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Abstract. In this paper, we propose a hybrid Gauss-Newton structured BFGS method with a
new update formula and a new switch criterion for the iterative matrix to solve nonlinear least
squares problems. We approximate the second term in the Hessian by a positive definite BFGS
matrix. Under suitable conditions, global convergence of the proposed method with a back-
tracking line search is established. Moreover, the proposed method automatically reduces to the
Gauss-Newton method for zero residual problems and the structured BFGS method for nonzero
residual problems in a neighborhood of an accumulation point. Locally quadratic convergence
rate for zero residual problems and locally superlinear convergence rate for nonzero residual prob-
lems are obtained for the proposed method. Some numerical results are given to compare the
proposed method with some existing methods.
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1 Introduction

This paper is devoted to solving the following nonlinear least squares problems

min f(x) =
1
2

m∑

i=1

r2
i (x) =

1
2
‖r(x)‖2, x ∈ Rn, (1.1)

where r(x) = (r1(x), · · · , rm(x))T , ri : Rn → R are twice continuously differentiable for
i = 1, · · · ,m, and || · || denotes the Euclidean norm. It is clear that

∇f(x) = J(x)T r(x), ∇2f(x) = J(x)T J(x) +
m∑

i=1

ri(x)∇2ri(x), (1.2)

where J(x) is the Jacobian matrix of r(x). Throughout the paper, we denote

g(x) = ∇f(x), S(x) =
m∑

i=1

ri(x)∇2ri(x),

gk = g(xk), Jk = J(xk), rk = r(xk), sk = xk+1 − xk.
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Nonlinear least squares problems have wide applications such as data fitting, param-
eter estimate, function approximation, et al. [2, 31]. Most iterative methods using a line
search are variants of Newton’s method, which can be written in a general form:

xk+1 = xk + αkdk,

where αk > 0 is a stepsize given by some line search and dk is a search direction satisfying

Bkd = −gk,

where Bk ∈ Rn×n is an approximation of ∇2f(xk).
The aim of this paper is to design a globally and locally fast convergent structured

quasi-Newton algorithm with a backtracking line search for nonlinear least squares prob-
lems. Although trust region methods have been used to solve nonlinear least squares
problems [6, 8, 31], which do not require a positive definite iteration matrix. For exam-
ple, Dennis, Gay and Welsch [8] presented a quasi-Newton algorithm NL2SOL with trust
region strategy. Numerical experiments show that quasi-Newton algorithm NL2SOL is
efficient for large residual problems and the performance of NL2SOL is similar to that of
the Levenberg-Marquardt algorithm for small residual problems [31]. However, in this
paper, we only focus on line search approaches. Hence the need for Bk+1 to be positive
definite is necessary.

Traditional structured quasi-Newton methods are focused on the local convergence
analysis. Their global convergence results have not been established. Li and Fukushima
[22, 23] proposed two globally convergent modified BFGS methods for nonconvex un-
constrained optimization. However, the Li-Fukushima methods have no quadratic con-
vergence rate for least squares problems with zero residual problems, and the special
structure of ∇2f(xk) is not considered in their methods.

We recall some existing methods, especially structured quasi-Newton methods for
solving nonlinear least squares problems. Nonlinear least squares problems can be re-
garded as a special case for unconstrained minimization with a special structure, and
hence may be solved by unconstrained minimization methods. However, the cost of pro-
viding the complete Hessian matrix is often expensive. To reduce the cost, some methods
use only the first derivative information such as the quasi-Newton method, in which Bk+1

is given by
Bk+1 = Bk + Update(sk, yk, Bk, vk) (1.3)

and satisfies the quasi-Newton equation Bk+1sk = yk with

Update(s, y, B, v) =
(y −Bs)vT + v(y −Bs)T

vT s
− (y −Bs)T s

(vT s)2
vvT . (1.4)

If yk = gk+1−gk and vk = yk +
√

yT
k sk

sT
k Bksk

Bksk, then Bk+1 in (1.3) reduces to the standard

BFGS formula for unconstrained optimization, that is, Bk+1 = bfgs(sk, Bk, yk), where

bfgs(s,B, y) = B − BssT BT

sT Bs
+

yyT

yT s
. (1.5)

The BFGS formula has been regarded as one of the most efficient quasi-Newton methods
in practical computations [4, 7, 11, 22, 23, 24]. A very nice property of the BFGS
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update is that, if B is symmetric and positive definite, then B+ = bfgs(s,B, y) is also
symmetric and positive definite whenever yT s > 0. However, this method ignores the
special structure of the Hessian and does not use the available term JT

k Jk in ∇2f(xk).
Past methods improve local convergence properties by exploiting the presence of the

first order term JT
k Jk in Hessian; for example, the Gauss-Newton type methods(or the

Levenberg-Marquardt type methods) [16, 19, 31, 36] are typical methods using the special
structure of the Hessian matrix, whose iterative matrix is given by Bk = JT

k Jk + µkI

with µk ≥ 0. It is well-known that these methods have locally quadratic convergence
rate for zero residual problems and linear convergence rate for small residual problems.
However, these methods may perform poorly, even diverge for large residual problems
[1], since they only use the first order information of f .

There are two ways to overcome this difficulty. One way is to combine the term JT
k Jk

with the BFGS formula to improve convergence rate for zero residual problems and
the efficiency of the BFGS method for general unconstrained optimization, for instance,
hybrid methods in [1, 17, 18]. Specifically, Fletcher and Xu [18] proposed an efficient
hybrid method for solving (1.1), that is, the matrix Bk+1 is updated by the following
rule: for a given constant ε ∈ (0, 1),

Bk+1 =
{

JT
k+1Jk+1 + ‖rk+1‖I, if (f(xk)− f(xk+1))/f(xk) ≥ ε,

bfgs(sk, Bk, ŷk), otherwise,
(1.6)

where
ŷk = JT

k+1Jk+1sk + (Jk+1 − Jk)T rk+1 ≈ ∇2f(xk+1)sk.

Suppose that xk → x∗ and ∇2f(x∗) is positive definite. If f(x∗) 6= 0, then

lim
k→∞

(f(xk)− f(xk+1))/f(xk) = 0.

If f(x∗) = 0 and xk → x∗ superlinearly, then

lim
k→∞

(f(xk)− f(xk+1))/f(xk) = 1.

Hence, the role of the term (f(xk)− f(xk+1))/f(xk) is to switch between zero residual
and nonzero residual problems. This method converges quadratically for zero residual
problems and superlinearly for nonzero residual problems. However, global convergence
results for this method have not been given in [18].

The other way is to use the second order information of f sufficiently. For instance,
structured quasi-Newton methods in [9, 13]. An important concept for structured quasi-
Newton methods for nonlinear least squares problems is the Structure Principle [9].

• Structure Principle : Given Bk = JT
k Jk + Ak as an approximation to ∇2f(xk), we

want Bk+1 = JT
k+1Jk+1 + Ak+1 to be an approximation of ∇2f(xk+1).

Because ∇2f(xk) = JT
k Jk + S(xk) from (1.2), by the structure principle, Ak and Ak+1

are approximations of S(xk) and S(xk+1), respectively. A popular way to compute Bk+1

was given in [9], that is,

Bk+1 = Bs
k + Update(sk, y

s
k, B

s
k, vk),

Bs
k = JT

k+1Jk+1 + Ak, ys
k = ȳk + JT

k+1Jk+1sk,
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where ȳk is an approximation of S(xk+1)sk and is often chosen as ȳk = (Jk+1−Jk)T rk+1,

and Update(sk, y
s
k, B

s
k, vk) is given by (1.4). The structure principle can be achieved by

updating Ak+1 with the following secant update formula:

Ak+1 = Ak + Update(sk, ȳk, Ak, vk).

The structured quasi-Newton methods possess only locally superlinear convergence rate
for both zero and nonzero residual problems. In order to improve convergence rate of
the structured quasi-Newton method for zero residual problems, Huschens [21] proposed
a product structure type update, that is, Bk and Bk+1 are defined by

Bk = JT
k Jk + ‖rk‖Ak, Bk+1 = JT

k+1Jk+1 + ‖rk+1‖Ak+1.

This update formula was proved to have quadratic convergence rate for zero residual
problems and superlinear convergence rate for nonzero residual problems. Although
these methods possess locally fast convergence rate, the iterative matrix Bk+1 can not
preserve positive definiteness even if Bk is positive definite. Hence the search direction
may not be a descent direction of f . Particularly, the Wolfe line search and Armijo line
search [31] can not be used directly. Therefore, global convergence is not easy to be
obtained.

To guarantee the positive definite property of JT
k Jk +Ak, some factorized structured

quasi-Newton methods were proposed in [26, 32, 33, 34] where

Bk = (Jk + Lk)T (Jk + Lk),

and Lk is updated according to certain quasi-Newton formula. Then Bk is at least
semi-positive definite.

Under suitable conditions, the matrix (Jk + Lk)T (Jk + Lk) is positive definite if the
initial point is close to a solution point. These methods also have locally superlinear con-
vergence rate for both zero and nonzero residual problems, but do not possess quadratic
convergence rate for zero residual problems. In [37], Zhang et al. proposed a family of
scaled factorized quasi-Newton methods based on the idea of [21]

Bk = (Jk + ‖rk‖Lk)T (Jk + ‖rk‖Lk),

which not only has superlinear convergence rate for nonzero residual problems, but also
have quadratic convergence rate for zero residual problems. However, global convergence
has not been studied in [21, 37].

There are two main obstacles for global convergence of the above structured quasi-
Newton methods with some line search. One is that the iterative matrices Bk may
not be positive definite if the point xk is far from the solution points. Another is that
the iterative matrices Bk and their inverses B−1

k are not uniformly bounded. So far,
the study of structured quasi-Newton methods is focused on the local convergence rate
[33, 34, 35, 37], but global convergence results have not been established.

In this paper, we propose a globally and locally fast convergent hybrid structured
BFGS method. The idea of the paper is to approximate the second term in the Hessian,
S(xk), by a positive definite BFGS matrix. The proposed strategy is using a combination
of [18] and [9, 13], i.e. not only seeks to reduce to the Gauss-Newton method for zero
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residual problems as in [18] using a hybridization scheme, but also uses the BFGS method
to estimate the second-order term S(x) within the Hessian as in [9, 13], i.e. applying the
structure principle. Further, a novel switch for between the Gauss-Newton method and
the BFGS method is being proposed.

In the next section, we explain the approach in our method and present the algorithm
in detail. Moreover, we prove that this method not only converges globally, but also
converges quadratically for zero residual problems and superlinearly for nonzero residual
problems. We present numerical results to compare its performance with the Gauss-
Newton method and the Fletcher-Xu hybrid method [18], in Section 3 and Appendix.

2 Algorithm and convergence analysis

In this section, we present a new hybrid Gauss-Newton structured BFGS method for the
problem (1.1), and give global and local convergence analysis for the method. We first
illustrate our approach which is mainly based on the following consideration.

Since JT
k Jk is available in ∇2f(xk), we hope to preserve this term unchanged in Bk.

According to the structure principle, we approximate S(xk) using first order information
and BFGS updates. From the observation:

S(xk+1)sk =
( m∑

i=1

ri(xk+1)∇2ri(xk+1)
)
sk ≈ (Jk+1 − Jk)T rk+1‖rk+1‖/‖rk‖,

we have the following lemma.

Lemma 2.1. Let
zk = (Jk+1 − Jk)T rk+1‖rk+1‖/‖rk‖, (2.1)

then zk ≈ S(xk+1)sk.

The first order term zk was also used as a good approximation of S(xk+1)sk in
[21, 37]. Moreover, in our numerical experiments, using zk is more efficient than using
the standard term ȳk = (Jk+1 − Jk)T rk+1. Hence we construct

Ak+1 = bfgs(sk, Ak, zk), Bk+1 = JT
k+1Jk+1 + Ak+1.

Lemma 2.2. Suppose ∇2ri(xk) is bounded for i = 1, 2, · · · ,m and xk → x∗. If f(x∗) =
0, then (zT

k sk)/(sT
k sk) → 0 as k → ∞. If f(x∗) 6= 0 and S(x∗) is positive definite, then

there is a positive constant ε such that (zT
k sk)/(sT

k sk) ≥ ε for sufficiently large k.

Proof. If f(x∗) = 0, then from f(xk+1) < f(xk) we have that

(zT
k sk)/(sT

k sk) = ‖rk+1‖/‖rk‖
m∑

i=1

ri(xk+1)(∇ri(xk+1)−∇ri(xk))T sk/sT
k sk → 0.

If f(x∗) 6= 0 and S(x∗) is positive definite, then for sufficiently large k

(zT
k sk)/(sT

k sk) ≥ ε,

where 0 < ε ≤ 1
2λmin(S(x∗)) is a constant and λmin(S(x∗)) is the smallest eigenvalue of

the matrix S(x∗). ¤
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Lemma 2.2 implies that (zT
k sk)/(sT

k sk) can play a similar role as (f(xk)− f(xk+1))/f(xk)
in (1.6). Therefore we can use the term (zT

k sk)/(sT
k sk) to construct some hybrid meth-

ods. Moreover, the condition (zT
k sk)/(sT

k sk) ≥ ε also gives a way to ensure the positive
definiteness of the update matrix Bk+1. Now we give the definition of the update matrix.

Definition 2.1.

Bk+1 =
{

JT
k+1Jk+1 + Ak+1, if (zT

k sk)/(sT
k sk) ≥ ε,

JT
k+1Jk+1 + ‖rk+1‖I, otherwise,

(2.2)

where

Ak+1 =

{
Ak − AksksT

k AT
k

sT
k Aksk

+ zkzT
k

zT
k sk

, if (zT
k sk)/(sT

k sk) ≥ ε,

Ak, otherwise.
(2.3)

Since Ak+1sk = zk when (zT
k sk)/(sT

k sk) ≥ ε, Ak+1 is an approximation of S(xk+1).
Based on the above discussion, we now can present the hybrid Gauss-Newton structured
BFGS method with a backtracking line search for nonlinear least squares problems (1.1).
Algorithm 2.1 (GN-SBFGS Method)

Step 1. Give a starting point x0 ∈ Rn, a symmetric and positive definite matrix
A0 ∈ Rn×n, scalars δ, ρ ∈ (0, 1), ε > 0. Set B0 = JT

0 J0 + A0. Let k := 0.

Step 2. Compute dk by solving the following linear equations

Bkd = −gk. (2.4)

Step 3. Compute the stepsize αk by the following backtracking line search, that
is, αk = max{ρ0, ρ1, · · · } satisfying

f(xk + ρmdk) ≤ f(xk) + δρmgT
k dk. (2.5)

Step 4. Let xk+1 = xk + αkdk.

Step 5. Update Bk+1 by the formulas (2.2) and (2.3).

Step 6. Let k := k + 1 and go to Step 2.

Remark 2.1. Since A0 is symmetric and positive definite and Ak+1 is defined by the
BFGS formula, Ak+1 is also symmetric and positive definite whenever zT

k sk > 0. There-
fore for every k, Ak and Bk in Algorithm 2.1 are symmetric and positive definite. Hence
the search direction dk is a descent direction, that is, gT

k dk < 0. This also shows that
Algorithm 2.1 is well-defined.

In the global convergence of Algorithm 2.1, we use the following assumption.
Assumption A.

(I) The level set Ω = {x ∈ Rn|f(x) ≤ f(x0)} is bounded.

(II) In an open set N containing Ω, there exists a constant L1 > 0 such that

‖J(x)− J(y)‖ ≤ L1‖x− y‖, ∀x, y ∈ N. (2.6)
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It is clear that the sequence {xk} generated by Algorithm 2.1 is contained in Ω, and
the sequence {f(xk)} is a descent sequence and has a limit f∗, that is,

lim
k→∞

f(xk) = f∗. (2.7)

In addition, we get from Assumption A that there are two positive constants L and γ,
such that

‖g(x)− g(y)‖ ≤ L‖x− y‖, ‖g(x)‖ ≤ γ, ∀ x, y ∈ Ω. (2.8)

Now we give the following useful lemmas for our global convergence analysis.

Lemma 2.3. Let Assumption A hold. Then we have

lim
k→∞

αkg
T
k dk = 0. (2.9)

Proof. It follows directly from the line search (2.5), (2.7) and gT
k dk < 0. ¤

Lemma 2.4. [3, Lemma 4.1] There exists a constant c1 > 0 such that

αk = 1 or αk ≥ c1(−gT
k dk)/‖dk‖2. (2.10)

Lemma 2.5. Let Assumption A hold. Then for any p ∈ (0, 1), there are positive con-
stants βi, i = 1, 2, 3, 4 such that

β1‖sj‖ ≤ ‖Ajsj‖ ≤ β2‖sj‖, β3‖sj‖2 ≤ sT
j Ajsj ≤ β4‖sj‖2 (2.11)

hold for at least dpke values of j ∈ [1, k].

Proof. By (2.6) and ‖rk+1‖ < ‖rk‖, there exists a positive constant c2 such that
(zT

k sk)/(sT
k sk) ≤ c2. Then the conclusion follows directly from the update formula Ak+1

in (2.3) and Theorem 2.1 in [3]. ¤

Theorem 2.1. Let Assumption A hold and the sequence {xk} be generated by Algorithm
2.1. Then we have

lim inf
k→∞

‖gk‖ = 0.

Proof. Suppose the conclusion is not true, then there exist three positive constants η1,
η2 and ε0 such that for all k,

η1 ≥ ‖rk‖ ≥ η2, ‖gk‖ ≥ ε0. (2.12)

In fact, if lim infk→∞ ‖rk‖ = 0, then lim infk→∞ ‖gk‖ = 0.

Denote K = {k|zT
k−1sk−1/sT

k−1sk−1 < ε}. Since for any k ∈ K, Bk = JT
k Jk + ‖rk‖I,

by (2.4) we have
−gT

k dk = ‖Jkdk‖2 + ‖rk‖‖dk‖2 ≥ η2‖dk‖2. (2.13)

If K is infinite, then by Lemma 2.3, we have limk→∞,k∈K αkg
T
k dk = 0.

If lim infk→∞,k∈K αk > 0, then limk→∞,k∈K gT
k dk = 0. Hence from (2.13) we get that

limk→∞,k∈K ‖dk‖ = 0. On the other hand, from (2.4) and the first inequality of (2.12)
we have that for k ∈ K,

‖gk‖ ≤ ‖JT
k Jk‖‖dk‖+ η1‖dk‖ → 0.
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This leads to a contradiction to the second inequality of (2.12). If lim infk→∞,k∈K αk = 0,
then from Lemma 2.4 we have that −gT

k dk/‖dk‖2 → 0, contradicting (2.13).
Now we assume K is finite, then there exists an integer k0 such that for all k > k0,

Bk = JT
k Jk + Ak. By Lemma 2.5 and sk = αkdk, we have for infinite k > k0,

−gT
k dk = ‖Jkdk‖2 + dT

k Akdk ≥ β3‖dk‖2,

‖gk‖ ≤ ‖JT
k Jk‖‖dk‖+ ‖Akdk‖ ≤ ‖JT

k Jk‖‖dk‖+ β2‖dk‖.
Using the similar argument as the above, we also can get the same contradiction as the
case that K is infinite. This finishes the proof. ¤

Theorem 2.1 shows that Algorithm 2.1 is globally convergent for nonlinear least
squares problems (1.1). Now we turn to discussing local convergence rate of Algorithm
2.1. To do this, we need the following assumptions.
Assumption B.

(I) {xk} converges to x∗ where g(x∗) = 0 and ∇2f(x∗) is positive definite.

(II) ∇2f is Lipschitz continuous near x∗, that is, there exists a constant L2 such that

‖∇2f(x)−∇2f(y)‖ ≤ L2‖x− y‖ (2.14)

for any x, y in a neighborhood of x∗.

We first present the following local convergence theorem of Algorithm 2.1 for zero residual
problems.

Theorem 2.2. Let Assumption B hold. Suppose problem (1.1) is a zero residual prob-
lem, then Algorithm 2.1 reduces to the Gauss-Newton method and xk converges to x∗

quadratically.

Proof. Because f(x∗) = 0, we have r(x∗) = 0. By (2.1) and f(xk+1) < f(xk), we have

‖zk‖ =
∥∥∥‖rk+1‖/‖rk‖(Jk+1 − Jk)T rk+1

∥∥∥ < ‖rk+1‖L1‖sk‖.

Hence
∣∣∣(zT

k sk)/(sT
k sk)

∣∣∣ ≤ L1‖rk+1‖ → 0, (2.15)

which shows that there exists an integer k1 such that for all k > k1,

(zT
k sk)/(sT

k sk) < ε.

This implies Bk = JT
k Jk + ‖rk‖I for k > k1, that is, Algorithm 2.1 reduces to the

Gauss-Newton method. Since

∇2f(x∗) = J(x∗)T J(x∗) + S(x∗) = J(x∗)T J(x∗) +
m∑

i=1

ri(x∗)∇2ri(x∗) = J(x∗)T J(x∗),

Assumption B implies J(x∗)T J(x∗) is positive definite. Therefore quadratic convergence
of the proposed method follows directly from the corresponding theory of the standard
Gauss-Newton method, for example, see [31]. This completes the proof. ¤

In the rest of this section, we assume f(x∗) 6= 0, that is, the problem (1.1) is a nonzero
residual problem. Firstly, we give the following result on the boundedness of Bk.
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Lemma 2.6. There exist some positive constants βi, i = 5, 6, 7 such that

‖Bjsj‖ ≤ β5‖sj‖, β6‖sj‖2 ≤ sT
j Bjsj ≤ β7‖sj‖2 (2.16)

hold for at least dk
2e values of j ∈ [1, k].

Proof. Denote K =
{

j ∈ [1, k]
∣∣∣zT

j−1sj−1/sT
j−1sj−1 < ε

}
. Then for all j ∈ K, Bj =

JT
j Jj + ‖rj‖I is uniformly positive definite since f(x∗) 6= 0 implies that there exist two

positive constants η3 and η4 such that η3 ≤ ‖rj‖ ≤ η4. Hence the inequalities in (2.16)
hold for all j ∈ K from the semi-positive definiteness of JT

j Jj . If |K| ≥ dk
2e, then we

obtain the desirable results.
Now we suppose |K| < dk

2e. For j /∈ K, we have Bj = JT
j Jj + Aj . It follows from

Lemma 2.5 that the inequalities in (2.16) hold for at least dk−|K|
2 e ≥ dk

2e − |K| indices j

in [1, k].
Therefore the inequalities in (2.16) hold for at least dk

2e − |K|+ |K| = dk
2e indices j

in [1, k]. This completes the proof. ¤

Lemma 2.7. There exist two positive constants η5 and η6 such that at each iteration
either

f(xk + αkdk) ≤ f(xk)− η5(gT
k dk)2/‖dk‖2,

or
f(xk + αkdk) ≤ f(xk) + η6g

T
k dk.

Proof. It follows from Lemma 2.4, the line search (2.5) and gT
k dk < 0 directly. ¤

Lemma 2.8. [3, Theorem 3.1] Let Assumption B hold. Then we have
∞∑

k=0

‖xk − x∗‖ < ∞. (2.17)

Lemma 2.9. Let Assumption B hold. We also suppose that S(x∗) is positive definite
and ∇2ri(x) is Lipschitz continuous near x∗ for i = 1, 2, · · · ,m. Then for sufficiently
large k there exists a positive constant M such that

‖zk − S(x∗)sk‖/‖sk‖ ≤ M max{‖xk+1 − x∗‖, ‖xk − x∗‖}.
Proof. By (2.1) we have

‖zk − S(x∗)sk‖

=
∥∥∥‖rk+1‖/‖rk‖

m∑

i=1

ri(xk+1)(∇ri(xk+1)−∇ri(xk))−
m∑

i=1

ri(x∗)∇2ri(x∗)sk

∥∥∥

≤
∥∥∥
(
‖rk+1‖/‖rk‖ − 1

) m∑

i=1

ri(xk+1)(∇ri(xk+1)−∇ri(xk))
∥∥∥

+
∥∥∥

m∑

i=1

(ri(xk+1)− ri(x∗))(∇ri(xk+1)−∇ri(xk))
∥∥∥

+
∥∥∥

m∑

i=1

ri(x∗)((∇ri(xk+1)−∇ri(xk))−∇2ri(x∗)sk)
∥∥∥

4
= A1 + A2 + A3.
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From the assumptions, there exist a small positive number δ0 and some constants ci > 0,
i = 0, 1, 2, 3, 4 such that ‖r(x)‖ > c0, |ri(x)| ≤ c1, ‖r(x)− r(y)‖ ≤ c2‖x− y‖, ‖∇ri(x)−
∇ri(y)‖ ≤ c3‖x − y‖, ‖∇2ri(x) −∇2ri(y)‖ ≤ c4‖x − y‖ for all x, y ∈ {u|‖u − x∗‖ ≤ δ0}
and i = 1, · · · ,m. Therefore for sufficiently large k we have

A1 ≤ ‖rk+1 − rk‖/‖rk‖
m∑

i=1

|ri(xk+1)|‖∇ri(xk+1)−∇ri(xk)‖

≤ mc1c2c3

c0
‖xk+1 − xk‖2

≤ 2mc1c2c3

c0
max{‖xk+1 − x∗‖, ‖xk − x∗‖}‖sk‖,

A2 ≤ mc2c3 max{‖xk+1 − x∗‖, ‖xk − x∗‖}‖sk‖,

A3 ≤ c1

m∑

i=1

‖∇ri(xk+1)−∇ri(xk)−∇2ri(x∗)sk‖

= c1

m∑

i=1

∥∥∥
∫ 1

0

(∇2ri(xk + tsk)−∇2ri(x∗)
)
skdt

∥∥∥

≤ 2mc1c4 max{‖xk+1 − x∗‖, ‖xk − x∗‖}‖sk‖.
Set M = 2mc1c2c3

c0
+ mc2c3 + 2mc1c4, then we have

‖zk − S(x∗)sk‖/‖sk‖ ≤ M max{‖xk+1 − x∗‖, ‖xk − x∗‖}.
This finishes the proof. ¤
Lemma 2.10. [3, Theorem 3.2] Under the assumptions of Lemma 2.9, we have

lim
k→∞

‖(Ak − S(x∗))sk‖/‖sk‖ = 0.

Moreover, the sequences {‖Ak‖} and {‖A−1
k ‖} are uniformly bounded.

The following lemma shows that the Dennis-Moré condition holds.

Lemma 2.11. Suppose the assumptions of Lemma 2.9 hold and the positive constant ε

in Algorithm 2.1 satisfies ε ≤ 1
2λmin(S(x∗)). Then we have

lim
k→∞

‖(Bk −∇2f(x∗))sk‖/‖sk‖ = 0. (2.18)

Moreover, the sequences {‖Bk‖} and {‖B−1
k ‖} are uniformly bounded.

Proof. It is clear that the assumptions imply that for all sufficiently large k, Bk =
JT

k Jk + Ak, that is, Algorithm 2.1 reduces to a structured BFGS method. Hence, from
Lemma 2.10 we have

lim
k→∞

‖(Bk −∇2f(x∗))sk‖/‖sk‖
= lim

k→∞
‖(JT

k Jk − J(x∗)T J(x∗))sk + (Ak − S(x∗))sk‖/‖sk‖
≤ lim

k→∞
‖JT

k Jk − J(x∗)T J(x∗)‖+ lim
k→∞

‖(Ak − S(x∗))sk‖/‖sk‖
= 0.

Moreover, the sequences {‖Bk‖} and {‖B−1
k ‖} are uniformly bounded since JT

k Jk is
semi-positive definite. The proof is then finished. ¤

The following theorem shows that Algorithm 2.1 converges superlinearly.
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Theorem 2.3. Suppose the assumptions of Lemma 2.11 hold. If the parameter δ in the
line search (2.5) is chosen to satisfy δ ∈ (0, 1

2), then {xk} converges to x∗ superlinearly.

Proof. By Lemma 2.11, we only need to prove αk = 1 for all sufficiently large k in the
line search (2.5). In fact, by Lemma 2.11, we have ‖dk‖ = ‖B−1

k gk‖ → 0. From Taylor’s
expansions we have

f(xk + dk)− f(xk)− δgT
k dk

= (1− δ)gT
k dk +

1
2
dT

k∇2f(xk + θkdk)dk

= −(1− δ)dT
k Bkdk +

1
2
dT

k∇2f(xk + θkdk)dk

= −(
1
2
− δ)dT

k Bkdk − 1
2
dT

k (Bk −∇2f(xk + θkdk))dk

= −(
1
2
− δ)dT

k∇2f(x∗)dk + o(‖dk‖2),

where θk ∈ (0, 1) and the last equality follows from the Dennis-Moré condition (2.18).
Thus f(xk + dk)− f(xk)− δgT

k dk ≤ 0 for all sufficiently large k, which implies αk = 1 for
all sufficiently large k. Therefore according to the well-known characterization result of
Dennis and Moré [10], we conclude that the proposed method converges superlinearly.
¤

3 Numerical experiments

In this section, we compare the performance of the following three methods with the
same line search (2.5) for some nonlinear least squares problems

• The Gauss-Newton method: Bk = JT
k Jk + ‖rk‖I;

• The hybrid Gauss-Newton structured BFGS method: Algorithm 2.1 with ε = 10−6;

• The Fletcher-Xu hybrid (FXhybrid) method: Bk is specified by (1.6) with ε = 0.2
which was recommended in [17, 18].

All codes were written in Matlab 7.4. We set δ = 0.1 and ρ = 0.5 in the line search
(2.5). For the three methods, we set the initial matrix B0 = JT

0 J0 + 10−4‖r0‖I. We
stopped the iteration if one of the following conditions is satisfied

(i) ‖gk‖ ≤ 10−5;

(ii) f(xk)− f(xk+1) ≤ 10−15 max(1, f(xk));

(iii) f(xk) ≤ 10−8;

(iv) The total number of iterations exceeds 500.

Tables 2-5 in the Appendix list numerical results of these three methods, where
”Biter/Iter” and ”Nf” stand for the total number of BFGS update/all iterations and the
function evaluations respectively; f(xk) and rk mean the functional evaluation and the
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residual at the stopping point respectively. In Tables 2-5, λmin is the smallest eigenvalue
of S(x) at the stopping point.

Table 2 reports the numerical results of the three methods for 28 zero or small residual
problems [25] and the BOD problem [2] with 6 different initial points. Table 3 lists the
numerical results of the three methods for solving 40 large residual problems where
”Froth”, ”Jensam” and ”Cheb” are from [25] and the others are given as follows.
•Trigonometric Problem (Trigo) [1]:

ri(x) = −di + r̃i(x)2, i = 1, 2, · · · ,m,

where

r̃i(x) = −ei +
n∑

j=1

(aij sinxj + bij cos xj), i = 1, 2, · · · ,m,

with x = (x1, · · · , xn)T , aij , bij are random integers in [−10, 10], ei are random numbers
in [0, 1] and d = (d1, d2, · · · , dm)T = (1, 2, · · · ,m)T . We choose the initial point x0 as a
random vector whose elements are in [−100, 0].
•Signomial Problem (Sig) [1]:

ri(x) = −ei +
l∑

k=1

cik

n∏

j=1

x
aijk

j , i = 1, 2, · · · ,m,

where aijk are random integers in [0, 3], cik and ei are random numbers in [−100, 100]
and [−10, 10] respectively. We choose l = 8, and the initial point x0 as a random vector
whose elements are in [−5, 5].
•Parameterized Problem (Para) [21]:

r1(x) = x1 − 2, r2(x) = (x1 − 2ψ)x2, r3(x) = x2 + 1,

where x = (x1, x2)T and ψ is a parameter. If ψ 6= 1, then this problem is a nonzero
residual problem. We choose different values of ψ and initial points x0 in our test. For
details, see Table 2.
•Nonlinear regression problem (BOD) [2, pp.305]: The nonlinear regression model
based on the data on biochemical oxygen demand(BOD) can be converted into the non-
linear least square problem (1.1) where r(x) = (r1(x), · · · , r8(x))T , x = (x1, x2)T and

r1(x) = x1(1− ex2)− 0.47; r2(x) = x1(1− e2x2)− 0.74;

r3(x) = x1(1− e3x2)− 1.17; r4(x) = x1(1− e4x2)− 1.42;

r5(x) = x1(1− e5x2)− 1.60; r6(x) = x1(1− e7x2)− 1.84;

r7(x) = x1(1− e9x2)− 2.19; r8(x) = x1(1− e11x2)− 2.17.

Table 4 and Table 5 list some numerical results of the three methods for solving a
special class of nonlinear least square problems.
• Convex variational regularization problem: Suppose that F : Rn → Rm is a map.
The convex variational regularization problem is the following minimization problem

min
x∈Rn

f(x) =
1
2
‖F (x)‖2 +

µ

2
h(x), (3.1)
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where h : Rn → R is a convex function and µ is a regularization parameter. Many
practical problems can be converted into solving this problems such as ill-posed prob-
lems, inverse problems, some constrained optimization problems and model parameter
estimation [27, 30, 28, 29, 14, 15].

Ill-posed problems occur frequently in science and engineering. Regularization meth-
ods for computing stabilized solutions to the ill-posed problems have been extensively
studied [20]. In this paper, we chose two convex variational regularization problems
which come from ill-posed problems. In our test, we chose h(x) =

∑n
i=1(x

2
i )

2 in (3.1).
Therefore (3.1) reduces to the nonlinear least squares problem (1.1) with the form:

r(x) = (F (x),
√

µx2
1, · · · ,

√
µx2

n)T .

Now we chose two ill-posed problems as follows. One is linear and another is nonlinear.
(i) Ill-posed problem 1 (The linear ill-conditioned problem): F (x) = Ax − b,

where A = (aij)n×n with aij = 1
i+j−1 is the Hilbert matrix. In our code, we set b =

A ∗ ones(n, 1) + 10−4 ∗ ones(n, 1) and the initial point x0 = (10, · · · , 10)T .
(ii) Ill-posed problem 2 (The nonlinear inverse problem): The Fredholm integral

equation of the first kind has the following version
∫ b

a
K(t, s, u(s))ds = g(t), c ≤ t ≤ d, (3.2)

where the right-hand side g and the kernel K are given, and x is an unknown solution.
We use the composite quadrature method to approximate the integral by a weighted sum

∫ b

a
K(t, s, u(s))ds ≈ In(t) =

n∑

i=1

wiK(t, si, u(si)).

Collocation in the m points t1, · · · , tm leads to the requirements In(tj) = g(tj), j =
1, · · · ,m. It is a finite dimensional nonlinear ill-posed problem. To obtain a meaningful
solution, it is often converted into solving a regularization solution of (3.1) where

Fj(x) = In(tj)− g(tj), j = 1, · · · ,m, x = (u(s1), · · · , u(sn))T .

In our test we chose the following data [5]

[a, b] = [c, d] = [0, 1], K(t, s, u(s)) = se(t+1)u(s), g(t) =
et+1 − 1
2(t + 1)

.

Integral equation (3.2) with these data has an analytical solution as u(s) = s2 on [0, 1].
In our numerical experiment, we chose tj = j−1

m−1 for j = 1, · · · ,m. We set the initial
point x0 = (0.1, · · · , 0.1)T .

Table 1 summaries the data in Tables 2-5, in which ”#Bestiter”, ”#BestNf” and
”#Bestfv” are the number of test problems that the method wins over the rest of the
methods on the number of iterations, function evaluations and the best final objective
function value performance in all 138 test problems, respectively; ”Probability” roughly
means the probability that the method wins over the rest of the methods.

It is clear from Table 1 that Algorithm 2.1 is the best method among these three
methods. In order to show the number of iterations or function evaluations performance

13



Table 1: Summary over Tables 2-5 in the Appendix.

Gauss-Newton Algorithm 2.1 FXhybrid
#Bestiter 28 85 49
Probability 28

138 ≈ 20% 85
138 ≈ 62% 49

138 ≈ 36%
#BestNf 23 108 26

Probability 23
138 ≈ 17% 108

138 ≈ 78% 26
138 ≈ 19%

#Bestfv 92 100 81
Probability 23

138 ≈ 67% 108
138 ≈ 72% 26

138 ≈ 58%
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Figure 1: Performance profiles with respect to the number of iterations.
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Figure 2: Performance profiles with respect to the number of function evaluations.

of the three methods more clearly, we plotted Figures 1-2 according to the data in Tables
2-5 in the Appendix section by using the performance profiles of Dolan and Moré [12].

Since the top curve in Figures 1-2 corresponds to Algorithm 2.1, it is clear that
Algorithm 2.1 is most efficient for solving these 138 test problems among the three
methods. We see from Figure 1 that Algorithm 2.1 solves about 62% and 78% (85 and
108 out of 138) of the test problems with the least number of iterations and function
evaluations respectively. Figure 1 also shows that the FXhybrid method performs better
than the Gauss-Newton method. However, Figure 2 shows that the FXhybrid method
needs more function evaluations than the Gauss-Newton method within 0.3 < τ < 3.5.
Table 2 shows that the Gauss-Newton method is efficient for zero residual problems and
using the BFGS update can improve numerical performance. We also note from Table 1
that Algorithm 2.1 has the best final objective value for most problems, which has about
72% (100 out of 138) probability with the best final objective value.

4 Conclusions

In this paper, we proposed a new hybrid Gauss-Newton structured BFGS method for
nonlinear least squares problems. We use a new formula (2.2)-(2.3) to update the itera-
tive matrix. The new formula deals with zero or nonzero residual problems in an intel-
ligent way. Global convergence of the proposed method is established. Under suitable
conditions, the proposed method possesses quadratic convergence rate for zero residual
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problems and superlinear convergence rate for nonzero residual problems. Numerical
results show that the proposed method is efficient for nonlinear least squares problems
compared with the Gauss-Newton method and the Fletcher-Xu hybrid method.
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[10] J. E. Dennis and J. J. Moré, A characterization of superlinear convergence and its
application to quasi-Newton methods, Math. Comput., 28 (1974), pp. 549-560.

[11] J. E. Dennis and H. J. Schnabel, Numerical Methods for Unconstrained Optimiza-
tion and Nonlinear Equations, Prentice-Hall, Englewood Cliffs, NJ, 1983.
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Appendix

Table 2: Test results for 28 some zero or small residual test problems from [25] and the
BOD problem with 6 different initial points.

Gauss-Newton Algorithm 2.1 FXhybrid

Prob n m Iter Nf f(xk) Biter/Iter Nf f(xk) Iter Nf f(xk)

Rose 2 2 15 24 4.86e-012 18/19 27 7.89e-011 21 87 3.48e-010
Badscp 2 2 500 502 1.77e-006 68/85 97 9.90e-009 500 5308 2.09e-004
Badscb 2 3 500 503 4.97e+011 8/16 43 3.64e-015 33 402 7.09e-012
Beale 2 3 9 10 4.40e-011 2/10 11 2.35e-013 9 10 4.40e-011
Helix 3 3 11 12 3.27e-013 66/71 490 3.17e-009 11 12 3.27e-013
Bard 3 15 148 149 4.11e-003 6/6 7 4.11e-003 71 102 4.11e-003
Gauss 3 15 1 2 5.64e-009 0/1 2 5.64e-009 1 2 5.64e-009

Gulf 3 10 500 502 1.96e-003 13/17 31 1.26e-008 27 61 2.10e-006
Box 3 10 50 51 6.27e-008 4/8 9 7.12e-011 30 31 4.14e-008
Sing 4 4 11 12 6.95e-009 8/9 10 4.09e-009 11 12 6.95e-009

Wood 4 6 330 334 1.04e-014 14/46 48 3.99e-015 389 883 3.99e-011
Kowosb 4 11 24 26 1.54e-004 1/31 33 1.54e-004 24 26 1.54e-004
Biggs 6 13 500 505 9.74e-004 6/317 326 4.90e-006 500 605 9.02e-006
Osb2 11 65 356 357 2.01e-002 31/34 43 2.01e-002 247 380 2.01e-002

Watson 20 31 13 14 2.18e-007 5/8 10 5.93e-008 13 14 2.18e-007
Cheb 5 5 3 5 2.95e-009 2/4 6 1.66e-015 3 5 2.95e-009

Rosex 20 20 22 27 6.34e-011 20/21 32 9.61e-013 22 47 5.29e-009
Singx 20 20 14 15 6.68e-008 8/9 10 2.05e-008 14 15 6.68e-008

Vardim 20 22 11 12 2.15e-017 10/11 12 2.18e-010 11 12 2.15e-017
Trig 20 20 39 137 2.32e-006 5/8 17 2.40e-012 9 55 2.84e-009

Rosex 100 100 39 44 3.45e-014 20/22 32 2.42e-012 44 67 3.62e-010
Singx 100 100 23 24 6.34e-008 8/10 11 1.65e-008 23 24 6.34e-008

Vardim 100 102 15 16 4.42e-010 15/16 17 2.43e-011 15 16 4.42e-010
Trig 100 100 7 17 4.16e-010 5/9 31 8.54e-012 196 3026 1.28e-011

Rosex 500 500 76 81 4.63e-012 20/21 31 6.57e-011 22 73 8.32e-012
Singx 500 500 42 43 1.39e-007 9/11 12 3.55e-008 42 43 1.39e-007

Vardim 500 502 20 21 1.93e-014 19/21 22 2.81e-012 20 21 1.93e-014
Trig 500 500 7 16 1.62e-009 11/14 74 3.96e-010 62 1192 5.09e-011

Prob n xT
0 Iter Nf f(xk) Biter/Iter Nf f(xk) Iter Nf f(xk)

BOD 2 (1, 0) 8 56 0.01 3/6 54 0.01 9 86 0.01
BOD 2 (100, 0) 7 113 0.45 3/7 85 0.45 8 87 0.45
BOD 2 (0.01, 0.01) 500 525 0.57 3/4 68 1.75 4 105 1.81
BOD 2 (10, 0.01) 500 501 0.56 29/32 102 0.49 20 122 0.50
BOD 2 (100, 0.01) 6 113 0.44 6/7 82 0.45 6 116 0.44
BOD 2 (−10,−1) 8 56 0.01 9/13 14 0.01 9 65 0.01
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Table 3: Test results about 40 large residual problems.

Gauss-Newton Algorithm 2.1 FXhybrid

Prob n m Iter Nf ‖rk‖ Biter/Iter Nf ‖rk‖ Iter Nf ‖rk‖
Froth 2 2 187 188 6.70 31/89 90 6.70 74 1166 6.70

Jensam 2 4 93 349 2.05 14/46 143 2.05 73 763 2.05

Jensam 2 6 268 1436 4.39 18/18 26 4.39 27 448 4.39

Jensam 2 8 500 3281 7.44 19/19 25 7.45 39 508 7.46

Jensam 2 10 500 3796 11.16 49/49 65 11.20 51 463 11.15

Cheb 8 8 130 502 0.0593 17/34 78 0.0593 177 1724 0.0593

Cheb 10 10 17 23 0.0806 2/13 20 0.0806 20 149 0.0806

Cheb 8 16 22 23 0.2428 2/21 22 0.2428 23 24 0.2428

Trigo 3 6 19 21 8.10 2/12 13 4.10 28 31 86.21

Trigo 3 12 57 67 159.23 13/53 57 159.24 28 30 150.06

Trigo 3 15 21 23 179.21 1/22 24 179.21 31 208 178.87

Trigo 4 8 27 31 49.36 15/20 25 49.36 36 64 40.55

Trigo 4 20 117 119 352.11 17/71 73 353.68 16 203 373.68

Trigo 4 40 47 49 607.09 20/45 47 607.55 38 40 777.12

Trigo 6 8 82 178 19.01 26 /75 86 30.57 16 17 6.06

Trigo 6 12 48 69 24.23 8/35 37 21.14 24 25 23.94

Trigo 6 20 49 51 211.39 25/46 49 211.47 27 29 228.79

Trigo 8 8 95 350 4.99 18/31 77 1.01 79 453 4.30

Trigo 8 16 26 34 135.27 7/25 27 135.27 28 164 141.09

Trigo 8 40 61 63 698.26 25/30 32 698.46 90 661 361.86

Trigo 10 20 69 75 74.91 9/45 47 74.02 42 473 51.88

Trigo 10 40 142 144 770.00 51/117 119 678.06 69 579 570.24

Trigo 10 50 45 50 1041.07 26/36 38 1043.10 32 362 1165.79

Sig 2 6 187 825 52.10 28/75 244 52.10 64 246 52.10

Sig 2 10 47 80 79.36 19/40 61 79.36 49 71 79.36

Sig 2 30 50 52 269.10 17/40 42 269.10 49 51 269.10

Sig 4 8 28 30 11.47 4/24 25 11.47 31 33 11.47

Sig 4 10 251 252 15.56 78/82 84 14.78 251 252 15.56

Sig 4 20 81 84 24.24 9/72 74 24.24 26 29 24.41

Sig 4 30 56 59 26.22 9/40 44 26.22 53 56 26.22

Sig 4 40 52 116 88.51 18/26 28 88.54 29 45 88.51

Sig 6 12 338 893 13.88 50/144 491 14.04 172 334 13.88

Sig 6 24 46 50 21.19 18/24 27 22.64 49 53 21.19

Sig 6 30 96 164 28.22 64/68 73 28.28 45 65 28.22

Prob ψ xT
0 Iter Nf ‖rk‖ Iter Nf ‖rk‖ Iter Nf ‖rk‖

Para 10 (0, 0) 8 9 1.00 0/8 9 1.00 4 5 1.00

Para 10 (1,1) 14 15 1.00 1/12 13 1.00 14 15 1.00

Para 10 (10,10) 25 26 1.00 8/8 10 1.00 30 64 1.00

Para 100 (0,0) 7 8 1.00 0/7 8 1.00 5 6 1.00

Para 100 (1,1) 13 14 1.00 1/7 8 1.00 14 16 1.00

Para 100 (10,10) 20 21 1.00 4/5 6 1.00 41 215 1.00
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Table 4: Test results about the ill-posed problem 1 with the initial point x0 =

(10, 10, · · · , 10)T and different regularization parameters.

Gauss-Newton Algorithm 2.1 FXhybrid

µ m = n Iter Nf ‖rk‖ Biter/Iter Nf ‖rk‖ λmin Iter Nf ‖rk‖
1 10 6 55 2.12e+000 6/8 55 2.17e+000 7.79e-001 6 55 2.12e+000

1 50 23 301 1.06e+001 5/7 55 1.09e+001 7.53e-001 23 301 1.06e+001

1 100 15 95 2.12e+001 5/7 58 2.16e+001 7.32e-001 15 95 2.12e+001

1 150 23 218 3.18e+001 6/8 61 3.23e+001 7.09e-001 23 218 3.18e+001

1 200 24 239 4.23e+001 6/8 99 4.44e+001 8.21e-001 24 239 4.23e+001

1 250 32 233 5.29e+001 6/9 58 5.45e+001 7.50e-001 32 233 5.29e+001

10−2 10 44 75 4.61e-002 4/6 51 4.61e-002 1.52e-002 44 75 4.61e-002

10−2 50 63 268 2.30e-001 5/6 47 2.30e-001 1.49e-002 63 268 2.30e-001

10−2 100 118 307 4.60e-001 6/7 48 4.60e-001 1.48e-002 118 307 4.60e-001

10−2 150 133 235 6.91e-001 7/8 46 6.91e-001 1.47e-002 133 235 6.91e-001

10−2 200 138 247 9.21e-001 7/8 51 9.21e-001 1.48e-002 138 247 9.21e-001

10−2 250 136 201 1.15e+000 6/7 49 1.15e+000 1.48e-002 136 201 1.15e+000

10−4 10 251 252 4.97e-004 8/26 70 4.97e-004 1.76e-004 91 273 5.44e-004

10−4 50 500 501 2.50e-003 9/28 109 2.48e-003 1.73e-004 16 66 1.53e-002

10−4 100 500 501 5.30e-003 15/53 81 4.96e-003 1.80e-004 205 501 5.39e-003

10−4 150 500 501 8.87e-003 14/34 68 7.44e-003 1.77e-004 18 79 7.84e-002

10−4 200 500 501 1.36e-002 24/124 164 9.93e-003 1.80e-004 268 616 1.05e-002

10−4 250 500 501 1.99e-002 22/121 159 1.24e-002 1.80e-004 284 624 1.33e-002

10−6 10 253 254 1.18e-005 8/10 11 5.22e-006 1.47e-006 86 140 2.00e-005

10−6 50 500 501 9.49e-005 35/37 38 2.71e-005 1.42e-006 500 520 6.56e-005

10−6 100 500 501 8.01e-004 49/72 73 5.16e-005 1.61e-006 500 540 1.13e-004

10−6 150 500 501 2.85e-003 45/84 85 7.86e-005 1.49e-006 500 536 1.90e-004

10−6 200 500 501 6.90e-003 81/183 184 1.02e-004 1.28e-006 500 585 2.80e-004

10−6 250 500 501 1.36e-002 103/171 172 1.29e-004 8.71e-007 500 531 3.35e-004
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Table 5: Test results about the ill-posed problem 2 with the initial point x0 =
(0.1, 0.1, · · · , 0.1)T and different regularization parameters.

Gauss-Newton Algorithm 2.1 FXhybrid

µ n m Iter Nf ‖rk‖ Biter/Iter Nf ‖rk‖ λmin Iter Nf ‖rk‖
1 10 10 22 76 8.00e-001 6/14 63 8.00e-001 1.37e-001 7 89 8.02e-001

1 10 50 45 47 8.52e-001 9/16 55 8.52e-001 1.32e-001 10 121 8.54e-001

1 20 20 49 81 1.12e+000 6/21 66 1.12e+000 8.03e-002 6 81 1.12e+000

1 20 100 96 98 1.19e+000 6/10 55 1.19e+000 6.22e-002 6 70 1.20e+000

1 30 30 78 115 1.36e+000 7/52 59 1.36e+000 5.64e-002 6 80 1.37e+000

1 30 150 147 149 1.46e+000 4/8 48 1.46e+000 3.64e-002 7 72 1.47e+000

1 40 40 107 131 1.57e+000 27/81 269 1.57e+000 4.53e-002 6 84 1.57e+000

1 40 200 197 199 1.68e+000 7/31 73 1.68e+000 4.79e-002 9 79 1.68e+000

1 50 50 141 245 1.76e+000 6/86 122 1.76e+000 3.87e-002 5 75 1.76e+000

1 50 250 247 249 1.88e+000 7/31 75 1.88e+000 3.99e-002 9 76 1.88e+000

10−2 10 10 3 54 9.29e-002 4/5 48 9.34e-002 2.00e-004 3 64 9.29e-002

10−2 10 50 6 50 9.50e-002 4/8 48 9.52e-002 -9.80e-008 8 99 9.50e-002

10−2 20 20 3 46 1.30e-001 0/3 46 1.30e-001 2.03e-004 4 52 1.30e-001

10−2 20 100 6 51 1.33e-001 5/10 53 1.34e-001 3.27e-006 8 94 1.33e-001

10−2 30 30 3 46 1.59e-001 0/3 46 1.59e-001 1.85e-004 3 54 1.59e-001

10−2 30 150 7 54 1.63e-001 5/10 51 1.63e-001 1.70e-005 9 118 1.63e-001

10−2 40 40 3 48 1.83e-001 0/3 48 1.83e-001 1.80e-004 3 57 1.83e-001

10−2 40 200 7 53 1.88e-001 5/10 46 1.88e-001 3.14e-005 9 135 1.88e-001

10−2 50 50 3 47 2.05e-001 0/3 47 2.05e-001 1.77e-004 3 47 2.05e-001

10−2 50 250 8 52 2.10e-001 6/11 55 2.11e-001 3.02e-005 9 138 2.10e-001

10−4 10 10 8 46 9.60e-003 3/6 9 9.59e-003 3.09e-006 10 101 9.60e-003

10−4 10 50 60 62 9.63e-003 2/7 9 9.63e-003 3.15e-006 6 62 9.68e-003

10−4 20 20 9 47 1.35e-002 2/7 9 1.35e-002 2.37e-006 10 100 1.35e-002

10−4 20 100 124 126 1.35e-002 2/24 26 1.35e-002 2.25e-006 8 84 1.37e-002

10−4 30 30 11 56 1.65e-002 2/7 9 1.65e-002 2.23e-006 16 161 1.65e-002

10−4 30 150 177 179 1.66e-002 3/151 154 1.66e-002 2.04e-006 180 222 1.66e-002

10−4 40 40 10 47 1.91e-002 2/9 11 1.90e-002 2.17e-006 16 139 1.91e-002

10−4 40 200 232 234 1.91e-002 3/197 200 1.91e-002 1.97e-006 9 97 1.94e-002

10−4 50 50 11 53 2.13e-002 0/11 53 2.13e-002 2.04e-006 13 120 2.13e-002

10−4 50 250 287 289 2.13e-002 3/243 246 2.13e-002 1.94e-006 8 80 2.17e-002

10−6 10 10 7 9 1.19e-003 3/16 19 1.10e-003 2.40e-007 7 9 1.19e-003

10−6 10 50 57 59 9.70e-004 2/46 48 9.70e-004 1.79e-007 49 512 9.69e-004

10−6 20 20 56 58 1.51e-003 2/39 41 1.51e-003 7.92e-008 61 204 1.51e-003

10−6 20 100 77 79 1.37e-003 2/62 64 1.37e-003 8.75e-008 71 310 1.37e-003

10−6 30 30 63 65 1.88e-003 2/49 51 1.88e-003 5.15e-008 65 88 1.88e-003

10−6 30 150 91 93 1.68e-003 3/87 90 1.69e-003 6.42e-008 40 379 1.90e-003

10−6 40 40 68 70 2.19e-003 2/55 57 2.19e-003 3.99e-008 75 155 2.19e-003

10−6 40 200 102 104 1.95e-003 3/96 99 1.95e-003 5.16e-008 103 414 1.95e-003

10−6 50 50 73 75 2.47e-003 2/60 62 2.47e-003 3.40e-008 84 333 2.47e-003

10−6 50 250 112 114 2.18e-003 3/103 106 2.18e-003 4.48e-008 121 265 2.18e-003
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