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Abstract. In this paper, we propose a discretization scheme for the two-stage stochastic lin-

ear complementarity problem (LCP) where the underlying random data are continuously dis-

tributed. Under some moderate conditions, we derive qualitative and quantitative convergence

for the solutions obtained from solving the discretized two-stage stochastic LCP (SLCP). We ex-

plain how the discretized two-stage SLCP may be solved by the well-known progressive hedging

method (PHM). Moreover, we extend the discussion by considering a two-stage distributionally

robust LCP (DRLCP) with moment constraints and proposing a discretization scheme for the

DRLCP. As an application, we show how the SLCP and DRLCP models can be used to study

equilibrium arising from two-stage duopoly game where each player plans to set up its optimal

capacity at present with anticipated competition for production in future.

Key Words. Two-stage stochastic linear complementarity problem, discrete approximation,

error bound, distributionally robust linear complementarity problem, ex post equilibrium

1 Introduction

Let ξ : Ω → IRl be a random variable defined in the probability space (Ω,F , P ) with support

set Ξ ⊂ IRl and Y be the space of measurable functions defined on Ξ. We consider the following

two-stage stochastic linear complementarity problem: find (x, y(·)) ∈ IRn × Y which solves

(SLCP)

{
0 ≤ x ⊥ Ax+ E[B(ξ)y(ξ)] + q1 ≥ 0,

0 ≤ y(ξ) ⊥M(ξ)y(ξ) +N(ξ)x+ q2(ξ) ≥ 0, for a.e. ξ ∈ Ξ,
(1.1)

where A ∈ IRn×n, q1 ∈ IRn, B(·) : IRl → IRn×m, M(·) : IRl → IRm×m, N(·) : IRl → IRm×n and

q2(·) : IRl → IRm are continuous matrix valued mappings, the mathematical expectation is taken
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componentwise w.r.t. probability distribution of ξ, and abbreviation “a.e.” stands for almost

everywhere. In the case when ξ follows a finite discrete distribution, the problem above reduces

to a deterministic complementarity problem which has been extensively investigated over the

past few decades, see monographs [11, 14]. Note that if we consider (Ξ,B) as a measurable

space equipped with Borel sigma algebra B, then P may be viewed as probability measure

defined on (Ξ,B) induced by the random variable ξ and consequently P is called the probability

distribution of ξ. Throughout the paper, we use terminology probability measure and probability

distribution interchangeably.

In the first stage of SLCP (1.1), one is supposed to find x ∈ IRn here and now before

the random data ξ(ω) is available. At the second stage when x is fixed and a realization of

ξ(ω) = ξ becomes known, y ∈ IRm is sought to satisfy the second stage of SLCP (1.1). The

two-stage model arises naturally from first order optimality conditions of a two-stage stochastic

linear program with recourse (see [4, 30]). It can also be used to characterize equilibrium arising

from a two-stage stochastic game where at the first stage players compete for capacity expansion

before realization of uncertainty and at the second stage they bid for producing goods or services

after production capacity is developed and uncertainty (i.e. market demand) is observed.

The two-stage SLCP (1.1) may be regarded as a special case of two-stage stochastic varia-

tional inequalities (SVI) considered by Chen, Pong and Wets [6] and multi-stage SVI developed

by Rockafellar and Wets [26], which synthesize and extend the well investigated ERM models

[5, 7] and expected value models [15, 17] for one-stage SVI. In a more recent development, Rock-

afellar and Sun [27] apply the well-known PHM to solve multi-stage SVI and SNCP. However,

the application is restricted to the case where the distribution of the underlying uncertainty is

discrete and finite.

In this paper, we discuss discrete approximation of the two-stage SLCP which is partly aimed

to fill out the gap on application of PHM to the continuously distributed SLCP. We are focusing

on a two-stage SLCP so that we may concentrate on the key ideas in our approach and leave

the potential extension to multi-stage and/or non-linear case for future research.

Extending from the two-stage SLCP (1.1), we consider a situation where the true probability

distribution P is unknown but it is possible to use partial information to construct an ambiguity

set P of distributions which contains the true distribution. Consequently, we propose a two-stage

distributionally robust LCP as follows:

(DRLCP)

{
0 ≤ x ⊥ Ax+ EP [B(ξ)y(ξ)] + q1 ≥ 0, ∀P ∈ P,
0 ≤ y(ξ) ⊥M(ξ)y(ξ) +N(ξ)x+ q2(ξ) ≥ 0, for P -a.e. ξ ∈ Ξ, P ∈ P.

(1.2)

The DRLCP requires every solution to satisfy the first stage complementarity condition for all

P ∈ P to mitigate the risk arising from ambiguity of the true distribution. Obviously the new

model is more demanding on its solution than the two-stage SLCP (1.1) and as a result, it might

not have a solution if the ambiguity set is too large. Like the two-stage SLCP (1.1) which stems

from two-stage stochastic linear programming or two-stage stochastic games with continuous

actions, the two-stage DRLCP (1.2) can be linked to distributionally robust optimization and

games. Indeed, the two-stage DRLCP (1.2) may be used to characterize the first order opti-

mality conditions of the so-called ex post optimal solution to a two-stage distributionally robust

optimization problem and the ex post equilibrium of two-stage distributionally robust games.
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The paper has three main contributions.

(i) We provide sufficient conditions for the existence and uniqueness of the solution of the

two-stage SLCP (Proposition 2.1) and propose a discrete approximation scheme for the

problem. We then present some qualitative and quantitative convergence analysis of the

solutions obtained from solving the discretized two-stage SLCP to their true counterparts

(Theorems 3.1 and 3.2). Application of PHM to the discretized problem is outlined (Section

3.3).

(ii) In the absence of complete information on the true probability distribution, we propose

a distributionally robust model for the two-stage SLCP, the model is parallel to the ex

post equilibrium of robust games studied by Aghassi and Bertsimas [2]. We derive a

dual formulation of the DRLCP model and discuss a discretization approach for the latter

(Section 4).

(iii) As an application as well as a motivation, we propose a two-stage distributionally robust

game in a duoploy market where two players need to make strategic decisions on capacity

for future production with anticipation of Nash-Cournot type competition after demand

uncertainty in future is observed. Under some standard conditions, we reformulate the

problem as a two-stage SLCP when the true distribution of the demand uncertainty is

known and a two-stage DRLCP otherwise. We give an academic example to show existence

of a solution to the two-stage DRLCP (Section 5.1).

Throughout the paper, we use the following notation. IRn
+ denotes the non-negative orthant

and IRn
++ the interior of IRn

+. For a vector a ∈ IRn, we write (a)+ for max(0, a), where the

maximum is taken componentwise. For matrices A,B ∈ IRn×n, we write A � B and A � B to

indicate A−B being positive semidefinite and positive definite respectively. Differing from the

convention in semi-definite programming, here A and B are not necessarily symmetric. We use

‖ · ‖ to denote the 2-norm in both vector and matrix spaces and indicate any other norms by a

subscript such as the infinity norm ‖ · ‖∞. Finally, to ease the exposition, we write i ∈ K̄ for

i = 1, · · · ,K.

2 Structure of the two-stage SLCP

Although our main emphasis, later on in this paper, will rest on the case where the second

stage of SLCP (1.1) has a unique solution, we believe that it will be helpful to discuss a precise

meaning of the model in a general setting where the second stage of SLCP (1.1) has multiple

solutions for each fixed x and ξ. Let Y(x, ξ) denote the set of solutions of the second stage of

SLCP (1.1). Then the two-stage SLCP can be written as: find x ∈ IRn and y(·) ∈ Y(x, ξ(·))
which solve

0 ≤ x ⊥ Ax+ E[B(ξ)y(ξ)] + q1 ≥ 0. (2.1)

Here Y(x, ξ(·)) : Ω→ Y is a random set-valued mapping, and y(·) is a measurable selection such

that E[B(ξ)y(ξ)] is finite-valued. In the case when Y(x, ξ) is a singleton for each x ∈ IRn and

ξ ∈ Ξ, Y(x, ξ) = {ȳ(x, ξ)}.
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In what follows, we investigate conditions for the existence and uniqueness of a solution to

(1.1). For this purpose, we make the following technical assumptions.

Assumption 2.1 There exists a positive continuous function κ(ξ) such that E[κ(ξ)] < +∞ and

for almost every ξ,(
zT , uT

)( A B(ξ)

N(ξ) M(ξ)

)(
z

u

)
≥ κ(ξ)(‖z‖2 + ‖u‖2), ∀z ∈ IRn, u ∈ IRm. (2.2)

Let D denote the set of m×m diagonal matrices D with diagonal components Djj ∈ {0, 1},
for j ∈ m̄, and M be an m × m positive definite matrix. Let J denote the power set of

{1, · · · , n} and J ∈J . Let DJ ∈ D with

(DJ)jj =

{
1, if j ∈ J,
0, otherwise.

It is known that I −DJ(I −M) is invertible when M � 0, see for instance [10]. Let

UJ(M) = (I −DJ(I −M))−1DJ .

By permutation if necessary, we assume for the simplicity of exposition that J = {1, 2, · · · |J |},
where |J | denotes the cardinality of set J . Consequently, we know from [10] that

UJ(M) =


0n×n, if J = ∅,(

M−1
J 0

0 0

)
, otherwise,

where MJ is the |J | × |J | sub-matrix of M whose entries of M are indexed by the set J ∈J .

From time to time in the follow-up discussions, we need to look into positive definiteness

of A − B(ξ)UJ(M(ξ))N(ξ) and its inverse. To this end, we state the following intermediate

technical result.

Lemma 2.1 Under Assumption 2.1, the following assertions hold.

(i) zTAz ≥ supξ∈Ξ κ(ξ)‖z‖2 for all z ∈ IRn, and uTJMJ(ξ)uJ ≥ κ(ξ)‖uJ‖2, for all uJ ∈ IR|J |

and J ∈J .

(ii) A−B(ξ)UJ(M(ξ))N(ξ) is well defined and zT (A−B(ξ)UJ(M(ξ))N(ξ))z ≥ κ(ξ)‖z‖2, for

all z ∈ IRn.

(iii) ‖MJ(ξ)−1‖ ≤ 1
κ(ξ) and ‖(A−B(ξ)UJ(M(ξ))N(ξ))−1‖ ≤ 1

κ(ξ) .

Proof. We only prove Part (ii) since Part (i) follows straightforwardly from (2.2) and Part

(iii) follows from Parts (i) and (ii). By setting u = −UJ(M(ξ))N(ξ)z in (2.2), and using

UJ(M(ξ))M(ξ)UJ(M(ξ) = UJ(M(ξ)), we have

zTAz − zTB(ξ)UJ(M(ξ))N(ξ)z ≥ κ(ξ)(‖z‖2 + ‖UJ(M(ξ))N(ξ)z‖2) ≥ κ(ξ)‖z‖2
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for any z ∈ IRn.

We are now ready to state existence of solutions to SLCP (1.1) and the structure of the

second stage solution.

Proposition 2.1 Let Assumption 2.1 hold. For any given x and ξ ∈ Ξ, let D(x, ξ) ∈ D be an

m-dimensional diagonal matrix with

Djj(x, ξ) :=

{
1, if

(
M(ξ)y(ξ) +N(ξ)x+ q2(ξ)

)
j
≤ yj(ξ),

0, otherwise.

Let

W (x, ξ) = [I −D(x, ξ)(I −M(ξ))]−1D(x, ξ) (2.3)

and

J(x, ξ) = {j : (M(ξ)y(ξ) +N(ξ)x+ q2(ξ))j ≤ yj(ξ)}.

Then the following assertions hold.

(i) The two-stage SLCP (1.1) has a unique solution (x∗, y∗(·)) ∈ IRn × Y.

(ii) The solution to the second stage of SLCP (1.1) can be written as

ȳ(x, ξ) = −W (x, ξ)(N(ξ)x+ q2(ξ)) (2.4)

and ȳ(·, ξ) is globally Lipschitz continuous w.r.t x.

(iii) The first equation of SLCP (1.1) can be reformulated as

0 ≤ x ⊥ (A− E[B(ξ)W (x, ξ)N(ξ)])x− E[B(ξ)W (x, ξ)q2(ξ)] + q1 ≥ 0, (2.5)

where

‖(A− E[B(ξ)W (x, ξ)N(ξ)])−1‖ ≤ 1

E[κ(ξ)]
< +∞.

(iv) Let

F (x) := min
(
x, (A− E[B(ξ)W (x, ξ)N(ξ)])x− E[B(ξ)W (x, ξ)q2(ξ)] + q1

)
. (2.6)

Then F is Lipschitz continuous and every matrix Vx in the Clarke generalized Jacobian

∂F (x) (see definition in [12, Section 2.6]) is nonsingular with ‖V −1
x ‖ ≤ d̄ for some constant

d̄ > 0 which is independent of x.

Proof. We only prove Part (i) and Part (iv) as the other parts follow straightforwardly from

[10], Lemma 2.1 and the implicit function theorem [36, Lemma 2.2].

Part (i). For this purpose, we prove monotonicity of the infinite complementarity system

(1.1). Let 〈·, ·〉 denote the scalar product in the Hilbert space of IRn×Y equipped with L2-norm,

that is, for x, z ∈ IRn and y, u ∈ Y,

〈(x, y), (z, u)〉 := xT z +

∫
Ξ
y(ξ)Tu(ξ)P (dξ).
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Under Assumption 2.1, for any (x, y(·)), (z, u(·)) ∈ IRn × Y, we have〈(
A(x− z) + E[B(ξ)(y(ξ)− u(ξ))]

M(ξ)(y(ξ)− u(ξ)) +N(ξ)(x− z)

)
,

(
x− z

y(ξ)− u(ξ)

)〉

= E

( x− z
y(ξ)− u(ξ)

)T (
A B(ξ)

N(ξ) M(ξ)

)(
x− z

y(ξ)− u(ξ)

)
≥ E[κ(ξ)(‖x− z‖2 + ‖y(ξ)− u(ξ)‖2)].

The existence and uniqueness of (x∗, y∗(·)) follow from the monotonicity of problem (1.1), see

[16, Theorem 12.2 and Lemma 12.2].

Part (iv). Let us rewrite F (x) in (2.6) as

F (x) = min(x,Ax− E[B(ξ)ȳ(x, ξ)] + q1),

where ȳ(x, ξ) is defined in (2.4). By [10, Theorem 2.1],

∂xȳ(x, ξ) = conv
{

limz→x∇z ȳ(z, ξ) = −[I −D(z, ξ)(I −M(ξ))]−1D(z, ξ)N(ξ) : ȳ(z, ξ) is nondegenerate
}

⊆ conv{−UJ(M(ξ))N(ξ) : J ∈J },

where “conv” denotes convex hull of a set, ∂xȳ(x, ξ) denotes the Clarke generalized Jacobian

with respect to x and non-degeneration of ȳ(z, ξ) means that {i|(M(ξ)ȳ(z, ξ)+N(ξ)z+q2(ξ))i =

ȳi(z, ξ)} = ∅. To ease the exposition, let ΓJ(ξ) = A−B(ξ)UJ(M(ξ))N(ξ). Then

∂xE[Ax−B(ξ)ȳ(x, ξ) + q1] ⊆ E[conv{ΓJ(ξ) : J ∈J }],

where the expectation is taken in the sense of Aumann [3], and hence

∂F (x) ⊆ {E[I −D +DΥ(ξ)] : Υ(ξ) ∈ conv{ΓJ(ξ)}, J ∈J , D ∈ D}, (2.7)

where D is defined immediately after Assumption 2.1. On the other hand, under Assumption

2.1, ΓJ(ξ) is positive definite for all ξ and it follows by Lemma 2.1 (ii)

zTE[ΓJ(ξ)]z =

n∑
i=1

zi(E[ΓJ(ξ)]z)i ≥ E[κ(ξ)]‖z‖2, ∀z ∈ IRn.

This implies

max
i∈n̄

zi(E[ΓJ(ξ)]z)i ≥
E[κ(ξ)]

n
‖z‖2, ∀z ∈ IRn.

For a fixed z ∈ IRn, let i0 = arg maxi∈n̄ zi(E[ΓJ(ξ)]z)i. Then

E[κ(ξ)]

n
‖z‖2 ≤ zi0(E[ΓJ(ξ)]z)i0 ≤ |zi0 |‖E[ΓJ(ξ)]‖‖z‖ (2.8)

from which we deduce

|zi0 | ≥
E[κ(ξ)]

n‖E[ΓJ(ξ)]‖
‖z‖. (2.9)

Moreover

zi0((I −D)z)i0 + zi0(DE[ΓJ(ξ)]z)i0 =

{
|zi0 |2, if Di0i0 = 0,

zi0(E[ΓJ(ξ)]z)i0 , if Di0i0 = 1.
(2.10)
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Let Θ = min

{(
E[κ(ξ)]

n‖E[ΓJ (ξ)]‖

)2
, E[κ(ξ)]

n

}
. Then we obtain by combining (2.8)-(2.10) that

zi0((I −D)z)i0 + zi0(DE[ΓJ(ξ)]z)i0 ≥ Θ‖z‖2.

Hence for any z ∈ IRn, we have

max
i∈n̄

zi((I −D +DE[ΓJ(ξ)])z)i = max
i∈n̄

zi((I −D)z)i + zi(DE[ΓJ(ξ)]z)i ≥ Θ‖z‖2,

which implies that I −D +DE[ΓJ(ξ)] is a P-matrix1 for any D ∈ D. Let

θ(E[ΓJ(ξ)]) = min
‖z‖∞=1

{
max
i∈n̄

zi(E[ΓJ(ξ)]z)i

}
.

It follows from (2.8) and (2.9) that θ(E[ΓJ(ξ)]) ≥ Θ and by [8, formula (1.6)],

max
D∈D
‖(I −D +DE[ΓJ(ξ)])−1‖∞ ≤

max{1, ‖E[ΓJ(ξ)]‖∞}
θ(E[ΓJ(ξ)])

≤ 1

Θ
max{1, ‖E[ΓJ(ξ)]‖∞}.

Through (2.7), this implies that every matrix in ∂xF (x) is nonsingular and the infinity norm of

its inverse is bounded by max{1, ‖E[ΓJ(ξ)]‖∞}/Θ.

Recall that one of the main objectives of this paper is to develop a discretization scheme

for the two-stage SLCP (1.1) and we will do so in the next section. While it is not necessarily

a prerequisite, we find it is much more convenient, at least from presentational perspective,

to discuss the approach when the support set Ξ is compact. If we made a direct assumption

on the compactness of Ξ, it would exclude a number of practically interesting cases where the

support set is unbounded. In what follows, we try to address the dilemma under some moderate

conditions.

Let ε be a small positive number and Ξε be a compact subset of Ξ. Since B(ξ)UJ(M(ξ))N(ξ)

and B(ξ)UJ(ξ)(M(ξ))q2(ξ) are integrable for all J(ξ) ⊆ {1, · · · , n}, then we can find Ξε ⊂ Ξ such

that∥∥∥∥∥
∫

Ξ\Ξε
B(ξ)UJ(ξ)(M(ξ))N(ξ)P (dξ)

∥∥∥∥∥ ≤ ε and

∥∥∥∥∥
∫

Ξ\Ξε
B(ξ)UJ(ξ)(M(ξ))q2(ξ)P (dξ)

∥∥∥∥∥ ≤ ε.(2.11)

We consider complementarity problem{
0 ≤ x ⊥ Ax+ EΞε [B(ξ)y(ξ)] + q1 ≥ 0,

0 ≤ y(ξ) ⊥M(ξ)y(ξ) +N(ξ)x+ q2(ξ) ≥ 0, for a.e. ξ ∈ Ξε,
(2.12)

where EΞε [H(ξ)] :=
∫
ξ∈Ξε

H(ξ)dξ. Under Assumption 2.1, it follows by Proposition 2.1 that

(2.12) has a unique solution (see [11, 14]). Let us denote the solution by (xε, yε(·)) and substitute

yε(ξ) obtained from the second equation of (2.12) into the first equation, we obtain

0 ≤ x ⊥ (A− EΞε [B(ξ)W (x, ξ)N(ξ)])x− EΞε [B(ξ)W (x, ξ)q2(ξ)] + q1 ≥ 0, (2.13)

where W (x, ξ) is defined as in (2.3).

The following proposition quantifies the difference between xε and the true solution of the

two-stage SLCP (1.1).

1Recall that A ∈ IRn×n is a P-matrix if maxi∈n̄ zi(Az)i > 0 for all nonzero z ∈ IRn.
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Proposition 2.2 Let Assumption 2.1 hold. Then there exists a positive constant ε0 such that

the two-stage SLCP (2.12) has a unique solution xε for all ε ∈ (0, ε0]. Moreover, there exists a

positive constant C such that

‖x∗ − xε‖ ≤ Cε, ∀ε ∈ (0, ε0]. (2.14)

Proof. Note that conditions (2.5) and (2.13) can be rewritten respectively as (2.6) and

Fε(x) := min
(
x, (A− EΞε [B(ξ)W (x, ξ)N(ξ)])x− EΞε [B(ξ)W (x, ξ)q2(ξ)] + q1

)
= 0. (2.15)

By (2.11), we have

‖F (x)− Fε(x)‖ ≤ ‖(E[B(ξ)W (x, ξ)N(ξ)]− EΞε [B(ξ)W (x, ξ)N(ξ)])x‖
+‖E[B(ξ)W (x, ξ)q2(ξ)]− EΞε [B(ξ)W (x, ξ)q2(ξ)]‖

≤ ε(1 + ‖x‖).

Since the solutions of (2.6) - (2.15) lie in the ball B(0, ρ) of IRn, we have

sup
‖x‖≤ρ

‖F (x)− Fε(x)‖ ≤ ε(1 + ρ).

By Lemma 2.1 (ii), A− E[B(ξ)W (x, ξ)N(ξ)] is positive definite and

‖(A− E[B(ξ)W (x, ξ)N(ξ)])−1‖ ≤ 1

κ(ξ)
.

Thus, there exists a positive constant ε0 such that for all ε ∈ (0, ε0], we have

A− EΞε [B(ξ)W (x, ξ)N(ξ)] � 0 and ‖(A− EΞε [B(ξ)W (x, ξ)N(ξ)])−1‖ ≤ 2

κ(ξ)
.

Since ‖EΞε [B(ξ)W (x, ξ)q2(ξ)]‖ is also bounded, there is a positive number α1 such that ‖xε‖ ≤ α1

for all ε ∈ (0, ε0]. This enables us to bound ρ by a positive constant independent of xε.

By Proposition 2.1 (iv), there exists a positive constant α2 such that

‖xε − x∗‖ ≤ α2‖F (xε)− F (x∗)‖ = α2‖F (xε)− Fε(xε)‖ ≤ α2ε(1 + α1).

We obtain the conclusion by setting C = α2(1 + α1).

The proposition says that the solution obtained from solving (2.12) is close to the solution of

(1.1) when ε is set sufficiently small. This means that we can trim off the tail of the probability

distribution P .

3 A discretization scheme

In this section, we move on to discuss discretization approaches for the two-stage SLCP (1.1).

The key challenge is that the second stage of SLCP (1.1) comprises an infinite number of

complementarity problems when ξ is continuously distributed. Our idea here is to divide the

support set Ξ of ξ into small subsets {Ξi} and set yi ≡ y(ξ) over each of the subset Ξi. This

will effectively reduce the infinite number of complementarity problems at the second stage to a

finite number. We then attach a probability to each of the subset and consequently discretize the

probability distribution P and the two-stage SLCP (1.1). Throughout this section, we assume

that Ξ is a compact and convex set.
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3.1 Description of the discretization scheme

Let {ΞKi } be a partition of the support set Ξ, that is, ΞKi is a compact and convex subset of Ξ

such that,
K⋃
i=1

ΞKi = Ξ, intΞKi ∩ intΞKj = ∅, ∀ i 6= j, i, j ∈ K̄,

where intS denotes the interior of S. Note that since Ξ is assumed to be a compact set, each

ΞKi is also a compact set. Let

EΞKi
[H(ξ)] =

1

pKi

∫
ξ∈ΞKi

H(ξ)P (dξ) with pKi = P (ΞKi ) (3.1)

for H(ξ) = M(ξ), N(ξ), B(ξ) and q2(ξ). Let

∆(ΞKi ) = max
ξ1,ξ2∈ΞKi

‖ξ1 − ξ2‖ (3.2)

denote the diameter of ΞKi . We require maxi∈K̄ ∆(ΞKi )→ 0 as K →∞.

Let x ∈ IRn be fixed. For i ∈ K̄, we consider the linear complementarity problem

0 ≤ yi ⊥ EΞKi
[M(ξ)]yi + EΞKi

[N(ξ)]x+ EΞKi
[q2(ξ)] ≥ 0. (3.3)

Under Assumption 2.1, M(ξ) � 0 for all ξ ∈ Ξ and hence EΞKi
[M(ξ)] � 0. This ensures problem

(3.3) has a unique solution. By [10] and Lemma 2.1, we can write the solution of (3.3) as

ȳKi (x) := −WK
i (x)(EΞKi

[N(ξ)]x+ EΞKi
[q2(ξ)]), (3.4)

where

WK
i (x) := [I −DK

i (x)(I − EΞKi
[M(ξ)])]−1DK

i (x),

DK
i (x) ∈ D is an m×m-dimension diagonal matrix with

(DK
i (x))jj :=

{
1, if (EΞKi

[N(ξ)]x+ EΞKi
[M(ξ)]ȳKi (x) + EΞKi

[q2(ξ)])j ≤ (ȳKi (x))j ,

0, otherwise.

Let 1A(a) denote the indicator function with 1A(a) = 1 for a ∈ A and 0 otherwise. Let

ȳK(x, ξ) =

K∑
i=1

ȳKi (x)1ΞKi
(ξ), (3.5)

that is, ȳK(x, ξ) = ȳKi (x), ∀ξ ∈ ΞKi .

We use ȳK(x, ξ) as a piecewise step-like approximation to the true solution ȳ(x, ξ) of the

second stage of SLCP (1.1). Substituting ȳK(x, ξ) into the first stage of SLCP (1.1), we obtain

0 ≤ x ⊥ Ax+ E[B(ξ)ȳK(x, ξ)] + q1 ≥ 0. (3.6)
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Remark 3.1 Problems (3.3)−(3.6) provide a discrete approximation of two-stage SLCP (1.1).

To see this, let pKi := P (ΞKi ). Then we can write (3.3)−(3.6) as{
0 ≤ x ⊥ Ax+

∑K
i=1 p

K
i EΞKi

[B(ξ)]yi + q1 ≥ 0,

0 ≤ yi ⊥ EΞKi
[M(ξ)]yi + EΞKi

[N(ξ)]x+ EΞKi
[q2(ξ)] ≥ 0, i ∈ K̄.

(3.7)

This is a two-stage SLCP with discrete distribution. The discretization scheme should be dis-

tinguished from the well-known sample average approximation scheme where the second stage

solution is restricted only to the sample points each of which is attached with equal probability.

Our approach is more accurate by exploiting the information of problem data in each set ΞKi
albeit at the cost of calculating pKi .

3.2 Qualitative and quantitative convergence analysis

Let (xK ,yK) denote the solution of (3.7) whereby we write yK for (yK1 , · · · ,yKK). Let

yK(ξ) =
K∑
i=1

yKi 1ΞKi
(ξ). (3.8)

We investigate convergence of (xK , yK(·)) to (x∗, y∗(·)), the true solution of the two-stage SLCP

(1.1) as maxk∈K̄ ∆(ΞKi ) goes to zero. At this point, it might be helpful to emphasize the

difference between yK(ξ) and ȳK(x, ξ) defined in (3.5): the latter depends on each fixed x

whereas the former does not depend on x. Using (3.4) and (3.5), we have

ȳK(x, ξ) = −
K∑
i=1

WK
i (x)(EΞKi

[N(ξ)]x+ EΞKi
[q2(ξ)])1ΞKi

(ξ). (3.9)

Substituting the explicit form of ȳK(x, ξ) above into the first equation of (1.1), we obtain

0 ≤ x ⊥

(
A− E

[
B(ξ)

(
K∑
i=1

1ΞKi
(ξ)WK

i (x)EΞKi
[N(ξ)]

)])
x−QK(x) ≥ 0, (3.10)

where

QK(x) := E

[
B(ξ)

(
K∑
i=1

1ΞKi
(ξ)WK

i (x)EΞKi
[q2(ξ)]

)]
− q1.

The following theorem states the convergence of (xK , yK(ξ)) to (x∗, y∗(ξ)) as K →∞.

Theorem 3.1 Under Assumption 2.1, the following assertions hold.

(i) The complementarity problem (3.7) has a unique solution (xK ,yK).

(ii) If, in addition, maxi∈K̄ ∆(ΞKi )→ 0, then {(xK , yK(·))} is bounded on IRn × Y, where the

boundedness of yK(·) is in the sense of the norm topology of L1(Y).

(iii) {xK , yK(·)} converges to the true solution (x∗, y∗(·)) of problem (1.1), where the conver-

gence of {yK(·)} → y∗(·) is in the sense of the norm topology of L2(Y).
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Proof. Part (i). By Assumption 2.1,

(zT , uT )

(
A EΞKi

[B(ξ)]

EΞKi
[N(ξ)] EΞKi

[M(ξ)]

)(
z

u

)
≥ EΞKi

[κ(ξ)](‖z‖2 + ‖u‖2).

Analogous to Proposition 2.1, we can demonstrate that the discretized two-stage SLCP (3.7)

has a unique solution.

Part (ii). By definition, xK is a solution to the first stage of SLCP (3.7) and it is the unique

solution for all K. Moreover

WK
i (xK) = (I −DK

i (xK)(I − EΞKi
[M(ξ)]))−1DK

i (xK),

where DK
i (xK) ∈ D, i ∈ K̄. For any given D̄i ∈ D, let

W̄K
i = (I − D̄i(I − EΞKi

[M(ξ)]))−1D̄i and W̃K
i (ξ) = (I − D̄i(I −M(ξ)))−1D̄i.

Under Assumption 2.1, ‖W̃K
i (ξ)‖ = ‖UJ(M(ξ))‖ ≤ 1

κ(ξ) for some subset J ∈J . Thus ‖W̄K
i ‖ ≤

1
κ(ξ) + 1 for all K. Let

RK = E

[
B(ξ)

(
K∑
i=1

1ΞKi
(ξ)
(
W̄K
i EΞKi

[N(ξ)]− W̃K
i (ξ)N(ξ)

))]
. (3.11)

For D̄i = DK
i (xK), xK satisfies

0 ≤ x ⊥

(
A− E

[
B(ξ)

(
K∑
i=1

1ΞKi
(ξ)W̄K

i N(ξ)

)])
x− Q̄K ≥ 0, (3.12)

where

Q̄K = E

[
B(ξ)

(
K∑
i=1

1ΞKi
(ξ)W̄K

i EΞKi
[q2(ξ)]

)]
− q1.

Moreover, (3.12) can be written as

0 ≤ x ⊥

(
A− E

[
B(ξ)

(
K∑
i=1

1ΞKi
(ξ)W̃K

i (ξ)N(ξ)

)]
+RK

)
x− Q̄K ≥ 0. (3.13)

Note that for any ξ ∈ ΞKi ,

W̄K
i EΞKi

[N(ξ)]− W̃K
i (ξ)N(ξ) = W̄K

i (EΞKi
[N(ξ)]−N(ξ)) +N(ξ)(W̄K

i − W̃K
i ). (3.14)

Since maxi∈K̄ ∆(ΞKi )→ 0, and both M(·) and N(·) are continuous over Ξ, we have

sup
ξ∈ΞKi

‖M(ξ)− EΞKi
[M(ξ)]‖ → 0 and sup

ξ∈ΞKi

‖N(ξ)− EΞKi
[N(ξ)]‖ → 0.

Moreover, under Assumption 2.1, it follows by Lemma 2.1, ‖W̄K
i ‖ ≤ 1

minξ∈Ξ κ(ξ) (note that κ(ξ)

is positive continuous over the compact set Ξ, minξ∈Ξ κ(ξ) > 0). Thus, the first term at the

right hand side of (3.14) goes to zero as K → ∞. Likewise, we can show that the second term
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at the right hand side of (3.14) goes to zero as K →∞. Summarizing the discussions above, we

are able to claim, by the Lebesgue Dominated Convergence Theorem that,

lim
K→∞

E

[
B(ξ)

(
K∑
i=1

1ΞKi
(ξ)W̄K

i (ξ)N(ξ)

)]
= E

[
B(ξ)

(
K∑
i=1

1ΞKi
(ξ)W̃K

i (ξ)N(ξ)

)]

and RK → 0 as K →∞. By Lemma 2.1,

xT

(
A− E

[
B(ξ)

(
K∑
i=1

1ΞKi
(ξ)W̄K

i EΞKi
[N(ξ)]

)])
x ≥ 1

2
E[κ(ξ)]‖x‖2

and ∥∥∥∥∥∥
(
A− E

[
B(ξ)

(
K∑
i=1

1ΞKi
(ξ)W̄K

i EΞKi
[N(ξ)]

)])−1
∥∥∥∥∥∥ ≤ 2

E[κ(ξ)]

for any {D̄i} ⊂ D. This entails∥∥∥∥∥∥
(
A− E

[
B(ξ)

(
K∑
i=1

1ΞKi
(ξ)WK

i (x)EΞKi
[N(ξ)]

)])−1
∥∥∥∥∥∥ ≤ 2

E[κ(ξ)]
(3.15)

for all x ∈ IRn
+. On the other hand, the boundedness of Q̄K implies that ‖QK(x)‖ is uniformly

bounded w.r.t. x. Together with (3.15), we are able to claim the boundedness of {xK}. This

together with integrable boundedness of M(ξ)−1, N(ξ) and q2(ξ), ensures that yK is bounded

and so is yK(·).

Part (iii). Let x̂ be a cluster point of the sequence {xK} and assume without loss of generality

that xK → x̂. For any fixed ξ ∈ Ξ, there exists {iK} such that ξ ∈
⋂
K

ΞKiK . By the implicit

function theorem [36, Lemma 2.2], yK(ξ) converges to ŷ(ξ) which satisfies

0 ≤ ŷ(ξ) ⊥M(ξ)ŷ(ξ) +N(ξ)x̂+ q2(ξ) ≥ 0, for a.e. ξ ∈ Ξ. (3.16)

Moreover, since yK(·) is bounded, by the Lebesgue Dominated Convergence Theorem,

lim
K→∞

E
[
B(ξ)yK(ξ)

]
= E

[
lim
K→∞

B(ξ)yK(ξ)

]
= E[B(ξ)ŷ(ξ)].

Through (3.5) and (3.6), we have

0 ≤ x̂ ⊥ Ax̂+ E[B(ξ)ŷ(ξ)] + q1 ≥ 0. (3.17)

The equation above coincides with the first stage of SLCP (1.1). Since the second stage problem

has a unique solution, (x̂, ŷ(ξ)) coincides with (x∗, y∗(ξ)) a.e. The proof is complete.

In what follows, we take a step further to quantify the discrepancy between (xK , yK(ξ)) and

(x∗, y∗(ξ)) as K → ∞. For this purpose, we require the underlying coefficient matrices and

vectors to be Lipschitz continuous w.r.t. ξ.

Assumption 3.1 M(·), N(·), q2(·) and B(·) are Lipschitz continuous over a compact set con-

taining Ξ with Lipschitz constant L.
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Under Assumptions 3.1, it is easy to show that

‖H(ξ)− EΞKi
[H(ξ)]‖ ≤ L∆(ΞKi ), ∀ξ ∈ ΞKi , (3.18)

for H(ξ) = M(ξ), N(ξ), B(ξ) and q2(ξ).

Theorem 3.2 Under Assumptions 2.1 and 3.1, there exist a positive number γ ≥ 0 and non-

negative integrably bounded functions c(ξ) and h(ξ) such that

‖xK − x∗‖ ≤ γE[‖B(ξ)‖c(ξ)]Lmax
i∈K̄

∆(ΞKi ) (3.19)

and

‖yK(ξ)− y∗(ξ)‖ ≤ h(ξ)Lmax
i∈K̄

∆(ΞKi ), for ∀ξ ∈ Ξ. (3.20)

Proof. We first prove (3.19) and proceed it in two steps.

Step 1. By Theorem 3.1, there exists a compact set X ⊂ IRn which encompasses {xK} and x∗.

For any fixed ξ ∈ Ξ and x ∈ X, we consider the second stage complementarity problem

0 ≤ y ⊥M(ξ)y +N(ξ)x+ q2(ξ) ≥ 0. (3.21)

As we discussed in the previous section, (3.21) has a unique solution y under Assumption 2.1.

Moreover, we can write (3.21) equivalently as

Φ(y, x, ξ) := min(y,M(ξ)y +N(ξ)x+ q2(ξ)) = 0.

Under Assumption 3.1, Φ is locally Lipschitz continuous near (y, x, ξ). By the implicit function

theorem [36, Lemma 2.2], (3.21) has a unique locally Lipschitz continuous function ȳ(x̃, ξ̃) such

that ȳ(x, ξ) = y and Φ(ȳ(x̃, ξ̃), x̃, ξ̃) = 0 for all (x̃, ξ̃) close to (x, ξ). Likewise, we can show that

there is a unique locally Lipschitz continuous ȳKi (x) which satisfies

0 ≤ yi ⊥ EΞKi
[M(ξ)]1ΞKi

(ξ)yi + EΞKi
[N(ξ)]1ΞKi

(ξ)x+ EΞKi
[q2(ξ)]1ΞKi

(ξ) ≥ 0, (3.22)

for ξ ∈ ΞKi , i ∈ K̄. Note that the solution to (3.22) may be represented as in (3.4).

With (3.18), we may regard (3.22) as a perturbation of (3.21). Let η ∈ (0, 1) be a constant

and K sufficiently large such that

EΞKi
[M(ξ)] ∈ {Q|β(ξ)‖M(ξ)−Q‖ ≤ η}, for i ∈ K̄,

where

β(ξ) := max
D∈D
‖(I −D +DM(ξ))−1D‖.

Let α(ξ) = β(ξ)/(1− η). By [9, Theorem 2.8], for ξ ∈ ΞKi ,

‖ȳKi (x)− ȳ(x, ξ)‖ ≤ α2(ξ)‖(−N(ξ)x− q2(ξ))+‖‖EΞKi
[M(ξ)]−M(ξ)‖

+α(ξ)‖EΞKi
[N(ξ)]x−N(ξ)x+ EΞKi

[q2(ξ)]− q2(ξ)‖

≤ L(α2(ξ)(‖N(ξ)‖‖x‖+ ‖q2(ξ)‖) + α(ξ)(‖x‖+ 1))∆(ΞKi )

= Lh1(x, ξ)∆(ΞKi ), (3.23)
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where h1(x, ξ) := α2(ξ)(‖N(ξ)‖‖x‖+ ‖q2(ξ)‖) + α(ξ)(‖x‖+ 1).

Under Assumption 2.1, E[h1(x, ξ)] <∞. The error bound holds for all i ∈ K̄.

Step 2. By substituting ȳ(x, ξ) and ȳKi (x) into the first equation of (1.1) and (3.7) respectively,

we have

0 ≤ x ⊥ Ax+
K∑
i=1

pKi EΞKi
[B(ξ)ȳ(x, ξ)]+q1 ≥ 0 and 0 ≤ x ⊥ Ax+

K∑
i=1

pKi EΞKi
[B(ξ)]ȳKi (x)+q1 ≥ 0.

We write them equivalently as

F (x) := min

{
x,Ax+

K∑
i=1

pKi EΞKi
[B(ξ)ȳ(x, ξ)] + q1

}
= 0

and

FK(x) := min

{
x,Ax+

K∑
i=1

pKi EΞKi
[B(ξ)]ȳKi (x) + q1

}
= 0.

Let X be defined as in Step 1. Since Ξ is compact and ȳ(x, ξ) is continuous over X × Ξ, there

is a positive constant σ such that ‖ȳ(x, ξ)‖ ≤ σ for all (x, ξ) ∈ X × Ξ. Using (3.18), we have

‖F (x)− FK(x)‖ ≤

∥∥∥∥∥
K∑
i=1

pKi EΞKi
[B(ξ)ȳ(x, ξ)]−

K∑
i=1

pKi EΞKi
[B(ξ)]ȳKi (x)

∥∥∥∥∥
≤

K∑
i=1

pKi EΞKi
[‖B(ξ)‖‖ȳ(x, ξ)− ȳKi (x)‖]

≤ Lmax
i∈K̄

∆(ΞKi )

(
K∑
i=1

pKi EΞKi
[‖B(ξ)‖h1(x, ξ)]

)
(by 3.23)

≤ LE[‖B(ξ)‖c(ξ)] max
i∈K̄

∆(ΞKi ),

where

c(ξ) := α2(ξ)(‖N(ξ)‖‖X‖+ ‖q2(ξ)‖) + α(ξ)(‖X‖+ 1)

and ‖X‖ := max{‖x‖ : x ∈ X}. By Proposition 2.1 (iv) and [35, Lemma 2.2],

‖xK − x∗‖ ≤ γ sup
x∈X
‖F (x)− FK(x)‖ ≤ LγE[‖B(ξ)‖c(ξ)] max

i∈K̄
∆(ΞKi )

for any positive number γ ≥ 1
E[κ(ξ)] . This completes the proof of (3.19).

Next we prove (3.20). Using the established error bound (3.19) for the x-component of the

SLCP solutions, we can again use [9, Theorem 2.8] for the y-component of the solutions,

‖yK(ξ)− y∗(ξ)‖ = ‖ȳK(xK , ξ)− ȳ(x∗, ξ)‖
≤ α2(ξ)‖(−N(ξ)x∗ − q2(ξ))+‖‖EΞKi

[M(ξ)]−M(ξ)‖
+α(ξ)‖EΞKi

[N(ξ)]xK −N(ξ)x∗ + EΞKi
[q2(ξ)]− q2(ξ)‖

≤ Lh(ξ) max
i∈{1,··· ,K}

∆(ΞKi ),

(3.24)

where h(ξ) := α2(ξ)(‖N(ξ)‖C0 + ‖q2(ξ)‖) + α(ξ)C0 with C0 = (‖X‖ + 1) + γE[‖B(ξ)‖‖c(ξ)‖].
It is easy to see that E[h(ξ)] < +∞ under Assumption 2.1.

14



It might be helpful to discuss how the partition of Ξ is made. If ξ is a single random variable,

then we may divide the interval of the support set Ξ evenly into K subintervals. However, if ξ

is a random vector which has several components, then K might have to be very large in order

to reduce the size of ΞKi . In that case, it would be sensible to use Monte Carlo sampling to

generate a set of points ΞK := {ξ1, · · · , ξK} and use them to develop the Voronoi partition of

Ξ, that is,

ΞKi ⊆
{
ξ ∈ Ξ : ‖ξ − ξi‖ = min

k∈K̄
‖ξ − ξk‖

}
for i ∈ K̄, (3.25)

are pairwise disjoint subsets forming a partition of Ξ.

3.3 Progressive hedging method (PHM)

The discretized two-stage SLCP (3.7) is a deterministic LCP which may be solved by any existing

solvers. However, when K is large, it might be more efficient to solve (3.7) with the well known

PHM [25] which exploits the two-stage structure. Note that PHM is an iterative approach which

solves finite scenario multi-stage stochastic programming problems at each scenario and then

average them to get a feasible solution at each iterate. The main advantage of the approach is

that the scenario based solutions can be obtained in parallel computation. Recently, Rockafellar

and Sun [27] extend the method to finite scenario multi-stage stochastic variational inequalities.

Here we describe how to apply PHM to solve (3.7).

Let ΞK = {ΞK1 , · · · ,ΞKK} and ΩK
i = ξ−1(ΞKi ) for i ∈ K̄. Let Ω̃ = {ΩK

1 , · · · ,ΩK
K} and B̃ the

sigma algebra over Ω̃. Let P̃ be a probability measure over the measurable space {Ω̃, B̃} and U :

Ω̃→ 2ΞK be a random variable (set-valued mapping indeed) with P̃ (U = ΞKi ) := pKi , where pKi
is defined as in (3.1). By slightly abusing the notation, we also regard P̃ as a probability measure

over {ΞK ,BK}, where BK is Borel sigma algebra over ΞK , with P (ΞKi ) = pKi for i ∈ K̄. Let

(x(·), y(·)) be a measurable mapping from {ΞK ,BK} to IRm+n, where x(U) =
∑K

i=1 xi1ΞKi
(U)

and y(U) =
∑K

i=1 yi1ΞKi
(U). The linear space L consisting of all such mappings z(·) from ΞK to

IRn+m is given with the expectational inner product. Let Z denote the space of all measurable

functions defined as such. Define the bilinear product

〈(x(·), y(·)), (z(·), u(·))〉 = EP̃ [(x(U), y(U))T (z(U), u(U))] =
K∑
i=1

pKi (xTi zi + yTi ui),

where xi, zi ∈ IRn and yi, ui ∈ IRm. Let N be the space of all measurable functions of form

(x, y(U)), where x is independent of U . Then we may view N as a subspace of Z where the

x-component is made deterministic (scenario free). Let

M = N⊥ = {w(·) = (w1(·), w2(·)) ∈ Z |〈(x, y), (w1, w2)〉 = 0, ∀(x, y(·)) ∈ N}.

Then w(·) ∈ M implies that 〈x,w1〉 = EP̃ [xTw1(U)] = 0 and EP̃ [y(U)Tw2(U)] = 0 for all

(x, y(·)) ∈ N and therefore EP̃ [w1(U)] = 0, w2i = 0, i ∈ K̄. In what follows, we describe PHM

for solving (3.7) as follows.

For i ∈ K̄, let B̃(ΞKi ) = EΞKi
[B(ξ)], M̃(ΞKi ) = EΞKi

[M(ξ)], Ñ(ΞKi ) = EΞKi
[N(ξ)] and
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q̃2(ΞKi ) = EΞKi
[q2(ξ)]. Then the discrete two-stage SLCP (3.7) can be reformulated as:{

0 ≤ x ⊥ Ax+ EP̃ [B̃(U)y(U)] + q1 ≥ 0,

0 ≤ y(U) ⊥ M̃(U)y(U) + Ñ(U)x+ q̃2(U) ≥ 0, U ∈ ΞK .
(3.26)

Algorithm 3.1 (PHM) Given initial points (x0, y0) ∈ N and w0 ∈M with x0(U) =
∑N

i=1 x
0
i1ΞKi

(U),

y0(U) =
∑N

i=1 y
0
i 1ΞKi

(U) and w0(U) =
∑N

i=1w
0
i 1ΞKi

(U), i ∈ K̄. Let r > 0 fixed and ν = 0.

Step 1. For i ∈ K̄, solve the LCP{
0 ≤ xi ⊥ Axi + B̃(ΞKi )yi + q1 + wν1i + r(xi − xνi ) ≥ 0,

0 ≤ yi ⊥ M̃(ΞKi )yi + Ñ(ΞKi )xi + q̃2(ΞKi ) + r(yi − yνi ) ≥ 0,
(3.27)

and obtain a solution (x̂νi , ŷ
ν
i ), i ∈ K̄.

Step 2. For i ∈ K̄, let

x̄ν+1 =
K∑
i=1

pix̂
ν
i , xν+1

i = x̄ν+1, yν+1
i = ŷνi , wν+1

1i = wν1i + r(x̂νi − xν+1
i ).

Set ν = ν + 1, go to Step 1.

Step 1 solves the SLCP per scenario and Step 2 corrects the x-component by averaging

the obtained scenario based solutions. The w̃1 components serve as auxiliary variables which

correspond to multipliers in PHM [25].

4 Distributionally robust formulation of two-stage SLCP

In this section, we revisit the two-stage SLCP (1.1) by considering a situation where the true

probability distribution P is unknown but it is possible to use partial information such as

empirical data, computer simulation or subjective judgements to construct an ambiguity set of

distributions which contains the true distribution with certain confidence. In such circumstances,

it might be sensible to consider a robust solution to the two-stage DRLCP (1.2). In the case

that P encompasses all probability measures in the support set of ξ, i.e., P(Ξ), the first stage

DRLPC (1.2) reduces to

0 ≤ x ⊥ Ax+B(ξ)y(ξ) + q1 ≥ 0, ∀ξ ∈ Ξ. (4.1)

The system might not have a solution and consequently one may consider the ERM model by

replacing the complementarity system with

min
x,y(·)

EP [‖min(x,Ax+B(ξ)y(ξ) + q1)‖2],

where P is any continuous distribution with support set Ξ, see [5]. Our focus here is that P is

only a subset of P(Ξ). We make a blanket assumption that the two-stage DRLCP (1.2) has a
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solution and discuss computational schemes for solving the problem. To this end, we write the

first stage of (1.2) equivalently as
−x ≤ 0,

−Ax− EP [B(ξ)y(ξ)]− q1 ≤ 0, ∀P ∈ P,
xT (Ax+ EP [B(ξ)y(ξ)] + q1) ≤ 0, ∀P ∈ P.

(4.2)

It is easy to verify that the system of inequalities above can be equivalently written as
−x ≤ 0,

maxP∈P [−Ax− EP [B(ξ)y(ξ)]− q1]i ≤ 0, for i ∈ n̄,
maxP∈P x

T (Ax+ EP [B(ξ)y(ξ)] + q1) = 0,

(4.3)

where we write [a]i for the i-th component of vector a. Observe that under the first and the

second equations of (4.3), the third equation of (4.3) is equivalent to

n∑
i=1

[x]i max
P∈P

[Ax+ EP [B(ξ)y(ξ)] + q1]i ≤ 0. (4.4)

To see the equivalence, we note that (4.4) implies the third equation of (4.3). Conversely, by

(4.2), for every i ∈ n̄,

[x]i[Ax+ EP [B(ξ)y(ξ)] + q1]i ≤ 0, ∀P ∈ P,

which implies (4.4). Thus system (4.3) can be written as
−x ≤ 0,

max
P∈P

[−Ax− EP [B(ξ)y(ξ)]− q1]i ≤ 0, for i ∈ n̄,
n∑
i=1

[x]i max
P∈P

[Ax+ EP [B(ξ)y(ξ)] + q1]i ≤ 0.

(4.5)

Note that if P is a convex combination of a finite number of known distributions, then the

maximum in P is achieved at the vertices of P and consequently, the problem above reduces to

the two-stage SLCP (1.1).

In what follows, we consider the case when P is constructed through moment conditions:

P :=

{
P ∈P :

EP [ψj(ξ)] = bj for j = 1, · · · , s
EP [ψj(ξ)] ≤ bj for j = s+ 1, · · · , t

}
,

where all ψi are Lipschitz continuous function of ξ with Lipschitz constants L defined in Assump-

tion 3.1. Our purpose is to get rid of the maximum operations w.r.t. P in (4.5) when P has the

specific structure. To this end, we need to assume as in the previous sections that the second

stage of DRLCP (1.2) defines a unique solution ȳ(x, ξ) for each fixed x and ξ. Substituting

ȳ(x, ξ) to the second equation of (4.5), we obtain

max
P∈P

[−Ax− EP [B(ξ)ȳ(x, ξ)]− q1]i ≤ 0, for i ∈ n̄.

We also need to consider

max
P∈P

[Ax+ EP [B(ξ)ȳ(x, ξ)] + q1]i, for i ∈ n̄
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in the third equation of (4.5). To ease the exposition, we consider

max
P∈P

EP [fi(x, ξ)], for i ∈ n̄, (4.6)

where fi(x, ξ) represents the i-th component of −Ax − B(ξ)ȳ(x, ξ) − q1 when i ≤ n and the

(i− n)-th component of Ax+B(ξ)ȳ(x, ξ) + q1 when i > n. Define the Lagrange function

Li(x,Λi, P ) :=

∫
Ξ
fi(x, ξ)P (dξ) + λ0

(
1−

∫
Ξ
P (dξ)

)
+

t∑
j=1

λij

(
bj −

∫
Ξ
ψj(ξ)P (dξ)

)
, (4.7)

and

Λ̄i := {λi = (λi0, λ
i
1, · · · , λit)T : λij ≥ 0, for j = s+ 1, · · · , t}, i ∈ n̄.

The Lagrange dual of problem (4.6) can be written as

min
λi∈Λ̄i

max
P∈M

Li(x, λ
i, P ), (4.8)

where M denotes the set of all positive measures over Ξ. Conditions for strong duality can be

easily established. For instance, we can consider the following Slater type condition

(1, 0s, 0t−s) ∈ int{(〈P, 1〉, 〈P,ψE〉, 〈P,ψI〉) +K1 : P ∈M+}, (4.9)

where K1 := {0} × {0s} × IRt−s
+ and 0s denotes the zero vector in IRs, ψE = (ψ1, · · · , ψs) and

ψI = (ψs+1, · · · , ψt). The following proposition comes straightforwardly from Xu, Liu and Sun

[34, Proposition 2.1].

Proposition 4.1 The following assertions hold.

(i) Condition (4.9) is equivalent to

(µE , µI) ∈ int{(〈P,ψE〉, 〈P,ψI〉) +K2 : P ∈P(Ξ)}, (4.10)

where K2 := {0s} × IRt−s
+ .

(ii) Condition (4.10) is fulfilled if

µE ∈ int {〈P,ψE(ξ)〉 : P ∈P(Ξ)} (4.11)

and there exists PE ∈P(Ξ) with 〈P,ψE(ξ)〉 = µE such that

0s−t ∈ int {〈PE , ψI(ξ)〉 − µI − IRs−t
− }. (4.12)

In the case when s = t, i.e., there is no inequality constraint, condition (4.11) coincides

with condition (4.10). Likewise, when s = 0, i.e., there is no equality constraint, (4.13)

reduces to existence of P ∈P(Ξ) such that

0t ∈ int {〈P,ψI(ξ)〉 − µI − IRt
−}, (4.13)

which coincides with (4.10).
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(iii) Condition (4.11) holds naturally in the case when

{〈P,ψE(ξ)〉 : P ∈P(Ξ)} = IRs (4.14)

whereas condition (4.13) is fulfilled if there exists PE ∈ P(Ξ) with 〈P,ψE(ξ)〉 = µE such

that

〈PE , ψI(ξ)〉 − µI < 0. (4.15)

Throughout this section, we make a blanket assumption that the strong duality holds.

We now return to discuss (4.8). Through standard analysis of Lagrange duality (see i.e.

discussions at page 308 of [30]), we have

max
P∈M

Li(x, λ
i, P ) =

t∑
j=1

λijbj + max
ξ∈Ξ

fi(x, ξ)− t∑
j=1

λijψj(ξ)

 . (4.16)

Consequently, (4.5) can be written as
−x ≤ 0, Λ1,Λ2 ∈ Λ̄,

[−Ax−B(ξ)y(ξ)− q1]i −Λ1(ψ(ξ)− b) ≤ 0, ∀i ∈ n̄, ξ ∈ Ξ,

xT [(Ax+B(ξ)y(ξ) + q1)−Λ2(ψ(ξ)− b)] ≤ 0, ∀ξ ∈ Ξ,

0 ≤ y(ξ) ⊥M(ξ)y(ξ) +N(ξ)x+ q2(ξ) ≥ 0, ∀ξ ∈ Ξ,

(4.17)

where Λ̄ := {Λ = (λ1, · · · , λn)T ∈ IRn×t : −λj ≤ 0, for j = s+ 1, · · · , t}.

We consider the discrete approximation of (4.17). As what we did for the two-stage SLCP

in Section 3, our first step is to develop a discretize approximation of the infinite inequality

system. At this point, it might be helpful to point out the difference between the two-stage

SLCP and (4.17): the former depends on the true probability distribution of ξ whereas the

latter is independent of the probability distribution and it is entirely determined by the support

set Ξ. This motivates us to adopt a slightly different discretization approach by using Monte

Carlo sampling.

Let {ξi}Ki=1 be i.i.d samples of ξ generated by any probability distribution with support set

Ξ. We consider the following discretization scheme for (4.17):
−x ≤ 0,Λ1,Λ2 ∈ Λ̄,(
−Ax−B(ξi)yi − q1

)
−Λ1(ψ(ξi)− b) ≤ 0, i ∈ K̄,

xT
[
Ax+B(ξi)yi + q1 −Λ2(ψ(ξi)− b)

]
≤ 0, i ∈ K̄,

0 ≤ yi ⊥M(ξi)yi +N(ξi)x+ q2(ξi) ≥ 0, i ∈ K̄.

(4.18)

Here yi is determined by the second stage LCP at sampled point ξi. This is in contrast to (3.3)

where yi is determined by the average value of the second stage problem data over set ΞKi . The

underlying reason is that the first stage inequality system (the first three inequalities of (4.18))

here does not involve any probability distribution. Of course, (4.18) depends on the iid samples

and hence the probability distribution which generates them. We should also point out that

problem (4.18) is a dual formulation of (1.2) with the ambiguity

PK :=

{
P ∈P(ΞK) :

∑K
i=1 ψj(ξ

i) = bj for j = 1, · · · , s∑K
i=1 ψj(ξ

i) ≤ bj for j = s+ 1, · · · , t

}
,
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where ΞK := {ξ1, · · · , ξK}.

Problem (4.18) comprises Km complementarity problems and K(2n + 1) inequalities with

(1 + 2t)n + Km variables. It is easy to see that a solution to the true problem (4.17) is also a

solution to the discretized problem (4.18). In what follows, we analyze convergence of the latter

as K →∞.

Theorem 4.1 Let {(xK ,ΛK
1 ,Λ

K
2 ,y

K)} be a sequence of solutions of (4.18) with different size

of samples. Assume: (a) Ξ is a compact set, (b) Assumption 3.1 holds, and (c) the iid samples

ξ1, · · · , ξK are generated by randomizing ξ and attaching to it with a continuous probability

distribution P over Ξ such that

P (‖ξ − ξ0‖ ≤ δ) > Cδν

for any fixed point ξ0 ∈ Ξ and δ ∈ (0, δ0), where C, ν and δ0 are some positive constants. Then

every cluster point of the sequence {(xK ,ΛK
1 ,Λ

K
2 )} is the solution of (1.2) w.p.1.

Proof. By taking a subsequence if necessary, we assume for the simplicity of notation that

{(xK ,ΛK
1 ,Λ

K
2 )} converges to (x̂, Λ̂1, Λ̂2). This means that there exists a positive number ρ such

that ‖(xK ,ΛK
1 ,Λ

K
2 )‖ ≤ ρ for all K. Let ΞK1 , · · · ,ΞKK be the Voronoi partition of Ξ centred at

ξ1, · · · , ξK . Thus for every ξ ∈ Ξ, there exists a Voronoi cell ΞiK centred at ξiK such that ξ ∈ ΞKi .

Moreover, under condition (c), we can easily use [34, Lemma 3.1] to show that maxj∈K̄ ∆K
j → 0

at exponential rate as K →∞. See [18, Proposition 8].

On the other hand, under condition (b), we can show, following a similar analysis to Step 1

in the proof of Theorem 3.2 , that there exists a positive constant C such that

‖ȳ(x, ξiK )− ȳ(x, ξ)‖ ≤ CL∆(ΞKi ). (4.19)

Let

G(x,Λ1,Λ2, ξ) =

(
−Ax−B(ξ)ȳ(x, ξ)− q1 −Λ1(ψ(ξ)− b)
xT (Ax+B(ξ)ȳ(x, ξ) + q1 −Λ2(ψ(ξ)− b))

)
,

Fj(x,Λ1,Λ2) = max
ξ∈Ξ

Gj(x,Λ1,Λ2, ξ),

and

FKj (x,Λ1,Λ2) = max
i∈K̄

Gj(x,Λ1,Λ2, ξ
i), for j ∈ n+ 1.

Then we can write the first three equations in (4.17) equivalently as
Λ1,Λ2 ∈ Λ̄,

x ≥ 0,

Fj(x,Λ1,Λ2) ≤ 0, for j ∈ n+ 1,

(4.20)

and 
Λ1,Λ2 ∈ Λ̄,

x ≥ 0,

FKj (x,Λ1,Λ2) ≤ 0, for j ∈ n+ 1.

(4.21)
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Let

GK(x,Λ1,Λ2, ξ) =

K∑
i=1

1ΞKi
(ξ)G(x,Λ1,Λ2, ξ

i).

Then FKj (x,Λ1,Λ2) = maxξ∈ΞG
K
j (x,Λ1,Λ2, ξ). Under Assumption 3.1, for any (x,Λ1,Λ2)

such that ‖(x,Λ1,Λ2)‖ ≤ ρ, we have the boundedness of ȳ(x, ξ) and then there exists positive

constant C2 such that

max
i∈n+1

|Fi(x,Λ1,Λ2)− FKi (x,Λ1,Λ2)|

≤ max
i∈n+1

max
ξ∈Ξ
|Gi(x,Λ1,Λ2, ξ)−GKi (x,Λ1,Λ2, ξ)|

≤ max
i∈K̄,k=1,2

max
ξ∈ΞKi

(ρ+ 1)‖B(ξ)ȳ(x, ξ) + Λkψ(ξ)−B(ξk)ȳ(x, ξi)−Λkψ(ξi)‖

≤ (ρ+ 1)LC2∆(ΞKi ).

This shows

lim
K→∞

sup
‖(x,Λ1,Λ2)‖≤ρ

max
k∈n+1

|Fk(x,Λ1,Λ2)− FKk (x,Λ1,Λ2)| = 0, w.p.1.

By [32, Lemma 4.2 (i)], any cluster point of the sequence of solutions {(xK ,ΛK
1 ,Λ

K
2 )} obtained

from solving system (4.21) is a solution of (4.20) almost surely.

5 Two-stage distributionally robust game

We consider a duopoly market2 where two firms compete to supply a homogeneous product (or

service) noncooperatively in future. Neither of the firms has an existing capacity and thus must

make a decision at the present time on their capacity for future supply of quantities in order to

allow themselves enough time to build the necessary facilities.

The market demand in future is characterized by a random inverse demand function p(q, ξ(ω)),

where p(q, ξ(ω)) is the market price, q is the total supply to the market, and ξ : Ω → IR is a

continuous random variable. Specifically, for each realization of the random variable ξ : Ω→ IR,

we obtain a different inverse demand function p(q, ξ(ω)). The uncertainty in the inverse demand

function is then characterized by the distribution of the random variable ξ.

Firm i’s cost function for building up capacity xi is Ci(xi) and the cost of producing (sup-

plying) a quantity of yi in future is Hi(yi, ξ), i = 1, 2. Assuming each firm aims to maximize

the expected profit, we can then develop a mathematical model for their decision making: for

i = 1, 2, find (x∗i , y
∗
i (·)) such that it solves the following two-stage stochastic programming

problem

max
xi,yi(·)

EP [p(yi(ξ) + y∗−i(ξ), ξ)yi(ξ)−Hi(yi(ξ), ξ)]− Ci(xi)

s.t. 0 ≤ yi(ξ) ≤ xi,
(5.1)

where the mathematical expectation is taken w.r.t. the distribution of ξ and by convention

we write y−i for decision variable of the firm(s) other than i. This is a closed loop two-stage

2The model can be easily extended to an oligopoly, we consider a duopoly for simplicity of exposition so that

we can concentrate on the main ideas.
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stochastic Nash-Cournot game where each player (firm) needs to make a decision on capacity

before realization of uncertainty anticipating competition in future (second stage). At this point,

we refer readers to Wongrin et al. [31] for a deterministic model with application in electricity

markets, and a more sophisticated two-stage stochastic model by Luna, Sagastizábal and Solodov

[20] where each player is risk-averse and all players share an identical constraint in the second

stage. Similar models can also be found in Ralph and Smeers [22] for stochastic endogenous

equilibrium in asset pricing. Here we concentrate on reformulation of problem (5.1) as a two-

stage SLCP under some moderate conditions and investigate the latter under this particular

context.

Let us now consider a situation where each player does not have complete information on

the true probability distribution P . However, each player may use available partial informa-

tion to construct an ambiguity set of probability distributions, denoted respectively by P1,P2.

Assuming both players base their decision on the worst probability distribution, then we may

consider a distributionally robust game: for i = 1, 2, find (x∗i , y
∗
i (·)) such that

(x∗i , y
∗
i (·)) ∈ arg max

xi,yi(·)
min
Pi∈Pi

EPi [p(yi(ξ) + y∗−i(ξ), ξ)yi(ξ)−Hi(yi(ξ), ξ)]− Ci(xi)

s.t. 0 ≤ yi(ξ) ≤ xi.
(5.2)

To see the structure of (5.2) clearly, we write down the optimal decision making problems at

the second stage game after the market demand is observed by both firms, that is, for i = 1, 2,

find y∗i such that

y∗i (ξ) ∈ arg max
yi

p(yi + y∗−i, ξ)yi −Hi(yi, ξ)

s.t. 0 ≤ yi ≤ xi,
(5.3)

where xi is fixed. To analyse (5.3), we need to make some assumption on the cost functions

Hi(yi, ξ) and the inverse demand function p(q, ξ).

Assumption 5.1 For i = 1, 2, Hi(yi, ξ) is twice continuously differentiable, H ′i(yi, ξ) ≥ 0 and

H ′′i (yi, ξ) ≥ 0 for yi ≥ 0.

This assumption is standard. It requires that the production cost function of each firm be convex

and sufficiently smooth, see [33] and references therein.

Assumption 5.2 The inverse demand function p(q, ξ) satisfies the following conditions.

(i) p(q, ξ) is twice continuously differentiable in q and p′q(q, ξ) < 0 for q ≥ 0 and ξ ∈ Ξ.

(ii) p′q(q, ξ) + qp′′qq(q, ξ) ≤ 0, for q ≥ 0 and ξ ∈ Ξ.

This assumption is similar to an assumption used by Sherali, Soyster and Murphy [29] and De

Wolf and Smeers [13]. Consider a monopoly market with an extraneous supply c̄ ≥ 0. If the

monopoly’s output is q, then its revenue at demand scenario ε(ω) = ξ is q(p(q + c̄, ξ)). The

marginal revenue is p(q + c̄, ξ) + qp′q(q + c̄, ξ). The rate of change of this marginal revenue with
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respect to the increase in the extraneous supply c̄ is p′q(q+ c̄, ξ) + qp′′qq(q+ c̄, ξ). Assumption 5.2

(ii) implies that this rate is not positive when c̄ = 0 for any ξ ∈ Ξ. In other words, any extraneous

supply will potentially reduce the monopoly’s marginal revenue in any demand scenario. See

[29] for a similar explanation for a deterministic leader-followers’ market. The following result

is established by Xu [33].

Proposition 5.1 Under Assumption 5.2, the following assertions hold.

(i) For fixed c̄ ≥ 0,

p′q(q + c̄, ξ) + qp′′qq(q + c̄, ξ) ≤ 0, for q ≥ 0, ξ ∈ Ξ. (5.4)

(ii) qp(q + c̄, ξ) is strictly concave in q for q ≥ 0, ξ ∈ Ξ.

By Proposition 5.1, we know that problem (5.3) has a unique optimization solution (we are

short of claiming unique equilibrium at this point) for each i. Moreover, we can write down the

Karush-Kuhn-Tucker (KKT) conditions for (5.3) as follows:

0 ≤

(
yi
µi

)
⊥

(
−p(yi + y−i, ξ)− yip′q(yi + y−i, ξ) +H ′i(yi, ξ) + µi

xi − yi

)
≥ 0, (5.5)

where µi, i = 1, 2, are Lagrange multipliers of constraints yi(ξ) ≤ xi, i = 1, 2. Moreover, by

Rosen [28, Theorem 1], the second stage Nash-Cournot game has an equilibrium which means

the second stage complementarity problem (5.5) has a solution. The solution depends on x1, x2

and ξ, we denote it by ȳ(x, ξ) and write x for (x1, x2).

With the second stage equilibrium ȳ(x, ξ), we are ready to write down the first stage decision

making problem for player i:

max
xi,yi(·)

min
Pi∈Pi

EPi [vi(x, ξ)]− Ci(xi)

s.t. xi ≥ 0,
(5.6)

where

vi(x, ξ) := p(ȳi(x, ξ) + ȳ−i(x, ξ), ξ)ȳi(x, ξ)−Hi(ȳi(x, ξ), ξ).

A 4-tuple (x∗1, x
∗
2, y
∗
1(·), y∗2(·)) with (y∗1(·), y∗2(·)) = (ȳ1(x∗, ·), ȳ2(x∗, ·)) is called a two-stage dis-

tributionally robust equilibrium if (x∗i , x
∗
−i) solves (5.6). Following Agassi and Bertsimas [2], we

may introduce so-called ex post equilibrium (x∗i , x
∗
−i) which satisfies

x∗i ∈ arg maxEPi [vi(xi, x
∗
−i, ξ)]− Ci(xi), ∀Pi ∈ Pi, i = 1, 2. (5.7)

It is easy to prove that any ex post equilibrium is a distributionally robust equilibrium. Assuming

that Ci(xi) is continuously differentiable, we may write down the first order optimality condition

of (5.7):

0 ∈ EPi [∂xivi(x, ξ)]− C ′i(xi) +N[0,∞)(xi), ∀Pi ∈ Pi, i = 1, 2, (5.8)
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where N[0,∞)(xi) denotes the normal cone of interval [0,+∞) at xi and ∂vi denotes the Clarke

subdifferential of vi with respect to xi. Note that under Assumption 5.2, the second stage

problem (5.3) has a unique solution and the set of Lagrange multipliers defined by the KKT

system (5.5) is a singleton, it follows by Ralph and Xu [23, Lemma 5.2] that v(x, ξ) is continuously

differentiable w.r.t. xi for xi > 0 and

∇xivi(x, ξ) =
L(yi(ξ), λi(ξ), µi(ξ), xi)

dxi
= µi(ξ),

where

L(yi(ξ), λi(ξ), µi(ξ), xi) := p(y1(ξ) + y2(ξ), ξ)yi(ξ)−Hi(yi(ξ), ξ) + λi(ξ)yi(ξ)− µi(ξ)(yi(ξ)− xi).

Consequently, we can rewrite (5.8) as

0 ≤ xi ⊥ EPi [µi(ξ)]− C ′i(xi) ≥ 0, ∀Pi ∈ Pi, i = 1, 2. (5.9)

Let

gi(yi, y−i, ξ) = −p(yi + y−i, ξ)− yip′q(yi + y−i, ξ) +H ′i(yi, ξ), for i = 1, 2.

Note that in the case when xi = 0, yi(ξ) ≡ 0, we have

∂xivi(x, ξ) = {µi(ξ) : µi(ξ) ≥ (−gi(0, 0, ξ))+,∀ξ ∈ Ξ and EPi [µi(ξ)] ≥ C ′i(xi), ∀Pi ∈ Pi}.

Summarizing the discussions above, we can derive the following two-stage ex post complemen-

tarity problem
0 ≤ xi ⊥ EPi [µi(ξ)]− C ′i(xi) ≥ 0, ∀Pi ∈ Pi, i = 1, 2,

0 ≤

(
yi(ξ)

µi(ξ)

)
⊥

(
gi(yi(ξ), y−i(ξ), ξ) + µi(ξ)

xi − yi(ξ)

)
≥ 0, for Pi-a.e. ξ ∈ Ξ, i = 1, 2.

(5.10)

5.1 An example

To explain how to reformulate a two-stage duopoly game as a two-stage ex post complementarity

problem (5.10), we consider a simple example where p(q, ξ) = a(ξ1)− b(ξ1)q + ξ2,

Ci(xi) = αi + βixi −
1

2
γix

2
i and Hi(yi, ξ1) = si(ξ1) + ζi(ξ1)yi +

1

2
ηi(ξ1)y2

i for i = 1, 2,

where ξ = (ξ1, ξ2)T is a random vector with support set Ξ := [−1, 1]× [−1, 1], ξ1, ξ2 are indepen-

dent, a(ξ1), b(ξ1), si(ξ1), ζi(ξ1) and ηi(ξ1) map from [−1, 1] to IR++, and αi, βi, ζi, ηi, and γi are

positive constants. The cost functions Ci(xi), i = 1, 2, are concave which means the marginal

cost for capacity set-up decreases for both players as capacity increases. We assume that the

ratio βi/γi is large enough so that the marginal capital cost does not become negative within

any possible capacity that the two players may install. To ease the exposition, let

A =

(
γ1 0

0 γ2

)
, B =

(
0 0 1 0

0 0 0 1

)
, N = BT ,

Π(ξ1) =

(
2b(ξ1) + η1(ξ1) b(ξ1)

b(ξ1) 2b(ξ1) + η2(ξ1)

)
and M(ξ1) =

(
Π(ξ1) I2

−I2 0

)
.
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We can write (5.10) in the following matrix-vector form:

0 ≤
(
x1
x2

)
⊥ A

(
x1
x2

)
+ EP

[
B
(
y1(ξ), y2(ξ), µ1(ξ), µ2(ξ)

)T ]− (β1
β2

)
≥ 0, ∀P ∈ P,

0 ≤


y1(ξ)

y2(ξ)

µ1(ξ)

µ2(ξ)

 ⊥M(ξ1)


y1(ξ)

y2(ξ)

µ1(ξ)

µ2(ξ)

+N

(
x1
x2

)
−


a(ξ1) + ξ2 − ζ1(ξ1)

a(ξ1) + ξ2 − ζ2(ξ1)

0

0

 ≥ 0, ∀ξ ∈ Ξ.
(5.11)

Note that matrix M(ξ1) is positive semidefinite and nonsingular for all ξ ∈ Ξ.

5.1.1 Stochastic version

In the case when Pi reduces to a singleton, that is, the true probability distribution, the two-stage

distributionally robust game (5.2) collapses to two-stage stochastic game (5.1) and consequently

(5.11) can be written as a two-stage SLCP,

0 ≤
(
x1
x2

)
⊥ A

(
x1
x2

)
+ E

[
B
(
y1(ξ), y2(ξ), µ1(ξ), µ2(ξ)

)T ]− (β1
β2

)
≥ 0,

0 ≤


y1(ξ)

y2(ξ)

µ1(ξ)

µ2(ξ)

 ⊥M(ξ1)


y1(ξ)

y2(ξ)

µ1(ξ)

µ2(ξ)

+N

(
x1
x2

)
−


a(ξ1) + ξ2 − ζ1(ξ1)

a(ξ1) + ξ2 − ζ2(ξ1)

0

0

 ≥ 0,∀ξ ∈ Ξ.
(5.12)

By [28, Theorem 2], the second stage game (5.3) has a unique equilibrium at each scenario

ξ ∈ Ξ, which means that the (y1(ξ), y2(ξ))-components of the solutions to the second stage

complementarity problem is unique for each ξ. The Lagrange multiplies µi(ξ), i = 1, 2 are also

unique when x1, x2 > 0.

5.1.2 DRLCP version

In this subsection, we consider the case that the true probability distribution is unknown and a

distributionally robust game described as in (5.2) is played with the ambiguity set being defined

through moment conditions P := {P ∈P : EP [ξ] = 0} .

For the simplicity of analysis, we assume that both players use the same ambiguity set, that

is P1 = P2 = P. Moreover, we set β1 = β2 = β and ζ1(ξ1) = ζ2(ξ1) = 1 in (5.11). Observe that

(5.11) may have a trivial solution with x1 = x2 = 0, y1(ξ) = y2(ξ) = 0 for all ξ ∈ Ξ and

µi(ξ) ≥ (a(ξ1) + ξ2 − 1)+, ∀ξ ∈ Ξ and EP [µi(ξ)] ≥ β, ∀P ∈ P, for i = 1, 2.

In what follows, we concentrate on non-trivial solutions with both x1 and x2 being positive.

We endeavour to obtain an analytical solution to (5.11). For this purpose, we simply assume

that a, b, si are deterministic positive numbers and ηi(ξ1) = η̄i + ξ1, where η̄i ≥ 1.
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By (4.17), the dual formulation of (5.11) can be written as

x1, x2 ≥ 0,[
−A

(
x1
x2

)
−B

(
y1(ξ), y2(ξ), µ1(ξ), µ2(ξ)

)T
+

(
β

β

)
−Λ1

(
ξ1
ξ2

)]
≤ 0, ∀ξ ∈ Ξ,(

x1
x2

)T [
A

(
x1
x2

)
+B

(
y1(ξ), y2(ξ), µ1(ξ), µ2(ξ)

)T − (β
β

)
−Λ2

(
ξ1
ξ2

)]
≤ 0, ∀ξ ∈ Ξ,

0 ≤


y1(ξ)

y2(ξ)

µ1(ξ)

µ2(ξ)

 ⊥M(ξ1)


y1(ξ)

y2(ξ)

µ1(ξ)

µ2(ξ)

+N

(
x1
x2

)
−


a+ ξ2 − 1

a+ ξ2 − 1

0

0

 ≥ 0,∀ξ ∈ Ξ,

(5.13)

where Λi =

(
λi11 λi12

λi21 λi22

)
∈ IR2×2. Since Ξ is a compact set and the underlying functions are

continuous, problems (5.11) and (5.13) are equivalent in that there is no dual gap in deriv-

ing the Lagrange dual of maximization with respect to P , see [30, page 208]. Let ỹ(ξ) =

(ỹ1(ξ), ỹ2(ξ))T = Π(ξ1)−1

(
a+ ξ2 − 1

a+ ξ2 − 1

)
. Note that Π(ξ1)−1 is positive definite and diagonally

dominant, therefore ỹ(ξ) > 0 when a + ξ2 − 1 > 0. The following example proposes a way to

choose (a, b, η̄1, η̄2, γ1, γ2, β) such that (5.13) has a solution.

Example 5.1 Choose (a, b, η̄1, η̄2, γ1, γ2, β) with a > 2 such that z = Π̂−1

(
a− β − 1

a− β − 1

)
satisfies

0 < zi ≤ infξ∈Ξ ỹi(ξ), for i = 1, 2, where

Π̂ :=

(
2b+ η̄1 − γ1 b

b 2b+ η̄2 − γ2

)
.

Then we can show that problem (5.13) has a solution (x1, x2, y1(x1, ·), y2(x2, ·), µ1(x, ·), µ2(x, ·),Λ)

with xi = yi(zi, ξ) = zi,

µi(z, ξ) = a+ξ2−1−(2b+ η̄i+ξ1)zi−bz−i and Λ1 = −Λ2 =

(
λ11 λ12

λ21 λ22

)
=

(
z1 −1

z2 −1

)
(5.14)

for all ξ1, ξ2 ∈ Ξ and i = 1, 2.

To see this, we consider second stage complementarity problem of (5.13) (forth equation of

(5.13)). It is not difficult to verify that when xi ≤ ỹi(ξ), for all ξ ∈ Ξ and i = 1, 2, the forth

equation of (5.13) has a solution yi(xi, ξ) = xi, for i = 1, 2 with(
µ1(x, ξ)

µ2(x, ξ)

)
= −Π(ξ1)

(
x1

x2

)
+

(
a+ ξ2 − 1

a+ ξ2 − 1

)
= Π(ξ1)(ỹ(ξ)− x)

=

(
a+ ξ2 − 1− (2b+ η̄i + ξ1)x1 − bx2

a+ ξ2 − 1− (2b+ η̄i + ξ1)x1 − bx2

)
≥ 0, ∀ξ ∈ Ξ.

In what follows, we show that (z1, z2, y1(z1, ξ), y2(z2, ξ), µ1(z, ξ), µ2(z, ξ)) satisfies the first equa-

tion of (5.13) with Λ1 = −Λ2 =

(
z1 −1

z2 −1

)
. With the explicit formulation of µi(x, ξ) from the
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second stage of (5.13), the first three equations in (5.13) can be rewritten as
x1, x2 ≥ 0,[
−
(
γ1 − (2b+ η̄1 + ξ1) −b

−b γ2 − (2b+ η̄2 + ξ1)

)(
x1
x2

)
−
(
a+ ξ2 − β − 1

a+ ξ2 − β − 1

)
−Λ1

(
ξ1
ξ2

)]
≤ 0(

x1
x2

)T [(
γ1 − (2b+ η̄1 + ξ1) −b

−b γ2 − (2b+ η̄2 + ξ1)

)(
x1
x2

)
+

(
a+ ξ2 − β − 1

a+ ξ2 − β − 1

)
−Λ2

(
ξ1
ξ2

)]
≤ 0

(5.15)

for all ξ ∈ Ξ. When x1, x2 > 0, we can obtain a solution to (5.15) by solving
Π̂

(
x1

x2

)
=

(
a− β − 1

a− β − 1

)
,

ξ2 − x1ξ1 + λ11ξ1 + λ12ξ2 = 0, ∀ξ ∈ Ξ,

ξ2 − x2ξ1 + λ21ξ1 + λ22ξ2 = 0, ∀ξ ∈ Ξ,

(5.16)

whereby from the first equation we have x = Π̂−1

(
a− β − 1

a− β − 1

)
= z and λi1 = zi, λi2 = −1 for

i = 1, 2 for the second equation.

It is worth noting that it is easy to choose (a, b, η̄1, η̄2, γ1, γ2, β) such that 0 < zi ≤ infξ∈Ξ ỹi(ξ),

for i = 1, 2. For example, when η̄i ≥ 1, i = 1, 2, we have(
infξ∈Ξ ỹ1(ξ)

infξ∈Ξ ỹ2(ξ)

)
= Π(1)−1

(
a− 2

a− 2

)
=

1

det(Π(1))

(
2b+ η̄2 + 1 −b
−b 2b+ η̄1 + 1

)(
a− 2

a− 2

)

=
1

det(Π(1))

(
(b+ η̄2 + 1)(a− 2)

(b+ η̄1 + 1)(a− 2)

)

and

z =
1

det(Π̂)

(
2b+ η̄2 − γ2 −b

−b 2b+ η̄1 − γ1

)(
a− β − 1

a− β − 1

)
=

1

det(Π̂)

(
(b+ η̄2 − γ2)(a− β − 1)

(b+ η̄1 − γ1)(a− β − 1)

)
.

Moreover, when
(a− 2)(η̄i + 1 + b)

(a− β − 1)(η̄i + b− γi)
≥ det(Π(1))

det(Π̂)
, for i = 1, 2, (5.17)

we have zi ≤ infξ∈Ξ ỹi(ξ), i = 1, 2.

5.1.3 Numerical Tests

We now move on to verify the discretization scheme discussed in Section 4 for (5.13). To this

end, we set particular values for the underlying parameters in the table below:

Parameters α1 β1 γ1 s1 ζ1 η̄1 a α2 β2 γ2 s2 ζ2 η̄2 b

Values 3 5 1 2 1 1 10 3 5 0.5 2 1 2 5

Let ΞK := {ξ1, · · · , ξK} be i.i.d. samples of ξ, where ξ = (ξ1, ξ2), ξi follow truncated normal

distribution over [−1, 1] which is constructed from normal distribution with mean 0 and standard

deviation σ independently, i = 1, 2. We carry out numerical experiments with different values
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of σ. With the specified parameter values, condition (5.17) is satisfied and consequently all

conditions in Example 5.1 are fulfilled. This means we are able to obtain a solution of (5.13)

with x1 = y1(ξ) = 0.2844, x2 = y2(ξ) = 0.2222 and

µ1(ξ) = 4.7111 + ξ2 − 0.2844ξ1, and µ2(ξ) = 4.8889 + ξ2 − 0.2222ξ1, ∀ξ ∈ Ξ.

Let us now apply the discrete scheme to (5.13). The solution of the discretized problem is

xK1 = (yKj )1 = 0.2844, xK2 = (yKj )2 = 0.2222 and

µK1 (ξj) = 4.7111 + ξj2 − 0.2844ξj1, and µK2 (ξj) = 4.8889 + ξj2 − 0.2222ξj1, for j ∈ K̄.

Since xK = x and yK(ξ) = y(ξ) for all ξ ∈ Ξ, where yK(ξ) =
∑K

j=1 yKj 1ΞKj
(ξ), ΞKj is defined

by the Voronoi partition in (3.25). We only need to investigate the error of µK(ξj), for j ∈ K̄.

Define the errors of two components of µK obtained from the discretized problem by

errorKi = E[|µi(ξ)− µ̄Ki (ξ)|], where µ̄K(ξ) =
K∑
j=1

µK(ξj)1ΞKj
(ξ), for i = 1, 2,

and the mathematical expectation is taken with respect to the distribution of ξ (truncated

normal distribution).

Note that it is not easy to calculate errorKi directly. Therefore we propose to use sample

average approximation method to estimate the quantity, that is, generate iid samples ξ̂1, · · · , ξ̂N
with sample size N = 5000, and calculate

errorKi ≈ errorKiN =
1

N

N∑
k=1

|µi(ξ̂k)− µ̄Ki (ξ̂k)|, for i = 1, 2.

Here we are using notation ξ̂k to distinguish the samples from those in ΞK . We carried out

tests with sample sizes K = 5, 10, 20, 40, 60, 100 and the standard deviation σ = 0.1, 0.5, 1, 10

of the normal distribution. For each fixed K and σ, we generate K samples ΞK , calculate the

errorKiN 100 times and average them. Figures 1-2 depict the decreasing tendency of errorKiN as

K increases and σ decreases.
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Figure 1: error of µK1
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Figure 2: error of µK2
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[16] N. Hadjisavvas, S. Komlósi and S. Schaible, Handbook of Generalized Convexity and Generalized

Monotonicity, Springer, Boston (2005)

[17] H. Jiang and H. Xu, Stochastic approximation approaches to the stochastic variational inequality

problem, IEEE Trans. Autom. Control, 53, 1462-1475 (2008)

[18] Y. Liu, A. Pichler and H. Xu, Discrete approximation and quantification in distributionally robust

optimization, submitted to Math. Oper. Res., (2017)

[19] Y. Liu, H. Xu, S. Yang and J. Zhang, Distributionally robust equilibrium for continuous games:

Nash and stackelberg models, submitted to Eur. J. Oper. Res. (2017)

[20] J.P. Luna, C. Sagastizbal and M. Solodov, An approximation scheme for a class of risk-averse

stochastic equilibrium problems, Math. Program., 157, 451-481 (2016)

[21] G. Ch. Pflug and A. Pichler. Multistage Stochastic Optimization, Springer Series in Operations

Research and Financial Engineering, Springer, New York (2014)

29



[22] D. Ralph and Y. Smeers, Pricing risk under risk measures: an introduction

to stochastic-endogenous equilibria, Social Science Research Network (2011) URL:

https://papers.ssrn.com/sol3/papers.cfm?abstract id=1903897

[23] D. Ralph and H. Xu, Convergence of stationary points of sample average two stage stochastic

programs: a generalized equation approach, Math. Oper. Res., 36, 568-592 (2011)

[24] R.T. Rockafellar, Convex Analysis, Princeton University Press, Princeton (1970)

[25] R.T. Rockafellar and R. J-B Wets, Scenarios and policy aggregation in optimization under uncer-

tainty, Math. Oper. Res. 16, 119-147 (1991)

[26] R.T. Rockafellar and R. J-B Wets, Stochastic variational inequalities: single-stage to multistage, to

appear in Math. Program. (2017)

[27] R.T. Rockafellar and J. Sun, Solving monotone stochastic variational inequalities and complemen-

tarity problems by progressive hedging, manuscript (2017)

[28] J.B. Rosen, Existence and uniqueness of equilibrium points for concave N -person games, Economet-

rica, 33, 520–534 (1965)

[29] H.D. Sherali, A. L. Soyster and F.H. Murphy, Stackelberg-Nash-Cournot equilibria: characterizations

and computations, Oper. Res., 31, 253-276 (1983)
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