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Abstract. In this paper, we propose a hybrid Gauss-Newton structured BFGS method with a
new update formula and a new switch criterion for the iterative matrix to solve nonlinear least
squares problems. We approximate the second term in the Hessian by a positive definite BEGS
matrix. Under suitable conditions, global convergence of the proposed method with a back-
tracking line search is established. Moreover, the proposed method automatically reduces to the
Gauss-Newton method for zero residual problems and the structured BFGS method for nonzero
residual problems in a neighborhood of an accumulation point. Locally quadratic convergence
rate for zero residual problems and locally superlinear convergence rate for nonzero residual prob-
lems are obtained for the proposed method. Some numerical results are given to compare the
proposed method with some existing methods.
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1 Introduction

This paper is devoted to solving the following nonlinear least squares problems

, 1 & 1 .
min f(z) = 3 er(m) = 5”7“(37)H27 x € R", (1.1)
i=1
where 7(z) = (r1(x), -+ ,rm(z))L, ri : R* — R are twice continuously differentiable for
i=1,---,m, and || - || denotes the Euclidean norm. It is clear that
Vi) =J@) (@), Vf@)=J@)" @)+ ri@) Vi), (12)
i=1

where J(z) is the Jacobian matrix of r(z). Throughout the paper, we denote

g(x) =Vf(x), S)=>)» ri(x)Vri(z),
=1
gk =9(xr), Jp=J(xk), 1 =71(TK), Sk = The1 — Th
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Nonlinear least squares problems have wide applications such as data fitting, param-
eter estimate, function approximation, et al. [2, 31]. Most iterative methods using a line
search are variants of Newton’s method, which can be written in a general form:

Ty1 = Tk + agdy,
where a, > 0 is a stepsize given by some line search and dj, is a search direction satisfying
Byd = —gi,

where B, € R™ ™ is an approximation of V2 f(zy).

The aim of this paper is to design a globally and locally fast convergent structured
quasi-Newton algorithm with a backtracking line search for nonlinear least squares prob-
lems. Although trust region methods have been used to solve nonlinear least squares
problems [6, 8, 31], which do not require a positive definite iteration matrix. For exam-
ple, Dennis, Gay and Welsch [8] presented a quasi-Newton algorithm NL2SOL with trust
region strategy. Numerical experiments show that quasi-Newton algorithm NL2SOL is
efficient for large residual problems and the performance of NL2SOL is similar to that of
the Levenberg-Marquardt algorithm for small residual problems [31]. However, in this
paper, we only focus on line search approaches. Hence the need for Byi1 to be positive
definite is necessary.

Traditional structured quasi-Newton methods are focused on the local convergence
analysis. Their global convergence results have not been established. Li and Fukushima
[22, 23] proposed two globally convergent modified BFGS methods for nonconvex un-
constrained optimization. However, the Li-Fukushima methods have no quadratic con-
vergence rate for least squares problems with zero residual problems, and the special
structure of V2f(xy) is not considered in their methods.

We recall some existing methods, especially structured quasi-Newton methods for
solving nonlinear least squares problems. Nonlinear least squares problems can be re-
garded as a special case for unconstrained minimization with a special structure, and
hence may be solved by unconstrained minimization methods. However, the cost of pro-
viding the complete Hessian matrix is often expensive. To reduce the cost, some methods
use only the first derivative information such as the quasi-Newton method, in which By, 1
is given by

Byy1 = By + Update(sg, Y&, Bk, vk) (1.3)

and satisfies the quasi-Newton equation Byi1s, = yi with

(y—Bs)v" +v(y—Bs)"  (y—Bs)'s
Update(s,y, B,v) = T T T Vo . (1.4)

T
If yr. = gr+1—9gx and vy, = yp+ S%’%‘Z’;k By.sg, then Byyq in (1.3) reduces to the standard
k

BFGS formula for unconstrained optimization, that is, Byy1 = bfgs(sg, Bk, yx), where

B BssT BT yyT

bfes(s, B,y) = B .
gs(s, B, y) TBs T T

(1.5)

The BFGS formula has been regarded as one of the most efficient quasi-Newton methods
in practical computations [4, 7, 11, 22, 23, 24]. A very nice property of the BFGS



update is that, if B is symmetric and positive definite, then B, = bfgs(s, B,y) is also
symmetric and positive definite whenever y”'s > 0. However, this method ignores the
special structure of the Hessian and does not use the available term J! Ji in V2 f(xy).

Past methods improve local convergence properties by exploiting the presence of the
first order term Jk,TJ/yc in Hessian; for example, the Gauss-Newton type methods(or the
Levenberg-Marquardt type methods) [16, 19, 31, 36] are typical methods using the special
structure of the Hessian matrix, whose iterative matrix is given by B = JkT Ji + ppd
with pr > 0. It is well-known that these methods have locally quadratic convergence
rate for zero residual problems and linear convergence rate for small residual problems.
However, these methods may perform poorly, even diverge for large residual problems
[1], since they only use the first order information of f.

There are two ways to overcome this difficulty. One way is to combine the term JkTJk
with the BFGS formula to improve convergence rate for zero residual problems and
the efficiency of the BFGS method for general unconstrained optimization, for instance,
hybrid methods in [1, 17, 18]. Specifically, Fletcher and Xu [18] proposed an efficient
hybrid method for solving (1.1), that is, the matrix B4 is updated by the following
rule: for a given constant € € (0, 1),

Bt = Jade + lreall, i (F(ze) = flzen))/f k) > e (1.6)
+ bfgs(sk, Bk, k), otherwise, ’

where
O = S Jerise + (T — Ji) T regn & V2 (@5g1) s
Suppose that z; — z* and V2f(x*) is positive definite. If f(z*) # 0, then
lim (f(zr) = f(ze41))/ f (k) = 0.

k—o0

If f(z*) =0 and x — x* superlinearly, then

lim (f(zx) — f(@g+1))/ f(2E) = 1.

k—o0

Hence, the role of the term (f(zr) — f(xg+1))/f(zk) is to switch between zero residual
and nonzero residual problems. This method converges quadratically for zero residual
problems and superlinearly for nonzero residual problems. However, global convergence
results for this method have not been given in [18].

The other way is to use the second order information of f sufficiently. For instance,
structured quasi-Newton methods in [9, 13]. An important concept for structured quasi-
Newton methods for nonlinear least squares problems is the Structure Principle [9].

e Structure Principle : Given By = JkTJ;C + Ay as an approximation to V2 f(zy), we
want Bpi1 = J,?+1Jk+1 + Ag41 to be an approximation of V2f(xj1).

Because V2f(zy) = JIJp + S(zy) from (1.2), by the structure principle, Ay and Agq
are approximations of S(xy) and S(zx1), respectively. A popular way to compute By
was given in [9], that is,

Bk-‘rl = Bli + Update(ska ylsm Blia vk):

B = J ki + Ay Ui =Tk + Ji1 Jet1 ks



where 7, is an approximation of S(zj1)sy and is often chosen as 7y = (Jyy1 — Ji ) Tht1,
and Update(sy, y;, B}, vi) is given by (1.4). The structure principle can be achieved by
updating Ay, with the following secant update formula:

Apq1 = Ap + Update(sy, Gk, Ag, vr).

The structured quasi-Newton methods possess only locally superlinear convergence rate
for both zero and nonzero residual problems. In order to improve convergence rate of
the structured quasi-Newton method for zero residual problems, Huschens [21] proposed
a product structure type update, that is, By and By, are defined by

By = Ji Ju+ il Ak, Brrr = JiprJorn + 17 | Apga

This update formula was proved to have quadratic convergence rate for zero residual
problems and superlinear convergence rate for nonzero residual problems. Although
these methods possess locally fast convergence rate, the iterative matrix By, can not
preserve positive definiteness even if B} is positive definite. Hence the search direction
may not be a descent direction of f. Particularly, the Wolfe line search and Armijo line
search [31] can not be used directly. Therefore, global convergence is not easy to be
obtained.

To guarantee the positive definite property of JkT Ji. + Ay, some factorized structured
quasi-Newton methods were proposed in [26, 32, 33, 34] where

B, = (Jk + Lk)T(Jk + Lk),

and L is updated according to certain quasi-Newton formula. Then By is at least
semi-positive definite.

Under suitable conditions, the matrix (J; + L) (J + Ly) is positive definite if the
initial point is close to a solution point. These methods also have locally superlinear con-
vergence rate for both zero and nonzero residual problems, but do not possess quadratic
convergence rate for zero residual problems. In [37], Zhang et al. proposed a family of
scaled factorized quasi-Newton methods based on the idea of [21]

By = (Jo + Irell L) (T + el Li),

which not only has superlinear convergence rate for nonzero residual problems, but also
have quadratic convergence rate for zero residual problems. However, global convergence
has not been studied in [21, 37].

There are two main obstacles for global convergence of the above structured quasi-
Newton methods with some line search. One is that the iterative matrices B may
not be positive definite if the point x; is far from the solution points. Another is that
the iterative matrices By and their inverses Bk_1 are not uniformly bounded. So far,
the study of structured quasi-Newton methods is focused on the local convergence rate
[33, 34, 35, 37|, but global convergence results have not been established.

In this paper, we propose a globally and locally fast convergent hybrid structured
BFGS method. The idea of the paper is to approximate the second term in the Hessian,
S(zk), by a positive definite BFGS matrix. The proposed strategy is using a combination
of [18] and [9, 13], i.e. not only seeks to reduce to the Gauss-Newton method for zero



residual problems as in [18] using a hybridization scheme, but also uses the BEGS method
to estimate the second-order term S(z) within the Hessian as in [9, 13], i.e. applying the
structure principle. Further, a novel switch for between the Gauss-Newton method and
the BFGS method is being proposed.

In the next section, we explain the approach in our method and present the algorithm
in detail. Moreover, we prove that this method not only converges globally, but also
converges quadratically for zero residual problems and superlinearly for nonzero residual
problems. We present numerical results to compare its performance with the Gauss-
Newton method and the Fletcher-Xu hybrid method [18], in Section 3 and Appendix.

2 Algorithm and convergence analysis

In this section, we present a new hybrid Gauss-Newton structured BFGS method for the
problem (1.1), and give global and local convergence analysis for the method. We first
illustrate our approach which is mainly based on the following consideration.

Since JE Jy, is available in V2 f(zy), we hope to preserve this term unchanged in By.
According to the structure principle, we approximate S(xy) using first order information
and BFGS updates. From the observation:

m

S(anat)se = (D ri@es) VAri(een) )se = (v = J) s e/l
i=1

we have the following lemma.

Lemma 2.1. Let
2 = (Jie1 = Ji) el raeell/l7xll, (2.1)
then z ~ S(xk41)Sk-
The first order term z; was also used as a good approximation of S(zyy1)sg in

[21, 37]. Moreover, in our numerical experiments, using zj is more efficient than using
the standard term g = (Jry1 — Ji)  7%41. Hence we construct

Ajir = bfes(sg, Ak, 21),  Brpr = Jiq Jist + Appa.

Lemma 2.2. Suppose V2r;(xy) is bounded for i =1,2,--- ,m and x), — z*. If f(z*) =
0, then (2} sk)/(sksg) — 0 as k — oo. If f(z*) # 0 and S(z*) is positive definite, then
there is a positive constant € such that (z1'sy)/(sksk) > € for sufficiently large k.

Proof. If f(z*) =0, then from f(xy+1) < f(xx) we have that

m

(2 s1)/ (sk st) = lraeall/ il D raeee) (Vrazpen) = Vraen)) s/ sf se — 0.

i=1

If f(2*) # 0 and S(z*) is positive definite, then for sufficiently large k&
(zk s6)/ (st 5) > €,

where 0 < € < $Apin(S(2*)) is a constant and A, (S(2*)) is the smallest eigenvalue of

the matrix S(x O



Lemma 2.2 implies that (2} sy)/(s% sx) can play a similar role as (f(zx) — f(zx41))/ f(zk)

in (1.6). Therefore we can use the term (zf s)/(sk sg) to construct some hybrid meth-
ods. Moreover, the condition (21 s;)/(sksk) > € also gives a way to ensure the positive
definiteness of the update matrix By11. Now we give the definition of the update matrix.

Definition 2.1.

Biiy = { JE Tk + Ak, if (zfsk)/(shsk) > € (2.2)
Jg+1Jk+1 + |Irkrl|l L, otherwise,
where
AksksgAg zkzg . T T
A1 = A= T tame 0 s/ (sesk) 2 6 (2.3)
ks otherwise.

Since Axi1Sk = zr when (z,{sk)/(sgsk) > €, Agy1 is an approximation of S(zj1).

Based on the above discussion, we now can present the hybrid Gauss-Newton structured
BFGS method with a backtracking line search for nonlinear least squares problems (1.1).
Algorithm 2.1 (GN-SBFGS Method)

Step 1. Give a starting point xg € R", a symmetric and positive definite matrix
Ay € RV scalars 4, p € (0,1), € > 0. Set By = J& Jo + Ag. Let k := 0.

Step 2. Compute d by solving the following linear equations

Bid = —g. (2.4)

Step 3. Compute the stepsize aj by the following backtracking line search, that
is, ap = max{p®, p!,---} satisfying

flay +p™dy) < f(ar) +0p™gj, dy. (2.5)

Step 4. Let zp 1 = o + apdy.
Step 5. Update By by the formulas (2.2) and (2.3).
Step 6. Let k := &k + 1 and go to Step 2.

Remark 2.1. Since Ay is symmetric and positive definite and Ay, is defined by the
BFGS formula, Ay is also symmetric and positive definite whenever zgsk > (0. There-
fore for every k, Ay and By in Algorithm 2.1 are symmetric and positive definite. Hence
the search direction dj is a descent direction, that is, g,{dk < 0. This also shows that
Algorithm 2.1 is well-defined.

In the global convergence of Algorithm 2.1, we use the following assumption.
Assumption A.

(I) The level set Q = {x € R"|f(x) < f(zo)} is bounded.

(IT) In an open set N containing (2, there exists a constant Ly > 0 such that

[J(z) = JW)l < Lallz —yll, Va,y € N. (2.6)



It is clear that the sequence {xj} generated by Algorithm 2.1 is contained in €2, and
the sequence {f(zy)} is a descent sequence and has a limit f*, that is,

lim f(ox) = f°. (2.7)

In addition, we get from Assumption A that there are two positive constants L and -,
such that

lg(z) =gl < Lllz —yll, lg@)| <v, Va,ye (2.8)

Now we give the following useful lemmas for our global convergence analysis.

Lemma 2.3. Let Assumption A hold. Then we have

lim agg} dp = 0. (2.9)
k—o0
Proof. Tt follows directly from the line search (2.5), (2.7) and g dj, < 0. O

Lemma 2.4. [3, Lemma 4.1] There exists a constant ¢; > 0 such that
ar=1 or o >ci(—gfdy)/|lde]? (2.10)

Lemma 2.5. Let Assumption A hold. Then for any p € (0,1), there are positive con-
stants B;,1 =1,2,3,4 such that

Bullssll < 1A 850l < Ballsill,  Bsllsil> < st Ajs; < Ballsl|> (2.11)
hold for at least [pk]| values of j € [1,k].

Proof. By (2.6) and |[rg+1]] < ||7%|, there exists a positive constant co such that
(2L'sk)/(sFsk) < co. Then the conclusion follows directly from the update formula Ay,
in (2.3) and Theorem 2.1 in [3]. O

Theorem 2.1. Let Assumption A hold and the sequence {xy} be generated by Algorithm
2.1. Then we have
liminf ||gx|| = 0.
k—o0

Proof. Suppose the conclusion is not true, then there exist three positive constants 7y,
12 and g such that for all k,

m = vl =2, [lgkll > eo. (2.12)

In fact, if liminfy_, ||7%|| = 0, then liminfy_, ||gx|| = O.
Denote K = {k|z{_,sk_1/s}_sk—1 < €}. Since for any k € K, By = JI Jp + ||rx /|1,
by (2.4) we have
~gk dx = [ Tedi ) + lIrellldel? = n2lldil (2.13)

If K is infinite, then by Lemma 2.3, we have limy_. pex akggdk =0.

If lim infy, 0o gex ok > 0, then limg o0 ke g di = 0. Hence from (2.13) we get that
limy oo ke ||di]| = 0. On the other hand, from (2.4) and the first inequality of (2.12)
we have that for k € K,

lgrll < 19 Txlllldll + mlde]| — 0.



This leads to a contradiction to the second inequality of (2.12). If liminfj_,oo pex ar =0,
then from Lemma 2.4 we have that —g{ di./||dx||* — 0, contradicting (2.13).

Now we assume K is finite, then there exists an integer kg such that for all & > ko,
B = JkTJk + Ag. By Lemma 2.5 and s = agdy, we have for infinite k > ko,

—grdi = || Jedi||* + df Apdy > Bs]|di]%,

gkl < 17 Tllldill + | Axdill < (175 Tellllde ]l + Balldl.

Using the similar argument as the above, we also can get the same contradiction as the
case that K is infinite. This finishes the proof. OJ

Theorem 2.1 shows that Algorithm 2.1 is globally convergent for nonlinear least
squares problems (1.1). Now we turn to discussing local convergence rate of Algorithm

2.1. To do this, we need the following assumptions.
Assumption B.

(I) {zx} converges to x* where g(z*) = 0 and V2 f(z*) is positive definite.
(II) V2f is Lipschitz continuous near x*, that is, there exists a constant Ly such that
IV2f(z) = V2 ()]l < Laflz — y] (2.14)
for any x,¥y in a neighborhood of z*.
We first present the following local convergence theorem of Algorithm 2.1 for zero residual

problems.

Theorem 2.2. Let Assumption B hold. Suppose problem (1.1) is a zero residual prob-
lem, then Algorithm 2.1 reduces to the Gauss-Newton method and xj converges to x*
quadratically.

Proof. Because f(z*) =0, we have r(z*) = 0. By (2.1) and f(zg+1) < f(xg), we have

el = [| s ll/ el (s = J) | < limisa|La sl
Hence
(Es0)/ (s )| < Lallresa | = 0, (2.15)
which shows that there exists an integer k1 such that for all k& > kq,
(zgsk)/(sgsk) <.

This implies By = JLJy + ||ri||/l for k > ki, that is, Algorithm 2.1 reduces to the
Gauss-Newton method. Since
V2f(x*) = J()TJ(z*) + S(z*) = J ()T J(z*) + Zri(m*)v2ri(:c*) = J(z)TJ(z"),
i=1

Assumption B implies J(z*)7 J(2*) is positive definite. Therefore quadratic convergence
of the proposed method follows directly from the corresponding theory of the standard
Gauss-Newton method, for example, see [31]. This completes the proof. O
In the rest of this section, we assume f(z*) # 0, that is, the problem (1.1) is a nonzero
residual problem. Firstly, we give the following result on the boundedness of By.



Lemma 2.6. There exist some positive constants 3;,5 = 5,6,7 such that
1Bjsill < Bslisill,  Bslisill < s Bjsj < Brlissl® (2.16)
hold for at least [£] values of j € [1, k].

Proof. Denote K = {j € [1,k] z;fr_lsj_l/s?_lsj_l < e}. Then for all j € K, B; =
JjT J;j + ||Ir;|I1 is uniformly positive definite since f(z*) # 0 implies that there exist two
positive constants 73 and 14 such that n3 < [|rj|| < ns. Hence the inequalities in (2.16)
hold for all j € K from the semi-positive definiteness of JjT Jj. If |K| > [g], then we
obtain the desirable results.

Now we suppose |K| < [E] For j ¢ K, we have Bj = JTJ + A;. It follows from
Lemma 2.5 that the inequalities in (2.16) hold for at least [*=1X |K|1 > [%7 — | K| indices j

n [1, k].

Therefore the inequalities in (2.16) hold for at least [5] — | K| + |K| = [£] indices j
in [1, k]. This completes the proof. O

Lemma 2.7. There exist two positive constants n; and ng such that at each iteration
either

ok + axdy) < far) =059 di)?/||dil,
or
flak + agdy) < f (@) + 169k di-
Proof. It follows from Lemma 2.4, the line search (2.5) and g, I'd;, < 0 directly. |

Lemma 2.8. [3, Theorem 3.1] Let Assumption B hold. Then we have
o
Z |z — 2™ < 0. (2.17)
k=0

Lemma 2.9. Let Assumption B hold. We also suppose that S(x*) is positive definite
and V2r;(z) is Lipschitz continuous near x* for i = 1,2,--- ,m. Then for sufficiently
large k there exists a positive constant M such that

Iz = S (@) siell/llsell < M max{|lzgir — 27|, [Jax — 27|}

Proof. By (2.1) we have

Iz = S(a*)si
= I 10l Y i) (Fritnsa) = Vriton) = S i) Vi)
=1 i=1

IN

[ (el = 1) 3 s (FrsCor) — Fracan))|
=1
+H i(ri(x’”l) = 1i(2"))(Vri(zgs1) — Vri(wk))H

+H Z” ((Vri(wps1) — Vri(ze)) - v2”(x*)sk)H

A1 +A2 +A3.



From the assumptions, there exist a small positive number §y and some constants ¢; > 0,
i=0,1,2,3,4 such that [r(2)|| > co, [ri(z)| < 1, [[r(z) —rW)]| < collz —yl, [Vri(z) -
Vri)ll < eslle — yll, [V2ri(z) — V2ri(y)|| < callz — yl| for all z,y € {ul]lu — 2*|| < &}
and i =1,--- ,m. Therefore for sufficiently large k we have

Ay < g = rell/ el D i@ ) IV rs(@pa) — Vri(aw)|

i=1
mcicocCs
< ——|apg — @l
2mceicacs
< TmaX{HfrkH = ||, lek — 2% HIswll,
Ay < megesmax{||lzgrr — 27|, |op — 27} skl
m
Ay < ey |IVri(argn) = Vriey) — Viri(a®)si|
i=1
m 1
- 2 2 *
= ¢ Z H/ (VPri(zy + tsk) — Vori(z ))SkdtH
i=1 0
< 2meregmax{||zpr — 2|, [|og — 27|} skl

Set M = 27”‘301% + meaes + 2mey ey, then we have
2k — S (™) skl /lIskll < M max{||lzp41 — 2|, |z — 2|}
This finishes the proof. O

Lemma 2.10. [3, Theorem 3.2] Under the assumptions of Lemma 2.9, we have
Jim [[(Ay, = S(z7))sell/ skl = 0.
— 00

Moreover, the sequences {||Ax||} and {||A; ||} are uniformly bounded.
The following lemma shows that the Dennis-Moré condition holds.

Lemma 2.11. Suppose the assumptions of Lemma 2.9 hold and the positive constant €
in Algorithm 2.1 satisfies € < SApnin(S(2*)). Then we have

Jim [[(By, — V2 f(@))skll/llskll = 0. (2.18)

Moreover, the sequences {||By||} and {| By ||} are uniformly bounded.

Proof. Tt is clear that the assumptions imply that for all sufficiently large k, By =
J,%,F Ji + Ag, that is, Algorithm 2.1 reduces to a structured BFGS method. Hence, from
Lemma 2.10 we have

T [|(Be — 92 ()il
=l (IE T = T @I @))sk + (Ag = S )sil /el
< Jim T = T I@)] + Tm (A = S@)sl/ skl
= 0.

Moreover, the sequences {||Bg|} and {||B,'|} are uniformly bounded since JI.J is
semi-positive definite. The proof is then finished. O
The following theorem shows that Algorithm 2.1 converges superlinearly.

10



Theorem 2.3. Suppose the assumptions of Lemma 2.11 hold. If the parameter § in the
line search (2.5) is chosen to satisfy § € (0, %), then {xzy} converges to x* superlinearly.

Proof. By Lemma 2.11, we only need to prove ap = 1 for all sufficiently large k in the
line search (2.5). In fact, by Lemma 2.11, we have ||dg| = HBk_lng — 0. From Taylor’s
expansions we have

flan +di) — f(z) — dgi dy,
1
= (1-d)gldy+ §d£v2f(xk + Ordy)dy,

1
= —(1-0)dl Bpdy + idZVQf(xk + Opdy,)dy

1 1
= —(5 — 0)dE Bydy, — id}f(Bk — V2 f(xp + Ordy))dy,

(kDT + o),

where 0 € (0,1) and the last equality follows from the Dennis-Moré condition (2.18).
Thus f(zg +dy) — f(xg) — 692 dj. < 0 for all sufficiently large k, which implies a, = 1 for
all sufficiently large k. Therefore according to the well-known characterization result of

Dennis and Moré [10], we conclude that the proposed method converges superlinearly.
OJ

3 Numerical experiments

In this section, we compare the performance of the following three methods with the
same line search (2.5) for some nonlinear least squares problems

e The Gauss-Newton method: B, = JkTJk + |||
e The hybrid Gauss-Newton structured BEGS method: Algorithm 2.1 with e = 107%;

e The Fletcher-Xu hybrid (FXhybrid) method: By, is specified by (1.6) with e = 0.2
which was recommended in [17, 18].

All codes were written in Matlab 7.4. We set § = 0.1 and p = 0.5 in the line search
(2.5). For the three methods, we set the initial matrix By = JZ Jo + 1074{|ro||I. We
stopped the iteration if one of the following conditions is satisfied

(i) llgrll <1075
(ii) f(zg) — f(zrt1) < 1078 max(1, f(zg));
(iii) f(zx) <1075

(iv) The total number of iterations exceeds 500.

Tables 2-5 in the Appendix list numerical results of these three methods, where
”Biter/Iter” and "Nf” stand for the total number of BFGS update/all iterations and the
function evaluations respectively; f(x) and 7, mean the functional evaluation and the

11



residual at the stopping point respectively. In Tables 2-5, A, is the smallest eigenvalue
of S(z) at the stopping point.

Table 2 reports the numerical results of the three methods for 28 zero or small residual
problems [25] and the BOD problem [2] with 6 different initial points. Table 3 lists the
numerical results of the three methods for solving 40 large residual problems where
"Froth”, ”Jensam” and ”Cheb” are from [25] and the others are given as follows.
eTrigonometric Problem (Trigo) [1]:

ri(x) = —d; + 7(x)%, i=1,2,---,m,
where .
’I:Z(l‘) = —e; + Z(aij sinxj + bij COS:L‘j), 1=1,2,--+,m,
j=1
with 2 = (21, ,2,)7, a;j, bj; are random integers in [—10, 10], e; are random numbers
in [0,1] and d = (d1,d2, -+ ,dm)? = (1,2,--- ,m)T. We choose the initial point zy as a

random vector whose elements are in [—100, 0].
eSignomial Problem (Sig) [1]:

l n
) — ) @ijk i —=1.92
rl(x)__ez+ Cik .%'] 5 t=1,2,---,M,
k=1 7=1

where a;j;, are random integers in [0, 3], ¢;; and e; are random numbers in [—100, 100]
and [—10, 10] respectively. We choose | = 8, and the initial point z¢ as a random vector
whose elements are in [—5, 5].

eParameterized Problem (Para) [21]:

ri(x) =x1 —2, ro(z)=(r1 —2¢)x2, 13(x)=122+1,

where © = (x1,72)7 and ¢ is a parameter. If 1) # 1, then this problem is a nonzero
residual problem. We choose different values of 4 and initial points xg in our test. For
details, see Table 2.

eNonlinear regression problem (BOD) [2, pp.305]: The nonlinear regression model
based on the data on biochemical oxygen demand(BOD) can be converted into the non-
linear least square problem (1.1) where 7(x) = (ry(z),--- ,73(z))?, © = (z1,22)" and

ri(x) = z1(1 — e™) — 047, ro(x) = x1(1 — *72) — 0.74;
ry(x) = x1(1 — 3%2) — 1.17;  ry(z) = 21(1 — €'¥2) — 1.42;
rs(x) = x1(1 — 2%2) — 1.60;  76(z) = 21(1 — e™2) — 1.84;
rr(x) = z1(1 —e%2) = 2.19;  rg(z) = 21(1 — e'172) — 2.17.

Table 4 and Table 5 list some numerical results of the three methods for solving a
special class of nonlinear least square problems.
e Convex variational regularization problem: Suppose that F': R — R™ is a map.
The convex variational regularization problem is the following minimization problem

. 1 7
win () = LIF(@)+ 2h) 3.1)
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where h : R” — R is a convex function and p is a regularization parameter. Many
practical problems can be converted into solving this problems such as ill-posed prob-
lems, inverse problems, some constrained optimization problems and model parameter
estimation [27, 30, 28, 29, 14, 15].

[ll-posed problems occur frequently in science and engineering. Regularization meth-
ods for computing stabilized solutions to the ill-posed problems have been extensively
studied [20]. In this paper, we chose two convex variational regularization problems
which come from ill-posed problems. In our test, we chose h(z) = Y. (2?)% in (3.1).
Therefore (3.1) reduces to the nonlinear least squares problem (1.1) with the form:

r(x) = (F(z), a2, -, /ua2)T,

Now we chose two ill-posed problems as follows. One is linear and another is nonlinear.
(i) Ill-posed problem 1 (The linear ill-conditioned problem): F(z) = Az — b,
iﬂ%l is the Hilbert matrix. In our code, we set b =
A x ones(n,1) + 107% % ones(n, 1) and the initial point z¢ = (10,---,10)7.
(ii) Ill-posed problem 2 (The nonlinear inverse problem): The Fredholm integral

where A = (aij)nxn With a;; =

equation of the first kind has the following version
b
/ K(t,s,u(s))ds = g(t), c<t<d, (3.2)

where the right-hand side g and the kernel K are given, and z is an unknown solution.
We use the composite quadrature method to approximate the integral by a weighted sum

/Ktsu Zwl (t,55,u(s;)).

Collocation in the m points t1,--- ,t,, leads to the requirements I,,(t;) = g(t;),j =
1,--- ,m. It is a finite dimensional nonlinear ill-posed problem. To obtain a meaningful
solution, it is often converted into solving a regularization solution of (3.1) where

F‘j(gj) = In(t]) - g(tj)vj = 1a e, M T = (u(81)7 e 7u(8n))T‘
In our test we chose the following data [5]

ettt — 1

[a,b] = [c,d] = [0,1], K(t,s,u(s)) = se(tﬂ)“(s), g(t) = m

Integral equation (3.2) with these data has an analytical solution as u(s) = s? on [0, 1].
In our numerical experiment, we chose t; = #L;_ll for j = 1,--- ,m. We set the initial
point zg = (0.1,---,0.1)T.

Table 1 summaries the data in Tables 2-5, in which ”#Bestiter”, ”#BestNf” and
"#Bestfv” are the number of test problems that the method wins over the rest of the
methods on the number of iterations, function evaluations and the best final objective
function value performance in all 138 test problems, respectively; ”Probability” roughly
means the probability that the method wins over the rest of the methods.

It is clear from Table 1 that Algorithm 2.1 is the best method among these three
methods. In order to show the number of iterations or function evaluations performance
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Table 1: Summary over Tables 2-5 in the Appendix.

Gauss-Newton Algorithm 2.1 FXhybrid
#Bestiter 28 85 49
Probability 2 ~20% 2~ 62% 1o ~ 36%
#BestNf 23 108 26
Probability % ~ 17% % ~ 78% % ~ 19%
#Bestfv 92 100 81
Probability 2 ~67% 02 ~ 2% 25 ~ 58%
P
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Figure 1: Performance profiles with respect to the number of iterations.
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Figure 2: Performance profiles with respect to the number of function evaluations.

of the three methods more clearly, we plotted Figures 1-2 according to the data in Tables
2-5 in the Appendix section by using the performance profiles of Dolan and Moré [12].

Since the top curve in Figures 1-2 corresponds to Algorithm 2.1, it is clear that
Algorithm 2.1 is most efficient for solving these 138 test problems among the three
methods. We see from Figure 1 that Algorithm 2.1 solves about 62% and 78% (85 and
108 out of 138) of the test problems with the least number of iterations and function
evaluations respectively. Figure 1 also shows that the FXhybrid method performs better
than the Gauss-Newton method. However, Figure 2 shows that the FXhybrid method
needs more function evaluations than the Gauss-Newton method within 0.3 < 7 < 3.5.
Table 2 shows that the Gauss-Newton method is efficient for zero residual problems and
using the BFGS update can improve numerical performance. We also note from Table 1
that Algorithm 2.1 has the best final objective value for most problems, which has about
72% (100 out of 138) probability with the best final objective value.

4 Conclusions

In this paper, we proposed a new hybrid Gauss-Newton structured BFGS method for
nonlinear least squares problems. We use a new formula (2.2)-(2.3) to update the itera-
tive matrix. The new formula deals with zero or nonzero residual problems in an intel-
ligent way. Global convergence of the proposed method is established. Under suitable
conditions, the proposed method possesses quadratic convergence rate for zero residual
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problems and superlinear convergence rate for nonzero residual problems. Numerical

results show that the proposed method is efficient for nonlinear least squares problems
compared with the Gauss-Newton method and the Fletcher-Xu hybrid method.
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Appendix

Table 2: Test results for 28 some zero or small residual test problems from [25] and the
BOD problem with 6 different initial points.

Gauss-Newton Algorithm 2.1 FXhybrid
Prob n m Iter | Nf f(zk) Biter/Iter | Nf |  f(zk) Iter | Nf f(zx)
Rose 2 2 15 | 24 | 4.86e-012 18/19 27 | 7.89e-011 || 21 87 | 3.48e-010
Badscp | 2 2 500 | 502 | 1.77e-006 68/85 97 |9.90e-009 || 500 | 5308 | 2.09e-004
Badscb | 2 3 500 | 503 | 4.97e4-011 8/16 43 | 3.64e-015 || 33 | 402 | 7.09e-012
Beale 2 3 9 10 | 4.40e-011 2/10 11 | 2.35e-013 || 9 10 | 4.40e-011
Helix | 3 3 11 | 12 | 3.27e-013 66/71 | 490 |3.17e-009 || 11 | 12 |3.27e-013
Bard 3 15 148 | 149 | 4.11e-003 6/6 7 |4.11e-003 || 71 | 102 | 4.11e-003
Gauss 3 15 1 2 | 5.64e-009 0/1 2 | 5.64e-009 1 2 | 5.64e-009
Gulf 3 10 500 | 502 | 1.96e-003 13/17 31 | 1.26e-008 || 27 | 61 | 2.10e-006
Box 3 10 50 | 51 | 6.27e-008 4/8 9 | 7.12e-011 | 30 | 31 |4.14e-008
Sing 4 4 11 | 12 | 6.95e-009 8/9 10 | 4.09e-009 || 11 | 12 | 6.95e-009
Wood | 4 6 330 | 334 | 1.04e-014 14/46 48 |3.99¢-015 || 389 | 883 | 3.99e-011
Kowosb | 4 11 24 | 26 | 1.54e-004 1/31 33 | 1.54e-004 || 24 26 | 1.54e-004
Biggs | 6 13 500 | 505 | 9.74e-004 6/317 | 326 | 4.90e-006 || 500 | 605 | 9.02¢-006
Osb2 11 65 356 | 357 | 2.01e-002 31/34 43 | 2.01e-002 || 247 | 380 | 2.01e-002
Watson | 20 31 13 | 14 | 2.18e-007 5/8 10 | 5.93e-008 || 13 14 | 2.18e-007
Cheb 5 5 3 5 | 2.95e-009 2/4 6 |1.66e-015 || 3 5 | 2.95e-009
Rosex | 20 20 22 | 27 | 6.34e-011 20/21 32 | 9.61e-013 || 22 47 | 5.29e-009
Singx | 20 20 14 | 15 | 6.68e-008 8/9 10 | 2.05e-008 || 14 | 15 | 6.68e-008
Vardim | 20 22 11 | 12 | 2.15e-017 10/11 12 | 2.18e-010 || 11 12 | 2.15e-017
Trig 20 20 39 | 137 | 2.32e-006 5/8 17 | 2.40e-012 || 9 55 | 2.84e-009
Rosex | 100 100 39 | 44 | 3.45e-014 20/22 32 | 2.42e-012 || 44 | 67 | 3.62e-010
Singx | 100 100 23 | 24 | 6.34e-008 8/10 11 | 1.65e-008 || 23 24 | 6.34e-008
Vardim | 100 102 15 | 16 | 4.42e-010 15/16 17 | 2.43e-011 || 15 16 | 4.42e-010
Trig 100 100 7 17 | 4.16e-010 5/9 31 | 8.54e-012 || 196 | 3026 | 1.28e-011
Rosex | 500 500 76 | 81 | 4.63e-012 20/21 31 [6.57e-011 || 22 | 73 | 8.32e-012
Singx | 500 500 42 | 43 | 1.39e-007 9/11 12 | 3.55e-008 || 42 | 43 |1.39e-007
Vardim | 500 502 20 | 21 | 1.93e-014 19/21 22 12.81e-012 || 20 21 | 1.93e-014
Trig | 500 500 7 | 16 | 1.62e-009 11/14 74 |3.96e-010 || 62 | 1192 | 5.09e-011
Prob n g Tter | Nf f(zg) Biter/Iter | Nf |  f(zx) Iter | Nf f(zg)
BOD 2 (1,0) 8 | 56 0.01 3/6 54 0.01 9 | 86 0.01
BOD 2 (100, 0) 7 113 0.45 3/7 85 0.45 8 | 87 0.45
BOD 2 |(0.01,0.01) || 500 | 525 0.57 3/4 68 1.75 4 | 105 1.81
BOD 2 | (10,0.01) || 500 | 501 0.56 29/32 | 102 0.49 20 | 122 0.50
BOD 2 | (100,0.01) 6 | 113 0.44 6/7 82 0.45 6 116 0.44
BOD 2 | (-10,-1) 8 | 56 0.01 9/13 14 0.01 9 | 65 0.01
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Table 3: Test results about 40 large residual problems.

Gauss-Newton Algorithm 2.1 FXhybrid
Prob | n m Iter | Nf |lrell || Biter/Iter | Nf | |lrg] || Iter | Nf 7]l
Froth 2 2 187 | 188 6.70 31/89 90 6.70 74 | 1166 | 6.70
Jensam | 2 4 93 | 349 2.05 14/46 | 143 | 2.05 73 | 763 2.05
Jensam | 2 6 268 | 1436 | 4.39 18/18 26 4.39 27 | 448 4.39
Jensam | 2 8 500 | 3281 | 7.44 19/19 25 7.45 39 | 508 7.46
Jensam | 2 10 500 | 3796 | 11.16 49/49 65 11.20 51 | 463 11.15
Cheb 8 8 130 | 502 | 0.0593 17/34 78 | 0.0593 || 177 | 1724 | 0.0593
Cheb | 10 10 17 | 23 | 0.0806 2/13 20 | 0.0806 | 20 | 149 | 0.0806
Cheb 8 16 22 23 | 0.2428 2/21 22 | 0.2428 23 24 | 0.2428
Trigo 3 6 19 21 8.10 2/12 13 4.10 28 31 86.21
Trigo | 3 12 57 | 67 | 159.23 13/53 57 | 159.24 || 28 | 30 | 150.06
Trigo 3 15 21 23 179.21 1/22 24 | 179.21 31 | 208 | 178.87
Trigo 4 8 27 | 31 49.36 15/20 25 | 49.36 36 64 40.55
Trigo | 4 20 117 | 119 | 352.11 17/71 73 | 353.68 || 16 | 203 | 373.68
Trigo | 4 40 47 | 49 | 607.09 20/45 47 | 607.55 || 38 | 40 | 777.12
Trigo | 6 8 82 | 178 | 19.01 26 /75 | 86 | 30.57 16 | 17 6.06
Trigo 6 12 48 69 24.23 8/35 37 | 21.14 24 25 23.94
Trigo 6 20 49 51 211.39 25/46 49 | 211.47 || 27 29 228.79
Trigo | 8 8 95 | 350 4.99 18/31 7 1.01 79 | 453 | 4.30
Trigo 8 16 26 34 135.27 7/25 27 | 135.27 || 28 | 164 | 141.09
Trigo 8 40 61 63 | 698.26 25/30 32 | 698.46 || 90 | 661 | 361.86
Trigo | 10 20 69 | 75 74.91 9/45 47 | 74.02 42 | 473 | 51.88
Trigo | 10 40 142 | 144 | 770.00 51/117 | 119 | 678.06 || 69 | 579 | 570.24
Trigo | 10 50 45 | 50 |1041.07 26/36 38 | 1043.10 || 32 | 362 | 1165.79
Sig 2 6 187 | 825 52.10 28/75 244 | 52.10 64 | 246 52.10
Sig 2 10 47 | 80 79.36 19/40 61 | 79.36 49 | 71 79.36
Sig 2 30 50 52 269.10 17/40 42 | 269.10 || 49 51 269.10
Sig 4 8 28 30 11.47 4/24 25 11.47 31 33 11.47
Sig 4 10 251 | 252 15.56 78/82 84 14.78 251 | 252 15.56
Sig 4 20 81 84 24.24 9/72 74 | 24.24 26 29 24.41
Sig 4 30 56 59 26.22 9/40 44 26.22 53 56 26.22
Sig 4 40 52 | 116 | 88.51 18/26 28 | 88.54 29 | 45 88.51
Sig 6 12 338 | 893 | 13.88 50/144 491 | 14.04 || 172 | 334 | 13.88
Sig 6 24 46 50 21.19 18/24 27 | 22.64 49 53 21.19
Sig 6 30 96 | 164 | 28.22 64/68 73 | 28.28 45 | 65 28.22
Prob Y zg Iter | Nf 7]l Tter Nf | |lrell Iter | Nf 7]l
Para | 10 | (0,0) 8 9 1.00 0/8 9 1.00 4 5 1.00
Para 10 (1,1) 14 15 1.00 1/12 13 1.00 14 15 1.00
Para 10 | (10,10) || 25 26 1.00 8/8 10 1.00 30 64 1.00
Para | 100 | (0,0) 7 8 1.00 0/7 8 1.00 5 6 1.00
Para | 100 | (1,1) 13 14 1.00 1/7 8 1.00 14 16 1.00
Para | 100 | (10,10) || 20 21 1.00 4/5 6 1.00 41 | 215 1.00
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Table 4: Test results about the ill-posed problem 1 with the initial point zg =

(10,10, ---,10)T and different regularization parameters.
Gauss-Newton Algorithm 2.1 FXhybrid

u | m=n]| Iter | Nf I7 | Biter/Iter| Nf Il Amin Tter | Nf [l7x |

1 10 6 55 | 2.12e4-000 6/8 55 | 2.17e+000 | 7.79e-001 6 55 | 2.12e4-000

1 50 23 | 301 | 1.06e+001 5/7 55 | 1.09e+4-001 | 7.53e-001 || 23 | 301 | 1.06e+4-001

1 100 15 | 95 | 2.12e+001 5/7 58 | 2.16e+4001 | 7.32e-001 || 15 | 95 | 2.12e4-001

1 150 23 | 218 | 3.18e+-001 6/8 61 | 3.23e+001 | 7.09¢-001 || 23 | 218 | 3.18e+001

1 200 24 | 239 | 4.23e4-001 6/8 99 | 4.44e+001 | 8.21e-001 || 24 | 239 | 4.23e+001

1 250 32 | 233 | 5.29e+4-001 6/9 58 | 5.45e+4-001 | 7.50e-001 || 32 | 233 | 5.29e+4-001
1072 10 44 | 75 | 4.61e-002 4/6 51 | 4.61e-002 | 1.52e-002 || 44 | 75 | 4.61e-002
1072 50 63 | 268 | 2.30e-001 5/6 47 | 2.30e-001 | 1.49e-002 || 63 | 268 | 2.30e-001
1072 100 118 | 307 | 4.60e-001 6/7 48 | 4.60e-001 | 1.48e-002 || 118 | 307 | 4.60e-001
1072 150 133 | 235 | 6.91e-001 7/8 46 | 6.91e-001 | 1.47e-002 || 133 | 235 | 6.91e-001
1072 200 138 | 247 | 9.21e-001 7/8 51 | 9.21e-001 | 1.48e-002 || 138 | 247 | 9.21e-001
1072 | 250 136 | 201 | 1.15e+000 6/7 49 | 1.15e+4-000 | 1.48e-002 || 136 | 201 | 1.15e+-000
1074 10 251 | 252 | 4.97e-004 8/26 70 | 4.97e-004 | 1.76e-004 || 91 | 273 | 5.44e-004
1074 50 500 | 501 | 2.50e-003 9/28 109 | 2.48e-003 | 1.73e-004 || 16 | 66 | 1.53e-002
1074 100 500 | 501 | 5.30e-003 15/53 81 | 4.96e-003 | 1.80e-004 || 205 | 501 | 5.39e-003
1074 150 500 | 501 | 8.87e-003 14/34 68 | 7.44e-003 | 1.77e-004 || 18 | 79 | 7.84e-002
107*| 200 500 | 501 | 1.36e-002 24/124 | 164 | 9.93e-003 | 1.80e-004 || 268 | 616 | 1.05e-002
1074 250 500 | 501 | 1.99e-002 22/121 | 159 | 1.24e-002 | 1.80e-004 || 284 | 624 | 1.33e-002
10-¢ 10 253 | 254 | 1.18e-005 8/10 11 | 5.22e-006 | 1.47e-006 || 86 | 140 | 2.00e-005
107° 50 500 | 501 | 9.49e-005 35/37 38 | 2.71e-005 | 1.42e-006 || 500 | 520 | 6.56e-005
1075 | 100 500 | 501 | 8.01e-004 49/72 73 | 5.16e-005 | 1.61e-006 || 500 | 540 | 1.13e-004
1076 | 150 500 | 501 | 2.85e-003 45/84 85 | 7.86e-005 | 1.49e-006 || 500 | 536 | 1.90e-004
107%| 200 500 | 501 | 6.90e-003 81/183 | 184 | 1.02e-004 | 1.28e-006 || 500 | 585 | 2.80e-004
107¢ 250 500 | 501 | 1.36e-002 || 103/171 | 172 | 1.29e-004 | 8.71e-007 || 500 | 531 | 3.35e-004

20



Table 5: Test results about the ill-posed problem 2 with the initial point zo =

(0.1,0.1,---,0.1)7 and different regularization parameters.
Gauss-Newton Algorithm 2.1 FXhybrid
uw | n| m || Iter | Nf [l7e | Biter/Iter] Nf lr&]l Amin Tter | Nf [l7s]|
1 10| 10 || 22 | 76 | 8.00e-001 6/14 63 | 8.00e-001 | 1.37e-001 7 | 89 | 8.02e-001
1 10| 50 45 | 47 | 8.52e-001 9/16 55 | 8.52e-001 | 1.32e-001 10 | 121 | 8.54e-001
1 20| 20 49 | 81 | 1.12e+4000 6/21 66 | 1.12e4-000 | 8.03e-002 6 81 | 1.12e+000
1 20100 || 96 | 98 | 1.19e+000 6/10 55 | 1.19e+4-000 | 6.22e-002 6 70 | 1.20e+000
1 30| 30 || 78 | 115 | 1.36e+000 7/52 59 | 1.36e+000 | 5.64e-002 6 | 80 | 1.37e+000
1 30 | 150 || 147 | 149 | 1.46e+4-000 4/8 48 | 1.46e+4-000 | 3.64e-002 7 72 | 1.47e+000
1 40 | 40 || 107 | 131 | 1.57e+4-000 27/81 | 269 | 1.57e+000 | 4.53e-002 6 | 84 | 1.57e+000
1 40 | 200 || 197 | 199 | 1.68e+-000 7/31 73 | 1.68e+000 | 4.79e-002 9 79 | 1.68e+000
1 50 | 50 || 141 | 245 | 1.76e+000 6/86 122 | 1.76e4-000 | 3.87e-002 5 75 | 1.76e+000
1 50 | 250 || 247 | 249 | 1.88e+4-000 7/31 75 | 1.88e+000 | 3.99e-002 9 76 | 1.88e+000
107210 10 3 | 54 | 9.29e-002 4/5 48 | 9.34e-002 | 2.00e-004 3 | 64 | 9.29e-002
1072 (10| 50 6 | 50 | 9.50e-002 4/8 48 | 9.52e-002 |-9.80e-008 || 8 | 99 | 9.50e-002
107220 20 3 | 46 | 1.30e-001 0/3 46 | 1.30e-001 | 2.03e-004 4 | 52 | 1.30e-001
1072{20 (100 6 | 51 | 1.33e-001 5/10 53 | 1.34e-001 | 3.27e-006 8 | 94 | 1.33e-001
1072|301 30 3 | 46 | 1.59e-001 0/3 46 | 1.59e-001 | 1.85e-004 3 | 54 | 1.59e-001
1072 (30150 7 | 54 | 1.63e-001 5/10 51 | 1.63e-001 | 1.70e-005 9 | 118 | 1.63e-001
1072 | 40 | 40 3 | 48 | 1.83e-001 0/3 48 | 1.83e-001 | 1.80e-004 3 | 57 | 1.83e-001
107240 (200 7 | 53 | 1.88e-001 5/10 46 | 1.88e-001 | 3.14e-005 9 | 135 | 1.88e-001
1072 | 50 | 50 3 | 47 | 2.05e-001 0/3 47 | 2.05e-001 | 1.77e-004 3 | 47 | 2.05e-001
107250 [250| 8 | 52 | 2.10e-001 6/11 55 | 2.11e-001 | 3.02e-005 9 | 138 | 2.10e-001
10710 10 8 46 | 9.60e-003 3/6 9 | 9.59e-003 | 3.09e-006 10 | 101 | 9.60e-003
107|101 50 || 60 | 62 | 9.63e-003 2/7 9 | 9.63e-003 | 3.15e-006 6 | 62 | 9.68e-003
107 (20| 20 9 47 | 1.35e-002 2/7 9 1.35e-002 | 2.37e-006 10 | 100 | 1.35e-002
107* {20 | 100 || 124 | 126 | 1.35e-002 2/24 26 | 1.35e-002 | 2.25e-006 8 84 | 1.37e-002
107*]30| 30 11 | 56 | 1.65e-002 2/7 9 1.65e-002 | 2.23e-006 16 | 161 | 1.65e-002
1074 |30 | 150 || 177 | 179 | 1.66e-002 3/151 | 154 | 1.66e-002 | 2.04e-006 || 180 | 222 | 1.66e-002
107* | 40 | 40 10 | 47 | 1.91e-002 2/9 11 | 1.90e-002 | 2.17e-006 16 | 139 | 1.91e-002
1074 | 40 | 200 || 232 | 234 | 1.91e-002 3/197 | 200 | 1.91e-002 | 1.97e-006 9 | 97 | 1.94e-002
107* |50 | 50 11 | 53 | 2.13e-002 0/11 53 | 2.13e-002 | 2.04e-006 13 [ 120 | 2.13e-002
1074 | 50 | 250 || 287 | 289 | 2.13e-002 3/243 | 246 | 2.13e-002 | 1.94e-006 8 | 80 | 2.17e-002
107%| 10| 10 7 9 | 1.19e-003 3/16 19 | 1.10e-003 | 2.40e-007 7 9 | 1.19e-003
107% 10| 50 || 57 | 59 | 9.70e-004 2/46 48 | 9.70e-004 | 1.79e-007 || 49 | 512 | 9.69e-004
107620 20 || 56 | 58 | 1.51e-003 2/39 41 | 1.51e-003 | 7.92e-008 || 61 | 204 | 1.51e-003
107%|20( 100 || 77 | 79 | 1.37e-003 2/62 64 | 1.37e-003 | 8.75e-008 || 71 | 310 | 1.37e-003
10730 30 || 63 | 65 | 1.88e-003 2/49 51 | 1.88e-003 | 5.15e-008 || 65 | 88 | 1.88e-003
107% |30 (150 || 91 | 93 | 1.68e-003 3/87 90 | 1.69e-003 | 6.42e-008 || 40 | 379 | 1.90e-003
107640 | 40 || 68 | 70 | 2.19e-003 2/55 57 | 2.19e-003 | 3.99e-008 || 75 | 155 | 2.19e-003
107 | 40 | 200 || 102 | 104 | 1.95¢-003 3/96 99 | 1.95e-003 | 5.16e-008 || 103 | 414 | 1.95e-003
107650 | 50 || 73 | 75 | 2.47e-003 2/60 62 | 2.47e-003 | 3.40e-008 || 84 | 333 | 2.47e-003
1075 | 50 | 250 || 112 | 114 | 2.18e-003 3/103 | 106 | 2.18e-003 | 4.48e-008 || 121 | 265 | 2.18e-003
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