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1. Introduction. Consider the following two-stage Stochastic Generalized17

Equations (SGE)18

0 ∈ E[Φ(x, y(ξ), ξ)] + Γ1(x), x ∈ X,(1.1)19

0 ∈ Ψ(x, y(ξ), ξ) + Γ2(y(ξ), ξ), for a.e. ξ ∈ Ξ.(1.2)20

Here X ⊆ Rn is a nonempty closed convex set, ξ : Ω → Rd is a random vector21

defined on a probability space (Ω,F ,P), whose probability distribution P = P◦ ξ−1 is22

supported on set Ξ := ξ(Ω) ⊆ Rd, Φ : Rn×Rm×Rd → Rn and Ψ : Rn×Rm×Rd → Rm,23

and Γ1 : Rn ⇒ Rn, Γ2 : Rm × Ξ ⇒ Rm are multifunctions (point-to-set mappings).24

We assume throughout the paper that Φ(·, ·, ξ) and Ψ(·, ·, ξ) are Lipschitz continuous25

with Lipschitz modules κΦ(ξ) and κΨ(ξ), and y(·) ∈ Y with Y being the space of26

measurable functions from Ξ to Rm such that the expected value in (1.1) is well27

defined.28

Solutions of (1.1)–(1.2) are searched over x ∈ X and y(·) ∈ Y to satisfy the29

corresponding inclusions, where the second stage inclusion (1.2) should hold for almost30

every (a.e.) realization of ξ. The first stage decision x is made before observing31

realization of the random data vector ξ and the second stage decision y(ξ) is a function32

of ξ.33

When the multifunctions Γ1 and Γ2 have the following form

Γ1(x) := NC(x) and Γ2(y, ξ) := NK(ξ)(y),
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2 X. CHEN, A. SHAPIRO AND H. SUN

where NC(x) is the normal cone to a nonempty closed convex set C ⊆ Rn at x,34

and similarly for NK(ξ)(y), the SGE (1.1)–(1.2) reduce to the two-stage Stochastic35

Variational Inequalities (SVI) as in [2, 21]. The two-stage SVI represent first order36

optimality conditions for the two-stage stochastic optimization problem [1, 23] and37

model several equilibrium problems in stochastic environment [2, 4]. Moreover, if the38

sets C and K(ξ), ξ ∈ Ξ, are closed convex cones, then39

NC(x) = {x∗ ∈ C∗ : x>x∗ = 0}, x ∈ C,40

where C∗ = {x∗ : x>x∗ ≤ 0, ∀x ∈ C} is the (negative) dual of cone C. In that case41

the SGE (1.1)–(1.2) reduce to the following two-stage stochastic cone VI42

C 3 x ⊥ E[Φ(x, y(ξ), ξ)] ∈ −C∗, x ∈ X,43

K(ξ) 3 y(ξ) ⊥ Ψ(x, y(ξ), ξ) ∈ −K∗(ξ), for a.e. ξ ∈ Ξ.44

In particular when C := Rn+ with C∗ = −Rn+, and K(ξ) := Rm+ with K∗(ξ) =45

−Rm+ for all ξ ∈ Ξ, the SGE (1.1)–(1.2) reduce to the two-stage Stochastic Nonlinear46

Complementarity Problem (SNCP):47

0 ≤ x ⊥ E[Φ(x, y(ξ), ξ)] ≥ 0,48

0 ≤ y(ξ) ⊥ Ψ(x, y(ξ), ξ) ≥ 0, for a.e. ξ ∈ Ξ,49

which is a generalization of the two-stage Stochastic Linear Complementarity Problem50

(SLCP):51

0 ≤ x ⊥ Ax+ E[B(ξ)y(ξ)] + q1 ≥ 0,(1.3)52

0 ≤ y(ξ) ⊥ L(ξ)x+M(ξ)y(ξ) + q2(ξ) ≥ 0, for a.e. ξ ∈ Ξ,(1.4)53

where A ∈ Rn×n, B : Ξ→ Rn×m, L : Ξ→ Rm×n, M : Ξ→ Rm×m, q1 ∈ Rn, q2 : Ξ→54

Rm. The two-stage SLCP arises from the KKT condition for the two-stage stochastic55

linear programmming [2]. Existence of solutions of (1.3)-(1.4) has been studied in [3].56

Moreover, the progressive hedging method has been applied to solve (1.3)-(1.4), with57

a finite number of realizations of ξ, in [19].58

Most existing studies for two-stage stochastic problems assume relatively complete59

recourse, that is, for every x ∈ X and a.e. ξ ∈ Ξ the second stage problem has at least60

one solution. However, for the SGE (1.1)–(1.2), it could happen that for a certain61

first stage decision x ∈ X, the second stage generalized equation62

(1.5) 0 ∈ Ψ(x, y, ξ) + Γ2(y, ξ)63

does not have a solution for some ξ ∈ Ξ. For such x and ξ the second stage decision64

y(ξ) is not defined. If this happens for ξ with positive probability, then the expected65

value of the first stage problem is not defined and such x should be avoided.66

In this paper, without assuming relatively complete recourse, we study conver-67

gence of the Sample Average Approximation (SAA)68

0 ∈ N−1
N∑
j=1

Φ(x, yj , ξ
j) + Γ1(x), x ∈ X,(1.6)69

0 ∈ Ψ(x, yj , ξ
j) + Γ2(yj , ξ

j), j = 1, ..., N,(1.7)70

of the two-stage SGE (1.1)–(1.2) with yj being a copy of the second stage vector71

for ξ = ξj , j = 1, ..., N , where ξ1, ..., ξN is an independent identically distributed72
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TWO-STAGE STOCHASTIC GENERALIZED EQUATIONS 3

(iid) sample of random vector ξ. The paper is organized as follows. In section 2 we73

investigate almost sure and exponential rate of convergence of solutions of the sample74

average approximations of the two-stage SGE. In section 3 convergence analysis of the75

mixed two-stage SVI-NCP is presented. In particular we give sufficient conditions for76

the existence, uniqueness, continuity and regularity of solutions by using the perturbed77

linearization of functions Φ and Ψ. Theoretical results, given in sections 2 and 3, are78

illustrated by numerical examples, using the Progressive Hedging Method (PHM),79

in section 4. It is worth noting that PHM is well-defined for two-stage monotone80

SVI without relatively complete recourse. Finally section 5 is devoted to conclusion81

remarks.82

We use the following notation and terminology throughout the paper. Unless83

stated otherwise ‖x‖ denotes the Euclidean norm of vector x ∈ Rn. By B := {x :84

‖x‖ ≤ 1} we denote unit ball in a considered vector space. For two sets A,B ⊂ Rm85

we denote by d(x,B) := infy∈B ‖x − y‖ distance from a point x ∈ Rm to the set B,86

d(x,B) = +∞ if B is empty, by D(A,B) := supx∈A d(x,B) the deviation of set A87

from the set B, and H(A,B) := max{D(A,B),D(B,A)}. The indicator function of a88

set A is defined as IA(x) = 0 for x ∈ A and IA(x) = +∞ for x 6∈ A. By bd(A), int(A)89

and cl(A) we denote the boundary, interior and topological closure of a set A ⊂ Rm.90

By reint(A) we denote the relative interior of a convex set A ⊂ Rm. A multifunction91

(point-to-set mappings) Γ : Rn ⇒ Rm assigns to a point x ∈ Rn a set Γ(x) ⊂ Rm.92

A multifunction Γ : Rn ⇒ Rm is said to be closed if xk → x, x∗k ∈ Γ(xk) and93

x∗k → x∗, then x∗ ∈ Γ(x). It is said that a multifunction Γ : Rn ⇒ Rn is monotone,94

if (x − x′)>(y − y′) ≥ 0, for all x, x′ ∈ Rn, and y ∈ Γ(x), y′ ∈ Γ(x′). Note that95

for a nonempty closed convex set C, the normal cone multifunction Γ(x) := NC(x)96

is closed and monotone. Note also that the normal cone NC(x), at x ∈ C, is the97

(negative) dual of the tangent cone TC(x). We use the same notation for ξ considered98

as a random vector and as a variable ξ ∈ Rd. Which of these two meanings is used99

will be clear from the context.100

2. Sample average approximation of the two-stage SGE. In this section101

we discuss statistical properties of the first stage solution x̂N of the SAA problem102

(1.6)–(1.7). In particular we investigate conditions ensuring convergence of x̂N , with103

probability one (w.p.1) and exponential, to its counterpart of the true problem (1.1)–104

(1.2).105

Denote by X the set of x ∈ X such that the second stage generalized equation106

(1.5) has a solution for a.e. ξ ∈ Ξ. The condition of relatively complete recourse107

means that X = X. Note that X is a subset of X, and if (x̄, ȳ(·)) is a solution of108

(1.1)–(1.2), then x̄ ∈ X . It is possible to formulate the two-stage SGE (1.1)–(1.2) in109

the following equivalent way. Let ŷ(x, ξ) be a solution function of the second stage110

problem (1.5) for x ∈ X and ξ ∈ Ξ, i.e.,111

0 ∈ Ψ(x, ŷ(x, ξ), ξ) + Γ2(ŷ(x, ξ), ξ), x ∈ X , a.e. ξ ∈ Ξ.112

Then the first stage problem becomes113

(2.1) 0 ∈ E[Φ(x, ŷ(x, ξ), ξ)] + Γ1(x), x ∈ X .114

If x̄ is a solution of (2.1), then (x̄, ŷ(x̄, ·)) is a solution of (1.1)–(1.2). Conversely if115

(x̄, ȳ(·)) is a solution of (1.1)–(1.2), then x̄ is a solution of (2.1). Note that problem116

(2.1) is a generalized equation which has been studied in the past decades, e.g. [15,117

18, 20, 22].118
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4 X. CHEN, A. SHAPIRO AND H. SUN

It could happen that the second stage problem (1.5) has more than one solution119

for some x ∈ X . In that case choice of ŷ(x, ξ) is somewhat arbitrary. This motivates120

the following condition.121

Assumption 2.1. For every (x, ξ) ∈ X ×Ξ, problem (1.5) has a unique solution.122

Under Assumption 2.1 the value ŷ(x, ξ) is uniquely defined for all x ∈ X and ξ ∈ Ξ,123

and the first stage problem (2.1) can be written as the following generalized equation124

(2.2) 0 ∈ φ(x) + Γ1(x), x ∈ X ,125

where126

(2.3) Φ̂(x, ξ) := Φ(x, ŷ(x, ξ), ξ) and φ(x) := E[Φ̂(x, ξ)].127

If the SGE have relatively complete recourse, then under Assumption 2.1 the SAA128

problem (1.6)–(1.7) can be written as129

(2.4) 0 ∈ φ̂N (x) + Γ1(x), x ∈ X,130

where φ̂N (x) := N−1
∑N
j=1 Φ̂(x, ξj) with Φ̂(x, ξ) defined in (2.3). Problem (2.4) can131

be viewed as the SAA of the first stage problem (2.2). If (x̂N , ŷjN ) is a solution of132

the SAA problem (1.6)–(1.7), then x̂N is a solution of (2.4) and ŷjN = ŷ(x̂N , ξ
j),133

j = 1, ..., N . Note that the SAA problem (1.6)–(1.7) can be considered without134

assuming the relatively complete recours, although in that case it could happen that135

φ̂N (x) is not defined for some x ∈ X \X and solution x̂N of (1.6) is not implementable136

at the second stage for some realizations of the random vector ξ. Our aim is the137

convergence analysis of the SAA problem (1.6)–(1.7) when sample size N increases.138

Denote by S∗ the set of solutions of the first stage problem (2.2) and by ŜN the139

set of solutions of the SAA problem (1.6) (in case of relatively complete recourse, ŜN140

is the set of solutions of problem (2.4) as well).141

• By X̄ (ξ) we denote the set of x ∈ X such that problem (1.5) has a solution,142

and by X̄N := ∩Nj=1X̄ (ξj) the set of x such that problems (1.7) have a solution.143

Note that the set X is equal to the intersection of X̄ (ξ), a.e. ξ ∈ Ξ; i.e., X =144

∩ξ∈Ξ\ΥX̄ (ξ) for some set Υ ⊂ Ξ such that P (Υ) = 0. Note also that if the two-stage145

SGE have relatively complete recourse, then X̄ (ξ) = X for a.e. ξ ∈ Ξ.146

2.1. Almost sure convergence. Consider the solution ŷ(x, ξ) of the second147

stage problem (1.5). To ensure continuity of ŷ(x, ξ) in x ∈ X for ξ ∈ Ξ, in addition148

to Assumption 2.1, we need the following boundedness condition.149

Assumption 2.2. For every ξ ∈ Ξ and x ∈ X̄ (ξ) there is a neighborhood V of x150

and a measurable function v(ξ) such that ‖ŷ(x′, ξ)‖ ≤ v(ξ) for all x′ ∈ V ∩ X̄ (ξ).151

Lemma 2.1. Suppose that Assumptions 2.1 and 2.2 hold, and for every ξ ∈ Ξ152

the multifunction Γ2(·, ξ) is closed. Then for every ξ ∈ Ξ the solution ŷ(x, ξ) is a153

continuous function of x ∈ X .154

Proof. The proof is quite standard. We argue by a contradiction. Suppose that155

for some x̄ ∈ X and ξ ∈ Ξ the solution ŷ(·, ξ) is not continuous at x̄. That is,156

there is a sequence xk ∈ X converging to x̄ ∈ X such that yk := ŷ(xk, ξ) does not157

converge to ȳ := ŷ(x̄, ξ). Then by the boundedness assumption, by passing to a158

subsequence if necessary we can assume that yk converges to a point y∗ different from159

ȳ. Consequently 0 ∈ Ψ(xk, yk, ξ) + Γ2(yk, ξ) and Ψ(xk, yk, ξ) converges to Ψ(x̄, y∗, ξ).160

Since Γ2(·, ξ) is closed, it follows that 0 ∈ Ψ(x̄, y∗, ξ) + Γ2(y∗, ξ). Hence by the161

uniqueness assumption, y∗ = ȳ which gives the required contradiction.162
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TWO-STAGE STOCHASTIC GENERALIZED EQUATIONS 5

Suppose for the moment that in addition to the assumptions of Lemma 2.1, the163

SGE have relatively complete recourse. We can apply then general results to verify164

consistency of the SAA estimates. Consider function Φ̂(x, ξ) defined in (2.3). By165

continuity of Φ(·, ·, ξ) and ŷ(·, ξ), we have that Φ̂(·, ξ) is continuous on X. Assuming166

further that there is a compact set X ′ ⊆ X such that S∗ ⊆ X ′ and ‖Φ̂(x, ξ)‖x∈X′ is167

dominated by an integrable function, we have that the function φ(x) = E[Φ̂(x, ξ)] is168

continuous on X ′ and φ̂N (x) converges w.p.1 to φ(x) uniformly on X ′. Note that the169

boundedness condition of Lemma 2.1 and continuity of Φ(·, ·, ξ) imply that Φ̂(·, ξ) is170

bounded on X ′. Then consistency of SAA solutions follows by [23, Theorem 5.12].171

We give below a more general result without the assumption of relatively complete172

recourse.173

Lemma 2.2. Suppose that Assumptions 2.1 and 2.2 hold. Then for every ξ ∈ Ξ174

the set X̄ (ξ) is closed.175

Proof. For a given ξ ∈ Ξ let xk ∈ X̄ (ξ) be a sequence converging to a point x̄.176

We need to show that x̄ ∈ X̄ (ξ). Let yk be the solution of (1.5) for x = xk and ξ.177

Then by Assumption 2.2, there is a neighborhood V of x̄ and a measurable function178

v(ξ) such that ‖yk‖ ≤ v(ξ) when xk ∈ V. Hence by passing to a subsequence we can179

assume that yk converges to a point ȳ ∈ Rm. Since Ψ(·, ·, ξ) is continuous and Γ2(·, ξ)180

is closed it follows that ȳ is a solution of (1.5) for x = x̄, and hence x̄ ∈ X̄ (ξ).181

By saying that a property holds w.p.1 for N large enough we mean that there is182

a set Σ ⊂ Ω of P-measure zero such that for every ω ∈ Ω \ Σ there exists a positive183

integer N∗ = N∗(ω) such that the property holds for all N ≥ N∗(ω) and ω ∈ Ω \ Σ.184

Assumption 2.3. For any δ ∈ (0, 1), there exists a compact set Ξ̄δ ⊂ Ξ such that185

P(Ξ̄δ) ≥ 1− δ and the multifunction ∆δ : X ⇒ Ξ̄δ,186

(2.5) ∆δ(x) := {ξ ∈ Ξ̄δ : x ∈ X̄ (ξ)},187

is upper semicontinuous.188

The following lemma shows this assumption holds under mild conditions.189

Lemma 2.3. Suppose Ψ(·, ·, ·) is continuous, Γ2(·, ·) is closed and Assumption 2.2190

holds. Then ∆δ(·) is upper semicontinuous.191

Proof. Consider the second stage generalized equation (1.2) and any sequence
{(xk, yk, ξk)} such that xk ∈ X, ξk ∈ ∆δ(xk) with a corresponding second stage
solution yk and (xk, ξk)→ (x∗, ξ∗) ∈ X ×Ξ. Since Ψ is continuous w.r.t. (x, y, ξ) and
Γ2(·, ·) is closed, we have that under Assumption 2.2, {yk} has accumulation points
and any accumulation point y∗ satisfies

0 ∈ Ψ(x∗, y∗, ξ∗) + Γ2(y∗, ξ∗),

which implies ξ∗ ∈ ∆δ(x
∗). This shows that the multifunction ∆δ(·) is closed. Since192

Ξ̄δ is compact, it follows that ∆δ(·) is upper semicontinuous.193

Note that in the case when Ξ is compact, we can set δ = 0 and replace Ξ̄δ by Ξ.194

Theorem 2.4. Suppose that: (i) Assumptions 2.1-2.3 hold, (ii) the multifunctions195

Γ1(·) and Γ2(·, ξ), ξ ∈ Ξ, are closed, (iii) there is a compact subset X ′ of X such that196

S∗ ⊂ X ′ and w.p.1 for all N large enough the set ŜN is nonempty and is contained197

in X ′, (iv) ‖Φ̂(x, ξ)‖x∈X is dominated by an integrable function, (v) the set X is198

nonempty. Let dN := D
(
X̄N ∩X ′,X ∩X ′

)
. Then the following statements hold.199

This manuscript is for review purposes only.



6 X. CHEN, A. SHAPIRO AND H. SUN

(a) dN → 0 and D(ŜN ,S∗)→ 0 w.p.1 as N →∞.200

(b) In addition assume that: (vi) for any δ > 0, τ > 0 and a.e. ω ∈ Ω, there201

exist γ > 0 and N0 = N0(ω) such that for any x ∈ X ∩X ′+γ B and N ≥ N0,202

there exists zx ∈ X ∩X ′ such that1203

(2.6) ‖zx − x‖ ≤ τ, Γ(x) ⊆ Γ1(zx) + δB, and ‖φ̂N (zx)− φ̂N (x)‖ ≤ δ.204

Then w.p.1 for N large enough it follows that205

(2.7) D(ŜN ,S∗) ≤ τ +R−1

(
sup

x∈X∩X′
‖φ(x)− φ̂N (x)‖

)
,206

where for ε ≥ 0 and t ≥ 0,207

R(ε) := inf
x∈X∩X′, d(x,S∗)≥ε

d
(
0, φ(x) + Γ1(x)

)
,208

209

R−1(t) := inf{ε ∈ R+ : R(ε) ≥ t}.210

Proof. Part (a). Let ξj = ξj(ω), j = 1, ..., be the iid sample, defined on the211

probability space (Ω,F ,P), and X̄N = X̄N (ω) be the corresponding feasibility set of212

the SAA problem. Consider a point x̄ ∈ X ′ \ X and its neighborhood Vx̄ = x̄ + γB213

for some γ > 0. We have that probability p := P{ξ ∈ Ξ : x̄ 6∈ X̄ (ξ)} is positive.214

Moreover it follows by Assumption 2.3 that we can choose γ > 0 such that probability215

P
{
Vx̄ ∩ X̄ (ξ) = ∅

}
is positive. Indeed, for δ := p/4 consider the multifunction ∆δ216

defined in (2.5). By upper semicontinuity of ∆δ we have that for any ε > 0 there is217

γ > 0 such that for all x ∈ Vx̄ it follows that ∆δ(x) ⊂ ∆δ(x̄) + εB. That is218

∪x∈Vx̄{ξ ∈ Ξ̄δ : x ∈ X̄ (ξ)} ⊂ {ξ ∈ Ξ̄δ : x̄ ∈ X̄ (ξ)}+ εB ⊂ {ξ ∈ Ξ : x̄ ∈ X̄ (ξ)}+ εB.219

It follows that we can choose ε > 0 small enough such that220

P
(
∪x∈Vx̄ {ξ ∈ Ξ̄δ : x ∈ X̄ (ξ)}

)
≤ 1− p/2.221

Since δ = p/4 we obtain222

P
(
∪x∈Vx̄ {ξ ∈ Ξ : x ∈ X̄ (ξ)}

)
≤ 1− p/4.223

Noting that the event
{
Vx̄ ∩ X̄ (ξ) = ∅

}
is complement of the event

{
∪x∈Vx̄ {ξ ∈ Ξ :224

x ∈ X̄ (ξ)}
}

, we obtain that P
{
Vx̄ ∩ X̄ (ξ) = ∅

}
≥ p/4.225

Consider the event EN :=
{
Vx̄ ∩ X̄N 6= ∅

}
. The complement of this event is EcN =226 {

Vx̄ ∩ X̄N = ∅
}

. Since the sample ξj , j = 1, ..., is iid, we have227

P
{
Vx̄ ∩ X̄N 6= ∅

}
≤

∏N
j=1 P

{
Vx̄ ∩ X̄ (ξj) 6= ∅

}
=

∏N
j=1

(
1− P

{
Vx̄ ∩ X̄ (ξj) = ∅

})
≤ (1− p/4)N ,

228

and hence
∑∞
N=1 P

{
Vx̄ ∩ X̄N 6= ∅

}
< ∞. It follows by Borel-Cantelli Lemma that229

P (lim supN→∞EN ) = 0. That is for all N large enough the events EcN happen w.p.1.230

Now for a given ε > 0 consider the set Xε := {x ∈ X ′ : d(x,X ) < ε}. Since the set231

X ′ \ Xε is compact we can choose a finite number of points x1, ..., xK ∈ X ′ \ Xε and232

1Recall that φ̂N (x) = φ̂N (x, ω) are random functions defined on the probability space (Ω,F ,P).
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their respective neighborhoods V1, ...,VK covering the set X ′ \ Xε such that for all N233

large enough the events {Vk ∩ X̄N = ∅}, k = 1, ...,K, happen w.p.1. It follows that234

w.p.1 for all N large enough X̄N is a subset of Xε. This shows that dN tends to zero235

w.p.1.236

To show that D(ŜN ,S∗)→ 0 w.p.1 the arguments now basically are deterministic,237

i.e., dN and x̂N ∈ ŜN are viewed as random variables, dN = dN (ω), x̂N = x̂N (ω),238

defined on the probability space (Ω,F ,P), and we want to show that d(x̂N (ω),S∗)239

tends to zero for all ω ∈ Ω except on a set of P-measure zero. Therefore we consider240

sequences dN and x̂N as deterministic, for a particular (fixed) ω ∈ Ω, and drop241

mentioning “w.p.1”. Since dN → 0, there is x̃N ∈ X such that ‖x̂N − x̃N‖ tends242

to zero. Note that as an intersection of closed sets, the set X is closed. By the243

assumption (iv) and continuity of Φ̂(·, ξ) we have that φ̂N (·) converges w.p.1 to φ(·)244

uniformly on the compact set X ∩ X ′ (this is the so-called uniform Law of Large245

Numbers, e.g., [23, Theorem 7.48]), i.e., for all ω ∈ Ω except on a set of P-measure246

zero247

sup
x∈X∩X′

‖φ̂N (x)− φ(x)‖ → 0, as N →∞.248

By passing to a subsequence if necessary we can assume that x̂N converges to a point249

x∗. It follows that x̃N → x∗ and hence φ̂N (x̃N ) → φ(x∗). Thus φ̂N (x̂N ) → φ(x∗).250

Since Γ1 is closed it follows that 0 ∈ φ(x∗) + Γ1(x∗), i.e., x∗ ∈ S∗. This completes the251

proof of part (a), and also implies that the set S∗ is nonempty.252

Before proceeding to proof of part (b) we need the following lemma.253

Lemma 2.5. Under the assumptions of Theorem 2.4 it follows that R(0) = 0,254

R(ε) is nondecreasing on [0,∞) and R(ε) > 0 for all ε > 0.255

Proof. We only need to show that R(ε) > 0 for all ε > 0, the other two properties
are immediate. Note that since the set S∗ is nonempty and S∗ ⊂ X ∩X ′, it follows
that the set X ∩X ′ is nonempty. Assume for a contradiction that R(ε̄) = 0 for some
ε̄ > 0. Since X ′ is compact, there exists a sequence {xk} ⊂ X ∩X ′ converging to a
point x̄ such that d(xk,S∗) ≥ ε̄ and

lim
k→∞

d(0, φ(xk) + Γ1(xk)) = 0.

Since Γ1 is closed and φ(·) is continuous, it follows that 0 ∈ φ(x̄) + Γ1(x̄), i.e., x̄ ∈ S∗256

This contradicts the fact that d(x̄,S∗) ≥ ε̄. This competes the proof.257

Note that it follows that R−1(t) is nondecreasing on [0,∞) and tends to zero as t ↓ 0.
Proof of part (b). Let δ = R(ε)/4. By part (a) and the uniform Law of Large
Numbers, we have w.p.1 that for N large enough

sup
x∈X∩X′

‖φ(x)− φ̂N (x)‖ ≤ δ.

Then w.p.1 for N large enough such that dN ≤ ε, for any point x ∈ X̄N ∩ X ′ with
d(zx,S∗) ≥ ε it follows that

d(0, φ̂N (x) + Γ1(x))

≥ d(0, φ̂N (zx) + Γ1(zx))− D(φ̂N (x) + Γ1(x), φ̂N (zx) + Γ1(zx))

≥ d(0, φ(zx) + Γ1(zx))− D(φ̂N (zx) + Γ1(zx), φ(zx) + Γ1(zx))

−D(φ̂N (x) + Γ1(x), φ̂N (zx) + Γ1(zx))

≥ d(0, φ(zx) + Γ1(zx))− ‖φ̂N (zx), φ(zx)‖ − ‖φ̂N (x), φ̂N (zx)‖
−D(Γ1(x),Γ1(zx))

≥ 4δ − δ − δ − δ = δ,

This manuscript is for review purposes only.



8 X. CHEN, A. SHAPIRO AND H. SUN

which implies x /∈ ŜN . Then

d(x,S∗) ≤ ‖x− zx‖+ d(zx,S∗) ≤ τ +R−1

(
sup

x∈X∩X′
‖φ(x)− φ̂N (x)‖

)
.

This completes the proof.258

In case of the relatively complete recourse there is no need for condition (vi) and259

the estimate (2.7) holds with τ = 0. It is interesting to consider how strong condition260

(vi) is. In the following remark we show that condition (vi) can also hold without the261

assumption of relatively complete recourse under mild conditions.262

Remark 2.1. In condition (vi), the third inequality of (2.6) can be easily verified263

when N sufficiently large and Φ̂(·, ξ) is Lipschitz continuous with Lipschitz module264

κΦ̂(ξ) and E[κΦ̂(ξ)] <∞. In Lemma 2.8 and Theorem 3.7 below, we verify the third265

inequality of (2.6) under moderate conditions.266

Moreover, in the case when Γ1(·) := NC(·) with a nonempty polyhedral convex set
C, the first and second inequality of (2.6) holds automatically. Let F = {F1, · · · , FK}
be the family of all nonempty faces of C and

K := {k : X ∩X ′ ∩ Fk 6= ∅, k = 1, · · · ,K}.

Then w.p.1 for N sufficiently large, X̄N ∩X ′ ∩ Fk = ∅ for all k /∈ K. Note that for all267

k ∈ K, X̄N ∩X ′∩Fk 6= ∅. Moreover, it is important to note that for all x1 ∈ reint(Fk)268

and x2 ∈ Fk, k ∈ {1, · · · ,K}, NC(x1) ⊆ NC(x2). Then for any x ∈ X̄N ∩ X ′ \ X ,269

there exists k ∈ K such that x ∈ reint(Fk). To see this, we assume for contradiction270

that x ∈ Fk \ reint(Fk) for some k ∈ K and there is no k ∈ K such that x ∈ reint(Fk).271

Then there exist some k̄ ∈ {1, · · · ,K} such that x ∈ reint(Fk̄) (if Fk̄ is singleton, then272

reint(Fk̄) = Fk̄) and k̄ /∈ K. This contradicts that X̄N ∩X ′ ∩ Fk = ∅ for all k /∈ K.273

Note that H
(
X̄N ∩X ′,X ∩X ′

)
≤ dN and dN → 0 as N → ∞ w.p.1. Let zx =

arg minz∈X∩X′∩Fk
‖z − x‖. Then NC(x) ⊆ NC(zx) and for

τN := max
k∈K

max
x∈X̄N∩X′∩Fk

min
z∈X∩X′∩Fk

‖z − x‖,

we have that τN → 0 as dN → 0. Hence (2.6) is verified.274

2.2. Exponential rate of convergence. We assume in this section that the275

set S∗ of solutions of the first stage problem is nonempty, and the set X is compact.276

The last assumption of compactness of X can be relaxed to assuming that there is277

a compact subset X ′ of X such w.p.1 ŜN ⊂ X ′, and to deal with the set X ′ rather278

than X. For simplicity of notation we assume directly compactness of X.279

Under Assumption 2.2 and by Lemma 2.1, we have that Φ̂(x, ξ), defined in (2.3),280

is continuous in x ∈ X . However to investigate the exponential rate of convergence,281

we need to verify Lipschitz continuity of Φ̂(·, ξ). To this end, we assume the Clarke282

Differential (CD) regularity property of the second stage generalized equation (1.2).283

By πy∂(x,y)(Ψ(x̄, ȳ, ξ̄)), we denote the projection of the Clarke generalized Jacobian284

∂(x,y)Ψ(x̄, ȳ, ξ̄) in Rm×n × Rm×m onto Rm×m: the set πy∂(x,y)Ψ(x̄, ȳ, ξ̄) consists of285

matrices J ∈ Rm×m such that the matrix (S, J) belongs to ∂(x,y)Ψ(x̄, ȳ, ξ̄) for some286

S ∈ Rm×n.287

Definition 2.6. For ξ̄ ∈ Ξ a solution ȳ of the second stage generalized equation288

(1.2) is said to be parametrically CD-regular, at x = x̄ ∈ X̄ (ξ̄), if for each J ∈289

πy∂(x,y)Ψ(x̄, ȳ, ξ̄) the solution ȳ of the following SGE is strongly regular290

(2.8) 0 ∈ Ψ(x̄, ȳ, ξ̄) + J(y − ȳ) + Γ2(y, ξ̄).291
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That is, there exist neighborhoods U of ȳ and V of 0 such that for every η ∈ V the292

perturbed (partially) linearized SGE of (2.8)293

η ∈ Ψ(x̄, ȳ, ξ̄) + J(y − ȳ) + Γ2(y, ξ̄)294

has in U a unique solution ŷx̄(η), and the mapping η → ŷx̄(η) : V → U is Lipschitz295

continuous.296

Assumption 2.4. For all x̄ ∈ X and ξ ∈ Ξ, there exists a unique, parametrically297

CD-regular solution ȳ = ŷ(x̄, ξ) of the second stage generalized equation (1.2).298

Proposition 2.7. Suppose Assumption 2.4 holds. Then the solution mapping299

ŷ(x, ξ) of the second stage generalized equation (1.2) is a Lipschitz continuous function300

of x ∈ X , with Lipschitz constant κ(ξ).301

The result is implied directly by [13, Theorem 4] and the compactness of X ⊆ X.
Moreover, note that for any x̄ ∈ X , if the generalized equation

0 ∈ Gx̄(y) := Ψ(x̄, ȳ, ξ̄) + J(y − ȳ) + Γ2(y, ξ̄) for which Gx̄(ȳ) 3 0,

has a locally Lipschitz continuous solution function at 0 for ȳ with Lipschitz constant
κG(x̄, ξ). Then by [8, Theorem 1.1], we have

κx̄(ξ) = κG(x̄, ξ)κΨ(ξ) <∞

is a Lipschitz constant of the second stage solution function ŷ(x, ξ) at x̄.302

Assumption 2.5. The set X is convex, its interior int(X ) 6= ∅, and for all ξ ∈ Ξ
and x̄ ∈ X , the generalized equation

0 ∈ Gx̄(y) = Ψ(x̄, ȳ, ξ) + J(y − ȳ) + Γ2(y, ξ), for which Gx̄(ȳ) 3 0,

has a locally Lipschitz continuous solution function at 0 for ȳ with Lipschitz constant303

κG(x̄, ξ) and there exists a measurable function κ̄G : Ξ → R+ such that, κG(x, ξ) ≤304

κ̄G(ξ) and E[κ̄G(ξ)κΨ(ξ)] <∞.305

Under Assumption 2.5, it can be seen that E[ŷ(x, ξ)] is Lipschitz continuous over306

x ∈ X with Lipschitz constant E[κ̄G(ξ)κΨ(ξ)]. We consider then the first stage (1.1)307

of the SGE as the generalized equation (2.2) with the respective second stage solution308

ŷ(x, ξ) (recall definition (2.3) of Φ̂(x, ξ) and φ(x)).309

Lemma 2.8. Suppose that Assumptions 2.4–2.5 hold, E[κΦ(ξ)] <∞ and

E [κΦ(ξ)κ̄G(ξ)κΨ(ξ)] <∞.

Then Φ̂(x, ξ) and φ(x) are Lipschitz continuous over x ∈ X with respective Lipschitz
module

κΦ(ξ) + κΦ(ξ)κ̄G(ξ)κΨ(ξ) and E[κΦ(ξ)] + E[κΦ(ξ)κ̄G(ξ)κΨ(ξ)].

Remark 2.2. Specifically we study Assumptions 2.2–2.5 in the framework of the310

following SGE:311

0 ∈ E[Φ(x, y(ξ), ξ)] + Γ1(x), x ∈ X,(2.9)312

0 ∈ Ψ(x, y(ξ), ξ) +NRm
+

(H(x, y, ξ)), for a.e. ξ ∈ Ξ,(2.10)313
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10 X. CHEN, A. SHAPIRO AND H. SUN

where H(x, y, ξ) : Rn × Rm × Ξ → Rm. Let h(x, y, ξ) := min{Ψ(x, y, ξ), H(x, y, ξ)}.314

Then the second stage VI (2.10) is equivalent to315

(2.11) h(x, y, ξ) = 0, for a.e. ξ ∈ Ξ.316

For x = x̄ and ξ ∈ Ξ let ȳ be a solution of (2.11), and suppose that each matrix J ∈
πy∂h(x̄, ȳ, ξ) is nonsingular for a.e. ξ. Then by Clarke’s Inverse Function Theorem,
there exists a Lipschitz continuous solution function ŷ(x, ξ) such that ŷ(x̄, ξ) = ȳ and
the Lipschitz constant is bounded by ‖J−1(x, y, ξ)S(x, y, ξ)‖ for all

(S(x, y, ξ), J(x, y, ξ))> ∈ πx,y∂h(x, y, ξ).

Then Assumption 2.4 holds. Moreover, if we assume

E
[
‖J−1(x, ŷ(x, ξ), ξ)S(x, ŷ(x, ξ), ξ)‖

]
<∞

for all x ∈ X , then Assumption 2.5 holds.317

Now we investigate exponential rate of convergence of the two-stage SAA problem
(1.6)–(1.7) by using a uniform Large Deviations Theorem (cf., [23, 24, 26]). Let

M i
x(t) := E

{
exp
(
t[Φ̂i(x, ξ)− φi(x)]

)}
be the moment generating function of the random variable Φ̂i(x, ξ) − φi(x), i =
1, . . . , n, and

Mκ(t) := E
{

exp
(
t
[
κΦ(ξ) + κΦ(ξ)κ(ξ)− E[κΦ(ξ) + κΦ(ξ)κ(ξ)

]])}
.

Assumption 2.6. For every x ∈ X and i = 1, . . . , n, the moment generating318

functions M i
x(t) and Mκ(t) have finite values for all t in a neighborhood of zero.319

Theorem 2.9. Suppose that: (i) Assumptions 2.1, 2.3–2.6 hold, (ii) w.p.1 for N320

large enough, S∗, ŜN are nonempty, (iii) the multifunctions Γ1(·) and Γ2(·, ξ), ξ ∈ Ξ,321

are closed and monotone. Then the following statements hold.322

(a) For sufficiently small ε > 0 there exist positive constants % = %(ε) and ς =323

ς(ε), independent of N , such that324

(2.12) P
{

sup
x∈X

∥∥φ̂N (x)− φ(x)
∥∥ ≥ ε} ≤ %(ε)e−Nς(ε).325

(b) Assume in addition: (iv) The condition of part (b) in Theorem 2.4 holds and326

w.p.1 for N sufficiently large,327

(2.13) S∗ ∩ cl
(
bd(X ) ∩ int(X̄N )

)
= ∅.328

(v) φ(·) has the following strong monotonicity property for every x∗ ∈ S∗:329

(2.14) (x− x∗)>(φ(x)− φ(x∗)) ≥ g(‖x− x∗‖), ∀x ∈ X ,330

where g : R+ → R+ is such a function that function r(τ) := g(τ)/τ is mono-331

tonically increasing for τ > 0.332

Then S∗ = {x∗} is a singleton and for any sufficiently small ε > 0, there333

exists N sufficiently large such that334

(2.15) P
{
D(ŜN ,S∗) ≥ ε

}
≤ %

(
r−1(ε)

)
exp

(
−Nς

(
r−1(ε)

))
,335

where %(·) and ς(·) are defined in (2.12), and r−1(ε) := inf{τ > 0 : r(τ) ≥ ε}336

is the inverse of r(τ).337

This manuscript is for review purposes only.



TWO-STAGE STOCHASTIC GENERALIZED EQUATIONS 11

Proof. Part (a). By Lemma 2.8, because of conditions (i) and (ii) and compactness338

of X, we have by [23, Theorem 7.67] that for every i ∈ {1, . . . , n} and ε > 0 small339

enough, there exist positive constants %i = %i(ε) and ςi = ςi(ε), independent of N ,340

such that341

P
{

sup
x∈X

∣∣(φ̂N )i(x)− φi(x)
∣∣ ≥ ε} ≤ %i(ε)e−Nςi(ε),342

and hence (2.12) follows.343

Part (b). By condition (iv) we have that D(S∗, X̄N \X ) > 0. Let ε be sufficiently
small such that w.p.1 for N sufficiently large,

D(S∗, X̄N \ X ) ≥ 3ε.

Note that since X ⊆ X̄N+1 ⊆ X̄N , D(S∗, X̄N \ X ) is nondecreasing with N →∞.344

By Theorem 2.4, part (b), w.p.1 for N sufficiently large such that τ ≤ ε, we have

R−1

(
sup
x∈X
‖φ̂N (x)− φ(x)‖

)
≤ ε

and345

D(ŜN ,S∗) ≤ τ +R−1

(
sup
x∈X
‖φ̂N (x)− φ(x)‖

)
≤ 2ε.346

Since by condition (iv), when N sufficiently large w.p.1, for any point x̃ ∈ X̄N \ X ,347

D(x̃,S∗) ≥ 3ε, which implies ŜN ⊂ X and then348

(2.16) D(ŜN ,S∗) ≤ R−1

(
sup
x∈X
‖φ̂N (x)− φ(x)‖

)
.349

In order to use (2.16) to derive an exponential rate of convergence of the SAA esti-350

mators we need an upper bound for R−1(t), or equivalently a lower bound for R(ε).351

Note that because of the monotonicity assumptions we have that S∗ = {x∗}.352

For x ∈ X and z ∈ Γ1(x) we have353

(x− x∗)>(φ(x)− φ(x∗)) = (x− x∗)>(φ(x) + z − φ(x∗)− z) ≤ (x− x∗)>(φ(x) + z),354

where the last inequality holds since −φ(x∗) ∈ Γ1(x∗) and because of monotonicity355

of Γ1. It follows that356

(x− x∗)>(φ(x)− φ(x∗)) ≤ ‖x− x∗‖ ‖φ(x) + z‖,357

and since z ∈ Γ1(x) was arbitrary that358

(x− x∗)>(φ(x)− φ(x∗)) ≤ ‖x− x∗‖ d
(
0, φ(x) + Γ1(x)

)
.359

Together with (2.14) this implies360

d
(
0, φ(x) + Γ1(x)

)
≥ r(‖x− x∗‖).361

It follows that R(ε) ≥ r(ε), ε ≥ 0, and hence362

R−1(t) ≤ r−1(t),363

where r−1(·) is the inverse of function r(·). Then by (2.12), (2.15) holds.364
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Note that if g(τ) := c τα for some constants c > 0 and α > 1, then r−1(t) =365

(t/c)1/(α−1). In particular for α = 2, condition (2.14) assumes strong monotonicity366

of φ(·). Note also that condition (iv) is not needed if the relatively complete recourse367

condition holds.368

It is interesting to consider how strong condition (2.13) is. Note that when S∗ ⊂369

int(X ), condition (2.13) holds. Moreover, we can also see from the following simple370

example that even when S∗ ∩ bd(X ) 6= ∅, condition (2.13) may still hold.371

Example 2.1. Consider a two-stage SLCP372

0 ≤
(
x1

x2

)
⊥
(

1 0
0 1

)(
x1

x2

)
+

(
E[y1(ξ)]
E[y2(ξ)]

)
≥ 0,373

0 ≤
(
y1(ξ)
y2(ξ)

)
⊥
(
α(x1, ξ) 0

0 α(x2, ξ)

)(
y1(ξ)
y2(ξ)

)
−
(
x1

x2

)
≥ 0, a.e. ξ ∈ Ξ,374

where

α(t, ξ) =

{ 1
t+ξ+51 , if t+ ξ ≤ 100,

0, otherwise,

and ξ follows uniform distribution in [−50, 50].375

By simple calculation, we have that S∗ = {(0, 0)} and X = [0, 50]× [0, 50]. More-376

over, consider an iid samples {ξj}Nj=1 with maxj ξ
j = 49, X̄N = [0, 51] × [0, 51]. Let377

X = {x : 0 ≤ x1, x2 ≤ 100}. It is easy to observe that although S∗ = {(0, 0)} is at the378

boundary of X ∩X, condition (2.13) still holds.379

Remark 2.3. It is also interesting to estimate the required sample size of the380

SAA problem for the two-stage SGE. Similar to a discussion in [24, p.410], if there381

exists a positive constant σ > 0 such that382

(2.17) M i
x(t) ≤ exp{σ2t2/2}, ∀t ∈ R, i = 1, ..., n,383

then it can be verified that Iix(z) ≥ z2

2σ2 for all z ∈ R, where Iix(z) := supt∈R{zt −384

logM i
x(t)} is the large deviations rate function of random variable Φ̂i(x, ξ) − φi(x),385

i = 1, · · · , n. Note that if Φ̂i(x, ξ) − φi(x) is subgaussian random variable, (2.17)386

holds, i = 1, ..., n. Then it can be verified that if387

N ≥ 32nσ

ε2

[
ln(n(2Π + 1)) + ln

(
1

α

)]
,388

then389

P
{

sup
x∈X

∥∥φ̂N (x)− φ(x)
∥∥ ≥ ε} ≤ α,390

where Π := (O(1)DE[κΦ(ξ) + κΦ(ξ)κ(ξ)]/ε)
n

and D is the diameter of X. Conse-391

quently it follows by (2.16) that if392

N ≥ 32nσ

(r−1(ε))2

[
ln(n(2Π̂ + 1)) + ln

(
1

α

)]
,393

with Π̂ :=
(
O(1)DE[κΦ(ξ) + κΦ(ξ)κ(ξ)]/r−1(ε)

)n
, then we have394

P
{
D(ŜN ,S∗) ≥ ε

}
≤ α.395

In the next section, we will verify the conditions of Theorems 2.4 and 2.9 for the396

two-stage SVI-NCP under moderate assumptions.397
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3. Two-stage SVI-NCP and its SAA problem. In this section, we inves-398

tigate convergence properties of the two-stage SGE (1.1)–(1.2) when Φ(x, y, ξ) and399

Ψ(x, y, ξ) are continuously differentiable w.r.t. (x, y) for a.e. ξ ∈ Ξ and Γ1(x) :=400

NC(x) and Γ2(y) := NRm
+

(y) with C ⊆ Rn being a nonempty, polyhedral, convex set.401

That is, we consider the mixed two-stage SVI-NCP402

0 ∈ E[Φ(x, y(ξ), ξ)] +NC(x),(3.1)403

0 ≤ y(ξ) ⊥ Ψ(x, y(ξ), ξ) ≥ 0, for a.e. ξ ∈ Ξ,(3.2)404

and study convergence analysis of its SAA problem405

0 ∈ N−1
N∑
j=1

Φ(x, y(ξj), ξj) +NC(x),(3.3)406

0 ≤ y(ξj) ⊥ Ψ(x, y(ξj), ξj) ≥ 0, j = 1, ..., N.(3.4)407

We first give some required definitions. Let Y be the space of measurable functions
u : Ξ→ Rm with finite value of

∫
‖u(ξ)‖2P (dξ) and 〈·, ·〉 denotes the scalar product in

the Hilbert space Rn×Y equipped with L2-norm, that is, for x, z ∈ Rn and y, u ∈ Y,

〈(x, y), (z, u)〉 := x>z +

∫
Ξ

y(ξ)>u(ξ)P (dξ).

Consider mapping G : Rn × Y → Rn × Y defined as

G(x, y(·)) :=
(
E[Φ(x, y(ξ), ξ)],Ψ(x, y(·), ·)

)
.

Monotonicity properties of this mapping are defined in the usual way. In particular
the mapping G is said to be strongly monotone if there exists a positive number κ̄
such that for any (x, y(·)), (z, u(·)) ∈ Rn × Y, we have〈

G(x, y(·))− G(z, u(·)),
(

x− z
y(·)− u(·)

)〉
≥ κ̄(‖x− z‖2 + E[‖y(ξ)− u(ξ)‖2]).

Definition 3.1. ([11, Definition 12.1]) The mapping G : Rn × Y → Rn × Y is
hemicontinuous on Rn × Y if G is continuous on line segments in Rn × Y, i.e., for
every pair of points (x, y(·)), (z, u(·)) ∈ Rn × Y, the following function is continuous

t 7→
〈
G(tx+ (1− t)z, ty(·) + (1− t)u(·)),

(
x− z

y(·)− u(·)

)〉
.

Definition 3.2. ([11, Definition 12.3 (i)]) The mapping G : Rn×Y → Rn×Y is
coercive if there exists (x0, y0(·)) ∈ Rn × Y such that〈
G(x, y(·)),

(
x− x0

y(·)− y0(·)

)〉
‖x− x0‖+ E[‖y(ξ)− y0(ξ)‖]

→∞ as ‖x‖+E[‖y(ξ)‖]→∞ and (x, y(·)) ∈ Rn ×Y.

Note that the strong monotonicity of G implies the coerciveness of G, see [11,408

Chapter 12]. In section 3.1, we consider the properties in the second stage SNCP.409
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3.1. Lipschitz properties of the second stage solution mapping. Strong410

regularity of VI was investigated in Dontchev and Rockafellar [7]. We apply their411

results to the second stage SNCP. Consider a linear VI412

(3.5) 0 ∈ Hz + q +NU (z),413

where U is a closed nonempty, polyhedral, convex subset of Rl.414

Definition 3.3. [7, Definition 2] The critical face condition is said to hold at
(q0, z0) if for any choice of faces F1 and F2 of the critical cone C0 with F2 ⊂ F1,

u ∈ F1 − F2, H>u ∈ (F1 − F2)∗ =⇒ u = 0,

where critical cone C0 = C(z0, v0) := {z′ ∈ TU (x) : z′ ⊥ v0} with v0 = Hz0 + q0.415

Theorem 3.4. [7, Theorem 2] The linear variational inequality (3.5) is strongly416

regular at (q0, z0) if and only if the critical face condition holds at (q0, z0), where z0417

is the solution of the linear VI: 0 ∈ Hz + q0 +NU (z).418

Corollary 3.1. [7, Corollary 1] A sufficient condition for strong regularity of419

the linear variational inequality (3.5) at (q0, z0) is that u>Hu > 0 for all vectors420

u 6= 0 in the subspace spanned by the critical cone C0.421

Note that when H is a positive definite matrix, the condition in Corollary 3.1
holds. Then we apply Corollary 3.1 to the two-stage SVI-NCP and consider the
Clarke generalized Jacobian of ŷ(x, ξ). To this end, we introduce some notations: let

α(ŷ(x, ξ)) = {i : (ŷ(x, ξ))i > (Ψ(x, ŷ(x, ξ), ξ))i}
β(ŷ(x, ξ)) = {i : (ŷ(x, ξ))i = (Ψ(x, ŷ(x, ξ), ξ))i}
γ(ŷ(x, ξ)) = {i : (ŷ(x, ξ))i < (Ψ(x, ŷ(x, ξ), ξ))i},

∇xΨ(x, y, ξ) =

∇xΨα(x, y, ξ)
∇xΨβ(x, y, ξ)
∇xΨγ(x, y, ξ)

 be the Jacobian of Ψ(x, y, ξ) w.r.t. x for given y

and ξ and

∇yΨ(x, y, ξ) =

∇yΨαα(x, y, ξ) ∇yΨαβ(x, y, ξ) ∇yΨαγ(x, y, ξ)
∇yΨβα(x, y, ξ) ∇yΨββ(x, y, ξ) ∇yΨβγ(x, y, ξ)
∇yΨγα(x, y, ξ) ∇yΨγβ(x, y, ξ) ∇yΨγγ(x, y, ξ)


be the Jacobian of Ψ(x, y, ξ) w.r.t. y for given x and ξ, where the submatrix422

∇xΨα(x, y, ξ) is a matrix with elements ∂Ψi(x, y, ξ)/∂xj , i ∈ α, j ∈ {1, · · · , n} and423

the submatrix ∇yΨαα(x, y, ξ) is a matrix with elements ∂Ψi(x, y, ξ)/∂yj , i, j ∈ α.424

Assumption 3.1. For a.e. ξ ∈ Ξ and all x ∈ X ∩ C, Ψ(x, ·, ξ) is strongly mono-
tone, that is there exists a positive valued measurable κy(ξ) such that for all y, u ∈ Rm,

〈Ψ(x, y, ξ)−Ψ(x, u, ξ), y − u〉 ≥ κy(ξ)‖y − u‖2

with E[κy(ξ)] < +∞.425

Applying Corollary 2.1 in [14] to the second stage of the SVI-NCP, we have the426

following lemma.427

Lemma 3.5. Suppose Assumption 3.1 holds and for a fixed ξ̄ ∈ Ξ, Ψ(x, y, ξ) is428

continuously differentiable w.r.t. (x, y). Then for the fixed ξ̄ ∈ Ξ, (a) ŷ(x, ξ̄) is429
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an unique solution of the second stage NCP (3.2), (b) ŷ(x, ξ̄) is F-differentiable at430

x̄ ∈ X ∩ C if and only if β(ŷ(x̄, ξ̄)) is empty and431

(∇xŷ(x̄, ξ))α = −(∇yΨαα(x̄, ŷ(x̄, ξ), ξ))−1∇xΨα(x̄, ŷ(x̄, ξ), ξ), (∇xŷ(x̄, ξ))γ = 0432

or433

∇xΨβ(x̄, ŷ(x̄, ξ), ξ) = ∇yΨβα(x̄, ŷ(x̄, ξ), ξ)(∇yΨαα(x̄, ŷ(x̄, ξ), ξ))−1∇xΨα(x̄, ŷ(x̄, ξ), ξ)434

in this case, the F-derivative of ŷ(·, ξ) at x̄ is given by435

(∇xŷ(x̄, ξ))α = −(∇yΨαα(x̄, ŷ(x̄, ξ), ξ))−1∇xΨα(x̄, ŷ(x̄, ξ), ξ),436

(∇xŷ(x̄, ξ))β = 0, (∇xŷ(x̄, ξ))γ = 0.437

Theorem 3.6. Let Ψ : Rn × Rm × Ξ → Rm be Lipschitz continuous and contin-438

uously differentiable over Rn × Rm for a.e. ξ ∈ Ξ. Suppose Assumption 3.1 holds439

and Φ(x, y, ξ) is continuously differentiable w.r.t. (x, y) for a.e. ξ ∈ Ξ. Then for a.e.440

ξ ∈ Ξ and x ∈ X , the following holds.441

(a) The second stage SNCP (3.2) has a unique solution ŷ(x, ξ) which is paramet-442

rically CD-regular and the mapping x 7→ ŷ(x, ξ) is Lipschitz continuous over443

X ∩X ′, where X ′ is a compact subset of Rn.444

(b) The Clarke Jacobian of ŷ(x, ξ) w.r.t. x is as follows

∂ŷ(x, ξ) = conv
{

lim
z→x
∇z ŷ(z, ξ) : ∇z ŷ(z, ξ)

= −[I −Dα(ŷ(z,ξ))(I −M(z, ŷ(z, ξ), ξ))]−1Dα(ŷ(z,ξ))L(z, ŷ(z, ξ), ξ)
}

⊆ conv{−UJ(M(x, ŷ(x, ξ), ξ))L(x, ŷ(x, ξ), ξ) : J ∈ J },

where M(x, y, ξ) = ∇yΨ(x, y, ξ), L(x, ŷ(x, ξ), ξ) = ∇xΨ(x, ŷ(x, ξ), ξ), J :=445

2{1,...,m}, DJ and UJ are defined in (3.9) and (3.10) respectively.446

Proof. Part (a). Note that by Lemma 3.5 (a), for almost all ξ̄ ∈ Ξ and every447

x̄ ∈ X ∩ X ′, there exists a unique solution ŷ(x̄, ξ̄) of the second stage SNCP (3.2).448

Moreover, consider the LCP449

(3.6) 0 ≤ y ⊥ Ψ(x̄, ȳ, ξ̄) +∇yΨ(x̄, ȳ, ξ̄)(ȳ − y) ≥ 0,450

where ȳ = ŷ(x̄, ξ̄). By the strong monotonicity of Ψ(x̄, ·, ξ̄), ∇yΨ(x̄, ȳ, ξ̄) is positive451

definite. Then by Corollary 3.1, the LCP (3.6) is strongly regular at ȳ. This implies452

the parametrically CD-regular of the second stage SNCP (3.2) with x̄ at solution ȳ.453

Then the Lipschitz property follows from [13, Theorem 4] and the compactness of X ′.454

Part (b). For any fixed ξ̄, by Part (a), there exists a unique Lipschitz function455

ŷ(·, ξ̄) such that ŷ(x, ξ̄) over X which solves456

0 ≤ y ⊥ Ψ(x, y, ξ̄) ≥ 0.457

Note that ŷ(·, ξ̄) is Lipschitz continuous and hence F-differentiable almost every-458

where over Bδ(x̄). Then for any x′ ∈ Bδ(x̄) such that ŷ(x′, ξ̄) is F-differentiable, by459

Lemma 3.5 (b), we have β(ŷ(x′, ξ)) is empty and460

(3.7)
(∇xŷ(x′, ξ))α = −(∇yΨ(x′, ŷ(x′, ξ), ξ))−1

αα(∇xΨ(x′, ŷ(x′, ξ), ξ))α, (∇xŷ(x′, ξ))γ = 0461

or β(ŷ(x′, ξ)) is not empty and462

(3.8)
(∇xŷ(x′, ξ))α = −(∇yΨ(x′, ŷ(x′, ξ), ξ))−1

αα(∇xΨ(x′, ŷ(x′, ξ), ξ))α,
(∇xŷ(x′, ξ))β = 0, (∇xŷ(x′, ξ))γ = 0.

463
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Let DJ ∈ D be an m-dimensional diagonal matrix with J ∈ J and464

(3.9) (DJ)jj :=

{
1, if j ∈ J,
0, otherwise,

465

M(x, y, ξ) = ∇yΨ(x, y, ξ) and W (x, ξ) = [I−Dα(ŷ(x,ξ))(I−M(x, y, ξ))]−1Dα(ŷ(x,ξ)).466

Then by (3.7) and (3.8),467

∇xŷ(x′, ξ) = −[I −Dα(ŷ(x,ξ̄))(I −M(x′, ŷ(x′, ξ̄), ξ))]−1Dα(ŷ(x,ξ̄))L(x′, ŷ(x′, ξ̄), ξ̄),468

where L(x, ŷ(x, ξ), ξ) = ∇xΨ(x, ŷ(x, ξ), ξ). Let469

(3.10) UJ(M) = (I −DJ(I −M))−1DJ , ∀J ∈ J .470

By the definition and upper semicontinuity of Clarke generalized Jacobian, we have471

∂ŷ(x, ξ) = conv
{

lim
z→x
∇z ŷ(z, ξ) : ∇z ŷ(z, ξ) =

−[I −Dα(ŷ(z,ξ))(I −M(z, ŷ(z, ξ), ξ))]−1Dα(ŷ(z,ξ))L(z, ŷ(z, ξ), ξ)
}

⊆ conv{−UJ(M(x, ŷ(x, ξ), ξ))L(x, ŷ(x, ξ), ξ) : J ∈ J }.
472

We complete the proof.473

Under Assumption 3.1, the two-stage SVI-NCP can be reformulated as a single474

stage SVI with Φ̂(x, ξ) = Φ(x, ŷ(x, ξ), ξ) and φ(x) = E[Φ̂(x, ξ)] as follows475

(3.11) 0 ∈ φ(x) +NC(x).476

With the results in Theorem 3.6, SVI (3.11) has the following properties. Let

Θ(x, y(ξ), ξ) =

(
Φ(x, y(ξ), ξ)
Ψ(x, y(ξ), ξ)

)
and ∇Θ(x, y, ξ) be the Jacobian of Θ. Then

∇Θ(x, y, ξ) =

(
A(x, y, ξ) B(x, y, ξ)
L(x, y, ξ) M(x, y, ξ)

)
,

where A(x, y, ξ) = ∇xΦ(x, y, ξ), B(x, y, ξ) = ∇yΦ(x, y, ξ), L(x, y, ξ) = ∇xΨ(x, y, ξ)477

and M(x, y, ξ) = ∇yΨ(x, y, ξ).478

Theorem 3.7. Suppose the conditions of Theorem 3.6 hold. Let X ′ ⊆ C be a479

compact set, for any ξ ∈ Ξ, Y (ξ) = {ŷ(x, ξ) : x ∈ X ′} and ∇Θ(x, y, ξ) be the Jacobian480

of Θ. Assume481

(3.12) E[‖A(x, ŷ(x, ξ), ξ)−B(x, ŷ(x, ξ), ξ)M(x, ŷ(x, ξ), ξ)−1L(x, ŷ(x, ξ), ξ)‖] < +∞482

over X ∩X ′. Then483

(a) Φ̂(x, ξ) is Lipschitz continuous w.r.t. x over X ∩X ′ for all ξ ∈ Ξ.484

(b) E[Φ̂(x, ξ)] is Lipschitz continuous w.r.t. x over X ∩X ′.485

Proof. Part (a). By the compactness of X ′ and Theorem 3.6 (a), Y (ξ) is compact
for almost all ξ ∈ Ξ. By the continuity of ∇Θ(x, ŷ(x, ξ), ξ), we have

A(x, ŷ(x, ξ), ξ)−B(x, ŷ(x, ξ), ξ)M(x, ŷ(x, ξ), ξ)−1L(x, ŷ(x, ξ), ξ)
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is continuous over X ′. Then we have

sup
x∈X′

‖A(x, ŷ(x, ξ), ξ)−B(x, ŷ(x, ξ), ξ)M(x, ŷ(x, ξ), ξ)−1L(x, ŷ(x, ξ), ξ)‖ < +∞.

Moreover, by Theorem 3.6 (b), the Lipschitz module of Φ̂(x, ξ), denote by lipΦ(ξ)
satisfies

lipΦ(ξ)
≤ sup

x∈X′
‖A(x, ŷ(x, ξ), ξ)−B(x, ŷ(x, ξ), ξ)M(x, ŷ(x, ξ), ξ)−1L(x, ŷ(x, ξ), ξ)‖

< +∞.

Part (b). it comes from Part (a) and (3.12) directly.486

3.2. Existence, uniqueness and CD-regularity of the solutions. Consider487

the mixed SVI-NCP (3.1)-(3.2) and its one stage reformulation (3.11). If we replace488

Assumption 3.1 by the following assumption, we can have stronger results.489

Assumption 3.2. For a.e. ξ ∈ Ξ, Θ(x, y(ξ), ξ) is strongly monotone with param-490

eter κ(ξ) at (x, y(·)) ∈ C × Y, where E[κ(ξ)] < +∞.491

Note that Assumption 3.1 can be implied by Assumption 3.2 over C × Y.492

Theorem 3.8. Suppose Assumption 3.2 holds over C × Y and Φ(x, y, ξ) and493

Ψ(x, y, ξ) are continuously differentiable w.r.t. (x, y) for a.e. ξ ∈ Ξ. Then494

(a) G : C × Y → C × Y is strongly monotone and hemicontinuous.495

(b) For all x and almost all ξ ∈ Ξ, Ψ(x, y(ξ), ξ) is strongly monotone and con-496

tinuous w.r.t. y(ξ) ∈ Rm.497

(c) The two-stage SVI-NCP (3.1)-(3.2) has a unique solution.498

(d) The two-stage SVI-NCP (3.1)-(3.2) has relatively complete recourse, that is499

for all x and almost all ξ ∈ Ξ, the NCP (3.2) has a unique solution.500

Proof. Parts (a) and (b) come from Assumption 3.2 over C×Y directly. Since the501

strong monotonicity of G and Ψ implies the coerciveness of G and Ψ, see [11, Chapter502

12], by [11, Theorem 12.2 and Lemma 12.2], we have Part (c) and Part (d).503

With the results in sections 3.1 and above, we have the following theorem by only504

assume that Assumption 3.2 holds in a neighborhood of Sol∗ ∩X ′ × Y.505

Theorem 3.9. Let Sol∗ be the solution set of the mixed SVI-NCP (3.1)-(3.2).506

Suppose (i) there exists a compact set X ′ such that Sol∗ ∩X ′ × Y is nonempty, (ii)507

Assumption 3.2 holds over Sol∗∩X ′×Y and (iii) the conditions of Theorem 3.7 hold.508

Then509

(a) For any (x, y(·)) ∈ Sol∗, every matrix in ∂Φ̂(x) is positive definite and Φ̂ and510

φ are strongly monotone at x.511

(b) Any solution x∗ ∈ S∗∩X ′ of SVI (3.11) is CD-regular and an isolate solution.512

(c) Moreover, if replacing conditions (i) and (ii) by supposing (iv) Assumption 3.2513

holds over Rn×Y, then SVI (3.11) has a unique solution x∗ and the solution514

is CD-regular.515

Proof. Part (a). Note that under Assumption 3.2, for any (x, y(·)) ∈ Sol∗, the
matrix (

A(x, y(ξ), ξ) B(x, y(ξ), ξ)
L(x, y(ξ), ξ) M(x, y(ξ), ξ)

)
� 0.

From (ii) of Lemma 2.1 in [3], we have

A(x, y(ξ), ξ)−B(x, y(ξ), ξ)UJ(M(x, y(ξ), ξ))L(x, y(ξ), ξ) � 0, ∀J ∈ J .
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For any x̄ such that (x̄, ȳ(·)) ∈ Sol∗, let Bδ(x̄) be a small neighborhood of x̄,

Dŷ(x̄) := {x′ : x′ ∈ Bδ(x̄), ŷ(x′, ξ) is F-differentiable w.r.t. x at x′}

and

DΦ̂(x̄) := {x′ : x′ ∈ Bδ(x̄), Φ̂(x′, ξ) is F-differentiable w.r.t. x at x′}.

Since Φ(x, y, ξ) is continuously differentiable w.r.t. (x, y), ŷ(·, ξ) is F-differentiable516

w.r.t. x, which implies Φ̂(·, ξ) is F-differentiable w.r.t. x. Then Dŷ(x̄) ⊆ DΦ̂(x̄).517

Moreover, since ŷ(x, ξ) and Φ̂(x, ξ) are Lipschitz continuous w.r.t. x over Bδ(x̄), they518

are F-differentiable almost everywhere over Bδ(x̄). Then the measure of DΦ̂(x̄)\Dŷ(x̄)519

is zero. By Theorem 3.6 (b) and the definition of Clarke generalized Jacobian, we520

have521

(3.13)

∂xΦ̂(x̄, ξ)

= conv
{

lim
x′→x̄
∇xΦ̂(x′, ξ) : x′ ∈ DΦ̂(x̄)

}
= conv

{
lim
x′→x̄
∇xΦ(x′, ŷ(x′, ξ), ξ) +∇yΦ(x′, ŷ(x′, ξ), ξ)∇xŷ(x′, ξ) : x′ ∈ Dŷ(x̄)

}
= conv

{
lim
x′→x̄

A(x′, ŷ(x′, ξ), ξ)

−B(x′, ŷ(x′, ξ), ξ)Uα(ŷ(x′,ξ))(M(x′, ŷ(x′, ξ), ξ))L(x′, ŷ(x′, ξ), ξ) : x′ ∈ Dŷ(x̄)}
⊂ conv {A(x, ŷ(x, ξ), ξ)
−B(x, ŷ(x, ξ), ξ)UJ(M(x, ŷ(x, ξ), ξ))L(x, ŷ(x, ξ), ξ) : J ∈ J } ,

522

where the second equation is from [25, Theorem 4] and the fact that the measure of523

DΦ̂(x̄)\Dŷ(x̄) is 0. By (3.13), every matrix in ∂xΦ̂(x̄, ξ) is positive definite. And then524

Φ̂ is strongly monotone which implies φ is strongly monotone at x̄.525

Part (b). By Corollary 3.1, the linearized SVI526

0 ∈ Vx∗(x− x∗) + E[Φ̂(x∗, ξ)] +NC(x),527

is strongly regular for all Vx∗ ∈ ∂φ(x∗) ⊆ E[∂xΦ̂(x∗, ξ)]. Then the NCP (3.11) at x∗528

is CD-regular. Moreover, by the definition of CD regular, x∗ is a unique solution of529

the NCP (3.11) over a neighborhood of x∗.530

Part (c). By Part (a) and Theorem 3.8, NCP (3.11) has a unique solution x∗.531

The CD regular of NCP (3.11) at x∗ follows from Part (b).532

3.3. Convergence analysis of the SAA two-stage SVI-NCP. Consider the533

two-stage SVI-SNCP (3.1)-(3.2) and its SAA problem (3.3)-(3.4).534

We discuss the existence and uniqueness of the solutions of SAA two-stage SVI
(3.3)-(3.4) under Assumption 3.2 over C × Y firstly. Define

GN :=


N−1

∑N
j=1 Φ(x, y(ξj), ξj)

Ψ(x, y(ξ1), ξ1)
...

Ψ(x, y(ξN ), ξN )

 .

Theorem 3.10. Suppose Assumption 3.2 holds over C × Y and Φ(x, y, ξ) and535

Ψ(x, y, ξ) are continuously differentiable w.r.t. (x, y) for a.e. ξ ∈ Ξ. Then536

(a) GN : C × Y → C × Y which is strongly monotone with N−1
∑N
j=1 κ(ξj) and537

hemicontinuous.538

This manuscript is for review purposes only.



TWO-STAGE STOCHASTIC GENERALIZED EQUATIONS 19

(b) The SAA two-stage SVI (3.3)-(3.4) has a unique solution.539

Proof. By Assumption 3.2, we have Parts (a) and (b).540

Then we investigate the almost sure convergence and convergence rate of the541

first stage solution x̄N of (3.3)-(3.4) to optimal solutions of the true problem by only542

supposing Assumption 3.2 holds at a neighborhood of Sol∗ ∩X ′ × Y.543

Note that the normal cone multifunction x 7→ NC(x) is closed. Note also that544

function Φ̂(x, ξ) = Φ(x, ŷ(x, ξ), ξ), where ŷ(x, ξ) is a solution of the second stage545

problem (3.2). Then the first stage of SAA problem with second stage solution can546

be written as547

(3.14) 0 ∈ N−1
N∑
j=1

Φ̂(x, ξj) +NC(x).548

Under the conditions (i)-(iii) of Theorem 3.9, the two-stage SVI-SNCP (3.1)-549

(3.2) and its SAA problem (3.3)-(3.4) satisfy conditions of Theorem 2.4 and with550

R−1(t) ≤ t
c for some positive number c (by Remark 2.1, the strongly monotone of φ551

and the argument in the proof of Part (b), Theorem 2.9 ). Then Theorem 2.4 can be552

applied directly.553

Definition 3.11. [9, 16] A solution x∗ of the SVI (3.11) is said to be strongly
stable if for every open neighborhood V of x∗ such that SOL(C, φ)∩ clV = {x∗}, there
exist two positive scalars δ and ε such that for every continuous function φ̃ satisfying

sup
x∈C∩clV

‖φ̃(x)− φ(x)‖ ≤ ε,

the set SOL(C, φ̃) ∩ V is a singleton; moreover, for another continuous function φ̄554

satisfying the same condition as φ̃, it holds that555

‖x− x′‖ ≤ δ‖[φ(x)− φ̃(x)]− [φ(x′)− φ̄(x′)]‖,556

where x and x′ are elements in the sets SOL(C, φ̃)∩V and SOL(C, φ̄)∩V, respectively.557

Theorem 3.12. Suppose conditions (i)-(iii) of Theorem 3.9 hold. Let x∗ be a558

solution of the SVI (3.11) and X ′ be a compact set such that x∗ ∈ int(X ′). Assume559

there exists ε > 0 such that for N sufficiently large,560

(3.15) x∗ /∈ cl(bd(X ) ∩ int(X̄N ∩X ′)).561

Then there exist a solution x̂N of the SAA problem (3.14) and a positive scalar δ such562

that ‖x̂N − x∗‖ → 0 as N →∞ w.p.1 and for N sufficiently large w.p.1563

(3.16) ‖x̂N − x∗‖ ≤ δ sup
x∈X∩X′

‖φ̂N (x)− φ(x)‖.564

Proof. By Theorem 3.9 (b), the SVI (3.11) at x∗ is CD-regular. By [16, Theorem
3] and [9], x∗ is a strong stable solution of the SVI (3.11). Note that by Theorem 3.9
(a) and [23, Theorem 7.48], we have

sup
x∈X∩X′

‖φ̂N (x)− φ(x)‖

converges to 0 uniformly. Then by Definition 3.11 and (3.15), there exist two positive
scalars δ, ε such that for N sufficiently large, w.p.1

sup
x∈X∩X′

‖φ̂N (x)− φ(x)‖ ≤ min{ε, ε/δ}
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and
‖x̂N − x∗‖ ≤ δ sup

x∈X∩X′
‖φ̂N (x)− φ(x)‖,

which implies x̂N ∈ X .565

Note that Theorem 3.12 guarantees that R−1(t) ≤ δt and condition (3.15) is dis-566

cussed after Theorem 2.9. Note also that replacing conditions (i) - (ii) and condition567

(3.15) by supposing condition (iv) of Theorem 3.9, conclusion (3.16) also holds. More-568

over, in this case, by Theorem 3.9 (c) and Theorem 3.10, x∗ and x̂N are the unique569

solutions of the SVI (3.11) and its SAA problem (3.14) respectively.570

Then we consider the exponential rate of convergence. Note that under Assump-571

tion 3.1, for SAA problem of mixed two-stage SVI-NCP (3.3)-(3.4), Assumptions 2.1,572

2.4, 2.5 and condition (iii) in Theorem 2.9 hold. If we replace Assumption 3.1 by573

Assumption 3.2 over Sol∗ ∩X ′ × Y, we have the following theorem.574

Theorem 3.13. Let X ′ ⊂ C be a convex compact subset such that Bδ(x∗) ⊂ X ′.575

Suppose the conditions in Theorem 3.12 and Assumption 2.6 hold. Then for any576

ε > 0 there exist positive constants δ > 0 (independent of ε), % = %(ε) and ς = ς(ε),577

independent of N , such that578

(3.17) Pr

{
sup
x∈X

∥∥φ̂N (x)− φ(x)
∥∥ ≥ ε} ≤ %(ε)e−Nς(ε),579

and580

(3.18) Pr {‖xN − x∗‖ ≥ ε} ≤ %(ε/δ)e−Nς(ε/δ).581

Proof. By Theorem 3.9 (a), Assumption 2.6 and [23, Theorem 7.67], the con-582

ditions of Theorem 2.9 (a) hold and then (3.17) holds. Under condition (3.15) in583

Theorem 3.12, (3.18) follows from (3.16) and (3.17).584

4. Examples. In this section, we illustrate our theoretical results in the last585

sections by a two-stage stochastic non-cooperative game of two players [3, 17]. Let586

ξ : Ω→ Ξ ⊆ Rd be a random vector, xi ∈ Rni and yi(·) ∈ Yi be the strategy vectors587

and policies of the ith player at the first stage and second stage, respectively, where588

Yi is a measurable function space from Ξ to Rmi , i = 1, 2, n = n1 +n2, m = m1 +m2.589

In this two-stage stochastic game, the ith player solves the following optimization590

problem:591

(4.1) min
xi∈[ai,bi]

θi(xi, x−i) + E[ψi(xi, x−i, y−i(ξ), ξ)],592

where θi(xi, x−i) := 1
2x

T
i Hixi + qTi xi + xTi Pix−i,593

(4.2) ψi(xi, x−i, y−i(ξ), ξ) := min
yi∈[li(ξ),ui(ξ)]

φi(yi, xi, x−i, y−i(ξ), ξ)594

is the optimal value function of the recourse action yi at the second stage with

φi(yi, xi, x−i, y−i(ξ), ξ) =
1

2
y>i Qi(ξ)yi + ci(ξ)

>yi +

2∑
j=1

y>i Sij(ξ)xj + y>i Oi(ξ)y−i(ξ),

ai, bi ∈ Rni , li, ui : Ξ → Rmi are vector valued measurable functions, li(ξ) < ui(ξ)595

for all ξ ∈ Ξ, Hi and Qi(ξ) are symmetric positive definite matrices for a.e ξ ∈ Ξ,596
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x = (x1, x2), y(·) = (y1(·), y2(·)), x−i = xi′ and y−i = yi′ , for i′ 6= i. We use yi(ξ) to597

denote the unique solution of (4.2).598

By [10, Theorem 5.3 and Corollary 5.4], ψi(xi, x−i, y−i(ξ), ξ) is continuously dif-
ferentiable w.r.t. xi and

∇xi
ψi(xi, x−i, y−i(ξ), ξ) = STii (ξ)yi(ξ).

Hence the two-stage stochastic game can be formulated as a two-stage linear SVI599

−∇xi
θi(xi, x−i)− E[∇xi

ψi(xi, x−i, y−i(ξ), ξ)] ∈ N[ai,bi](x),
−∇yi(ξ)φi(yi(ξ), xi, x−i, y−i(ξ), ξ) ∈ N[li(ξ),ui(ξ)](yi(ξ)),

for a.e. ξ ∈ Ξ,
600

for i = 1, 2, with the following matrix-vector form601

(4.3)
−Ax− E[B(ξ)y(ξ)]− h1 ∈ N[a,b](x)

−M(ξ)y(ξ)− L(ξ)x− h2(ξ) ∈ N[l(ξ),u(ξ)](y(ξ)), for a.e. ξ ∈ Ξ,
602

where

A =

(
H1 P1

P2 H2

)
, B(ξ) =

(
ST11(ξ) 0

0 ST22(ξ)

)
,

L(ξ) =

(
S11(ξ) S12(ξ)
S21(ξ) S22(ξ)

)
, M(ξ) =

(
Q1(ξ) O1(ξ)
O2(ξ) Q2(ξ)

)
,

h1 = (q1, q2) and h2(ξ) = (c1(ξ), c2(ξ)). Moreover, if there exists a positive continuous603

function κ(ξ) such that E[κ(ξ)] < +∞ and for a.e. ξ ∈ Ξ,604

(4.4)
(
z>, u>

)( A B(ξ)
L(ξ) M(ξ)

)(
z
u

)
≥ κ(ξ)(‖z‖2 + ‖u‖2), ∀z ∈ Rn, u ∈ Rm,605

the two-stage box constrained SVI (4.3) satisfy Assumption 3.2. By the Schur com-
plement condition for positive definiteness [12], a sufficient condition for (4.4) is

4H2 − (P1 + P>2 )H−1
1 (P1 + P>2 ) is positive definite

and for some k1 > 0 and a.e. ξ ∈ Ξ,

λmin(M(ξ) +M(ξ)> − (B(ξ) + L(ξ)>)(A+A>)−1(B(ξ) + L(ξ)>)) ≥ k1 > 0,

where λmin(V ) is the smallest eigenvalue of V ∈ Rm×m.606

Under condition (4.4), by Corollary 3.1 and Theorem 3.8, the conditions in The-
orem 2.9 hold for (4.3). To see this, we only need to show condition (vi) of Theorem
2.9 holds for (4.3). Consider the second stage VI of (4.3) for fixed ξ and x, by the
proof of [6, Lemma 2.1], we have

ŷ(x, ξ)− ŷ(x′, ξ) = −(I −D(x, x′, ξ) +D(x, x′, ξ)M(ξ))−1D(x, x′, ξ)L(ξ)(x− x′),

which implies607

(4.5) ∂xŷ(x, ξ) ⊆ {−(I −D +DM(ξ))−1DL(ξ) : D ∈ D0},608

where D(x, x′, ξ) is a diagonal matrix with diagonal elements

di =


0, if (ŷ(x, ξ))i − zi(x, ξ), (ŷ(x′, ξ))i − zi(x′, ξ) ∈ [ui(ξ),∞),
0, if (ŷ(x, ξ))i − zi(x, ξ), (ŷ(x′, ξ))i − zi(x′, ξ) ∈ (−∞, li(ξ)],
1, if (ŷ(x, ξ))i − zi(x, ξ), (ŷ(x′, ξ))i − zi(x′, ξ) ∈ (li(ξ), ui(ξ)),

(ŷ(x,ξ))i−(ŷ(x′,ξ))i
(ŷ(x,ξ))i−zi(x,ξ)−((ŷ(x′,ξ))i−zi(x′,ξ) , otherwise,
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zi(x, ξ) = (M(ξ)ŷ(x, ξ) + L(ξ)x + h2(ξ))i, di ∈ [0, 1], i = 1, · · · ,m, D0 is a set of609

diagonal matrices in Rm×m with the diagonal elements in [0, 1]. Then we consider the610

one stage SVI with ŷ(x, ξ) as follows611

(4.6) −Ax− E[B(ξ)ŷ(x, ξ)]− h1 ∈ N[a,b](x).612

By using the similar arguments as in the proof of Theorem 3.9 and (4.5), every613

elements of the Clarke Jacobian of Ax + E[B(ξ)ŷ(x, ξ)] + h1 is a positive definite614

matrix. Then (4.6) is strong monotone and hence condition (vi) of Theorem 2.9615

holds. In what follows, we verify the convergence results in Theorem 2.9 numerically.616

Let {ξj}Ni=1 be an iid sample of random variable ξ. Then the SAA problem of617

(4.3) is618

(4.7)
−Ax− 1

N

∑N
j=1B(ξj)y(ξj)− h1 ∈ N[a,b](x)

−M(ξj)y(ξj)− L(ξj)x− h2(ξj) ∈ N[l(ξj),u(ξj)](y(ξj)), j = 1, . . . , N.
619

PHM converges to a solution of (4.7) if condition (4.4) holds.620

Algorithm 4.1 (PHM). Choose r > 0 and initial points x0 ∈ Rn, x0
j = x0 ∈ Rn,621

y0
j ∈ Rm and w0

j ∈ Rn, j = 1, · · · , N such that 1
N

∑N
j=1 w

0
j = 0. Let ν = 0.622

Step 1. For j = 1, · · · , N , solve the box constrained VI623

(4.8)
−Axj −B(ξj)yj − h1 − wνj − r(xj − xνj ) ∈ N[a,b](xj),
−M(ξj)yj − L(ξj)xj − h2(ξj)− r(yj − yνj ) ∈ N[l(ξj),u(ξj)](yj),

624

and obtain a solution (x̂νj , ŷ
ν
j ), j = 1, · · · , N .625

Step 2. Let x̄ν+1 = 1
N

∑N
j=1 x̂

ν
j . For j = 1, · · · , N , set

xν+1
j = x̄ν+1, yν+1

j = ŷνj , wν+1
j = wνj + r(x̂νj − xν+1

j ).

Note that PHM is well-defined if

(
A B(ξj)

L(ξj) M(ξj)

)
, j = 1, · · · , N are positive semidef-

inite, that is, (4.8) has a unique solution for each j, even for some x and ξj the second
stage problem

−M(ξj)y − L(ξj)x− h2(ξj) ∈ N[l(ξj),u(ξj)](y)

has no solution.626

4.1. Generation of matrices satisfying condition (4.4). We generate ma-
trices A, B(ξ), L(ξ),M(ξ) by the following procedure. Randomly generate a symmet-
ric positive definite matrix H1 ∈ Rn1×n1 , matrices P1 ∈ Rn1×n2 , P2 ∈ Rn2×n1 . Set
H2 = 1

4 (P>1 + P2)H−1
1 (P1 + P>2 ) + αIn2

, where α is a positive number. Randomly
generate matrices with entries within [−1, 1]:

S̄11 ∈ Rm1×n1 , S̄12 ∈ Rm1×n2 , S̄21 ∈ Rm2×n1 ,

S̄22 ∈ Rm2×n2 , Ō1 ∈ Rm1×m2 , Ō2 ∈ Rm2×m1 .

Randomly generate two symmetric matrices Q̄1 ∈ Rm1×m1 and Q̄2 ∈ Rm2×m2 whose627

diagonal entries are greater than m− 1 +α, off-diagonal entries are in [−1, 1], respec-628

tively.629

Generate an iid sample {ξj}Nj=1 ⊂ [0, 1]10 × [−1, 1]10 of random variable ξ ∈ R20

following uniformly distribution over Ξ = [0, 1]10 × [−1, 1]10. Set

S11(ξ) = ξj1S̄11, S12(ξ) = ξj2S̄12, S21(ξ) = ξj3S̄21,
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S22(ξ) = ξj4S̄22, O1(ξ) = ξj5Ō1, O2(ξ) = ξj6Ō2,

Q1(ξ) = Q̄1 + (ξj7 +
(n+m)2

λmin(A+AT )
)Im1

Q2(ξ) = Q̄2 + (ξj8 +
(n+m)2

λmin(A+AT )
)Im2

.

Set B(ξj), L(ξj),M(ξj) as in (4.3).630

The matrices generated by this procedure satisfy condition (4.4). Indeed, since H1631

and 4H2 − (P1 + PT2 )H−1
1 (P1 + PT2 ) are positive definite, by the Schur complement632

condition for positive definiteness [12], A + AT is symmetric positive definite, and633

thus A is positive definite. Moreover, since the matrix M̄ :=

(
Q̄1 Ō1

Ō2 Q̄2

)
is diagonal634

dominance with positive diagonal entries M̄ii ≥ m− 1 + α, it is positive definite and635

the eigenvalues M +MT are greater than 2α. Hence, for any y ∈ Rm, we have636

yT (M(ξ) +M(ξ)T − (B(ξ)T + L(ξ))(A+AT )−1(B(ξ) + L(ξ)T ))y637

≥ (2α+
(n+m)2

λmin(A+AT )
)‖y‖2 − 1

λmin(A+AT )
‖(B(ξ)T + L(ξ))‖2‖y‖2 ≥ 2α‖y‖2,638

where we use ‖B(ξ)T + L(ξ)‖2 ≤ ‖B(ξ)T + L(ξ)‖21 ≤ (m + n)2. Using the Schur639

complement condition for positive definiteness [12] again, we obtain condition (4.4).640

Finally, we generate the box constraints, h1 and h2(·). For the first stage, the641

lower bound is set as a = 01n, and the upper bound of the box constraints b is642

randomly generated from [1, 50]6. For the second stage, we set l(ξ) = (1 + ξ9)l̄ and643

u(ξ) = (1 + ξ10)ū, where 1n ∈ Rn is a vector with all elements 1, l̄ is randomly644

generated from [0, 1]10 and ū is randomly generated from [3, 50]10. Moreover, the645

vector h1 is randomly generated from [−5, 5]6 and h2(ξ) = (ξ11, · · · , ξ20) is a random646

vector following uniform distribution over [−1, 1]10.647

4.2. Numerical results. For each sample size of N = 10, 50, 250, 1250, 2250,648

we randomly generate 20 test problems and solve the box-constrained VI in Step 1 of649

PHM by the homotopy-smoothing method [5]. We stop the iteration when650

(4.9) res := ‖x−mid(x−Ax− 1

N

N∑
j=1

B(ξj)ŷ(x, ξj)− h1, a, b)‖ ≤ 10−5,651

or the iterations reach 5000, where mid(·) denotes the componentwise median opera-652

tor, ŷ(x, ξj) is the solution of the second stage box constrained VI with x and ξj .653

Parameters for the numerical tests are chosen as follows: n1 = n2 = 3,m1 =654

m2 = 5, α = 1 and maximize iteration number is 5000.655

Figures 1 shows the convergence tendency of x1, x2, x3, x4, x5 and x6 respectively.656

Note that since we use the homotopy-smoothing method to solve the box-constrained657

VI in Step 1 of PHM and the stop criterion is 10−5, x2 is not always feasible. However,658

[ai − xi]+ + [xi − bi]+ ≤ 10−5, i = 1, . . . , 6, which is related to the stopping criterion659

of the homotopy-smoothing method.660

We use xNt,j j = 1, . . . , 3000, t = 1, . . . , 5 to denote the computed solutions with661

sample size Nt for the j-th test problem shown in Figure 1. Then we computer the662

mean, variance and 95% confidence interval (CI) of the corresponding res defined in663

(4.9) with x = xNt,j by using a new set of 20 randomly generated test problems with664

sample size N = 3000 for computing ŷ(xNt,j , ξj), j = 1, . . . , 3000, t = 1, . . . , 5. We665

can see that the average of the mean, variance and width of 95% CI of res in Table 1666

decrease as the sample size increases.667
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Fig. 1. Convergence of x1 - x6

N1 = 10 N2 = 50 N3 = 250 N4 = 1250 N5 = 2250
mean 0.22449 0.13753 0.04820 0.02885 0.02500

variance 0.01984 0.00605 0.00118 0.00023 0.00016
95% CI [0.2158, 0.2332] [0.1349, 0.1402] [0.0477, 0.0487] [0.0287, 0.0290] [0.0249, 0.0251]

Table 1
Mean, variance and 95% confidence interval (CI) of res

5. Conclusion remarks. Without assuming relatively complete recourse, we668

prove the convergence of the SAA problem (1.6)-(1.7) of the two-stage SGE (1.1)–(1.2)669

in Theorem 2.4, and show the exponential rate of the convergence in Theorem 2.9.670

When the two-stage SGE (1.1)–(1.2) has relatively complete recourse, Assumption 2.3,671

conditions (v)-(vi) in Theorem 2.4 and condition (iv) in Theorem 2.9 hold.672

In section 3, we present sufficient conditions for the existence, uniqueness, conti-673

nuity and regularity of solutions of the two-stage SVI-NCP (3.1)–(3.2) by using the674

perturbed linearization of functions Φ and Ψ and then show the almost sure conver-675

gence and exponential convergence of its SAA problem (3.3)-(3.4). Numerical exam-676

ples in section 4 satisfy all conditions of Theorem 2.9 and we show the convergence677
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of SAA method numerically.678
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