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Abstract

Image restoration problems are often converted into large-scale, nonsmooth and non-
convex optimization problems. Most existing minimization methods are not efficient for
solving such problems. It is well-known that nonlinear conjugate gradient methods are
preferred to solve large-scale smooth optimization problems due to their simplicity, low
storage, practical computation efficiency and nice convergence properties. In this paper,
we propose a smoothing nonlinear conjugate gradient method where an intelligent scheme
is used to update the smoothing parameter at each iteration and guarantees that any accu-
mulation point of a sequence generated by this method is a Clarke stationary point of the
nonsmooth and nonconvex optimization problem. Moreover, we present a class of smooth-
ing functions and show their approximation properties. This method is easy to implement
without adding any new variables. Three image restoration problems with different pixels
and different regularization terms are used in numerical tests. Experimental results and
comparison with the continuation method in [M.Nikolova et al, SIAM J. Imaging Sciences,
1(2008), pp.2-25] show the efficiency of the proposed method.

Keywords. Image restoration, regularization, nonsmooth and nonconvex optimization,
nonlinear conjugate gradient method, smooth approximation, potential function

AMS subject classification. 65F22, 65F10, 65K05

1 Introduction

The image restoration problem is that of reconstructing an image of an unknown scene from an
observed image. This problem plays an important role in medical sciences, biological engineer-
ing and other areas of science and engineering [1, 4, 31]. The most common image degradation
model can be represented by the following system:

b = Ax + η, (1.1)

where η ∈ Rm represents the noise, A is an m × n blurring matrix, x ∈ Rn and b ∈ Rm

are the underlying and observed images respectively. In many cases, A is a matrix of block
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Toeplitz with Toeplitz blocks (BTTB) when zero boundary conditions are applied and block
Toeplitz-plus-Hankel with Toeplitz-plus-Hankel blocks (BTHTHB) when Neumann boundary
conditions are used [22].

Technically we are not solving (1.1) since η is unknown. We are instead solving

min
x∈Rn

‖b−Ax‖.

Solving this problem alone will not get a satisfactory solution since the system is very sensitive
to the noise and lack of imformation. The following smooth least square problem:

min
x∈Rn

‖b−Ax‖2
2 + β‖Dx‖2

2,

is often used, where D is an operator and β is the regularization parameter that controls the
trade-off between the data-fitting term and the regularization term. For the regularization
term, there has been a growing interest in using l1 norm [6, 15, 23]. The l1 solution tends to
have better statistical properties than the l2 solution. In [13], Fu et al considered the mixed
l2 − l1 norm form:

min
x∈Rn

‖b−Ax‖2
2 + β‖Dx‖1, (1.2)

and the l1 − l1 norm form:
min
x∈Rn

‖b−Ax‖1 + β‖Dx‖1. (1.3)

These two minimization problems are convex but nonsmooth. In [24], Nikolova et al considered
the following more general form:

min
x∈Rn

Θ(b−Ax) + βΦ(x), (1.4)

where Θ forces closeness to data and Φ embodies the priors. The mixed l2 − l1 norm form
(1.2) and the l1 − l1 norm form (1.3) are special forms of (1.4). Minimization methods for
these forms were proposed in [13]. However, (1.4) can be nonconvex and nonsmooth. A class
of regularization functions is of the form

Φ(x) =
r∑

i=1

ϕ(dT
i x),

where ϕ is called a potential function and {d1, · · · , dr} is a set of vectors of Rn. The role of Φ
is to push the solution to exhibit some priori expected features, such as the presence of edges,
smooth regions, and textures. As proven in [23], although convex potential functions such as
ϕ(t) = |t| are often used for the regularization term, nonconvex regularization functions such

as ϕ(t) =
α|t|

1 + α|t| with α > 0 provides better possibilities for restoring images with neat edges.

For this reason, many image restoration problems are often converted into nonsmooth, non-
convex optimization problems. Moreover, the optimization problems are large-scale because
the discretized scenes usually have a large number n = l × l of pixels. Several efficient algo-
rithms for image restoration problems are proposed in [13, 24], which use linear or quadratic
programming reformulation and interior point methods. Fu et al [13] considered nonsmooth
and convex problems, and Nikolova et al [24] considered a continuation method for nonsmooth
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and nonconvex problems for arbitrary A in (1.4). The continuation method proposed in [24]
is to approximate the minimizer of the objective function. However, there is no guarantee
for the convergence of the continuation method. A drawback of these methods is the use of
4n + 2m additional variables, which makes these methods impractical for solving large-scale
problems. The aim of this paper is to present an efficient optimization method for large-scale
nonsmooth, nonconvex image restoration problems. This method ensures that from any start-
ing point in Rn, any accumulation point of the sequence generated by the method is a Clarke
stationary point. Moreover, this method does not increase the dimension, which is important
for large-scale problems.

For convenience, in this paper, we first consider the following nonsmooth and nonconvex
optimization problem in an abstract form:

min
x∈Rn

f(x). (1.5)

Although large-scale nonsmooth and nonconvex optimization problems occur frequently in
practice [3, 20, 32], efficient existing methods are rare. Burke et al [3] introduced a robust
gradient sampling algorithm for solving nonsmooth, nonconvex unconstrained minimization
problem. Kiwiel [19] slightly revised this algorithm and showed that any accumulation point
generated by the algorithm is a Clarke stationary point with probability one. Encouraging
numerical results for some small problems are reported in [3, 19].

It is well-known that nonlinear conjugate gradient methods such as the Polak-Ribière-Polyak
(PRP) method [26, 27] are very efficient for large-scale smooth optimization problems due to
their simplicity and low storage. Moreover, nonlinear conjugate gradient methods such as the
PRP+ method [17], and conjugate gradient methods with suitable line search [16, 35, 36] are
proposed, for nonconvex minimization problems which ensure any accumulation point gener-
ated by the algorithm is a stationary point. However, nonlinear conjugate gradient methods
for solving nonsmooth optimization have not been studied. Moreover, we notice that most
models of image restoration have some symmetric character in the Hessian matrix at points
where the objective function is differentiable. The methods in [16, 35, 36] do not have the
symmetric feature. To develop an efficient optimization method for nonsmooth and nonconvex
minimization problems arising from image restoration, we first present a globally convergent
nonlinear conjugate gradient method for smooth nonconvex minimization problems where the
search direction can be presented by the gradient with a symmetric and uniformly positive
definite matrix. Next, we extend the method to solve nonsmooth and nonconvex optimization
by adopting smoothing functions.

This paper is organized as follows. In the next section, we present a globally convergent
smoothing method for nonsmooth and nonconvex minimization problems. To present our
approach clearly, we first give a smooth version of this method and prove the convergence for
the case where f is differentiable. In Section 3, we present a class of smoothing functions and
show their nice approximation properties for image restoration. Moreover, we show that all
assumptions for the convergence of the smoothing conjugate gradient method hold and any
accumulation point generated by the method is a Clarke stationary point, when the method
is applied to several common models of image restoration. In section 4, we present numerical
results for three images with n × n (n = 128 × 128 to 256 × 256) blurring matrices to show
the effectiveness and the efficiency of the proposed method. Moreover, comparison with the
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continuation method in [24] is reported. Numerical results show that the continuation method
in [24] can find smaller function values, and our method can obtain better psnr values with less
CPU time.

Throughout the paper, ‖ · ‖ denotes the l2 norm and ‖ · ‖1 denotes the l1 norm. R+ denotes
the set of all nonnegative real numbers. R++ denotes the set of all positive real numbers.

2 Algorithms description

In this paper, we consider the general iterative scheme for solving (1.5):

xk+1 = xk + αkdk, k = 0, 1 · · · , (2.1)

where stepsize αk is a positive scalar and dk is a search direction given by some formula. In
order to describe our algorithms conveniently, we divide this section into two subsections for
two cases: (a) f is smooth and nonconvex; (b) f is nonsmooth and nonconvex.

2.1 Smooth case

Based on the CG-Descent method in [16], the three-term descent method in [35], the symmetry
of the limited memory BFGS method (L-BFGS) [25, 30] and the modified BFGS method [21],
we propose a new symmetric descent nonlinear conjugate gradient method which converges to
a stationary point from any starting point for nonconvex minimization problems. We consider
the search direction

dk =

{
−gk, if k = 0,

−gk + βkdk−1 + θkzk−1, if k > 0,
(2.2)

where gk = ∇f(xk) is the gradient of f at xk and

βk =
gT
k zk−1

dT
k−1zk−1

− 2‖zk−1‖2gT
k dk−1

(dT
k−1zk−1)2

, θk =
gT
k dk−1

dT
k−1zk−1

, (2.3)

zk−1 = yk−1 + tksk−1, tk = ε0‖gk‖r + max
{

0,−sT
k−1yk−1

‖sk−1‖2

}
, (2.4)

with
yk−1 = gk − gk−1, sk−1 = xk − xk−1 = αk−1dk−1,

and for some constants ε0 > 0 and r ≥ 0.
We can claim that (2.2) is well-defined, that is, dk is finite-valued for gk−1 6= 0 and αk > 0.

Indeed, since we have from (2.4) that

sT
k−1zk−1

‖sk−1‖2
= ε0‖gk‖r +

sT
k−1yk−1

‖sk−1‖2
+ max

{
0,−sT

k−1yk−1

‖sk−1‖2

}
≥ ε0‖gk‖r > 0, (2.5)

which implies

dT
k−1zk−1 =

sT
k−1zk−1

αk−1
> 0.

Hence βk and θk are finite-valued and thus dk is finite-valued.
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It is worth noticing that (2.1)-(2.2) can be written as a Newton-like method

xk+1 = xk − αkHkgk,

where H0 = I and for k ≥ 1

Hk = I − dk−1z
T
k−1 + zk−1d

T
k−1

dT
k−1zk−1

+
2‖zk−1‖2

(dT
k−1zk−1)2

dk−1d
T
k−1. (2.6)

This means that the search direction dk defined in (2.2) can be given as

dk = −Hkgk. (2.7)

This can be verified as follows. It is obviously true for k = 0. For k > 0, we have

−Hkgk = −gk +
dk−1z

T
k−1gk + zk−1d

T
k−1gk

dT
k−1zk−1

− 2‖zk−1‖2

(dT
k−1zk−1)2

dk−1d
T
k−1gk

= −gk +
( zT

k−1gk

dT
k−1zk−1

− 2‖zk−1‖2dT
k−1gk

(dT
k−1zk−1)2

)
dk−1 +

dT
k−1gk

dT
k−1zk−1

zk−1

= −gk + βkdk−1 + θkzk−1

= dk =
1
αk

(xk+1 − xk).

Remark 2.1 If f is strictly convex, we can choose ε0 = 0. Then from sT
k−1yk−1 = (xk −

xk−1)T (gk − gk−1) > 0, we have that tk ≡ 0, and Hk has the following well-defined version

Hk = I − dk−1y
T
k−1 + yk−1d

T
k−1

dT
k−1yk−1

+
2‖yk−1‖2

(dT
k−1yk−1)2

dk−1d
T
k−1. (2.8)

Moreover, the following equality holds

−Hkgk = −gk +
( yT

k−1gk

dT
k−1yk−1

− 2‖yk−1‖2dT
k−1gk

(dT
k−1yk−1)2

)
dk−1 +

dT
k−1gk

dT
k−1yk−1

yk−1.

In this case, if the exact line search (αk−1 =argminα>0f(xk−1 + αdk−1)) is used, then we have
∇αf(xk−1 + αdk−1) = gT

k dk−1 = 0, and thus

−Hkgk = −gk +
yT

k−1gk

dT
k−1yk−1

dk−1.

This is the well-known Hestenes-Stiefel conjugate gradient method and satisfies the conjugacy
condition dT

k yk−1 = (−Hkgk)T yk−1 = 0, see [17]. Therefore, we call this method (2.1)-(2.2) a
nonlinear conjugate gradient method as it reduces to the standard conjugate gradient method
when f is strictly convex and the exact line search is used. However, for nonconvex functions,
(2.8) is not well-defined, because dT

k−1yk−1 = 0 can happen. It is significate to introduce the
additional term tksk−1 in zk−1 and use dT

k−1zk−1 instead of dT
k−1yk−1, which not only ensures

that Hk is well-defined but also possesses the property (2.5).
The next lemma lists an important property of Hk defined by (2.6).
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Lemma 2.1. Matrices Hk are symmetric positive definite and satisfy

‖H−1
k ‖ ≤ 2, k ≥ 1. (2.9)

Proof Obviously Hk is symmetric. Moreover for any k ≥ 1 and any x ∈ Rn, we have

xT Hkx = xT x− 2(xT dk−1)(zT
k−1x)

dT
k−1zk−1

+
2‖zk−1‖2(xT dk−1)2

(dT
k−1zk−1)2

= xT x− 2
(√2xT dk−1

dT
k−1zk−1

zk−1

)T ( 1√
2
x
)

+
2‖zk−1‖2(xT dk−1)2

(dT
k−1zk−1)2

≥ xT x−
(∥∥∥
√

2xT dk−1

dT
k−1zk−1

zk−1

∥∥∥
2
+ ‖ 1√

2
x‖2

)
+

2‖zk−1‖2(xT dk−1)2

(dT
k−1zk−1)2

= xT x− 1
2
xT x =

1
2
‖x‖2.

Hence Hk is positive definite and its smallest eigenvalue is greater than 1
2 , which gives (2.9). ¤

Lemma 2.1 ensures that Hk are symmetric positive definite and satisfy ‖Hkgk‖ ≥ 1
2‖gk‖.

Existing nonlinear conjugate gradient methods [16, 21, 25, 30, 35] have no such nice property.
For instance, in the conjugate gradient method proposed in [16], the search direction is given
by

dk = −HHZk
gk, where HHZk

= I − 1
dT

k−1yk−1
dk−1y

T
k−1 +

2‖yk−1‖2

dT
k−1yk−1

dk−1d
T
k−1.

Obviously, HHZk
is not symmetric.

Following directly from the above lemma and (2.7), we find that the search direction is a
descent direction.

Lemma 2.2. Let {xk} and {dk} be generated by the method (2.1) and (2.2). We have

dT
k gk ≤ −1

2
‖gk‖2, k ≥ 0. (2.10)

Now we present an algorithm for smooth and noncovex minimization problems.
Algorithm 2.1.

Step 0. Choose constants ε0 > 0, r ≥ 0. Choose δ ∈ (0, σ), σ ∈ (δ, 1), ρ ∈ (0, 1) and
initial point x0 ∈ Rn. Let k := 0.

Step 1. Compute dk by (2.2)–(2.4) with the chosen parameters ε0 > 0, r ≥ 0.

Step 2. Determine αk by the Armijo line search, that is, αk = max{ρ0, ρ1, · · · } satisfying

f(xk + ρidk) ≤ f(xk) + δρigT
k dk; (2.11)

or the Wolfe line search, that is, αk satisfying
{

f(xk + αkdk) ≤ f(xk) + δαkg
T
k dk,

dT
k g(xk + αkdk) ≥ σdT

k gk.
(2.12)
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Step 3. Set xk+1 = xk + αkdk.

Step 4. Set k := k + 1. Go to Step 1.

Remark 2.2 The Armijo line search and the Wolfe line search in Algorithm 2.1 are well-
defined, since the search directions are descent from Lemma 2.2.

To ensure the convergence of Algorithm 2.1, we need the following standard assumption.
Assumption A.

(i) For any x̂ ∈ Rn, the level set

S(x̂) = {x ∈ Rn|f(x) ≤ f(x̂)}

is bounded.

(ii) f is continuously differentiable and there exists a constant L > 0 such that for any x̂ ∈ Rn,
the gradient of f satisfies

‖g(x)− g(y)‖ ≤ L‖x− y‖, x, y ∈ S(x̂). (2.13)

Assumption A is often used in analysis of convergence of conjugate gradient methods. In
the next section, we give some functions which satisfies Assumption A.

Throughout this subsection, we always suppose that Assumption A holds. We can get from
Assumption A that there exists a constant γ > 0 such that all x in the level set S(x0) satisfy

‖g(x)‖ ≤ γ. (2.14)

Hence, we have

‖zk−1‖ ≤ ‖yk−1‖+ tk‖sk−1‖
≤ 2‖yk−1‖+ ε0‖gk‖r‖sk−1‖
≤ (2L + ε0‖gk‖r)‖sk−1‖ ≤ (2L + ε0γ

r)‖sk−1‖, (2.15)

where the first and second inequalities use (2.4), the third inequality uses (2.13) and the last
inequality uses (2.14).

The next result shows that dk is bounded.

Lemma 2.3. Let {xk} be generated by Algorithm 2.1. If there exists a positive constant ε such
that for all k ≥ 0,

‖gk‖ ≥ ε, (2.16)

then there exists a constant c0 > 0 such that

‖dk‖ ≤ c0‖gk‖, k ≥ 0. (2.17)
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Proof By the definition (2.6) for Hk, we have

‖Hk‖ = ‖I − dk−1z
T
k−1 + zk−1d

T
k−1

dT
k−1zk−1

+
2‖zk−1‖2

(dT
k−1zk−1)2

dk−1d
T
k−1‖

≤ ‖I‖+
2‖dk−1‖‖zk−1‖

dT
k−1zk−1

+
2‖zk−1‖2‖dk−1‖2

(dT
k−1zk−1)2

≤ ‖I‖+
2(2L + ε0γ

r)‖dk−1‖‖sk−1‖
ε0‖gk−1‖rdT

k−1sk−1
+

2(2L + ε0γ
r)2‖sk−1‖2‖dk−1‖2

(ε0‖gk−1‖rdT
k−1sk−1)2

≤ ‖I‖+
2(2L + ε0γ

r)
ε0εr

+
2(2L + ε0γ

r)2

(ε0εr)2
=: c0,

where the second inequality uses (2.15), (2.5) and sk−1 = αk−1dk−1, and the third inequality
uses dT

k−1sk−1 = αk−1‖dk−1‖2.

It follows from the above inequality and (2.7) that ‖dk‖ ≤ c0‖gk‖. ¤
The following theorem shows that the convergence of Algorithm 2.1 when the objective

function f is smooth and nonconvex.

Theorem 2.4. Let {xk} be generated by Algorithm 2.1. If all stepsize αk are computed by a
single type line search either the Armijo line search (2.11) or the Wolfe line search (2.12), then
we have

lim inf
k→∞

‖∇f(xk)‖ = 0. (2.18)

Proof (i) If all stepsize αk are computed by the Armijo line search (2.11), then the conclusion
follows directly from Theorem 3.1 of [14] and Lemma 2.2.

(ii) If all stepsize αk are computed by the Wolfe line search, then we have from Assumption
A and the first inequality in (2.12) and (2.10) that

lim
k→∞

αk‖gk‖2 = 0. (2.19)

Now if (2.18) does not hold, then there exists a positive constant ε such that (2.16) holds
for all k ≥ 0. It follows from the second inequality in (2.12) that

Lαk‖dk‖2 ≥ (gk+1 − gk)T dk ≥ (1− σ)(−gT
k dk).

This together with (2.10), (2.14) and (2.17) implies that

αk ≥
(1− σ)(−gT

k dk)
L‖dk‖2

≥ (1− σ)‖gk‖2

2L‖dk‖2
≥ (1− σ)ε2

2Lc2
0γ

2
> 0.

Hence from (2.19), we obtain
lim

k→∞
‖gk‖ = 0,

which leads to a contradiction. This shows (2.18) holds. ¤

Remark 2.3 Theorem 2.4 shows that from any initial point x0 ∈ Rn, Algorithm 2.1 converges
to a stationary point x∗ of f . If f is strongly pseudo convex at x∗, then x∗ is a local minimizer
of f . A function f is said to be strongly pseudo convex at x∗ if there is a neighborhood Ω of
x∗ such that for every ξ ∈ ∂f(x∗) and every y ∈ Ω, ξT (y − x∗) ≥ 0 ⇒ f(y) ≥ f(x∗). Pseudo
convexity is weaker than convexity. For example, ϕ1(t) = α|t|

1+α|t| is strongly pseudo convex at
all t ∈ R, but it is not convex.
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2.2 Nonsmooth case

From now on, throughout the paper, we assume that f is locally Lipschitz continuous but not
necessarily differentiable. According to the Rademacher theorem [11], f is differentiable almost
everywhere in Rn. The subdifferential ∂f(x), called the generalized gradient of f at x is defined
by

∂f(x) = conv{ lim
xi→ x
xi∈Df

∇f(xi)},

where ”conv” denotes the convex hull of a set and Df is the set of points at which f is
differentiable [10].

Based on the idea of the smoothing Newton method for nonsmooth equations in [7, 8],
Zhang and Chen [34] proposed a smoothing projected gradient(SPG) method for nonsmooth
and nonconvex optimization problems on a closed convex set. The SPG method is very simple
and suitable for large-scale problems. To accelerate the convergence rate, in this subsection, we
extend Algorithm 2.1 to the nonsmooth case by using the conjugate gradient of the smoothing
function as the search direction. Firstly we define a class of smoothing functions of f , which are
more general than that used for nonsmooth equations in [5, 9, 7, 8]. A smoothing function can
be considered as a special smooth approximation of f , which uses a scalar smoothing parameter
to play a key role in convergence analysis of the smoothing method.

Definition 2.5. Let f : Rn → R be a locally Lipschitz continuous function. We call f̃ :
Rn×R+ → R a smoothing function of f , if f̃(·, µ) is continuously differentiable in Rn for any
fixed µ ∈ R++, and

lim
µ↓0

f̃(x, µ) = f(x)

for any fixed x ∈ Rn.

Now we denote ∇f̃(x, µ) = ∇xf̃(x, µ), g̃k = ∇f̃(xk, µk), then we can present the following
smoothing conjugate gradient method for nonsmooth and nonconvex optimization.
Algorithm 2.2: (Smoothing conjugate gradient method)

Step 0. Choose constants ε0 > 0, r ≥ 0. Choose δ ∈ (0, 1), ρ, γ1 ∈ (0, 1), µ0 > 0, γ > 0,
and initial point x0 ∈ Rn.

Let d0 = −g̃0. Set k := 0.

Step 1. Compute the stepsize αk by the Armijo line search, αk = max{ρ0, ρ1, · · · }
satisfying

f̃(xk + ρmdk, µk) ≤ f̃(xk, µk) + δρmg̃T
k dk,

set
xk+1 = xk + αkdk.

Step 2. If ‖∇f̃(xk+1, µk)‖ ≥ γµk, then set µk+1 = µk; otherwise, choose µk+1 = γ1µk.

Step 3. Compute dk+1 by the following formula

dk+1 = −g̃k+1 +
( g̃T

k+1z̃k

dT
k z̃k

− 2‖z̃k‖2g̃T
k+1dk

(dT
k z̃k)2

)
dk +

g̃T
k+1dk

dT
k z̃k

z̃k,

where z̃k = ỹk +
(
ε0‖g̃k+1‖r + max{0,− sT

k ỹk

sT
k sk

}
)
sk, ỹk = g̃k+1 − g̃k and sk = xk+1 − xk.
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Step 4. Set k := k + 1. Go to Step 1.

Theorem 2.6. Suppose that f̃(·, µ) is a smoothing function of f . If for every fixed µ > 0,
f̃(·, µ) satisfies Assumption A, then a sequence {xk} generated by Algorithm 2.2 satisfies

lim
k→∞

µk = 0 and lim inf
k→∞

‖∇f̃(xk, µk−1)‖ = 0.

Proof Denote K = {k |µk+1 = γ1µk}. If K is finite, then there exists an integer k̄ such that
for all k > k̄

‖∇f̃(xk, µk−1)‖ ≥ γµk−1 (2.20)

and µk = µk̄ =: µ̄ in Step 2 of Algorithm 2.2. Since f̃(·, µ̄) is a smooth function, Algorithm 2.2
reduces to Algorithm 2.1 for solving

min
x∈Rn

f̃(x, µ̄).

Hence, by Assumption A on f̃(·, µ̄), we have from Theorem 2.4 that

lim inf
k→∞

‖∇f̃(xk, µ̄)‖ = 0

which contradicts with (2.20). This shows that K must be infinite and limk→∞ µk = 0.
Since K is infinite, we can assume that K = {k0, k1, · · · } with k0 < k1 < · · · . Then we have

lim
i→∞

‖∇f̃(xki+1, µki
)‖ ≤ γ lim

i→∞
µki

= 0.

¤
Remark 2.4 We can replace the Armijo line search in Algorithm 2.2 by the Wolfe line search
to have Theorem 2.6. In the next section, we give a class of smoothing functions which satisfy
Assumption A for every fixed µ > 0. Note that Theorem 2.6 does not need that the limit of the
Lipschitz constant for ∇f̃(·, µ) exists. This is the novelty of the smoothing nonlinear conjugate
gradient method.

Smoothing functions of f can be defined in many ways. We present a class of smoothing
functions for image restoration in the next section. In general, we can use a kernel function
ρ : Rn → R+ to define a sequence of mollifiers which are bounded and continuous, and satisfy

ρµ(x) = µnρ(µ, x), µ > 0.

Using it, we define a smoothing function of f

f̃(x, µ) =
∫

Rn

f(x− y)ρµ(y)dy =
∫

Rn

f(y)ρµ(x− y)dy. (2.21)

(See [28] and Example 7.19 [29]). By Theorem 9.67 in [29], we have

G(x∗) ⊆ ∂f(x∗)

with
G(x∗) = {v | v = lim

i→∞
i∈K

∇xf̃(xi, µi), xi → x∗, µi ↓ 0},

where K is a subset of the set of all natural numbers.
By Theorem 2.6, any accumulation point x∗ of {xk} generated by Algorithm 2.2 with a

smoothing function defined by mollifiers satisfies 0 ∈ ∂f(x∗), that is, x∗ is a Clarke stationary
point of f [10].

10



3 Smoothing functions

Many potential functions ϕ(t) in image restoration are continuously differentiable on R except
at the origin. For instance, the following potential functions [12, 24]

ϕ1(t) =
α|t|

1 + α|t| , ϕ2(t) = log (1 + α|t|), ϕ3(t) = (|t|+ α)p, α > 0, p ∈ (0, 1). (3.1)

It is clear that these functions are nonsmooth and nonconvex. In this paper, we consider the
following class of nonsmooth potential functions.
Assumptions on ϕ: We assume that ϕ : R → R+ is a continuous function and satisfies

(i) ϕ(t) ≥ 0, ϕ(t) = ϕ(−t), that is, ϕ is nonnegative and symmetric.

(ii) ϕ is continuously differentiable on R except at 0, and

lim
t↓0

ϕ′(t) = ϕ′(0+) = − lim
t↑0

ϕ′(t) = −ϕ′(0−) ∈ (0,∞). (3.2)

(iii) ϕ is twice differentiable on R except at 0 and there is a constant ν0 such that |ϕ′′(t)| ≤ ν0,

for t 6= 0.

It is easy to see that ϕi, i = 1, 2, 3 satisfy Assumptions on ϕ. Now we present a class of
smoothing potential functions which combines the splitting of ϕ in [24] and the integration
convolution smoothing technique [5, 28, 29].

Nikolova et al [24] split the function ϕ into a smooth term and a nonsmooth convex term
as

ϕ(t) = ψ(t) + ϕ′(0+)|t|. (3.3)

Consider the function
ψ(t) = ϕ(t)− ϕ′(0+)|t|. (3.4)

Since the derivative of ψ satisfies

ψ′(0+) = 0 = ψ′(0−),

by (iii) of Assumption on ϕ, ψ is continuously differentiable at 0 and thus on R. We can built a
smoothing function of |t| by integration convolution. Let ρ ∈ [0,∞) be a piecewise continuous
density function with a finite number of pieces satisfying

ρ(τ) = ρ(−τ) and κ :=
∫ ∞

−∞
|τ |ρ(τ)dτ < ∞. (3.5)

The integration convolution smoothing function of |t| is defined as

sµ(t) =
∫ ∞

−∞
|t− µτ |ρ(τ)dτ. (3.6)

For instance, if we choose the density function

ρ(τ) =

{
0 if |τ | > 0.5,

1 othersise,

11



then we obtain a smoothing function of |t|

sµ(t) =





|t| if |t| > µ

2
,

t2

µ
+

µ

4
if |t| ≤ µ

2
.

(3.7)

This function is also known as Huber potential function [18, 2] which is very often used in
robust statistics. It is worth noticing that ρ is not necessarily continuous. From our numerical
experiment, a piecewise continuous density function performs better than a continuous one.
However, smoothing functions defined by (2.21) require the mollifier to be continuous in [28, 29].

Combining (3.3) and (3.6), we define a class of smoothing functions for a potential function
ϕ as

ϕµ(t) = ψ(t) + ϕ′(0+)sµ(t). (3.8)

The following proposition shows that ϕµ has nice smooth approximation properties.

Proposition 3.1. A function ϕµ defined by (3.8) with sµ defined by (3.5) and (3.6) has the
following properties.

(i) ϕµ(t) = ϕµ(−t) for t ∈ R, that is, ϕµ is symmetric.

(ii) ϕµ is continuously differentiable on R, and its derivative can be given as

ϕ′µ(t) = ψ′(t) + 2ϕ′(0+)
∫ t

µ

0
ρ(τ)dτ. (3.9)

(iii) ϕµ converges uniformly to ϕ on R with

|ϕµ(t)− ϕ(t)| ≤ ϕ′(0+)κµ.

(iv) The set of limits of gradient ϕ′µ(t) coincides to the Clarke generalized gradient, that is,

{ lim
µ↓0,t→0

ϕ′µ(t)} = ∂ϕ(0), and lim
µ↓0,t→t∗

ϕ′µ(t) = ϕ′(t∗), t∗ 6= 0. (3.10)

Moreover, we have

lim
µ↓0

ϕ′µ(t) =

{
ϕ′(t) if t 6= 0,

0 if t = 0.
(3.11)

(v) For any fixed µ > 0, ϕ′µ is Lipschitz continuous on R, that is, there is a constant νµ > 0
such that

|ϕ′µ(t1)− ϕ′µ(t2)| ≤ νµ|t1 − t2|. (3.12)

Proof (i) We have from (3.8) that

ϕµ(t) = ψ(t) + ϕ′(0+)sµ(t) = ϕ(t) + ϕ′(0+)(sµ(t)− |t|).

By variable transformation u = −τ , we have from ρ(τ) = ρ(−τ) that

sµ(−t) =
∫ ∞

−∞
| − t− µτ |ρ(τ)dτ =

∫ ∞

−∞
|t− µu|ρ(u)du = sµ(t), (3.13)

12



which shows that sµ is symmetric in R. This, together with (i) of Definition 3.1, implies that
ϕµ is symmetric.

(ii) From the definition of sµ(t), we have

sµ(t) =
∫ +∞

−∞
|t− µτ |ρ(τ)dτ

=
∫ t

µ

−∞
(t− µτ)ρ(τ)dτ −

∫ +∞

t
µ

(t− µτ)ρ(τ)dτ

= t
( ∫ t

µ

−∞
ρ(τ)dτ −

∫ +∞

t
µ

ρ(τ)dτ
)

+ µ
( ∫ +∞

t
µ

τρ(τ)dτ −
∫ t

µ

−∞
τρ(τ)dτ

)

= 2t

∫ t
µ

0
ρ(τ)dτ + µ

( ∫ +∞

t
µ

τρ(τ)dτ −
∫ t

µ

−∞
τρ(τ)dτ

)
,

where the last equality uses ρ(τ) = ρ(−τ). Note that ρ(τ) ≥ 0 and
∫ ∞

−∞
|τ |ρ(τ)dτ < ∞. By

the integral mean value theorem, we obtain

s′µ(t) = lim
∆t→0

sµ(t + ∆t)− sµ(t)
∆t

= lim
∆t→0

2
∫ t+∆t

µ

0
ρ(τ)dτ + lim

∆t→0

2t
∫ t+∆t

µ
t
µ

ρ(τ)dτ − 2µ
∫ t+∆t

µ
t
µ

τρ(τ)dτ

∆t

= 2
∫ t

µ

0
ρ(τ)dτ + lim

∆t→0
2µ

∫ t+∆t
µ

t
µ

(
t
µ − τ

)
ρ(τ)dτ

∆t

= 2
∫ t

µ

0
ρ(τ)dτ + lim

∆t→0
2µ

t
µ − ξ

∆t

∫ t+∆t
µ

t
µ

ρ(τ)dτ

= 2
∫ t

µ

0
ρ(τ)dτ, (3.14)

where ξ ∈ [ t
µ , t+∆t

µ ]. This gives (3.9).
(iii) By (3.8), we have

|ϕµ(t)− ϕ(t)| = ϕ′(0+)|sµ(t)− |t||

= ϕ′(0+)|
∫ +∞

−∞
(|t− µτ | − |t|)ρ(τ)dτ |

≤ ϕ′(0+)
∫ +∞

−∞
|t− µτ − t|ρ(τ)dτ

= ϕ′(0+)
∫ +∞

−∞
µ|τ |ρ(τ)dτ

= ϕ′(0+)κµ,

where κ is specified by (3.5).
(iv) It follows from (3.14) and ρ(τ) = ρ(−τ) that

lim
µ↓0,t→t∗

s′µ(t) = lim
µ↓0,t→t∗

2
∫ t

µ

0
ρ(τ)dτ = lim

µ↓0,t→t∗

∫ t
µ

− t
µ

ρ(τ)dτ.

13



Then for |t∗| 6= 0, we have

lim
µ↓0,t→t∗

s′µ(t) =

{
1 if t∗ > 0,

−1 if t∗ < 0.

For t∗ = 0, we have

lim
µ↓0,t→0

s′µ(t) ∈





{1} if
t

µ
→ +∞,

{α} if lim
µ↓0,t→0

| t
µ
| < +∞,

{−1} if
t

µ
→ −∞.

where α ∈ [−1, 1]. This shows that limµ↓0,t→0 s′µ(t) ⊆ [−1, 1]. Define α(λ) = 2
∫ λ
0 ρ(τ)dτ ,

then α(λ) ∈ [−1, 1] is continuous in R since ρ is piecewise continuous. Therefore, for any
α0 ∈ (−1, 1), there exists λ0 such that α0 = α(λ0). If we choose tk

µk
= λ0 and µk ↓ 0, then we

have
α0 = lim

µk↓0,tk→0
s′µk

(tk).

This shows that
[−1, 1] ⊆ lim

µ↓0,t→0
s′µ(t).

Therefore, we have limµ↓0,t→0 s′µ(t) = [−1, 1]. By the continuity of ψ′(t), (3.14) and (3.9), we
obtain (3.10). From ϕ′µ(0) = 0, we get (3.11).

(v) We first show s′µ is Lipschitz continuous. Since ρ is piecewise continuous with a finite
number of pieces, there exists a constant κ0 such that ρ(t) ≤ κ0 for any t ∈ R. For any
t1, t2 ∈ R, we have

|s′µ(t1)− s′µ(t2)| = 2
∣∣∣
∫ t1

µ

0
ρ(τ)dτ −

∫ t2
µ

0
ρ(τ)dτ

∣∣∣ = 2
∣∣∣
∫ t1

µ

t2
µ

ρ(τ)dτ
∣∣∣ ≤ 2κ0

µ
|t1 − t2|.

Now we show ψ′ is Lipschitz continuous. Since ψ(t) = ϕ(t)−ϕ′(0+)|t|, then we have from (iii)
in Assumptions on ϕ that for t1t2 > 0,

|ψ′(t1)− ψ′(t2)| = |ϕ′(t1)− ϕ′(t2)| ≤ ν0|t1 − t2|.

If t1 6= 0, t2 = 0, then we have from ψ′(0) = 0 that

|ψ′(t1)− ψ′(0)| = |ϕ′(t1)− ϕ′(0+)| ≤ ν0|t1 − 0|.

If t1t2 < 0, we may assume t2 < 0 < t1, then we have ϕ′(t2) = −ϕ′(−t2) by (i) in Assumptions
on ϕ. Hence we have

|ψ′(t1)− ψ′(t2)| = |(ϕ′(t1)− ϕ′(0+))− (ϕ′(t2) + ϕ′(0+))|
= |(ϕ′(t1)− ϕ′(0+)) + (ϕ′(−t2)− ϕ′(0+))|
≤ |ϕ′(t1)− ϕ′(0+)|+ |ϕ′(−t2)− ϕ′(0+)|
≤ ν0t1 + ν0(−t2)

= ν0|t1 − t2|.
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Let νµ = ν0 + 2ϕ′(0+)κ0

µ , we obtain (3.12). ¤
Now we are ready to define a class of smoothing functions and use the smoothing conjugate

gradient method (Algorithm 2.2) for nonsmooth and nonconvex image restoration problems.
In the remain part of this section as well as in the next section, we consider the minimization

problem (1.5) with the objective function

f(x) = ‖Ax− b‖2 + β

r∑

i=1

ϕ(dT
i x), (3.15)

where A ∈ Rm×n is a blurring matrix, b ∈ Rm is a vector containing observed data, ϕ is a
potential function satisfying Assumptions on ϕ, β > 0 is a constant and di ∈ Rn, i = 1, . . . , r

are the row vectors of a difference matrix.
Using the smoothing function ϕµ for ϕ, we define a class of smoothing functions for f as

follows

f̃(x, µ) = ‖b−Ax‖2 + β

r∑

i=1

ϕµ(dT
i x). (3.16)

To show the smoothing function f̃ has nice approximation properties and any accumulation
point of a sequence generated by Algorithm 2.2 with f̃ is a Clarke stationary point, we need the
definition of a regular function [10, Definition 2.3.4] and some results from Proposition 2.3.3,
Proposition 2.3.6, Theorem 2.3.9 and Corollary 3 in [10, Chapter 2]. We give the definition of
a regular function and summarize these results as follows.

Definition 3.2. [10] A function f is said to be regular at x provided

(i) For all v, the usual one-sided directional derivative f ′(x; v) exists.

(ii) For all v, f ′(x; v) = lim sup y→x
t↓0

f(y + tv)− f(y)
t

.

Lemma 3.3. [10]

(i) Suppose that gi : Rn → R, i = 1, . . . , m are Lipschitz continuous near x. Then their sum

g =
m∑

i=1

gi is also Lipschitz continuous near x and

∂g(x) = ∂
( m∑

i=1

gi

)
(x) ⊆

m∑

i=1

∂gi(x).

If each gi is regular at x, equality holds.

(ii) Let g(x) = h(F (x)), where F : Rn → Rm is Lipschitz continuous near x and where
h : Rm → R is Lipschitz continuous near F (x). Then g is Lipschitz continuous near x

and
∂g(x) ⊂ conv

{∑
αiζi|ζi ∈ ∂Fi(x), α = (α1, · · · , αm)T ∈ ∂h(F (x))

}
.

If h is regular at F (x) and F is continuously differentiable at x (in this case the conv is
superfluous), equality holds.
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(iii) A Lipschitz continuous function g : Rn → R is regular at x if g is convex or g is
continuously differentiable at x.

Theorem 3.4. Let f and f̃(·, µ) be defined by (3.15) and (3.16) respectively. Then

(i) f̃(·, µ) is continuously differentiable for any fixed µ > 0, and there exists a constant κ1 > 0
satisfying

|f̃(x, µ)− f(x)| ≤ κ1µ.

(ii) f̃(·, µ) satisfies the gradient consistent property, that is,

{ lim
µ↓0,x→x∗

∇f̃(x, µ)} = ∂f(x∗).

(iii) If A has full column rank, then for any x̂ ∈ Rn, the level set Sµ(x̂) = {x ∈ Rn|f̃(x, µ) ≤
f̃(x̂, µ)} is bounded.

(iv) For any fixed µ > 0, the gradient of f̃(x, µ) is Lipschitz continuous, that is, for any
x, y ∈ Sµ(x̂), there exists a constant Lµ such that

‖∇f̃(x, µ)−∇f̃(y, µ)‖ ≤ Lµ‖x− y‖.

Proof From the definitions of ϕ and ϕµ, we can write f and f̃ as the following

f(x) = ‖b−Ax‖2 + β
r∑

i=1

ψ(dT
i x) + βϕ′(0+)

r∑

i=1

|dT
i x|, (3.17)

and

f̃(x, µ) = ‖b−Ax‖2 + β
r∑

i=1

ψ(dT
i x) + βϕ′(0+)

r∑

i=1

sµ(dT
i x). (3.18)

(i) It follows from (3.17) and (3.18) and Proposition 3.1 that f̃(·, µ) is continuously
differentiable for any fixed µ > 0, and

|f̃(x, µ)− f(x)| ≤ βrϕ′(0+)κµ.

Set κ1 = βrϕ′(0+)κµ, then (i) holds.
(ii) Set h(t) = |t| and F (x) = dT x. Then by (ii) in Lemma 3.3, g(x) = |dT x| is regular at x

and ∂g(x) = ∂|dT x|d. Using Lemma 3.3 again, we have

∂f(x) = 2AT (Ax− b) + β

r∑

i=1

(ψ′(dT
i x))di + βϕ′(0+)

r∑

i=1

∂(|dT
i x|)di.

The gradient of the smoothing function f̃(·, µ) is given by

∇f̃(x, µ) = 2AT (Ax− b) + β
r∑

i=1

ψ′(dT
i x)di + βϕ′(0+)

r∑

i=1

s′µ(dT
i x)di.
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By (iv) of Proposition 3.1 and Lemma 3.3, we have
{

lim
µ↓0,x→x∗

∇f̃(x, µ)
}

=

{
lim

x→x∗

(
2AT (Ax− b) + β

r∑

i=1

ψ′(dT
i x)di

)
+ βϕ′(0+)

r∑

i=1

lim
µ↓0,x→x∗

s′µ(dT
i x)di

}

= 2AT (Ax∗ − b) + β

r∑

i=1

ψ′(dT
i x∗)di + βϕ′(0+)

r∑

i=1

∂|dT
i x∗|di = ∂f(x∗).

This shows that the gradient consistent property holds for the smoothing function f̃ .
(iii) If Sµ(x̂) is unbounded, then there exists a sequence {xk} ⊂ Sµ(x̂) such that ‖xk‖ → ∞.

We have from (i) in Assumptions on ϕ and (iii) in Proposition 3.1 that

f̃(x, µ) = xT AT Ax− 2(Ax)T b + ‖b‖2 + β
r∑

i=1

ϕµ(dT
i x)

≥ xT AT Ax− 2(Ax)T b + ‖b‖2 + β

r∑

i=1

(
ϕ(dT

i x)− |ϕ(dT
i x)− ϕµ(dT

i x)|
)
,

≥ xT AT Ax− 2(Ax)T b + ‖b‖2 + β
r∑

i=1

(ϕ(dT
i x)− ϕ′(0+)κµ). (3.19)

Since AT A is symmetric positive definite, ‖xk‖ → ∞ implies f̃(xk, µ) → +∞. Hence (iii) is
true.

(iv) Using the expression

∇f̃(x, µ) = 2AT (Ax− b) + β

r∑

i=1

ϕ′µ(dT
i x)di,

we have from (v) of Proposition 3.1 that

‖∇f̃(x, µ)−∇f̃(y, µ)‖ ≤ 2‖AT A‖‖x− y‖+ β
r∑

i=1

‖di‖‖ϕ′µ(dT
i x)− ϕ′µ(dT

i y)‖

≤ 2‖AT A‖‖x− y‖+ β
r∑

i=1

‖di‖νµ‖dT
i x− dT

i y‖

≤ (2‖AT A‖+ β
r∑

i=1

‖di‖2νµ)‖x− y‖.

Set Lµ = 2‖AT A‖+ β
∑r

i=1 ‖di‖2νµ, then (iv) holds. ¤

Remark 3.1 Theorem 3.4 shows that the smoothing function f̃ has very nice approxima-
tion properties and satisfies all assumptions of the convergence theorem (Theorem 2.6) for the
smoothing conjugate gradient method (Algorithm 2.2). The most significant one is the gradi-
ent consistent property, which ensures that any accumulation point of a sequence generated by
Algorithm 2.2 is a Clarke stationary point. Using smooth approximations to solve nonsmooth
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Table 1: Test results with β = 0.001, α = 1, and f(xorig) = 1.0849. We stopped the iteration
if ‖xk − xorig‖/‖xk‖ ≤ 0.06 or the number of iterations exceeds 120.

CM SCG
Initial point time psnr f(xk) time psnr f(xk)

0.0001 120.2273 28.4635 0.6734 64.6418 29.8679 0.7551
0.001 119.2405 28.4635 0.6734 69.2970 29.8726 0.7529
0.01 120.0629 28.4635 0.6734 64.7127 29.8564 0.7517
0.1 118.6640 28.4635 0.6734 62.0299 29.8333 0.7513
0.2 119.1084 28.4635 0.6734 87.2522 29.8317 0.7545
0.4 119.6038 28.4635 0.6734 52.1802 29.8424 0.7544
0.6 123.0495 28.4635 0.6734 94.9425 29.8630 0.7500
0.8 119.5355 28.4635 0.6734 89.9128 29.8450 0.7547

observed 121.2054 28.4635 0.6734 49.4008 29.8413 0.7583
random 120.4385 28.4635 0.6734 109.0128 29.8350 0.7517
average 120.1135 74.3383

optimization problems have been studied in many papers [23, 24]. However, there is no guaran-
tee for convergence to a generalized stationary point of the nonsmooth optimization problems
in [23, 24].
Remark 3.2 The smoothing functions studied in this section can be applied to other nons-
mooth image restoration models. For example, approximating |t| by sµ(t) in the l1 − l1 model
(1.3) and potential functions (3.1). From (3.19), it is not difficult to see that the assumption
that A has full column rank in (iii) of Theorem 3.4 can be replaced by N (A) ∩ N (D) = {0}
and ϕ is coercive, that is, t → ∞ ⇒ ϕ(t) → ∞, where N (A) and N (D) are null spaces of A

and D, respectively. See Assumption 1 in [33]

4 Numerical results

In this section, we present numerical results to show the efficiency of the smoothing conjugate
gradient method(Algorithm 2.2, abbreviated by SCG). The numerical testing was carried out
on a Lenovo PC (3.00GHz, 2.00GB of RAM) with the use of Matlab 7.4.

In our numerical experiment, the objective function has the form (3.15) and its smoothing
function is defined by (3.16) and (3.7). We test three often used images: Lena image, Camera-
man image and Phantom image, which are all gray level images with intensity values ranging
from 0 to 1. The Lena and Cameraman images are of size n = 128 × 128. The Phantom
image is of size from n = 128 × 128 to n = 256 × 256. The pixels of the observed images are
contaminated by Gaussian white noise with signal-to-noise ratios of 45 dB for Table 1 and 60
dB for the other tables with blurring. The blurring function is chosen to be a two-dimensional
Gaussian,

a(i, j) = e−2(i/3)2−2(j/3)2 ,

truncated such that the function has a support of 7× 7.
For the regularization term, we use different potential functions ϕi for i = 1, 2, 3. We choose
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Table 2: Test results with β = 0.02, α = 0.5, and f(xorig) = 11.22.

CM SCG
Initial point time psnr f(xk) time psnr f(xk)

0.0001 371.95 26.53 6.05 272.23 27.01 6.27
0.001 383.56 26.53 6.05 273.68 27.03 6.28
0.01 379.69 26.53 6.05 287.85 27.06 6.28
0.1 377.07 26.53 6.05 325.01 27.04 6.28
0.2 380.21 26.53 6.05 312.39 27.17 6.30
0.4 372.64 26.53 6.05 291.19 27.04 6.28
0.6 397.50 26.53 6.05 354.22 27.11 6.29
0.8 398.92 26.53 6.05 451.35 27.04 6.28

observe 426.33 26.53 6.05 271.22 27.11 6.29
random 400.08 26.53 6.05 462.94 27.07 6.28
average 388.80 330.21

D to be the identity matrix D0 = I, or a matrix of a first-order difference operator:

D1 =

(
L1 ⊗ I

I ⊗ L1

)
with L1 =




1 −1
1 −1

. . . . . .
1 −1




,

or a matrix of a second-order difference operator with the Neumann boundary condition

D2 =

(
L2 ⊗ I

I ⊗ L2

)
with L2 =




1 −1
−1 2 −1

. . . . . . . . .
−1 2 −1

−1 1




.

4.1 Comparison with the continuation method in [24]

In this subsection, we make a comparison between the smoothing conjugate gradient method
(Algorithm 2.2) and the continuation method [24] for the Lena image. Tables 1-2 list the
numerical results for the Lena image restoration problems with different regularization param-
eters, where we choose ϕ1 and D1 as the potential function and the difference operator, and
set β = 0.001, α = 1 in Table 1, and β = 0.02, α = 0.5 in Table 2. In Table 1, we stop the
iteration if ‖xk − xorig‖/‖xk‖ ≤ 0.06 or the number of iterations exceeds 120. In Table 2, for
the CM method, we stop after computing 21 exterior iterations Jε0 , · · · , Jε20 and 15 interior
iterations for every Jεk

, k = 0, · · · , 20; for the SCG method we stop the iteration if the total
number of iterations exceeds 120 or the inequality ‖∇f̃(xk, µk−1)‖ < 0.05 holds.

• CM: the continuation method proposed by Nikolova et al. in [24].

• SCG: Algorithm 2.2, in which we set parameters ρ = 0.4, γ = 2, γ1 = 0.5, ε0 = 10−10,
µ0 = 1, δ = 0.1.
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• Initial point: In both methods, we use 10 different initial points. The first 8 initial guesses
are flat image (for example: 0.1 means all the pixel values are 0.1), and the ninth initial
guess is the observed image and the last one is a random image.

• time: the CPU time in second.

• f(xorig) and f(xk): the function values of f at the original image and the stopping point,
respectively.

Original Observed

Figure 1: The left and the right are the original Lena image and the observed Lena image,
respectively.

• psnr: peak signal-to-noise ratios of the restored images, which is defined by

psnr = −10 ∗ log10

‖xk − xorig‖2

mn
,

where xorig is the original image, and ‖ · ‖ is the l2 norm.

Figures 1-2 show the original, observed and restored Lena images by these two methods.
We can see that the SCG method performs better than the CM method in the sense that the
SCG method obtains higher psnr of the restored image and needs less CPU time. On the other
hand, the CM method has less function value at the terminated point. The ultimate value of
µk at the stopping point for the SCG method is about 0.0313.

4.2 Test results for Algorithm 2.2 with different potential functions and

difference operators

In this subsection, we test the Cameraman image and the Phantom image by using the smooth-
ing conjugate gradient method (SCG) with different potential functions and difference opera-
tors. We summarize numerical results in Tables 3-5, where

• SCG: We set parameters ρ = 0.4, γ = 2, γ1 = 0.5, ε0 = 10−10, µ0 = 1, δ = 0.1, β = 0.001,
α = 1. We stop the iteration if the inequality ‖∇f̃(xk, µk−1)‖ < 0.1 holds. The observed
image is used as the initial guess.

• iter: the number of iterations.
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Restored by SCG Restored by CM

(c) Restored by SCG (d) Restored by CM

Figure 2: Lena image: (a) and (b) are the restoration images by SCG and CM methods with
β = 0.001 and α = 1 and the observed image as the initial point; (c) and (d) are the restoration
images by SCG and CM methods with β = 0.02 and α = 0.5 and the observed image as the
initial point.

• f(xk) and ‖∇f̃k‖: the function value f(xk) and the l2 norm of ∇f̃(xk, µk−1) at the
stopping point, respectively.

Figures 3-5 show the original, observed and restored images with different pixels, different
potential functions and different linear operators D. We only list some restored images since
the quality of the other restored images is very similar. The detailed numerical results are
reported in Tables 3-5.

Numerical results show that the SCG method can efficiently reduce objective function
values, improve peak signal-to-noise ratios of the image restorations and produce piecewise
constant images. We can see from Figures 3-5 that the SCG method can preserve neat edge of
the image. This effect is especially clear in Figures 4-5. Moreover, the SCG method can deal
with large-scale image problems with n = 256× 256 = 65536 pixels.
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Table 3: Test results for Cameraman image with n = 128× 128.

ϕ D iter time f(xorig) f(xk) ‖∇f̃k‖ psnr
ϕ1 D0 214 53.04 2.97 3.08 0.0930 26.53
ϕ2 D0 217 53.24 3.36 3.43 0.0805 26.94
ϕ3 D0 224 59.30 15.97 16.05 0.0970 26.86
ϕ1 D1 292 539.39 1.94 1.97 0.0976 26.42
ϕ2 D1 255 446.97 2.36 2.32 0.0817 26.70
ϕ3 D1 245 459.78 8.81 8.77 0.0808 26.51
ϕ1 D2 217 398.30 1.94 1.96 0.0893 26.46
ϕ2 D2 232 411.85 2.36 2.33 0.0806 26.59
ϕ3 D2 236 440.84 8.81 8.78 0.0969 26.46

Original Observed

Restored by SCG with (1,1) Restored by SCG with (2,1)

Figure 3: Cameraman image: the first row contains the original image(left) and the observed
image(right); the second row contains the restoration images(left: psnr=26.42dB with ϕ1 and
D1, and right: psnr=26.70dB with ϕ2 and D1).
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Table 4: Test results for Phantom image with n = 128× 128.

ϕ D iter time f(xorig) f(xk) ‖∇f̃k‖ psnr
ϕ1 D0 217 53.10 0.83 0.94 0.0845 26.00
ϕ2 D0 211 49.99 0.91 1.05 0.0924 25.77
ϕ3 D0 198 52.09 12.80 12.95 0.0980 25.82
ϕ1 D1 289 179.85 0.87 0.92 0.0853 25.79
ϕ2 D1 265 164.68 1.04 1.08 0.0904 25.74
ϕ3 D1 294 188.42 7.14 7.18 0.0849 25.65
ϕ1 D2 318 215.90 0.87 0.91 0.0896 25.85
ϕ2 D2 273 169.39 1.04 1.08 0.0931 25.76
ϕ3 D2 250 157.91 7.14 7.17 0.0911 25.72

Original Observed

Restored by SCG with (2,2) Restored by SCG with (3,2)

Figure 4: Phantom image with 128 × 128 pixels: the first row contains the original im-
age(left) and the observed image(right); the second row contains the restoration images(left:
psnr=25.76dB with ϕ2 and D2, and right: psnr=25.72dB with ϕ3 and D2).
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Table 5: Test results for Phantom image with n = 256× 256.

ϕ D iter time f(xorig) f(xk) ‖∇f̃k‖ psnr
ϕ1 D0 275 267.32 3.36 3.54 0.0857 28.80
ϕ2 D0 228 220.75 3.69 3.86 0.0960 28.83
ϕ3 D0 319 336.79 51.23 51.40 0.0696 29.03
ϕ1 D1 316 8627.62 3.32 3.37 0.0986 28.56
ϕ2 D1 283 7721.57 3.99 4.03 0.0975 28.45
ϕ3 D1 341 9420.75 28.32 28.31 0.0936 28.52
ϕ1 D2 376 10277.73 3.32 3.37 0.0939 28.56
ϕ2 D2 364 9831.85 3.99 3.98 0.0943 28.59
ϕ3 D2 302 8173.62 28.32 28.30 0.0967 28.54

Original Observed

Restored by SCG with (2,0) Restored by SCG with (3,0)

Figure 5: Phantom image with 256 × 256 pixels: the first row contains the original im-
age(left) and the observed image(right); the second row contains the restoration images(left:
psnr=28.83dB with ϕ2 and D0, and right: psnr=29.03dB with ϕ3 and D0).
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5 Conclusions

Nonsmooth and nonconvex minimization problem has been widely used in image restoration.
However, existing minimization algorithms are not efficient for solving such problem. In this
paper, we present an efficient smoothing nonlinear conjugate gradient method for large-scale,
nonsmooth and nonconvex image restoration problems. This method is very easy to implement
without adding any new variables, and ensures that any accumulation point of a sequence
generated by this method is a Clarke stationary point.
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Rev. Francaise Imformat Recherche Opertionelle, 16 (1969), pp. 35-43.

[27] B. T. Polyak, The conjugate gradient method in extreme problems, USSR Comp. Math.
Math. Phys., 9 (1969), pp. 94-112.

[28] L. Qi and X. Chen, A globally convergent successive approximation method for severely
nonsmooth equations, SIAM J. Control Optim., 33 (1995), pp. 402-418.

[29] R. T. Rockafellar and R. J-B. Wets, Variational Analysis, Springer, Berlin, 1998.

[30] D. F. Shanno, Conjugate gradient methods with inexact searches, Math. Oper. Res., 3
(1978), pp. 244-256.

26



[31] C. H. Slump, Real-time image restoration in siagnostic X-ray imaging, the effects on
quantum noise, in Proceedings of the 11th IAPR International Conference on Pattern
Recognition, Vol. II, Conference B: Pattern Recongnition Methodology and Systems,
1992, pp. 693-696.

[32] J. Vlcek and L. Luksan, Globally convergent variable metric method for nonconvex non-
differentiable unconstrained minimization, J. Optim. Theory Appl., 111(2001), pp. 407-
430.

[33] W. Wang, J. Yang, W. Yin and Y. Zhang, A new alternationg minimization algortihm for
total variation image reconstruction, SIAM J. Imaging Sciences, 1 (2008), pp. 248-272.

[34] C. Zhang and X. Chen, Smoothing projected gradient method and its application to
stochastic linear complementarity problems, SIAM J. Optim. 20 (2009), pp. 627-649.

[35] L. Zhang, W. Zhou and D. Li, A descent modified Polak-Ribière-Polyak conjugate gra-
dient method and its global convergence, IMA J. Numer. Anal., 26 (2006), pp. 629-640.

[36] L. Zhang, W. Zhou and D. Li, Global convergence of a modified Fletcher-Reeves conjugate
gradient method with Armijo-type line search, Numer. Math., 104 (2006), pp. 561-572.

27


