From ⟨e, s(q)⟩ ≤ 1 and s(q) ≥ 0, we know that s(q) is bounded. When
γ(q) > 0 from the complementarity conditions one must have 1− ⟨e, s(q)⟩ = 0 which
implies that there has to be an entry sj(q) > 0 and γ(q)+ qj = 0. Hence, the solution
set SOL(q,M) is bounded.

By [8, Theorem 3.1.8], we know that zε(q) converges to the least norm solution
z(q) of LCP(q,M) as ε ↓ 0 since the matrix M is positive semi-definite.

If ∥(−q)+∥1 = 0, then zε(q) = z(q) = 0 for any ε > 0. Hence (2.4) holds for any
ε > 0.

When ∥(−q)+∥1 > 0, let

(2.5) σ1 = min
1≤j≤n

qj , σ2 = min{0, min
1≤j≤n
qj ̸=σ1

qj} and ε̄ := min{−σ1 + σ2

1− σ2
, 1}.

From ∥(−q)+∥1 > 0, there is ε0 > 0 such that ∥(−q)+∥1 ≥ −σ1 > ε0. Thus, for
any ε ∈ (0, ε̄), ∥(−q)+∥1 ≥ ε and the solution zε(q) has the explicit form (2.1) from
Lemma 2.2 and (−σ1 + σ2)/(1 − σ2) ≤ ε0. Our next step is to show that αj < 0 if
and only if qj = σ1 for ε ∈ (0, ε̄) which implies J =

{
j
∣∣ qj = σ1, j = 1, . . . , n

}
and

σ = Jσ1.

Without loss of generality assume that q1 ≤ q2 ≤ · · · ≤ qn. If qj = σ1, then
αj = ε2σ1 − ε < 0. Conversely, when αj < 0, from the definition of {αj}, one has

(2.6) αj+1 − αj = −qj+1 + (j + 1 + ε2)qj+1 − (j + ε2)qj = (j + ε2)(qj+1 − qj) ≥ 0.

Hence, it suffices to show that αj ≥ 0 for qj ≥ σ2. If ε < 1 ≤ (−σ1 + σ2)/(1 − σ2),
then −σ1 ≥ 1− 2σ2. For qj ≥ σ2, recalling σ2 ≤ 0,

(2.7) αj ≥
j∑

i=1

(σ2 − qi) + ε2σ2 − ε ≥ σ2 − σ1 + ε2σ2 − ε > −σ1 − 1 + 2σ2 ≥ 0.
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If ε < (−σ1 + σ2)/(1− σ2) ≤ 1, then

αj ≥
j∑

i=1

(σ2 − qi) + ε2σ2 − ε > σ2 − σ1 + (
σ2 − σ1

1− σ2
)2σ2 −

σ2 − σ1

1− σ2

=
σ2 − σ1

1− σ2
(1− σ2 +

σ2 − σ1

1− σ2
σ2 − 1) ≥ 0.(2.8)

Hence, αj < 0 if and only if qj = σ1 for any ε ∈ (0, ε̄). By Lemma 2.2, for ε ∈ (0, ε̄),
the solution zε(q) of LCP(q,Mε) has the form

(2.9) sεj(q) =

{
(1− εσ1)/(J + ε2) if j ∈ J ,

0 if j ̸∈ J ,
γε(q) = (−Jσ1 − ε)/(J + ε2).

The least norm solution of the LCP(q,M) is the minimizer of the quadratic program

minz≥0
1
2∥z∥2 subject to

∑
j∈J

zj = 1, zj = 0, j ̸∈ J , zn+1 = γ = −σ1.

This least norm solution has the form (cf. the first order optimality conditions):

(2.10) sj(q) =

{
J−1 if j ∈ J ,

0 if j ̸∈ J ,
γ(q) = −σ1.

From (2.9) and (2.10), we easily see that

0 ≤ sεj(q)− sj(q) ≤ (−σ1ε)/J
2, for j = 1, . . . , n,

and

0 ≤ γ(q)− γε(q) ≤ (1− εσ1)(ε/J) ≤ (1− σ1)(ε/J).

Hence (2.4) holds with κ1 = (−σ1)/J
2 and κ2 = (1− σ1)/J .

Theorem 2.4. For any fixed q, if ∥(−q)+∥1 > 0 then there is ε̄ > 0 such that for
any ε ∈ (0, ε̄), zε is differentiable at q. Moreover, if min1≤i≤n qi = qi1 is unique then
there exists ε̂ > 0 and a neighborhood Nq of q such that for any ε ∈ (0, ε̂), q 7→ zε(q)
is linear on Nq. When zε is differentiable at q, one has

(2.11) ∇zε(q) = −(I −D +DMε)−1D,

where D is a n× n diagonal matrix with diagonal entries

dii =

{
1 if zεi (q) > 0,
0 otherwise.

Proof. ∥(−q)+∥1 > 0 means there is an ε0 > 0 such that ∥(−q)+∥1 ≥ −σ1 > ε0.
Consider ε ∈ (0, ε̄) with ε̄ as defined by (2.5). From (2.9),

zεj (q) > 0, for j ∈ J ∪ {n+ 1}

and from (2.3),

(Mεzε(q))j + qj = γε(q) + qj > 0, for j ̸∈ J .
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Hence the strictly complementarity condition holds at zε(q), that is, there is no j such
that zεj (q) = (Mεzε(q))j + qj = 0. Differentiability of zε at q follows from [7, Lemma
2.1].

If there is a unique entry qi1 = min1≤i≤n qi, then there is a neighborhood Nq of
q such that for any p ∈ Nq, {i |pi = min1≤j≤n pj} = {i |qi = min1≤j≤n qj}. Let

σ̂1 = min
p∈Nq

min
1≤j≤n

pj , σ̂2 = min{0, min
p∈Nq

min
1≤j≤n
pj ̸=σ

pj} and ε̂ = min{−σ̂1 + σ̂2

1− σ̂2
, 1}.

Then for any ε ∈ (0, ε̂), the strictly complementarity condition holds at zε(p) for any
p ∈ Nq. Using [7, Lemma 2.1] again, we find that zε is differentiable at p and the
derivative ∇zε in (2.11). Hence, zε is a linear mapping on Nq.

Remark. For any fixed ε > 0, Mε is positive definite. Hence for any q, the
LCP(q,Mε) has a unique solution zε(q) which defines a globally Lipschitz contin-
uous function zε on IRn+1 [6, 8]. Moreover, by [7, Theorem 2.1], we know that 1/ε
is a Lipschitz constant of the solution function zε. The solution function sε(q) can
be considered as a smoothing function of the indicator function 1(0,∞)(u) for any
q = (−u, 1). To illustrate this, we consider the LCP (1.6) with n = 1. Then, the
(first) sε component of the solution of LCP(q,Mε) is

sε(q) =

 (1 + εu)/(1 + ε2) if u > ε,
u/ε if u ∈ (0, ε],
0 if u ≤ 0.

It is worth noting that for any fixed u

1(0,∞)(u) = limε↓0 s
ε(q) =

{
1 if u > 0,
0 otherwise.

Moreover, the solution zε(q) of the regularized LCP can be used for the set-valued
constraints. In particular, when n = 1,

(2.12) Limu→0,ε↓0 s
ε(q) = [0, 1] and limu↓0,ε↓0 s

ε(q) =

{
1 if ε = o(|u|),
0 if |u| = o(ε).

Continuous approximation functions have been used to approximate the indicator
function in the study of chance constraints [11, 12, 16]

Prob{c(ξ, x) ≤ 0} = E[1(−∞,0)c(ξ, x)] ≤ α,

where c : Ξ × IRν → IR and α ∈ (0, 1]. However, these continuous approximation
functions cannot easily be implemented to the vector-valued constraints case [10, 14],

Prob{cj(ξ, x) = max
1≤i≤n

ci(ξ, x)} = E[1{max1≤i≤n ci(ξ,x)}cj(ξ, x)] = bj , j = 1, . . . , n,

cj : Ξ × IRν → IR and bj ∈ (0, 1], j = 1, . . . , n. The LCP approach and its solution
zε(q) of the regularized LCP has the ability to deal with vector-valued constraints.

3. Convergence analysis of the SAA regularized problem. In this section,
we study the convergence of the SAA regularized method. The objective function of
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all three problems (1.4), (1.8) and (1.9) is f(x) = 1
2 ⟨x,Hx⟩+ ⟨c, x⟩, their feasible sets,

D = {x ∈ X | AtE[St(ξ, x)] ∋ bt, t = 1, . . . , T},
Dε = {x ∈ X | ∥AtE[s

ε
t (ξ, x)]− bt∥ ≤ r(ε), t = 1, . . . , T},

Dε
N = {x ∈ X | ∥At

1

N

∑N

i=1
sεt (ξ

i, x)− bt∥ ≤ r̂(ε,N), t = 1, . . . , T},

and their solution sets,

X∗ = argminD f, Xε = argminDε f, Xε
N = argminDε

N
f.

Bo
ε = { y | ∥y∥ < ε} will always denote an open ball centered at 0 with radius ε (in IRn

or IRν) and Bε the corresponding closed ball.

In Subsection 3.1, we derive the convergence of Xε to X∗ as ε ↓ 0, in Subsection
3.2 we obtain the convergence of Xε

N to Xε for any fixed ε > 0 as N → ∞ and
proceed to deduce the convergence of the solutions of the SAA regularized problems
by showing the convergence of Xε

N to X∗ as ε ↓ 0 and N → ∞.

Denote by d(v, U) = infu∈U ∥v − u∥ the distance from v to a set U ⊆ IRn and
for U, V ⊆ IRn, the excess distance of the set U on V and the Pompeiu-Hausdorff
distance between U and V by

e(V,U) = supv∈V d(v, U) and h(U, V ) = max
(
e(V,U), e(U, V )

)
.

3.1. Problems (1.4) and (1.8). Here, we show the convergence of Xε to X∗ as
ε ↓ 0. For simplicity’s sake, in this section and next one, we drop the index t and set
A = At, S = St and so on. Moreover, we use zε(q) and zε(ξ, x) to denote zε(q(ξ, x))
as well as their components sε and γε.

Remember that the solution set {zε(ξ, x)} = SOL(q(ξ, x),Mε) is a singleton and
the solution set Z0(ξ, x) = SOL(q(ξ, x),M) is convex and bounded for any (ξ, x). By
Theorem 2.3, for every (ξ, x), one has

lim
ε↓0

∥zε(ξ, x)− z̄0(ξ, x)∥ = 0,

where z̄0(ξ, x) is the least-norm solution of the LCP(q(ξ, x),M), implying the point-
wise convergence

(3.1) limε↓0 d(z
ε(ξ, x), Z0(ξ, x)) = 0.

However, from our Remark at the end of the previous section, we already know that
for some particular choices of εk ↓ 0, xk → x, zεk(ξ, xk) may not converge to z̄0, the
least-norm solution of LCP(q(ξ, x),M). Our predominant motivation, however, is to
show that the solutions of the approximating problems converge to the solutions of
the given problem and, in the process, establish the convergence of the feasible sets
Dε and solution sets Xε to D and X∗. To do this, we are naturally led to study
of the graphical convergence of the functions zε as ε ↓ 0 rather than their pointwise
convergence.

In first part of the arguments that follow, ξ remains fixed and thus it will be
convenient to usually ignore the dependence, on ξ, of the functions u, q and the asso-
ciated solutions functions zε = (sε, γε) and the solution set Z0, only the dependence
on the pair (x, ε) is relevant.
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First, we review the definition of graphical convergence [15, Definition 5.32] of
the function zε as ε ↓ 0. Let N = {1, 2 . . . } be the set of natural numbers, N#

∞ =
{all subsequences of N } and N∞ = {all indexes ≥ some k̄}. We use (xk, εk) −→

N

(x, 0) to denote εk ↓ 0 and xk → x when k ∈ N .

Definition 3.1. For the mappings zε : X → IRn+1, the graphical outer limit,
denoted by g-limsupε z

ε : X ⇒ IRn+1 is the mapping having as its graph the set
Limsupε gph z

ε:

g-limsupε z
ε(x) = {z | ∃N ∈ N#

∞, (xk, εk)−→
N

(x, 0), zεk(xk)−→
N

z}.

The graphical inner limit, denoted by g-liminfε z
ε is the mapping having as its graph

the set Liminfε gph z
ε:

g-liminfε z
ε(x) = {z | ∃N ∈ N∞, (xk, εk)−→

N
(x, 0), zεk(xk)−→

N
z}.

If the outer and inner limits coincide, the graphical limit g-limε z
ε exists and, thus,

Z0 = g-limε z
ε if and only if

g-limsupε z
ε ⊆ Z0 ⊆ g-liminf

ε
zε

and one writes zε
g−→ Z0; the mappings zε are said to converge graphically to Z0.

Theorem 3.2. If, given ξ, x 7→ u(ξ, x) is continuous on X then, g-limsupε s
ε ⊆

S0 as well as g-limsupε z
ε ⊂ Z0. If u(ξ, ·) is also surjective, then the functions sε

converge graphically to S0, that is,

(3.2) sε
g−→ S0 as well as zε

g−→ Z0.

Proof. Remember, throughout the proof, ξ ∈ Ξ remains fixed. For a subsequence
N ∈ N#

∞, let (xk, εk)−→
N

(x, 0) with εk ↓ 0, uk = u(ξ, xk), qk = (−uk, 1), zk = zεk(qk)

and suppose zk →
N

z0; for any pair (ξ, xk), the vector zk is uniquely defined, cf. Lemma
2.2. Moreover, for any εk > 0, LCP(qk,Mεk) has a unique solution zk(ξ, xk) =
(sk, γεk) that is also a unique solution of the system of (continuous) equations:

Min [ z, Mεkz + qk ] = 0,

where “Min” has to be understood componentwise. Hence, with Mk = Mεk , one has

0 = limk Min [zk, Mkzk+qk] = Min [limk z
k, limk M

kzk+qk] = Min [z0, Mz0+q(ξ, x)]

which means z0 ∈ Z0 and consequently g-limsupk z
k ⊆ Z0 and, in particular, the

same applies to the first n-entries of the zk and z0, i.e., s0 ∈ S0 ⊇ g-limsupk{sk}.

We now concern ourselves with the second assertion of the lemma. For x̃ ∈ X,
let z(x̃) =

(
s(x̃), γ(x̃)

)
∈ Z0(ξ, x̃). We need to show that z(x̃) ∈ g-liminfε{zε}. The

surjective property of u(ξ, ·) : X → IRn implies that for any qk = (−uk, 1), there is
xk ∈ X such that qk =

(
− u(ξ, xk

)
, 1). Let q̃ = (−u(ξ, x), 1), z̃ = z(q̃) and show that

(3.3) ∃N ∈ N∞, (qk, εk)→N (q̃, 0), zεk(qk) = zk →
N

z̃ = z(q̃).

Let η0 = max1≤i≤n(ui(ξ, x) = −q̃i). To prove (3.3), we examine all three cases:
η0 > 0, η0 = 0 and η0 < 0.
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Case 1. η0 > 0. Without loss of generality, assume

(3.4) q̃1 = · · · = q̃J < q̃i, i = J + 1, . . . , n, and s1(q̃) ≥ . . . ≥ sJ(q̃)

which implies

J∑
i=1

si(q̃) = 1, si(q̃) ≥ 0, i = 1, . . . , J, si(q̃) = 0, i = J + 1, . . . , n,

and γ(q̃) = q̃1. Choose a sequence εk ↓ 0. Then, for some k̃,

(3.5) ∀ k ≥ k̃, J(q̃J+1 − q̃1) + ε2k q̃J+1 − εk > 0 and − q̃1 > εk,

which implies η0 > εk. Let

qki = q̃i − λiεk, with λi =
(
Jsi(q̃)− 1

)
/J, i = 1, . . . , J,

qki = q̃i, i = J + 1, . . . , n.

From (3.4) and qki = q̃i − λiεk, one obtains

qk1 ≤ . . . ≤ qkJ ≤ q̃1 + εkJ
−1 ≤ −η0 + εk < 0.

Note that, since
∑J

i=1 λi = 0,

∥(−qk)+∥1 ≥
J∑

i=1

−qki = −Jq̃1 + ε
J∑

i=1

λi = −Jq̃1 ≥ η0 > εk.

Now, apply Lemma 2.2(a) to obtain the solution zεk(qk) for k ≥ k̃.

Since q̃1 = · · · = q̃J = −η0, from εk < η0,
∑J

i=1 λi = 0 and −J−1 ≤ λJ ≤ 0,

αk
J = ε2k(q̃1 − λJεk)− JλJεk − εk ≤ 0.

Moreover, from (3.5), we obtain

αk
J+1 = J(q̃J+1 − q̃1) + ε2kqJ+1 − εk > 0.

Using αk
1 ≤ . . . ≤ αk

n for k ≥ k̃, yields

σk =

J∑
i=1

qki = Jq̃1 −
J∑

i=1

λiεk = Jq̃1, k ≥ k̃,

and for k ≥ k̃,

sεki (qk) =
Jq̃1 − (J + ε2k)(q̃1 − λiεk) + εk

Jεk + ε3k
=

Jλi + εk(q̃1 − λiεk) + 1

J + ε2k
, i = 1, . . . , J

and

sεki (qk) = 0, i = J + 1, . . . , n.

12



When k → ∞, sεki (qk) → λi + J−1 = si(q̃), for i = 1, . . . , J sεki (qk) → 0, for
i = J + 1, . . . , n, and γεk(qk) = (σk − εk)/(J + ε2k) → q̃1 = γ(q̃) i.e., sεk(qk) → s(q̃)
and zεk(qk) → z(q̃).

Case 2. η0 = 0. Without loss of generality, assume

(3.6) 0 = q̃1 = ... = q̃J < q̃i, i = J + 1, . . . , n, and s1(q̃) ≥ . . . ≥ sJ(q̃)

which implies that∑J

i=1
si(q̃) ≤ 1, si(q̃) ≥ 0, i = 1, . . . , J and si(q̃) = 0, i = J + 1, . . . , n.

Choose εk ↓ 0 and let

qki = −si(q̃)εk, i = 1, . . . , J and qki = q̃i, i = J + 1, . . . , n.

Since
∑J

i=1 si(q̃) ≤ 1, one has
∑J

i=1(−qki ) = εk
∑J

i=1 si(q̃) ≤ εk and qki = q̃i > 0, i =
J + 1, . . . , n. Now, apply Lemma 2.2(b) to obtain the solution

sεki (qk) = (si(q̃)εk)/εk, i = 1, . . . , J and si(q̃) = 0, i = J + 1, . . . , n.

Obviously, when k → ∞, sεki (qk) → si(q̃), i = 1, . . . , n, and γεk = 0, entailing
zεk(qk) → z(q̃).

Case 3. η0 < 0. In this case z(q̃) = zεk(qk) = 0 for qk = q̃ and εk > 0.

Together, cases 1-3 in the second part of the proof, yield Z0 ⊆ g − limsupεz
ε.

Combining the two parts of the proof, yields zε
g−→ Z0 and sε

g−→ S0.

Note that when the set {j |uj(ξ, x) = max1≤i≤n ui(ξ, x))} is a singleton, then both sets
{sε(ξ, x)} and S0(ξ, x) are singletons. In such a case, g-lim supε s

ε(ξ, x) = S0(ξ, x).

Theorem 3.3. Assume u : Ξ × X → IRn is continuous and bounded, then
e(Dε, D) → 0 as ε ↓ 0.

Proof. Let zε : Ξ × X → IRn+1 be the single valued function and Z : Ξ ×
X ⇒ IRn+1 be the set-valued function such that for any (ξ, x), zε(ξ, x) is the unique
solution of LCP(q(ξ, x),Mε) and Z(ξ, x) is the solution set of LCP(q(ξ, x),M). By
Theorem 3.2, g-limsupε z

ε ⊂ Z0.

Let εk ↓ 0 and xk ∈ Dεk . We establish that any cluster point, say x̄, of {xk}, is in
D. From the boundedness of q and Lemma 2.2, we know that sεk(ξ, xk) is bounded.
Hence,

(3.7) lim
εk↓0

E[sεk(ξ, xk)] = E[ lim
εk↓0

sεk(ξ, xk)] ⊆ E[S(ξ, x̄)],

where the equality comes from the Dominated Convergence Theorem and the inclusion
from Theorem 3.2. The sequence {εk} being arbitrary, (3.7) implies

g-limsupε E[sε(ξ, x)] ⊆ E[S(ξ, x)].

From xk ∈ Dεk , xk ∈ X, AE[sεk(ξ, xk)] + Bo
r(εk)

∋ b, X compact and [15, Theorem

5.37], one has x̄ ∈ X and AE[S(ξ, x̄)] ∋ b, i.e., x̄ ∈ D and e(Dε, D) → 0 as ε ↓ 0.

Assumption 1. For any δ > 0, there exists an ε̄ > 0 such that for any ε ∈ [0, ε̄],
Dε ∩ (X∗ + Bδ) ̸= ∅.
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Theorem 3.4. Suppose Assumption 1 holds and q is bounded. Then we have

(3.8) limε↓0 minx∈Dε f(x) = min
x∈D

f(x)

(3.9) Limsup
ε↓0

argmin
x∈Dε

f(x) ⊆ argmin
x∈D

f(x)

Proof. The objective function f is a quadratic convex function and independent
of ε. We need only consider the limiting behavior of the feasible set Dε as ε ↓ 0.

Define a set-valued mapping D : [0, ε̄] ⇒ IRn with D(ε) = Dε and D(0) =
D. Since for every ε ∈ [0, ε̄], Dε and D are closed, D is a closed-valued mapping.
Moreover, by Theorem 3.3, D is outer semicontinuous or, equivalently [15, Theorem
5.7], gphD is closed.

Note that Dε ⊆ X for all ε > 0 and X is compact. Hence, from Assumption 1,
we obtain the assertions (3.8) and (3.9) from [5, Proposition 4.4].

Theorem 3.4 means that under Assumption 1, the optimal value function vε :=
minx∈Dε f(x) is continuous at ε = 0 and the optimal solution set Xε is outer semi-
continuous at ε = 0. Assumption 1 is related to Robinson’s constraint qualification
and often used in perturbation analysis of optimization problem [5]. In the following,
we present a sufficient condition for Assumption 1, and the existence of solutions of
the MPSLCC (1.4), the regularized problem (1.8) and its associated SAA problem
(1.9).

For a fixed feasible solution x̂ of problem (1.4), let’s define

σ1(ξ) := min
1≤j≤n

qj(ξ, x̂), σ2(ξ) := min{0, min
1≤j≤n

qj(ξ,x̂)̸=σ1(ξ)

qj(ξ, x̂)},

and

Ξε := {ξ ∈ Ξ |σ2(ξ)− σ1(ξ) ≥ ε(1 + τ0) or σ1(ξ) ≥ 0},

where τ0 := −minξ∈Ξ{σ1(ξ), 0}. By the continuity of u, the functions σ1, σ2 and
σ2 − σ1 are continuous on Ξ. Note that the measure P (Ξ0) = P (Ξ) and P (Ξε) is
continuous at ε = 0 when the density function is continuous or the support of ξ is
finite, i.e., |Ξ| is finite. Hence there is a continuous function r̃ on the interval [0, ε̄] for
sufficiently small ε̄ > 0 such that

(3.10) P (Ξε) ≥ 1− r̃(ε), with lim
ε↓0

r̃(ε) = 0.

Theorem 3.5. Assume that there exists a feasible solution x̂ of problem (1.4)
such that AE[s(ξ, x̂)] = b and z(ξ, x̂) =

(
s(ξ, x̂), γ(ξ, x̂)

)
is the least norm solution

of the LCP(q(ξ, x̂),M). Then problems (1.4) and (1.8) are solvable with r(ε) ≥
n∥A∥(τ0ε+ 2r̃(ε)), where τ0 = −minξ∈Ξ{σ1(ξ), 0}. Moreover,

(3.11) minx∈D f(x) ≤ lim inf
ε↓0

minx∈Dε f(x).

If the feasible solution x̂ is an optimal solution, then Assumption 1 holds.
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Proof. For any ξ ∈ Ξ, the solution set of the LCP(q(ξ, x̂),M) is bounded. From
Theorem 3.1.8 in [8], the solution zε(ξ, x̂) of the LCP(q(ξ, x̂),Mε) converges to the
least norm solution of LCP(q(ξ, x̂),M) as ε ↓ 0.

To show x̂ ∈ Dε, we first prove that for any ε ∈ (0, 1),

(3.12) 0 ≤ sε(ξ, x̂)− s̄(ξ, x̂) ≤ (τ0ε)e, for ∀ ξ ∈ Ξε.

We prove (3.12) by consider two cases: σ1(ξ) < 0 and σ1(ξ) ≥ 0.

Case 1. σ1(ξ) < 0.

Since σ1(ξ) < 0, by definition of σ1(ξ) and σ2(ξ) above, we know that

ε ≤ σ2(ξ)− σ1(ξ)

1 + τ0
≤ σ2(ξ)− σ1(ξ)

1− σ2(ξ)
, ∀ξ ∈ Ξε.

Let us define

J (ξ) = {j |qj(ξ, x̂) = σ1(ξ), j = 1, . . . , n} and J(ξ) = |J (ξ)|.

Following the proof of Theorem 2.3 (See (2.5) and (2.9)), we can show that the solution
zε(ξ, x̂) of LCP(q(ξ, x̂),Mε) has the following form

(3.13) sεj(ξ, x̂) =

{
1−εσ1(ξ)
J(ξ)+ε2 if j ∈ J (ξ),

0 if j ̸∈ J (ξ),
γε(ξ, x̂) =

−J(ξ)σ1(ξ)− ε

J(ξ) + ε2
.

The least norm solution s̄(ξ, x̂) = argmins∈S(ξ,x̂)∥y∥2 is the first n-components of the
least norm solution of LCP(q(ξ, x̂),Mε), which has the form

s̄j(ξ, x̂) =

{ 1
J(ξ) , if j ∈ J (ξ),

0, if j ̸∈ J (ξ),
γ̄(ξ, x̂) = −σ1(ξ).

Hence, for ξ ∈ Ξε, we derive

0 ≤ sεi (ξ, x̂)− s̄i(ξ, x̂) ≤
1− εσ1(ξ)

J(ξ) + ε2
− 1

J(ξ)
≤ −εσ1(ξ)

J(ξ)
≤ −εσ1(ξ) ≤ τ0ε.

For case 2, it is easy to show that the solution zε(ξ, x̂) of LCP(q(ξ, x̂),Mε) has
the following form

zεj (ξ, x̂) = 0, j = 1, . . . , n+ 1,

and it is just the least norm solution of LCP(q(ξ, x̂),M), which means sεi (ξ, x̂) −
s̄i(ξ, x̂) = 0.

Combining cases 1 and 2, we have (3.12).

Now, for sufficiently small ε, we consider the expected value

|E[sε(ξ, x̂)− s̄(ξ, x̂)]|
= |E[1{ξ∈Ξε}(s

ε(ξ, x̂)− s̄(ξ, x̂))] + E[1{ξ ̸∈Ξε}(s
ε(ξ, x̂)− s̄(ξ, x̂))]|

≤
(
τ0ε+ 2r̃(ε)

)
e,
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where the last inequality uses the explicit form sε(ξ, x̂) in Lemma 2.2, and (3.10) with
0 ≤ sε(ξ, x̂) ≤ 2e, 0 ≤ s̄(ξ, x̂) ≤ e and

|sε(ξ, x̂)− s̄(ξ, x̂)| ≤ max{sε(ξ, x̂), s̄(ξ, x̂)} ≤ 2e.

Hence, we have

∥AE[sε(ξ, x̂)]− b∥ = ∥AE[sε(ξ, x̂)− s̄(ξ, x̂)]∥ ≤ ∥A∥∥e∥(τ0ε+ 2r̃(ε)) ≤ r(ε),

which implies that x̂ ∈ Dε.

Since problems (1.4) and (1.8) have the same objective function that is continuous,
the feasibility of the two problems implies their solvability.

If x̂ ∈ X∗, then Assumption 1 holds from x̂ ∈ Dε.

Remark. The set-valued constraints in (1.2) can also be approximated by a sequence
of equality constraints via regularized quadratic programs with unique solutions for
fixed ε > 0:

maxy⟨y, u⟩+ ε⟨y, y⟩ subject to ⟨e, y⟩ ≤ 1, y ≥ 0.

However, the solution of the KKT-conditions is not unique and the peremptory results
can’t be derived from the ‘regularized’ system

Min [ z, M̂εz + q(ξ, x) ] = 0,

where M̂ε =

(
εI e
−e 0

)
is positive semi-definite and I is n×n identity matrix. The

novel idea in Theorem 3.2 is that we use the well-established theory for monotone LCP
to derive the required properties of the regularized solution of zε and, in particular,
its first n-components sε.

3.2. Problems (1.4) and (1.9). In this subsection, we consider the convergence
of the solution set Xε

N of (1.9) to the solution set X∗ of problem (1.4) as ε ↓ 0 and
N → ∞. First, we consider the convergence of the solution set Xε

N of problem (1.9)
to the solution set Xε of problem (1.8) as N → ∞ for a fixed ε > 0. Next, we use
this convergence result with Theorem 3.4 to derive the convergence of Xε

N to X∗ as
ε ↓ 0 and N → ∞.

Let vε and vεN be the optimal values of problems (1.8) and (1.9).

Assumption 2. There exists a measurable function C : Ξ → (0,+∞) such that
E[C(ξ)2] < ∞ and

∥u(ξ, x)− u(ξ, x̄)∥ ≤ C(ξ)∥x− x̄∥

for all x, x̄ ∈ X and P -almost every ξ ∈ Ξ.

Proposition 3.6. Let r̂(ε,N) := r(ε)+cN−τ , where τ ∈ (0, 1
2 ) and c is a positive

constant. Suppose that the samples are iid and Assumption 2 holds. Moreover, there
is η such that ∥(u(ξ, x))+∥1 ≤ η for x ∈ X, ξ ∈ Ξ. Then there exists an ε̄ > 0 such
that the following statements hold for any ε ∈ (0, ε̄].

(i) For N sufficiently large, Dε ⊂ Dε
N ;
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(ii) For any ∆ > 0 there exists a sufficiently large N∆ such that h(Dε, Dε
N ) ≤ ∆

holds w.p.1 for N ≥ N∆;
(iii) vεN → vε and e(Xε

N , Xε) → 0 w.p.1 as N → ∞.

Proof. (i) Since X is a compact subset of IRν , by the continuity of u(ξ, ·), zε(ξ, ·) is
globally Lipschitz continuous on X for almost every ξ ∈ Ξ. Moreover, by Lemma 2.2,
∥zε(·, ·)∥ ≤ 1+εη. Then by the classical uniform law of large numbers ([17, Proposition

7, Section 6]), we have 1
N

∑N
i=1 s

ε(ξi, x) → E[sε(ξ, x)] uniformly w.p.1 as N → ∞.

By the Remark following Theorem 2.4 and Assumption 2,

∥sε(ξ, x)− sε(ξ, x̄)∥ ≤ 1

ε
∥u(ξ, x)− u(ξ, x̄)∥ ≤ 1

ε
C(ξ)∥x− x̄∥

and E[C(ξ)2] < ∞. Moreover, for all ξ ∈ Ξ, sε(ξ, x) is uniformly bounded. Then
the mean and variance of random variables sε(ξ, x) are finite for all x ∈ X. By [17,
Chapter 6] and the functional central limit theorem [2, Corollary 7.17],∥∥∥∥∥ 1

N

N∑
i=1

sε(ξi, x)− E[sε(ξ, x)]

∥∥∥∥∥ = Op(
1√
N

).

By Assumption 1, Dε ̸= ∅. Then for all x ∈ Dε, there exists sufficiently large N0,
such that, when N ≥ N0,
(3.14)∥∥∥ 1

NA
∑N

i=1 s
ε(ξi, x)− b

∥∥∥ ≤
∥∥∥ 1
NA

∑N
i=1 s

ε(ξi, x)−AE[sε(ξ, x)] +AE[sε(ξ, x)]− b
∥∥∥

≤
∥∥∥ 1
NA

∑N
i=1 s

ε(ξi, x)−AE[sε(ξ, x)]
∥∥∥+ r(ε)

≤ cN−τ + r(ε)
= r̂(ε,N)

w.p.1, which implies that x ∈ Dε
N w.p.1.

(ii) Let ∆ > 0 and

δ(∆) := inf
{x∈X:d(x,Dε)≥∆}

(||AE[sε(ξ, x)]− b|| − r(ε))+.

By the compactness of X and the continuity of sε(ξ, ·), we have δ(∆) > 0.

Let N∆ be sufficiently large such that

sup
x∈X

∥∥∥∥∥ 1

N
A

N∑
i=1

sε(ξi, x)−AE[sε(ξ, x)]

∥∥∥∥∥ ≤ δ(∆)

2

and cN−τ < δ(∆)
2 . For any point x ∈ X with d(x,Dε) ≥ ∆, we have

∥AE[sε(ξ, x)]− b∥ ≥ r(ε) + δ(∆),

which implies

(3.15)

|| 1NA
∑N

i=1 s
ε(ξi, x)− b||

≥ ||AE[sε(ξ, x)]− b|| −
∥∥∥ 1
NA

∑N
i=1 s

ε(ξi, x)−AE[sε(ξ, x)]
∥∥∥

≥ r(ε) + δ(∆)− δ(∆)
2

> r(ε) + cN−τ

= r̂(ε,N).
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This shows that x ̸∈ Dε
N . Hence for any x ∈ Dε

N , d(x,Dε) ≤ ∆, which implies

e(Dε
N , Dε) ≤ ∆.

Combining the above result with Part (i), we have h(Dε, Dε
N ) ≤ ∆ w.p.1 for N ≥ N0.

(iii) We apply [5, Proposition 4.4] to prove this part.

Since problems (1.8) and (1.9) have the same convex quadratic objective function
which is independent of ε and ξ, we only need to consider the limit behavior of the
feasible set Dε

N as N → ∞. Let

Gε(x,N) := ∥A 1

N

N∑
i=1

sε(ξi, x)− b∥ − r(ε)−N−τ .

Since 1
N

∑N
i=1 s

ε(ξi, x) → E[sε(ξ, x)] uniformly on X w.p.1 as N → ∞, Gε(x,N) →
∥AE[sε(ξ, x)] − b∥ − r(ε) as N → ∞ uniformly on X w.p.1 and continuous w.r.t.
x ∈ X. Hence for any x̄ ∈ X,

limN→∞,x→x̄ Gε(x,N) = ∥AE[sε(ξ, x̄)]− b∥ − r(ε),

which implies that the feasible set map Dε
N with respect to N is closed P -a.s.for

sufficiently large N . By part (i) of this proposition, Dε ⊆ X and Dε
N ⊆ X are

nonempty for sufficiently large N . Moreover, from part (ii) of this proposition, we
have h(Dε, Dε

N ) → 0 which implies that for any neighborhood VXε of Xε, there exists
a sufficiently large N0 such that for all N ≥ N0, VXε ∩Dε

N ̸= ∅. Hence all conditions
of [5, Prpposition 4.4] are satisfied, and thus we derive vεN → vε and e(Xε

N , Xε) → 0.

The proof of part (ii) of Proposition 3.6 is motivated by the proof of [18, Lemma
4.2 (i)].

Now, we are ready to present the convergence of Xε
N to X∗ as ε ↓ 0 and N → ∞.

Theorem 3.7. Suppose the conditions of Theorem 3.4 and Proposition 3.6 hold.
If the feasible set D is nonempty, then Xε

N is nonempty and

(3.16) lim
ε↓0

lim
N→∞

e(Xε
N , X∗) = 0 w.p.1.

Proof. Since,

lim
ε↓0

lim
N→∞

e(Xε
N , X∗) ≤ lim

ε↓0
lim

N→∞
e(Xε

N , Xε) + lim
ε↓0

lim
N→∞

e(Xε, X
∗)

= lim
ε↓0

0 + lim
ε↓0

e(Xε, X
∗) w.p.1

= 0 w.p.1,

the assertion now follows directly from Theorem 3.4 and Proposition 3.6.

4. The pure characteristics demand model. One important application of
problem (1.1) is to estimate the parameters of the pure characteristics demand model
proposed by Berry and Pakes [3]. Although the model has several advantages in
describing markets, it faces serious challenges and difficulties in estimating some key
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parameters when relying on the generalized method of moments (GMM). Pang, Su and
Lee [14] reformulated the GMM estimation problem of the pure characteristics demand
model as a computationally tractable quadratic program with linear complementarity
constraints; the reformulated GMM estimation problem can be thought as a special
case of problem (1.1). To illustrate our SAA regularized approach and the convergence
results established in §2 and §3, we consider an example of the pure characteristics
demand model:

• T is the number of markets and n the number of products in each market.
• The utility function of product j in market t is:

(4.1) ut(ξ, x) = ctβ(ξ1, x1, x2)− α(ξ2, x3)pt + x4t,

where cjt ∈ IRK , ct = (c1t, . . . , cnt) ∈ IRn×K , x1t ∈ IRn,

x1 = (xT
11, . . . , x

T
1T ) ∈ IRnT , x2, x3 ∈ IRK , x4 ∈ IR, x = (x1, . . . , x4) ∈ IRν .

Here ξ = (ξ1, ξ2) : Ω → Ξ ⊆ IRℓ represents a consumer (or, more precisely, a
consumer’s behavior), which is described as a random vector and ξ1, ξ2 are
independent and satisfy standard normal distribution as in [14].

β(ξ1, x2, x3) = x2 + x3ξ1 and α(ξ2, x4) = exp(x4ξ2).

For product j in market t, we use cjt ∈ IRK to denote the K observed product
characteristics, pjt ∈ IR denotes the observed price, and (x1t)j ∈ IR denotes
the demand shock or errors which is not available in the data. We assume
that X := {x : x ≤ x ≤ x̄} for given x, x̄ ∈ IRν and ν = 2K + nT + 1.

• Consumer ξ chooses to purchase product j in market t if and only if

ujt(ξ, x) ≥ max
1≤i≤n

{uit(ξ, x), 0}.

• bt = (bjt)
n
j=1 with bjt the observed market share of product j in market t.

The GMM estimation problem is aimed at finding optimal parameters x by minimizing
the model error, ∥x1∥22 subject to the generalized market share equations

E[St(ξ, x)] ∋ bt, t = 1, . . . , T,

which can be expressed as a quadratic program with stochastic equilibrium set-valued
constraints in the following form

(4.2)
minx∈X

1
2 ⟨x1, x1⟩

subject to E[St(ξ, x)] ∋ bt, t = 1, . . . , T,

where St(ξ, x) consists of all the solutions of the linear program:

max
y

{ ⟨y, ut(ξ, x)⟩
∣∣ ⟨e, y⟩ ≤ 1, y ≥ 0 }.

Obviously, the GMM estimation problem (4.2) is a special case of problem (1.4).
We can apply the SAA regularized method to handle the problem. The convergence
results established in §3 are applicable. Specifically, the regularized problem of (4.2)
is:

(4.3)
minx∈X

1
2 ⟨x1, x1⟩

subject to ∥E[sεt (ξ, x)]− bt∥ ≤ r(ε), t = 1, . . . , T.
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Let {(ξi1, ξi2), i = 1, . . . , N} be iid observations of (ξ1, ξ2). The SAA regularized
problem then reads,

(4.4)
minx∈X

1
2 ⟨x1, x1⟩

subject to ∥ 1
N

∑N
i=1 s

ε
t (ξ

i, x)− bt∥ ≤ r̂(ε,N), t = 1, . . . , T,

where
(
sεt (ξ, x), γ

ε
t (ξ, x)

)
is the unique solution of LCP(qt(ξ, x),M

ε):

(4.5) 0 ≤
(

y
γ

)
⊥ Mε

(
y
γ

)
+

(
−ut(ξ, x)

1

)
≥ 0

for some γε
t (ξ, x) ∈ IR. Let us consider a particular case with T = 1, n = 2, K = 1,

ν = 5. For simplicity’s sake, we omit t in what follows. Set b = ( 12 ,
1
2 ), c = (2, 3),

p = (1, 2), τ0 = 1, r(ε) = 2τ0ε, r̂(ε,N) = r(ε)+N− 2
5 , ℓ = 2, ξ1 and ξ2 are independent

and satisfy standard normal distribution. We choose xi = −1, x̄i = 8, i = 1, . . . , 5 and
initial point x0 = (1, 1, 1, 1, 1). It is easy to observe that there is an optimal solution
x∗ = (0, 1, 0, 0, 0) at which the optimal value is 0, since

β(ξ1, x
∗
2, x

∗
3) = x∗

2 + x∗
3ξ1 = 1, α(ξ2, x

∗
4) = exp(x∗

4ξ2) = 1,

and

u(ξ, x∗) = cβ(ξ1, x
∗
2, x

∗
3)− α(ξ2, x

∗
4)p+ x4 = (1, 1),

which implies the solution set of (1.5) is S(ξ, x∗) = {(λ, 1 − λ)
∣∣ 0 ≤ λ ≤ 1} for all

ξ ∈ Ξ. Especially, the constraint E[s̄(ξ, x∗)] = b holds with the least norm solution

z̄(ξ, x∗) =
(
s̄(ξ, x∗), γ(ξ, x∗)

)
= (1/2, 1/2, 1).

Moreover, using this optimal solution x∗ as a feasible solution for defining r̃(ε) in
(3.10), we obtain r̃(ε) = 0 and r(ε) = 2ε in Theorem 3.5. Hence, by Theorem 3.5 and
Proposition 3.6, problems (4.3) and (4.4) are solvable and Assumption 1 holds at x∗.
The conditions of Theorem 3.7 are satisfied which means our convergence results hold
for this problem.

The tests were carried out in MATLAB 8.0 installed on a IBM Notebook PC
with Windows 7 operating system, Intel Core i5 processor. We used the Matlab
solver ”fmincon” to solve problem (4.4) with different values of ε and N , where the
closed form of sε(ξi, x) derived in Lemma 2.2 has been used in our calculations.
We report numerical result for ε = 0.2, 0.1, 0.05 and N = 500, 800, 1100, 1400. For
each combination of ε and N , 35 independent test cases were carried out, each of
which solves the SAA regularized problem and yields an approximating solution xε

N .
Moreover, we use

error(xε
N ) = ∥ 1

N0

N0∑
i=1

s∗(ξi, xε
N )− b∥

to measure the infeasibility of xε
N with a large sample size N0 = 10000 > N , where

z∗(ξ, xε
N ) = (s∗(ξ, xε

N ), γ∗(ξ, xε
N )) is the least norm solution of the LCP (1.5). Table

4.1 presents the means of errors of the approximation solutions and the means of
the optimal values of problem (4.4). The table shows the downward trend of the
errors when the value of ε gets smaller and the sample size N increases and that the
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approximation optimal values are almost 0. In Figures 4.1-4.3, we use ”boxplot” in
Matlab to show the convergence trend of the error when the sample size N increases.
Each box in the figures displays the range of errors of the computed solutions generated
from 35 independent tests, where the central mark is the median and the edges of the
box are the 25th and 75th percentiles.

Table 4.1
The means of errors and optimal values with different ε and sample size

HHHHε
N 500 800 1100 1400

error fval error fval error fval error fval
0.2 0.0418 0.0005 0.0327 0.0000 0.0319 0.0000 0.0273 0.0003
0.1 0.0349 0.0004 0.0291 0.0005 0.0278 0.0002 0.0244 0.0010
0.05 0.0342 0.0012 0.0248 0.0008 0.0255 0.0007 0.0234 0.0007
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Fig. 4.1. error(xε
N ) when ε = 0.2.
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Fig. 4.2. error(xε
N ) when ε = 0.1.

5. Concluding remarks. Mathematical programs with set-valued stochastic
equilibrium constraints (1.1) provide a powerful modeling paradigm for many impor-
tant applications, in particular, in economics. For example, for the estimation of pure
characteristics demand models with pricing. However, existing optimization methods
with the sample average approximation become intractable for solving such problems.
Recently, Pang et al. [14] proposed a mathematical programming with linear comple-
mentarity constraints (MPLCC) approach for the pure characteristics demand model
with a finite number of observations. Their approach provides a promising computa-
tional method to estimate the consumer utility under the following condition:
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Fig. 4.3. error(xε
N ) when ε = 0.05.

Condition 1 In any market t, the optimal choice of each individual consumer is
guaranteed to purchase just one single product in each ξ-environment.

Condition 1 and the use of a corresponding basic solution with a finite num-
ber of observations can be expresses in terms of mathematical program with linear
equilibrium constraints (1.3). This paper is motivated by the MPLCC reformulation
proposed by Pang et al [14]. Our main contributions are as follows.

(i) Remove Condition 1. We believe removing Condition 1 is important for real
applications in economic. Consider just a simple case with one market and two prod-
ucts. If the value of utility function of the consumer for the two products satisfy
u1(ξ, x) = u2(ξ, x) > 0, the probability that the consumer buy the two products
described as a solution s1(ξ, x) and s2(ξ, x) of (1.2) satisfy s1(ξ, x), s2(ξ, x) ≥ 0,
s1(ξ, x) + s2(ξ, x) = 1. Under Condition 1, the consumer should buy just one single
product. Which solution should the consumer choose with probability one? If we
consider s1(ξ, x) and s2(ξ, x) as the probability that the consumer buy the products,
then the answer is most likely s1(ξ, x) = s2(ξ, x) =

1
2 , which is the least norm solu-

tion of (1.5). Using graphical convergence for set-valued mappings [15], we can remove
Condition 1.

(ii) Develop the SAA regularized method. To handle the set-valued mapping in
(1.1), we develop an efficient SAA regularized method using (1.8) and (1.9) which
replaces the set-valued mapping by a single valued function. Problem (1.9) is a math-
ematical program with a convex quadratic objective function and globally Lipschitz
continuous inequality constraints. Moreover, we derive a closed form of the solution of
the regularized LCP(q,Mε), which is useful for numerical computation and theoretical
analysis. We show that a sequence of solutions {xε

N} of the SAA regularized stochastic
MPSLCC (1.9) converges to a solution of problem (1.4) as ε ↓ 0 and N → ∞.
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