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Abstract. We consider the stochastic linear complementarity problem (SLCP) involving
a random matrix whose expectation matrix is positive semi-definite. We show that the
expected residual minimization (ERM) formulation of this problem has a nonempty and
bounded solution set if the expected value (EV) formulation, which reduces to the LCP
with the positive semi-definite expectation matrix, has a nonempty and bounded solution
set. We give a new error bound for the monotone LCP and use it to show that solutions of
the ERM formulation are robust in the sense that they may have a minimum sensitivity
with respect to random parameter variations in SLCP. Numerical examples including
a stochastic traffic equilibrium problem are given to illustrate the characteristics of the
solutions.
Key words. Stochastic linear complementarity problem; NCP function; expected resid-
ual minimization

1 Introduction

The linear complementarity problem (LCP) is to find a vector x ∈ Rn such that

Ax+ p ≥ 0, x ≥ 0, xT (Ax+ p) = 0,

where A ∈ Rn×n and p ∈ Rn. This problem is generally denoted as LCP(A, p). The LCP
has a significant number of applications in engineering and economics [4, 6, 9]. In prac-
tice, due to several types of uncertainties such as weather, material, trade, loads, supply,
demand, cost, etc., the data in the LCP can only be estimated based on limited informa-
tion. Suppose that M(ω) ∈ Rn×n, q(ω) ∈ Rn, for ω ∈ Ω ⊆ Rm, are random quantities on
a probability space (Ω,F ,P), where the probability distribution P is known. In order to
take the stochastic uncertainty into account appropriately, deterministic formulations of
the stochastic linear complementarity problem (SLCP)

M(ω)x+ q(ω) ≥ 0, x ≥ 0, xT (M(ω)x + q(ω)) = 0, ω ∈ Ω (1.1)
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have been studied. We denote problem (1.1) by SLCP(M(ω), q(ω)). In this paper, we
consider two existing deterministic formulations. Let us denote

y(x, ω) := M(ω)x+ q(ω).

Let φ : R2 → R be a function, called an NCP function, which satisfies

φ(a, b) = 0 ⇐⇒ a ≥ 0, b ≥ 0, ab = 0. (1.2)

Then it is easy to verify that for each ω ∈ Ω, xω is a solution of (1.1) if and only if it is
an optimal solution of the following minimization problem with zero objective value:

min
x∈Rn

+

‖Φ(x, ω)‖2, (1.3)

where Rn
+ := {x ∈ Rn |x ≥ 0} and

Φ(x, ω) :=

⎛
⎜⎜⎜⎝

φ(y1(x, ω), x1)
...

φ(yn(x, ω), xn)

⎞
⎟⎟⎟⎠ .

In the literature of linear complementarity problems, ‖Φ(x, ω)‖ is called a residual for
LCP(M(ω), q(ω)), since xω solves LCP(M(ω), q(ω)) if and only if it solves Φ(x, ω) = 0.
On the other hand, from the literature of stochastic optimization, ‖Φ(x, ω)‖2 can be
regarded as a random cost function for LCP(M(ω), q(ω)). In this sense, a deterministic
formulation for the SLCP called the expected residual minimization problem in [3] may
be regarded as an expected total cost minimization problem [1, 12, 18] for (1.1).
• Expected Residual Minimization (ERM) Formulation [3]:
Find a vector x ∈ Rn

+ that minimizes the expected total residual defined by an NCP
function:

min
x∈Rn

+

f(x) := E[‖Φ(x,ω)‖2], (1.4)

where E[‖Φ(x,ω)‖2] is the expectation function of the random function ‖Φ(x, ω)‖2.

The expectation function of the random function y(x, ω) yields another deterministic
formulation [11] for SLCP, which may be called the expected value formulation.
• Expected Value (EV) Formulation [11]:
Find a vector x ∈ Rn such that

ȳ(x) := E[y(x, ω)] ≥ 0, x ≥ 0, xT ȳ(x) = 0. (1.5)

Let
M̄ = E[M(ω)] and q̄ = E[q(ω)]

be the expectation matrix and vector of the random matrix M(·) and vector q(·), respec-
tively. Then ȳ(x) = M̄x + q̄ and the EV formulation (1.5) is to find a solution of the
LCP(M̄, q̄).
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Both formulations (1.4) and (1.5) seek solutions in the nonnegative orthant. The
nonnegative constraint x ≥ 0 does not involve uncertain data and is required in numer-
ous applications of engineering and economic [9]. Approximations of the expectation
functions in (1.4) and (1.5) are investigated in [3, 11].

We call M(·) a stochastic R0 matrix [7] if

x ≥ 0, M(ω)x ≥ 0, xTM(ω)x = 0, a.e. =⇒ x = 0.

If Ω only contains a single element ω, then M(ω) is an R0 matrix. However, M(·) being
a stochastic R0 matrix does not imply that there is an ω ∈ Ω such that M(ω) is an R0

matrix. See Example 2.1 in [7].
Let SERM and SEV be the solution sets of the ERM formulation (1.4) and EV for-

mulation (1.5), respectively. In [7], the following results are shown: If SEV is bounded
for any q̄, then SERM is bounded for any q(·), but the converse is not true in general.
Moreover, the random matrix M(·) being a stochastic R0 matrix is a necessary and suffi-
cient condition for the solution set SERM to be nonempty and bounded for any random
vector q(·).

If the expectation matrix M̄ is an R0 matrix, then M(·) is a stochastic R0 matrix;
but the converse is not true. Since a positive definite matrix is an R0 matrix, we can
claim that if the expectation matrix M̄ is a positive definite matrix, then the solution set
SERM is nonempty and bounded for any q(·). However, a positive semi-definite matrix
may not be an R0-matrix.

In this paper, we focus our attention on the SLCP (1.1) with the expectation matrix
M̄ being a positive semi-definite matrix, i.e.,

xT M̄x ≥ 0 for all x ∈ Rn.

We call (1.1) a monotone SLCP if M̄ is a positive semi-definite matrix. Note that M̄
being a positive semi-definite matrix does not imply that M(·) is a stochastic R0 matrix.
New analysis on the solution set SERM has to be studied for monotone SLCPs.

Obviously, ifM(ω) is a positive semi-definite matrix for all ω ∈ Ω, then M̄ is a positive
semi-definite matrix. However, the expectation matrix M̄ being a positive semi-definite
matrix does not imply that

P{ω ∈ Ω | M(ω) is positive semi-definite} > 0.

In the following example, M̄ is a positive definite matrix, i.e.,

xT M̄x > 0 for all nonzero x ∈ Rn,

but there is no ω ∈ Ω such that M(ω) is a positive semi-definite matrix.

Example 1.1 Let

M(ω) =

(
−5 + (15 + ω)max(0, sign(ω)) 0

0 −5 − (15 + ω)min(0, sign(ω))

)
,
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where ω ∈ Ω = [−1, 1] and ω is uniformly distributed on Ω. It is easy to see that

M(ω) =

(
−5 0
0 10 + ω

)
for ω < 0, M(ω) =

(
10 + ω 0

0 −5

)
for ω > 0,

M(ω) =

(
−5 0
0 −5

)
for ω = 0, M̄ = E(M(ω)) =

(
2.75 0
0 2.25

)
.

Although the positive definiteness of M̄ does not ensure the existence of an ω ∈ Ω
such that M(ω) is positive semi-definite, we find that the monotone LCP(M̄, q̄) serves
as an important tool in the study of the monotone SLCP with the ERM formulation.
In particular, we will show that if the monotone LCP(M̄, q̄) has a bounded solution set
SEV , then the ERM formulation (1.4) of the monotone SLCP has a bounded solution set
SERM . Without any assumption on the solution set SEV , we will prove that M̄ being
positive semi-definite implies that every accumulation point of a sequence generated by
the regularization method is a solution of the ERM formulation (1.4).

In general, the two deterministic formulations (1.4) and (1.5) have different solutions.
Moreover, with different NCP functions and norms, the ERM formulation has different
solutions. How to select a robust solution that is insensitive with respect to random
parameter variations is an important issue in decision theory. To investigate the charac-
teristics of optimal solutions of the ERM formulation, we give a new error bound for the
monotone LCP based on the error bounds in [17]. Using the error bound, we will show
that optimal solutions of the ERM formulation (1.4) yield a high mean performance of the
SLCP and may have a minimum sensitivity with respect to random parameter variations
in SLCP. Hence, they are robust solutions for SLCP.

This paper is organized as follows: In Section 2, we study the existence of solutions
for the ERM formulation of the monotone SLCP based on the monotone LCP(M̄, q̄).
In Section 3, we investigate the robustness of the ERM formulation. In Section 4, we
give a procedure to generate a test problem of monotone SLCP, which allows the user
to specify the size of the problem, the condition number of the expectation matrix M̄

and the number of active constraints at a global solution of the ERM formulation. We
report numerical results for hundreds of test problems by using a semismooth Newton-
type method with a descent direction line search. In Section 5, we describe a realistic
application, traffic equilibrium under uncertainty.

In this paper, ‖ · ‖ denotes the Euclidean norm ‖ · ‖2. For any positive integer s and a
vector z ∈ Rs, we denote [z]+ = max(0, z), where the maximum is taken component-wise.
For a subset J ⊆ {1, 2, . . . , s}, zJ denotes the subvector of z with components zj , j ∈ J .
For a matrix A, let Ai represent the ith row of A. Let N = {1, 2, . . . ,N}.

2 Existence of solution

In this section, we study the relation between the EV formulation LCP(M̄, q̄) and the
ERM formulation of the monotone SLCP. First, we summarize some results on the exis-
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tence of a solution for a deterministic monotone LCP. Recall that a square matrix A is
called an R0 matrix if the solution set of LCP(A, 0) consists of the origin only.

Lemma 2.1 Suppose that A is a positive semi-definite matrix.

(i) [4] If the LCP(A, p) is feasible, i.e., there is a vector x ≥ 0 such that Ax + p ≥ 0,
then it has a solution.

(ii) [4] The LCP(A, p) has a nonempty and bounded solution set for any p if and only
if A is in addition an R0 matrix.

(iii) [2] The solution set of LCP(A, p) is nonempty and bounded if and only if LCP(A, p)
has a strictly feasible point, i.e., there is a vector x > 0 such that Ax+ p > 0.

The ERM formulation (1.4) utilizes an NCP function that possesses the property
(1.2). There are a variety of functions that satisfy (1.2). Among them, the most popular
NCP functions are the “min” function φ1 and the Fischer-Burmeister (FB) function φ2,
which are defined by

φ1(a, b) := min(a, b)

and
φ2(a, b) := a+ b−

√
a2 + b2,

respectively. Notice that, as shown below, the solvability of the ERM formulation is
dependent on the choice of NCP functions.

Example 2.1 [3] Let n = 1, m = 1, Ω = {ω1, ω2} = {0, 1}, M(ω) = ω(1 − ω) and
q(ω) = 1 − 2ω, M(ω1) = M(ω2) = 0, q(ω1) = 1, q(ω2) = −1 and

E[‖Φ(x,ω)‖2] =
1
2

2∑
i=1

‖Φ(x, ωi)‖2.

For every ω ∈ Ω, M(ω) is positive semi-definite. It can be seen that the ERM problem
(1.4) defined by the “min” function has the unique solution x∗ = 0 and the level set

{x |E[‖min(x,M(ω)x+ q(ω))‖2] ≤ γ}

is nonempty and bounded for all γ ∈ [0.5,1). However, the ERM problem (1.4) defined
by the FB function does not have a solution as the objective function is monotonically
decreasing on [0,∞).

Nevertheless, the FB function has a number of nice properties. Among others, a
distinctive property from the “min” function is that ‖Φ(·, ω)‖2 defined by the FB function
is continuously differentiable everywhere. However, the FB function lacks flexibility in
dealing with the monotone LCP. Some other merit functions and NCP functions have
nice properties in dealing with monotone LCP [2, 13, 16, 20]. Here, we consider a version
of the penalized FB NCP function given in [2]

φ3(a, b) := λ(a+ b−
√
a2 + b2) + (1 − λ)a+b+, (2.1)
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where λ ∈ (0, 1). For Example 2.1, the ERM formulation (1.4) defined by φ3 with λ = 1
2

has the objective function

f3(x) =
1
4
[(1 + x−

√
1 + x2 + x+)2 + (−1 + x−

√
1 + x2)2],

which is a continuously differentiable convex function and has a minimizer x∗ ≈ 0.3685.
Moreover, the level set {x | f3(x) ≤ γ} is nonempty and bounded for all γ ∈ [f3(x∗),∞).

The NCP functions φ1 and φ2 have the same growth rate. In particular, Tseng [19]
showed

2√
2 + 2

|min(a, b)| ≤ |a+ b−
√
a2 + b2| ≤ (

√
2 + 2)|min(a, b)| for (a, b) ∈ R2. (2.2)

However, for φ1 and φ3, we only have

min(λ, 1− λ)
2√

2 + 2
|min(a, b)| ≤ |λ(a+ b−

√
a2 + b2) + (1− λ)a+b+| for (a, b) ∈ R2.

(2.3)
There is no c > 0 such that

c|min(a, b)| ≥ |λ(a+ b−
√
a2 + b2) + (1 − λ)a+b+| for (a, b) ∈ R2.

The ERM formulation (1.4) defined by the “min” function and the penalized FB
function has different properties in regard to smoothness and boundedness. When we
discuss their different properties, we use Φ1(x, ω), f1(x), and Φ3(x, ω), f3(x) to distinguish
the functions Φ(x) and f(x) defined by the “min” function φ1 and the penalized FB
function φ3, respectively. When we discuss the ERM formulation (1.4) defined by any of
the NCP functions, we use the notation Φ(x, ω) and f(x).

Assumption I. f(x) is finite and continuous at any x ∈ Rn
+.

This assumption holds if M(ω) and q(ω) are measurable functions of ω with the
following property

E[(‖M(ω)‖ + ‖q(ω)‖)2] <∞.

Let us denote the expected value of random function Φ(·, x) by

Φ̄(x) := E[Φ(x, ω)]. (2.4)

By probability theory, we have Jensen’s inequality for the objective function f

E[‖Φ(x,ω)‖2] ≥ ‖E[Φ(x, ω)]‖2 = ‖Φ̄(x)‖2. (2.5)

2.1 “min” function

In this subsection, we consider the ERM formulation (1.4) defined by the “min” function.

Lemma 2.2 If Ω = {ω1, ω2, . . . , ωN}, then for any random matrix M(·) and vector q(·),
the solution set SERM of the ERM formulation (1.4) defined by the “min” function is
nonempty.
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Proof: For each ων , the squared norm of the function Φ1(x, ων) = min(x,M(ων)x +
q(ων)) can be represented as

‖Φ1(x, ων)‖2 = (M(ων)jx+ q(ων)j)T (M(ων)jx+ q(ων)j), x ∈ P j
ν , j = 1, . . . , k,

where P j
ν are polyhedral convex sets comprising a partition of Rn

+, each (M(ων)j , q(ων)j)
is a row representative of ((I,M(ων)), (0, q(ων ))), and k ≤ 2n. Hence f1 is a piecewise
quadratic function and f1(x) ≥ 0 on Rn

+. By the Frank-Wolfe Theorem [10], f1 attains
its minimum on Rn

+.

From the proof of Lemma 2.2, if Ω = {ω1, ω2, . . . , ωN}, then f1 is a piecewise quadratic
function. However, the following example shows that for a continuous random variable,
f1 is not necessarily a piecewise quadratic function.

Example 2.2 Let n = 1, m = 1, M(ω) = 1 + ω, q(ω) ≡ −1, ω ∈ Ω = [0, 1], where ω is
uniformly distributed on Ω. By direct calculation, we find

f1(x) = E|min(x, (1 + ω)x− 1)|2 =

{
1
3(7x2 − 9x+ 3), 0 ≤ x ≤ 1
x2 + 1

3x − 1, x > 1.

Denote the level set
D1(γ) := {x | f1(x) ≤ γ}.

D1(γ) may be empty for some γ > 0, since the minimum value of f1(x) is positive in
general.

Theorem 2.1 Assume that M̄ is a positive semi-definite matrix. If there are x̂, x̄ ∈ Rn

such that
min

1≤i≤n
(M̄ x̂+ q̄)i >

√
f1(x̄) =: γ̄, (2.6)

and there exists a vector d > 0 such that dT M̄x is bounded above in D1(γ̄2), then the
level set D1(γ̄2) is nonempty and bounded.

Proof: Since f1(x̄) = γ̄2, the level set D1(γ̄2) is nonempty. Suppose on the contrary that
there exists an unbounded sequence {xk} ⊂ D1(γ̄2). By Jensen’s inequality (2.5), we find

‖E[min(xk, y(xk, ω))]‖ = ‖E[Φ1(xk, ω)]‖ ≤
√
E[‖Φ1(xk, ω)‖2] =

√
f1(xk) ≤ γ̄.

Hence, it is clear that for any index i, both {xk
i } and {ȳi(xk)} are bounded below. Since

ȳi(xk) = (M̄xk + q̄)i, {(M̄xk)i} is also bounded below for all i ∈ N . Moreover, by
assumption, {dT M̄xk} is bounded above. Therefore, we can conclude that for each i,
{ȳi(xk)} is bounded above. Define the index set

J = {i | lim sup
k→∞

xk
i = ∞}.

Note that this set is not empty. By taking a subsequence if necessary, we may suppose
that xk

i → ∞ for i ∈ J . Then we have for all sufficiently large k

|E[min(xk
i , yi(xk, ω))]| = |E[yi(xk, ω)]| ≤ γ̄ for i ∈ J,
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which together with (2.6) yields

E[yi(xk, ω)] ≤ γ̄ < (M̄x̂+ q̄)i = E[yi(x̂, ω)] for i ∈ J,

that is,

ȳi(xk) − ȳi(x̂) = E[yi(xk, ω) − yi(x̂, ω)] ≤ γ̄ −E[yi(x̂, ω)] < 0 for i ∈ J.

Moreover, {xk
i } and {ȳi(xk)} are bounded for each i �∈ J . Therefore, we have

(xk − x̂)T M̄(xk − x̂) = (xk − x̂)TE[y(xk, ω) − y(x̂, ω)]

=
∑
i∈J

(xk
i − x̂i)(ȳi(xk) − ȳi(x̂)) +

∑
i�∈J

(xk
i − x̂i)(ȳi(xk) − ȳi(x̂)).

The first term tends to −∞ while the second term is bounded. This contradicts the
positive semi-definiteness of M̄ . Hence D1(γ̄2) is bounded.

Corollary 2.1 Under the assumptions of Theorem 2.1 with x̄ ≥ 0, the solution set SERM

of the ERM formulation (1.4) defined by the “min” function is nonempty and bounded.

Remark 2.1 If M̄ is positive definite, then M̄ is an R0 matrix. From Proposition 2.5
and Theorem 3.1 in [7], M(·) is a stochastic R0 matrix, and the level set D1(γ) is bounded
for any γ > 0. Even if M̄ is not positive definite, the level set D1(γ̄2) is bounded,
particularly when there is a vector d > 0 such that M̄Td = 0 and (2.6) holds. In fact, it
is easy to see that these conditions guarantee the assumptions in Theorem 2.1.

The following example shows that the assumptions in Theorem 2.1 hold with x̄ ≥ 0,
but the monotone LCP(M̄, q̄) does not have a solution.

Example 2.3 Let n = 2, m = 2, Ω = {ω1, ω2} ⊂ R2, ω1 = (0, 1), ω2 = (1, 0),

M(ω) =

(
0 −ω1

ω1 ω1

)
, q(ω) =

(
−2ω1 + ω2

ω1 + ω2

)
,

and

E[‖Φ(x,ω)‖2] =
1
2

2∑
i=1

‖Φ(x, ωi)‖2.

Then we have

M(ω1) =

(
0 0
0 0

)
, M(ω2) =

(
0 −1
1 1

)
, q(ω1) =

(
1
1

)
, q(ω2) =

(
−2
1

)
,

and

M̄ =

(
0 −1/2

1/2 1/2

)
, q̄ =

(
−1/2

1

)
.
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Obviously, M(ω) is positive semi-definite for each ω ∈ Ω. For x ∈ R2
+, we have

f1(x) =
1
2
[|min(x1, 1)|2 + |min(x2, 1)|2

+|min(x1,−x2 − 2)|2 + |min(x2, x1 + x2 + 1)|2]
=

1
2
[|min(x1, 1)|2 + |min(x2, 1)|2 + (x2 + 2)2 + x2

2].

By direct calculation, we see that the ERM formulation min
x∈R2

+

f1(x) has x = 0 as its

unique solution with optimal value f1(x) = 2. Moreover, it is easy to verify that the
level set D1(γ) is bounded for any γ ∈ [2, 2.5) and assumptions in Theorem 2.1 hold with
x̂ = (9,−6)T , x̄ = (1

2 , 0)T , d = (1, 1)T , and γ̄ =
√

2.125. However, the EV formulation
LCP (M̄, q̄) has no feasible point, since the first component of M̄x+ q̄ is negative for any
x ∈ R2

+.

2.2 Penalized FB function

In this subsection, we consider the ERM formulation (1.4) with the penalized FB function
φ3 defined by (2.1). Since the analysis remains valid for any λ ∈ (0, 1), in the definition
of φ3, we omit λ in the following discussion for simplicity of presentation.

Lemma 2.3 Let {xk} be an arbitrary sequence contained in the level set

D3(γ) := {x | f3(x) ≤ γ}.

Then {xk
i } and {E[yi(xk, ω)1{ω∈Ω0}]} are bounded below, and {xk

iE[yi(xk, ω)1{ω∈Ω0}]} is
bounded above for any index i ∈ N and any subset Ω0 ⊆ Ω.

Proof: First we show that {xk
i } and {E[yi(xk, ω)]} are bounded below for all i ∈ N . By

(2.3) and Jensen’s inequality (2.5), we have

f3(x) =
n∑

i=1

E[(φ3(xi, yi(x, ω)))2]

≥ 4
(
√

2 + 2)2

n∑
i=1

E[(φ1(xi, yi(x, ω)))2]

≥ 4
(
√

2 + 2)2

n∑
i=1

(E[φ1(xi, yi(x, ω))])2

=
4

(
√

2 + 2)2
‖E[Φ1(x, ω)]‖2.

Moreover, it is easy to verify that for each i

E[min(xi, yi(x, ω))] ≤ min(xi, E[yi(x, ω)]),

which implies that E[min(xk
i , yi(xk, ω))] → −∞ if xk

i → −∞ or E[yi(xk, ω)] → −∞.
Hence there is no index i such that xk

i → −∞ or ȳi(xk) = E[yi(xk, ω)] → −∞.
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Next, we show that the sequence {xk
iE[yi(xk, ω)]} is bounded above. If it is not true,

we may suppose without loss of generality that xk
jE[yj(xk, ω)] → ∞ for some index j.

Then there are two cases: (i) There is a subsequence {xki
j } such that xki

j → ∞, and (ii)
{xk

j } is positive and bounded.
(i) Suppose there is a subsequence such that xki

j → ∞. Since

0 < E[yj(xki , ω)] = E[[yj(xki , ω)]+] − E[[−yj(xki , ω)]+], (2.7)

we find
E[[−yj(xki , ω)]+] < E[[yj(xki , ω)]+], (2.8)

and

E

[√
(xki

j )2 + yj(xki , ω)2
]

≤ E[|xki
j | + |yj(xki , ω)|]

= xki
j + E[[yj(xki , ω)]+] + E[[−yj(xki , ω)]+] (2.9)

for all ki large enough. Therefore, as xki
j E[yj(xki , ω)] → ∞,

f3(xki) = ‖E[Φ3(xki , ω)]‖2

≥ |E[Φ3(xki , ω)]j |2

= |xki
j +E[yj(xki , ω)] − E

[√
(xki

j )2 + yj(xki , ω)2
]

+ [xki
j ]+E[[yj(xki , ω)]+]|2

≥ | − 2E[[−yj(xki , ω)]+] + [xki
j ]+E[[yj(xki , ω)]+]|2

≥ ((xki
j − 2)[ȳj(xki)]+)2

→ ∞,

where the second inequality uses (2.7) and (2.9), and the third inequality uses (2.8) and
E[ξ+] ≥ (E[ξ])+ for any random variable ξ. This contradicts {xk} ⊂ D3(γ).

(ii) Suppose {xk
j } is positive and bounded. Then we have E[yj(xk, ω)] → ∞. There

are a subset Ω̂ ⊆ Ω and a vector xk̂ ∈ {xk} such that

yj(xk̂, ω) ≥ 0 ∀ω ∈ Ω̂ and xk̂
jE[yj(xk̂, ω)1{ω∈Ω̂}] >

√
γ.

The former condition yields

xk̂
j + yj(xk̂, ω) −

√
(xk̂

j )2 + yj(xk̂, ω)2 ≥ 0 for all ω ∈ Ω̂.

Hence, we find

f3(xk̂) ≥ E[|(Φ3(xk̂, ω))j |21{ω∈Ω̂}]

= E

[
|xk̂

j + yj(xk̂, ω) −
√

(xk̂
j )2 + yj(xk̂, ω)2 + [xk̂

j ]+[yj(xk̂, ω)]+|21{ω∈Ω̂}

]

≥ (xk̂
jE[yj(xk̂, ω)1{ω∈Ω̂}])

2

> γ.
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This contradicts xk̂ ∈ {xk} ⊂ D3(γ).
We have proved that {xk} and {E[yi(xk, ω)]} are bounded below, and the sequence

{xk
iE[yi(xk, ω)]} is bounded above for any index i. By noticing that for any subset

Ω0 ⊆ Ω,
E[‖Φ(x,ω)1{ω∈Ω0}‖] ≤ E[‖Φ(x,ω)‖],

and following the above analysis, we can obtain without difficulty that for any sequence
{xk} ⊂ D3(γ), i ∈ N , and Ω0 ⊆ Ω, the sequence {E[yi(xk, ω)1{ω∈Ω0}]} is bounded below,
and the sequence {xk

iE[yi(xk, ω)1{ω∈Ω0}]} is bounded above.

Let us denote the feasible set of LCP(M̄, q̄) by F . Suppose F �= ∅, and define

ᾱ := { i : (M̄x+ q̄)i = 0 for all x ∈ F }.

It is worth noting that the monotone LCP(M̄, q̄) has a nonempty and bounded solution
set SEV if and only if ᾱ = ∅. In fact, by Lemma 2.1, if SEV is bounded, then there exists a
strictly feasible point, which implies ᾱ = ∅. If ᾱ = ∅, but there is a sequence {xk} ⊆ SEV

with xk
i → ∞ for some i, then from ᾱ = ∅, there is x̃ ∈ F such that (M̄ x̃+ q̄)i > 0, which

yields

(xk − x̃)T M̄(xk − x̃) = −(xk)T (M̄ x̃+ q̄) − x̃T (M̄xk + q̄) + x̃T (M̄x̃+ q̄) → −∞ .

This is a contradiction to the positive semi-definiteness of M̄.

Theorem 2.2 Assume that the monotone LCP(M̄, q̄) has a solution, and either ᾱ = ∅
or for any index i ∈ ᾱ, there is no vector x ∈ Rn

+ such that

(M(ω)x+ q(ω))i = 0, a.e. ω ∈ Ω. (2.10)

Then for any γ ≥ 0, the level set

D̂3(γ) := {x ∈ Rn
+ | f3(x) ≤ γ}

is bounded.

Proof: For a fixed γ > 0, we assume on the contrary that ‖xk‖ → ∞ and {xk} ⊂ D̂3(γ).
From Lemma 2.3, the sequence {E[yi(xk, ω)1{ω∈Ω0}]} is bounded below and the sequence
{xk

iE[yi(xk, ω)1{ω∈Ω0}]} is bounded above for any index i ∈ N and any subset Ω0 ⊆ Ω.
Define the index set J = {i | xk

i → ∞} and let x̂ ∈ F be arbitrarily chosen. From the
positive semi-definiteness of M̄ , we have that for any k,

(xk − x̂)T [ȳ(xk) − ȳ(x̂)] = (xk − x̂)T M̄(xk − x̂) ≥ 0. (2.11)

Then we have ȳJ(x̂) = (M̄x̂ + q̄)
J

= 0. In fact, since {(xk)T ȳ(xk)} and {−x̂T ȳ(xk)} are
bounded above, and −xk

i ȳi(x̂) ≤ 0 for any i ∈ N , the existence of an index i ∈ J such
that ȳi(x̂) > 0 would imply

(xk − x̂)T [ȳ(xk) − ȳ(x̂)] = x̂T ȳ(x̂) + (xk)T ȳ(xk) − (xk)T ȳ(x̂) − x̂T ȳ(xk)

→ −∞, (2.12)
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which contradicts (2.11). From the arbitrariness of x̂ ∈ F , we must have J ⊆ ᾱ. Since
J �= ∅, the index set ᾱ is also nonempty.

Moreover, we can claim that the sequence {xk
iE[yi(xk, ω)1{ω∈Ω0}]} is also bounded

below for any index i ∈ N and any subset Ω0 ⊆ Ω. Indeed, since {xk
iE[yi(xk, ω)1{ω∈Ω0}]}

is bounded above for any i ∈ N and any Ω0 ⊆ Ω, the existence of an index î ∈ N and
a subset Ω̂ ⊆ Ω such that xk

î
E[yî(x

k, ω)1{ω∈Ω̂}] → −∞ will imply (xk)T ȳ(xk) → −∞.
However, since {ȳ(xk)} is bounded below, we also obtain (2.12), which again contradicts
(2.11).

Since the sequence {xk
iE[yi(xk, ω)1{ω∈Ω0}]} is bounded for any index i ∈ N and any

subset Ω0 ⊆ Ω , it follows from xk
i → ∞, ∀ i ∈ J, that

lim
k→∞

yJ(xk, ω) = lim
k→∞

(M(ω)xk + q(ω))J = 0, a.e. ω ∈ Ω. (2.13)

Now consider the following quadratic programming problem:

min
x∈Rn

+

g(x) := E[(M(ω)x+ q(ω))TJ (M(ω)x+ q(ω))J ].

It is easy to see that g(x) ≥ 0 for all x ∈ Rn
+. Hence, by the well-known Frank-Wolfe

theorem [10], this problem attains its infimum in Rn
+. Furthermore, the infimum must be

zero, since (2.13) implies limk→∞ g(xk) = 0. Therefore, there exists x̃ ∈ Rn
+ such that

(M(ω)x̃+ q(ω))J = 0, a.e. ω ∈ Ω.

Since J ⊆ ᾱ �= ∅, this contradicts the assumption that for any i ∈ ᾱ, there is no x ∈ Rn
+

such that (2.10) holds.
Since γ is arbitrary, we get the desired result.

Corollary 2.2 If the monotone LCP(M̄, q̄) has a nonempty and bounded solution set,
then the ERM formulation (1.4) defined by the penalized FB function φ3 has a nonempty
and bounded solution set.

It should be noticed that in Example 2.1, the solution set of the monotone LCP(M̄, q̄)
is unbounded, but D3(γ) is bounded for all γ ≥ 0.

2.3 Regularization

To establish the solvability of the ERM formulation (1.4) for the monotone SLCP without
assuming the boundedness of the solution set of the monotone LCP(M̄, q̄), we consider
a regularized version of (1.4). For ε > 0, let

y(x, ω, ε) := (M(ω) + εI)x+ q(ω)

and

Φ(x, ω, ε) :=

⎛
⎜⎜⎜⎝

φ(y1(x, ω, ε), x1)
...

φ(yn(x, ω, ε), xn)

⎞
⎟⎟⎟⎠ .
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The regularized problem for (1.4) is defined as

min
x∈Rn

+

f(x, ε) := E[‖Φ(x,ω, ε)‖2]. (2.14)

We will study the behavior of the sequence {xεk
} of solutions to (2.14) for an arbitrarily

chosen positive sequence {εk} tending to zero. In the following, to simplify the notation,
we will denote {ε} and {xε} for {εk} and {xεk

}, respectively.

Theorem 2.3 Suppose M̄ is positive semi-definite. Then for any ε > 0, the regularized
problem (2.14) has a nonempty and bounded solution set SERMε. Let xε ∈ SERMε for
each ε > 0. Then every accumulation point of the sequence {xε} is contained in the set
SERM .

Proof: Note that E[M(ω) + εI] = M̄ + εI is positive definite. From Remark 2.1, the
solution set SERMε of (2.14) defined by the “min” function is nonempty and bounded.
Moreover, from Lemma 2.1, the solution set of the strongly monotone LCP(M̄ + εI, q̄) is
nonempty and bounded; in fact, it is a singleton. Hence, by Theorem 2.2, the solution
set SERMε of (2.14) defined by the penalized FB function is nonempty and bounded.

Let x̄ be an accumulation point of {xε}. For simplicity, we assume that {xε} itself
converges to x̄. Now we show

|f(xε, ε) − f(x̄)| → 0 as ε→ 0. (2.15)

From the continuity of f , we observe that

|f(xε) − f(x̄)| → 0 as ε→ 0.

Therefore, for (2.15), it is sufficient to show

|f(xε, ε) − f(xε)| → 0 as ε→ 0. (2.16)

It is not difficult to verify that, for any a, b ∈ R and c ≥ 0,

|φ1(b, a) − φ1(c, a)| ≤ |b− c|, and |φ3(b, a) − φ3(c, a)| ≤ (2 + [a]+)|b− c|.

Hence, for any x ∈ Rn and any ω ∈ Ω, we have

‖Φ(x, ω, ε) − Φ(x, ω)‖ ≤ (2 + ‖x‖)‖y(x, ω, ε) − y(x, ω)‖ ≤ (2 + ‖x‖)ε‖x‖ (2.17)

and

|f(xε, ε) − f(xε)| = |E[‖Φ(xε, ω, ε)‖2 − ‖Φ(xε, ω)‖2]|
= |E[(‖Φ(xε, ω, ε)‖ + ‖Φ(xε, ω)‖)(‖Φ(xε, ω, ε)‖ − ‖Φ(xε, ω)‖)]|
≤ E[(‖Φ(xε, ω, ε)‖ + ‖Φ(xε, ω)‖)‖Φ(xε, ω, ε) − Φ(xε, ω)‖]. (2.18)

Now choose δ > 0 arbitrarily and let B := {x | ‖x − x̄‖ < δ}. Then, for any x ∈ B, we
have ‖x‖ ≤ c0 := ‖x̄‖ + δ. Moreover, from Assumption I, there is a positive constant c1
such that for any x ∈ B,

E[‖Φ(x,ω)‖] ≤ c1.
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Since xε → x̄, there is a small ε0 > 0 such that xε ∈ B for all ε ∈ (0, ε0). Therefore, from
(2.17) and (2.18), we have

|f(xε, ε) − f(xε)| ≤ (2E[‖Φ(xε, ω)‖] + (2 + ‖x‖)ε‖x‖)(2 + ‖x‖)ε‖x‖
≤ (2c1 + (2 + c0)c0ε)(2 + c0)c0ε.

Letting ε → 0, we obtain (2.16) and hence (2.15). Furthermore, for every x ∈ Rn
+, from

(2.15) and the inequality

f(x̄) = lim
ε↓0

f(xε, ε) ≤ lim
ε↓0

f(x, ε) = f(x),

we find that x̄ ∈ SERM .

To compare (1.4) with the regularized problem (2.14), we consider the following ex-
ample.

Example 2.4 [3] Let M(·) and q(·) be defined as in Example 2.1. We have

f1(x) =
1
2

{
2, 1 ≤ x

1 + x2, 0 ≤ x ≤ 1

and for ε ∈ (0, 1),

f1(x, ε) =
1
2

{
(εx− 1)2 + (εx+ 1)2, 1

1−ε < x

(εx− 1)2 + x2, 0 ≤ x ≤ 1
1−ε .

Obviously x∗ = 0 is the unique global minimizer of (1.4), and any x ∈ {x | x > 1} is a
local minimizer of (1.4). For any ε ∈ (0, 1), the regularized problem has a unique local
(global) minimizer xε = ε

1+ε2 . Letting ε → 0, we have xε → x∗ = 0. This example shows
that in general f(x) is not a convex function and may have many local minimizers. Hence
the regularization method may be helpful in finding a global solution.

We should clarify the meaning of the conclusion of Theorem 2.3. The result applies
regardless of whether the sequence {xε} has an accumulation point or not. In the case
{xε} is bounded, {xε} has an accumulation point. In the opposite case, we do not know if
it has an accumulation point. Now we give sufficient conditions for {xε} to be bounded.

Theorem 2.4 Under the assumptions of Theorem 2.2, the solution sequence {xε} of the
regularized problem (2.14) defined by the penalized FB function is bounded.

Proof: Suppose on the contrary that {xε} ⊂ Rn
+ is unbounded. First we observe that

the sequence {f3(xε, ε)} is bounded since for any ε ≥ 0,

0 ≤ f3(xε, ε) ≤ f3(0, ε) = f3(0).

Then, in a similar manner to the proof of Lemma 2.3, we can show that for any index
i ∈ N and any subset Ω0 ⊆ Ω, the sequence {E[yi(xε, ω, ε)1{ω∈Ω0}]} is bounded below, and
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the sequence {(xε)iE[yi(xε, ω, ε)1{ω∈Ω0}]} is bounded above. By choosing a subsequence
of {xε} if necessary, we define the index set J = {i | (xε)i → ∞}.

Denote ȳε = E[y(xε, ω, ε)] = M̄xε + εxε + q̄. Let x̂ ∈ F be arbitrarily chosen, and put
ŷ = M̄x̂+ q̄. Then there exists a constant γ > 0, such that for any ε > 0 small enough,

γ ≥ (xε − x̂)T (ȳε − ŷ) = (xε − x̂)T M̄(xε − x̂) + εxT
ε (xε − x̂)

≥ εxT
ε (xε − x̂) ≥ 0, (2.19)

where the first inequality uses the fact that {xεȳε} is bounded above, {ȳε} is bounded
below and x̂ ≥ 0, ŷ ≥ 0, xε ≥ 0, while the next two inequalities use the positive semi-
definiteness of M̄ and J �= ∅, respectively. Thus, from (2.19) and ‖xε‖ → ∞, we have

0 ≤ lim
ε↓0

ε‖xε‖ ≤ lim
ε↓0

γ + εxT
ε x̂

‖xε‖ = 0,

which together with (2.19) yields that {εxT
ε xε} is bounded. By Cauchy-Schwartz inequal-

ity, we obtain

E[‖Φ3(xε, ω, ε)‖] ≤
√
E[‖Φ3(xε, ω, ε)‖2] =

√
f3(xε, ε) ≤

√
f3(0).

Thus, the sequence {E[‖Φ3(xε, ω, ε)‖]} is bounded. According to (2.17) and (2.18) in the
proof of Theorem 2.3, we have

|f3(xε, ε) − f3(xε)| ≤ (2E[‖Φ3(xε, ω, ε)‖] + (2 + ‖xε‖)ε‖xε‖)(2 + ‖xε‖)ε‖xε‖,

which implies that there exists a constant γ2 > 0 such that f3(xε) ≤ γ2 for any ε > 0.
Then, from Theorem 2.2, we conclude that the sequence {xε} is bounded.

Remark 2.2 In general, the function f(x) and its regularization f(x, ε) is not convex.
Regarding standard results for LCP(M̄, q̄), several interesting questions remain to be stud-
ied: Does SERMε have only one element? Is the whole sequence {xε} convergent if there
is a convergent subsequence?

3 Robust solution

The EV formulation and the ERM formulation take into account all random events and
give decisions under uncertainty. In general, the decisions may not be the best or may
be even infeasible for each individual event. However, in many cases, we have to take
risk to make a priori decision based on limited information of unknown random events.
Naturally, one wants to know how good or how bad the decision given by a deterministic
formulation can be. In this section, we study the robustness of solutions of the ERM
formulation (1.4) for the monotone SLCP.

Let Φ̄ be defined by (2.4). For any x, by taking expectation in

‖Φ(x, ω)‖2 = ‖Φ̄(x)‖2 + 2Φ̄(x)T (Φ(x, ω) − Φ̄(x)) + ‖Φ(x, ω) − Φ̄(x)‖2,
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we find
f(x) = E[‖Φ(x,ω)‖2] = ‖Φ̄(x)‖2 + E[‖Φ(x,ω) − Φ̄(x)‖2].

Note that the second term

E[‖Φ(x,ω) − Φ̄(x)‖2] = E[tr(Φ(x,ω) − Φ̄(x))(Φ(x,ω) − Φ̄(x))T ]

= trE[(Φ(x,ω) − Φ̄(x))(Φ(x,ω) − Φ̄(x))T ]

is the trace of the covariance matrix of the random function Φ(x, ω).
Since Φ(x, ω) = 0 if and only if x solves LCP(M(ω), q(ω)), and the ERM formulation

(1.4) is equivalent to

min
x∈Rn

+

‖Φ̄(x)‖2 + E[‖Φ(x,ω) − Φ̄(x)‖2], (3.1)

an optimal solution of the ERM formulation (1.4) yields a high mean performance of the
SLCP and has a minimum sensitivity with respect to random parameter variations in
SLCP. Therefore, the ERM formulation (1.4) can be regarded as a robust formulation
for SLCP.

Now, we investigate the relation between a solution of the ERM formulation and a
solution of LCP(M(ω), q(ω)) for ω ∈ Ω. First, we give a new error bound for monotone
LCP which uses the sum of the “min” function φ1(a, b) and the penalized FB function
φ3(a, b). The idea comes from the error bound given by Mangasarian and Ren [17]. Let
SOL(A, p) denote the solution set of LCP(A, p), and define the distance from a point x
to the set SOL(A, p) by dist(x,SOL(A, p)) := ‖x− x̄(x)‖, where x̄(x) is a closest solution
of LCP(A, p) to x under the norm ‖ · ‖. Let

Ψ1(x) := ‖min(x,Ax+ p)‖

and
s(x) := ‖[−Ax− p,−x, xT (Ax+ p)]+‖.

Lemma 3.1 [17] Suppose that A is positive semi-definite and SOL(A, p) �= ∅. Then
there is a constant c > 0 such that

dist(x,SOL(A, p)) ≤ c(Ψ1(x) + s(x)), x ∈ Rn.

Lemma 3.2 Let ψ(a, b) = [−b,−a, ab]+. Then we have ‖ψ(a, b)‖ ≤ |φ3(a, b)| for any
a ≥ 0 and b ∈ R.

Proof: Let a ≥ 0. If b ≥ 0, then from a+ b ≥ √
a2 + b2, we have

‖ψ(a, b)‖ = ab ≤ a+ b−
√
a2 + b2 + ab = |φ3(a, b)|.

If b < 0, then from a ≤ √
a2 + b2, we have a+ b−√

a2 + b2 ≤ b < 0, and

‖ψ(a, b)‖ = |−b| ≤ |a+ b−
√
a2 + b2| = |φ3(a, b)|.
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From Lemma 3.2, it is easy to see that for any x ≥ 0,

s(x) ≤ Ψ3(x) := ‖(φ3(x1, (Ax + p)1), . . . , φ3(xn, (Ax+ p)n))‖.
Moreover, from (2.3), there is a constant κ > 0 such that

Ψ1(x) ≤ κΨ3(x), x ∈ Rn.

Using these inequalities with Lemma 3.1, we obtain the following new global error bounds
for the monotone LCP(A, p).

Theorem 3.1 Let the monotone LCP(A, p) have a nonempty solution set SOL(A, p).
Then both Ψ1 + Ψ3 and Ψ3 provide global error bounds for the monotone LCP on Rn

+,
that is, there are positive constants α1 and α2 such that

dist(x,SOL(A, p)) ≤ α1(Ψ1(x) + Ψ3(x)) ≤ α2Ψ3(x), x ∈ Rn
+.

To give error bounds for SLCP, we assume thatM(ω) is a positive semi-definite matrix
and LCP(M(ω), q(ω)) has a nonempty solution set for every ω ∈ Ω. This assumption
holds in many applications. For instance, consider the stochastic quadratic program

min 1
2z

TQz + cT z

s.t A(ω)z ≥ b(ω), z ≥ 0,

where Q is a positive definite matrix. The KKT conditions for this quadratic program
yield the SLCP involving the random matrix

M(ω) =

(
Q −A(ω)T

A(ω) 0

)
.

Clearly this is a positive semi-definite matrix for each ω.

Theorem 3.2 Assume that Ω = {ω1, ω2 . . . , ωN} ⊂ Rm, and for every ω ∈ Ω, M(ω) is
a positive semi-definite matrix and LCP(M(ω), q(ω)) has a nonempty solution set. Then
there are positive constants β1 and β2 such that

E[dist(x,SOL(M(ω), q(ω)))] ≤ β1(
√
f1(x) +

√
f3(x)) ≤ β2

√
f3(x), x ∈ Rn

+.

Theorem 3.2 particularly shows that for x∗ ∈ SERM ,

E[dist(x∗,SOL(M(ω), q(ω)))] ≤ β2

√
f3(x∗) = β2 min

x∈Rn
+

√
f3(x). (3.2)

Unlike an error bound for the deterministic LCP, the left-hand side of (3.2) is in general
positive at a solution of the ERM formulation (1.4). Nevertheless, the inequality (3.2)
suggests that the expected distance to the solution set SOL(M(ω), q(ω)) for ω ∈ Ω is
also likely to be small at x∗ ∈ SERM . In other words, we may expect that a solution of
the ERM formulation (1.4) has a minimum sensitivity with respect to random parameter
variations in SLCP. In this sense, solutions of (1.4) can be regarded as robust solutions
for SLCP.
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4 Numerical experiments

We have conducted some numerical experiments to investigate the properties of solutions
of the ERM formulation (1.4) for monotone SLCP. In particular, we have made compar-
ison of the ERM formulation with the EV formulation (1.5) in terms of the measures
of optimality and feasibility as well as that of reliability, which are defined through a
quadratic programming formulation of SLCP.

We start with some preliminary materials about calculations of gradients and Hessian
matrices of functions f1 and f3 in the ERM formulation (1.4).

4.1 Gradient and Hessian

If the strict complementarity condition holds with probability one at x, then f1 is twice
continuously differentiable at x. In this case, the gradient g1(x) of f1 is given by

g1(x) = E[M(ω)T (I −D(x, ω))(M(ω)x + q(ω)) + (I +D(x, ω))x]

and the Hessian matrix G1(x) of f1 is given by

G1(x) = E[M(ω)T (I −D(x, ω))M(ω) + I +D(x, ω)],

where D(x, ω) = diag(sign(M(ω)x+ q(ω) − x)).
The function f3 defined by the penalized FB function (2.1) with λ ∈ (0, 1) is contin-

uously differentiable at any point x ∈ Rn, and twice continuously differentiable at point
x where P{ω | xi = yi(x, ω) = 0, i = 1, . . . , n} = 0. The gradient g3(x) of f3 is given by

g3(x) = E[∇‖Φ3(x, ω)‖2] = 2E[V (x, ω)T Φ3(x, ω)],

where V (x, ω) ∈ Rn×n can be computed by Algorithm 1 in [2].
If f3 is twice continuously differentiable at x, then the Hessian matrix G3(x) is given

by

G3(x) = E[∇2‖Φ3(x, ω)‖2] = 2E[V (x, ω)TV (x, ω) +
n∑

i=1

Ui(x, ω)(Φ3(x, ω))i],

where
∑n

i=1 Ui(x, ω)(Φ3(x, ω))i can be computed as follows:
For each ω ∈ Ω, define vectors ξ, η, cx, cxy, cy ∈ Rn with components

ξi = (x2
i + yi(x, ω)2)−

3
2 , ηi = sign([xi]+[yi(x, ω)]+),

(cx)i = ξix
2
i , (cxy)i = ξixiyi(x, ω), (cy)i = ξiyi(x, ω)2.

Denote matrices Dφ =diag(Φ3(x, ω)), Dλ =diag(λcxy + (1 − λ)η), Dy =diag(cy), W̃ =
DφDλM(ω), and Wi = Mi(ω)TMi(ω) for i = 1, . . . , n, then

n∑
i=1

Ui(x, ω)(Φ3(x, ω))i = W̃ + W̃ T − λ
n∑

i=1

(Dφcx)iWi − λDyDφ.
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4.2 Measure of optimality and feasibility

Using reformulations of LCP and stochastic programming techniques, we may consider
various deterministic formulations of SLCP. For instance, in a recent paper [15], another
approach for stochastic nonlinear complementarity problems has been proposed as an
application of stochastic mathematical programs with equilibrium constraints. Different
deterministic formulations of SLCP have different optimal solutions. To help decision
makers to select a proper solution, we introduce some measure of optimality and feasibility
for a given point x ∈ Rn

+.
As stated in the introduction, the function value f(x) can be regarded as an expected

total cost. Let x∗ be a solution of (1.4) with Ω = {ω1, ω2, . . . , ωN}. By the definition of
ERM formulation, there is no x ∈ Rn

+ such that

P{ω | ‖Φ(x, ω)‖ < ‖Φ(x∗, ω)‖} = 1.

Hence x∗ is a weak Pareto optimal solution of the SLCP in the sense of multi-objective
optimization

min
x∈Rn

+

⎛
⎜⎜⎜⎝

‖Φ(x, ω1)‖
...

‖Φ(x, ωN )‖

⎞
⎟⎟⎟⎠ .

Now we define some measure of optimality and feasibility for a given point x, without
using an NCP function. For a fixed ω, LCP(M(ω), q(ω)) is equivalent to the quadratic
program

min y(x, ω)Tx

s.t y(x, ω) := M(ω)x+ q(ω) ≥ 0, x ≥ 0 (4.1)

in the sense that (4.1) has an optimal solution with zero objective value if and only
if LCP(M(ω), q(ω)) has a solution. We adopt some ideas of loss functions from the
literature of stochastic programming [1, 12, 18] to problem (4.1). For x ∈ Rn

+, let

γ(x, ω) := ‖min(0, y(x, ω))‖ + xT [y(x, ω)]+. (4.2)

It is easy to verify that xω is a solution of (4.1) if and only if γ(xω, ω) = 0 and xω ≥ 0,
provided LCP(M(ω), q(ω)) has a solution. In (4.2), the first term evaluates violation
of the nonnegativity condition and the second term evaluates the loss in the objective
function of (4.1). For a fixed x ∈ Rn

+, the expected total loss is defined by E[γ(x, ω)].
For two points x∗, x̄ ∈ Rn

+, we define the measure of dominance of x∗ over x̄ by

π(x∗, x̄) := P{ω | γ(x∗, ω) < γ(x̄, ω)}. (4.3)

If π(x∗, x̄) > 0.5, then x∗ has more chance to dominate x̄, and so x∗ may be regarded as
a better point than x̄ in the multi-objective optimization problem

min
x∈Rn

+

⎛
⎜⎜⎜⎝
γ(x, ω1)

...
γ(x, ωN )

⎞
⎟⎟⎟⎠ .
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In many engineering and economic applications of SLCP, the inequality y(x, ω) ≥ 0
describes the safety of the system, and the guarantee of safety is critically important.
Under those circumstances, we may judge that a failure occurs if and only if there is an
index i such that yi(x, ω) < 0. Let

ymin(x, ω) := min
1≤i≤n

yi(x, ω).

The reliability of x with a tolerance ε > 0 is then defined by

relε(x) := P{ω | ymin(x, ω) ≥ −ε}.

4.3 Test problems

We give a procedure to generate a test problem of the ERM formulation for discretized
monotone SLCP,

min
x∈Rn

+

f(x) :=
1
N

N∑
j=1

n∑
i=1

φ(xi, (M jx+ qj)i)2, (4.4)

where M j = M(ωj) and qj = q(ωj) for j = 1, . . . ,N and Ω = {ω1, ω2, . . . , ωN}.
Let x̂ be a nominal point chosen in Rn

+, which is used as a seed of constructing a set
of test problems and becomes a solution of the ERM formulation (1.4) in some special
cases (see below for the detail). Moreover, the user is required to specify the following
parameters:

• n: the number of variables

• N : the number of random matrices and vectors

• µ2 (µ ≥ 1): the condition number of the expectation matrix M̄

• nx: the number of elements in the index set J = {i | x̂i > 0}

• (0, τ): the range of x̂i for i ∈ J

• #Ij: the number of elements in the index set Ij = {i | x̂i = 0, (M j x̂+ qj)i > 0} for
each j

• #Kj : the number of elements in the index set Kj = {i | x̂i = 0, (M j x̂ + qj)i = 0}
for each j

• (0, ν): the range of (M j x̂+ qj)i for i ∈ Ij and each j

• [0, β): the range of (M j x̂+ qj)i for i ∈ J

• (−σ, σ): the range of elements of matrix M̄ −M j for each j

Procedure for generating a test problem of monotone SLCP

1. Randomly generate a vector x̂ ∈ Rn
+ that has nx positive elements in (0, τ).
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2. Generate a diagonal matrix D whose diagonal elements are determined as

Dii =

⎧⎪⎪⎨
⎪⎪⎩

1/µ i = 1
µλi i = 2, . . . , n− 1
µ i = n,

where λi, i = 2, . . . , n− 1 are uniform variate in the interval (−1, 1).

3. Generate a random orthogonal matrix U ∈ Rn×n by using the singular value decom-
position of a random matrix, and let M̄ = UDUT .

4. Generate N random matrices Bj ∈ Rn×n, j = 1, 2, . . . ,N whose elements are in the
interval (0, 1). Set

M j = M̄ + σ(Bj −BN−j+1), j = 1, 2, . . . ,N.

5. For each j = 1, 2, . . . ,N , set

qj
i =

⎧⎪⎪⎨
⎪⎪⎩

(−M j x̂)i i ∈ Kj

(−M j x̂+ βzj)i i ∈ J
(−M j x̂+ νzj)i i ∈ Ij,

where zj ∈ Rn is a random vector whose elements are in the interval (0,1).

Some aspects of the test problem

• The expectation matrix M̄ = UDUT is symmetric positive definite. Its condition
number is µ2 and its eigenvalues are distributed on the interval [1/µ,µ].

• If σ = 0, then all M j are equal to M̄ = UDUT , which is positive definite. For
σ > 0, M j may not be a positive semi-definite matrix, but |(M̄ −M j)il| = σ|(Bj −
BN−j+1)il| ≤ σ for all i, l = 1, . . . , n.

• If #Kj = 0 for all j = 1, . . . ,N , then f1 is continuously differentiable at x̂.

• If β = 0, then x̂ is a solution of LCP(M j, qj) for all j = 1, 2, . . . ,N . In this case, x̂
becomes a global solution of (4.4) with f(x̂) = minx∈Rn

+
f(x) = 0.

• n− nx is the number of active constraints at x̂.

• If β > 0, then we have in general f(x̂) > 0. In this case, x̂ is not necessarily a solu-
tion of (4.4). However, by Remark 2.1 and Theorem 2.2, the positive definiteness
of M̄ guarantees that the solution set of (4.4) is nonempty and bounded.
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4.4 Numerical results

We used the program of Lemke’s method [8] to get a solution x̄ of the EV formulation
(1.5). To solve the ERM formulation (4.4), we used a semi-smooth Newton method with
descent direction line search [6]. In particular, we first applied a global descent line
search with the gradient ∇f (x) to make the function value sufficiently decrease and get
a rough approximate solution. Next, we used a local semi-smooth Newton method with
the rough approximate solution as an initial point to get an approximate local optimal
solution. As the ERM problem defined by the “min” function is nonsmooth, in a few
occasions, the method failed to decrease the function value. When it happened, we
restarted the method. All computations were carried out by using MATLAB on a PC.

We first tested our program on hundreds of random problems with β = 0 generated
by the procedure in the last subsection with different parameters (n,N, µ, nx, ν, σ) and
starting points x0 = �e where � = 0, 10, . . . , 50 and e is the n-dimensional vector of
ones. Since β = 0, the solution x∗ of (4.4) coincides with the nominal point x̂. We have
observed that the average function values and relative errors at computed solutions x̃ of
(4.4) satisfy

f(x̃) ≤ 10−26,
‖x∗ − x̃‖
‖x∗‖ ≤ 10−17,

which indicates that our method works successfully in finding a global solution of (4.4).
Next, for each fixed (n, nx, β, σ) with β > 0, we used the procedure described in the

previous subsection to generate 100 test problems with the following parameters:

τ = 20, µ = 10, ν = 15, N = 103.

The number of elements in the index set Kj was determined by using a random number as
#Kj = floor((n− nx)rand(1,N)). The numbers shown in Tables 4.1 and 4.2 are average
values for the 100 problems.

In these tables, xi is the computed solution, where the index i = 1 stands for the
“min” function, and i = 3 stands for the penalized FB function.

For any x, x̃ ∈ Rn
+, we define Γ(x) := E[γ(x, ω)], π(x, x̃) and relε(x) as follows:

Γ(x) :=
1
N

n∑
j=1

γj(x), γj(x) = ‖min(0, yj(x))‖ + xT [yj(x)]+,

π(x, x̃) :=
N∑

j=1

pj , pj =

{
1
N if γj(x) < γj(x̃)
0 otherwise,

relε(x) :=
N∑

j=1

pj, pj =

{
1
N if min1≤i≤n y

j
i (x) ≥ −ε

0 otherwise.

where yj(x) = M jx+ qj, j = 1, . . . ,N .
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Table 4.1 Function values and relε with ε = 0 (left) and ε = 1 (right).

(n, nx, β, σ) f1(x1) f1(x̄) f3(x3) f3(x̄) relε(x̄) relε(x1) relε(x3)
20, 10, 10, 20 254.87 2.13e6 447.82 1.05e7 0, 0 0.55, 0.91 0.55, 0.92
20, 10, 10, 10 241.89 4.47e5 448.99 2.13e6 0, 0 0.55, 0.91 0.55, 0.92
20, 10, 5, 10 69.41 2.62e5 131.64 1.34e6 0, 0 0.54, 0.96 0.52, 0.93
20, 10, 5, 0 18.89 75.78 32.69 154.36 0.31, 0.37 0.27, 0.60 0.21, 0.51
40, 20, 10, 20 527.19 6.83e6 998.75 3.01e7 0, 0 0.52, 0.97 0.52, 0.97
40, 20, 10, 10 510.84 1.90e6 999.39 8.52e6 0, 0 0.49, 0.85 0.49, 0.84
40, 20, 5, 10 144.06 1.14e6 270.48 4.65e6 0, 0 0.52, 0.99 0.50, 0.98
40, 20, 5, 0 44.11 171.25 79.86 79.86 0.07, 0.58 0.05, 0.58 0.05, 0.58
60, 30, 10, 20 812.27 1.29e7 1465.60 5.19e7 0, 0 0.49, 0.95 0.49, 0.95
60, 30, 10, 10 819.21 9.23e6 1442.70 4.39e7 0, 0 0.45, 0.79 0.46, 0.81
60, 30, 5, 10 215.60 1.77e6 418.87 7.05e6 0, 0 0.38, 0.99 0.36, 0.98
60, 30, 5, 0 58.29 281.16 100.56 576.09 0.51, 0.58 0.37, 0.56 0.28, 0.48

Table 4.2 Relative dominance of solutions based on the stochastic QP formulation

(n, nx, β, σ) π(x1, x̄) π(x3, x̄) π(x1, x3) π(x3, x1) Γ(x̄) Γ(x1) Γ(x3)
20, 10, 10, 20 1 1 0.49 0.51 3.67e4 518.13 517.91
20, 10, 10, 10 1 1 0.49 0.51 1.56e4 491.21 490.64
20, 10, 5, 10 1 1 0.42 0.57 1.14e4 241.04 239.05
20, 10, 5, 0 0.50 0.55 0.32 0.60 139.36 84.66 71.00
40, 20, 10, 20 1 1 0.47 0.51 8.69e4 1.08e3 1.08e3
40, 20, 10, 10 1 1 0.42 0.47 4.61e4 1.04e3 1.04e3
40, 20, 5, 10 1 1 0.42 0.58 3.03e4 493.10 490.95
40, 20, 5, 0 0.53 0.53 0.70 0.30 340.45 197.09 197.09
60, 30, 10, 20 1 1 0.51 0.49 1.21e5 1.59e3 1.59e3
60, 30, 10, 10 1 1 0.51 0.49 1.92e5 1.57e3 1.57e3
60, 30, 5, 10 1 1 0.43 0.57 5.12e4 767.49 765.50
60, 30, 5, 0 0.57 0.58 0.42 0.58 552.59 276.76 222.37

Table 4.1 shows that the minimum values of f1 and f3 become large as β and σ

become large. Nevertheless, the function values f1(x1) and f3(x3) are usually much
smaller than f1(x̄) and f3(x̄), respectively. As to the reliability relε(x) and the expected
total loss Γ(x), the solutions x1 and x3 exhibit significantly better performance than x̄

as shown in Tables 4.1 and 4.2. Moreover, as to the measure of optimality and feasibility
π(·, ·) which is defined through the stochastic quadratic program (4.1), the solutions x1

and x3 dominate x̄ in most cases. From these results, we may conclude that the ERM
formulation yields a solution that has desirable properties in regard to the performance
measures related to optimality, feasibility, and reliability.

In most cases in Table 4.2, we find that π(x1, x3) + π(x3, x1) = 1. This phenomenon
may be explained as follows. Let J = {j | γj(x1) = γj(x3)}. By the definition of π(·, ·),
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we have
π(x1, x3) + π(x3, x1) = 1 −

∑
j∈J

pj .

In general, unlike LCP, minimal solutions x1 and x3 of f1 and f3 are different, which
leads to γj(x1) �= γj(x3) in most of our test problems.

5 Applications

In the survey paper by Ferris and Pang [9], many engineering and economic applications
of complementarity problems are described. Traffic equilibrium problems constitute one
of important applications. Here we use the notations in [9] and the example in [5] to
illustrate the model of stochastic LCP and the ERM formulation for traffic equilibrium
problems under demand uncertainty.

For a given transportation network with a set of nodes and a set of paths, we suppose
the travel demand on origin-destination (OD) pairs is given by a vector d and the users’
travel cost function is defined by Aξ + b, where A is a positive definite matrix, b is an
assigned vector and ξ is the traffic flow. By the Wardrop’s user equilibrium principle, the
traffic equilibrium problem can be mathematically described as

0 ≤ Aξ + b−BT τ ⊥ ξ ≥ 0, 0 ≤ Bξ − d ⊥ τ ≥ 0, (5.1)

where τ represents the minimum transportation costs between OD pairs and B is the
path-OD pair incidence matrix.

We consider a simple transportation network [5] shown in Figure 1.

�
β

Figure 1: A transportation network
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�a2
�
a5

�

�
�a3

�

�
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�

�
a4�

This network consists of two nodes {α, β} and five paths {a1, a2, a3, a4, a5}. Nodes α
and β are connected by two two-way roads and by one one-way road. Paths a1, a2, a3

are directed from α to β, and a4, a5 are directed from β to α. The travel demand on the
direction from α to β is 210, and that on the opposite direction is 120. The flow on path
ai is denoted ξi, i = 1, 2, 3, 4, 5, and the minimum transportation costs from α to β and
from β to α are denoted τ1 and τ2, respectively. The travel cost function on path ai is
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given by (Aξ + b)i, where

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

10 0 0 5 0
0 15 0 0 5
0 0 20 0 0
2 0 0 20 0
0 1 0 0 25

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
, b =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1000
950

3000
1000
1300

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
.

Matrix B and vector d are given by

B =

(
1 1 1 0 0
0 0 0 1 1

)
, d =

(
210
120

)
.

Note that (Bξ − d)1 and (Bξ − d)2 represent the undelivered transportation demands
from α to β and from β to α, respectively. Let

M̄ =

(
A −BT

B 0

)
, q̄ =

(
b

−d

)
. (5.2)

Then the problem is modeled as the monotone LCP(M̄, q̄), whose unique solution is
computed as

ξ = (120,90, 0, 70, 50)T , and τ = (2550,2640)T . (5.3)

The solution shows that for the fixed demand, the one-way road a3 has no traffic flow
in the equilibrium network. Now the road traffic management office wants to make a
road maintenance plan for the coming year. Due to the limit of budget, roads having no
certain traffic flow will not be considered. Should road a3 be ignored?

Actually, travel demand is not always constant, but may fluctuate regularly with
different time periods of day, week and season of the year. Furthermore, the fluctuation
further affects the travel cost function, which should be taken into account to get a robust
equilibrium model under any realization of the uncertain demand. Therefore, we replace
the vector d and matrix A in (5.1) by a perturbed demand vector d(ω) and a perturbed
matrix A(ω), respectively, and obtain the corresponding random matrix M(ω) and vector
q(ω) in (5.2). Thus the problem is modeled as SLCP(M(ω), q(ω)).

For the network in Figure 1, we assume that the travel demand is given by d(ω) =
ω = (ω1, ω2)T , where ω1 and ω2 follow the truncated normal distribution and the uniform
distribution, respectively, as follows:

ω1 ∼ 80 ≤ N (210,1200) ≤ 340, ω2 ∼ U [60,180].

Define two cost coefficients, which relate to the fluctuation of travel demand, as

c1(ω) =
ω1 + ω2

330
− 1, c2(ω) =

ω1

210
− 1.
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Let A(ω) = A+ Ã(ω) with

Ã(ω) =

⎛
⎜⎜⎜⎜⎜⎝

3c1(ω) 0 0 0.5c1(ω) 0
0 4c1(ω) 0 0 c1(ω)
0 0 0.5c2(ω) 0 0
0 0.1c1(ω) 0 0 c1(ω)

⎞
⎟⎟⎟⎟⎟⎠ ,

to reflect the situation where the travel cost varies with demand perturbation. Since a3

is a one-way road, the influence on a3 is much less than on other roads and only relates
to the travel demand from α to β. Moreover, it is easy to find that E[M(ω)] = M̄ and
E[q(ω)] = q̄, which means SLCP(M(ω), q(ω)) is a monotone SLCP, and a solution of the
monotone LCP(M̄, q̄) is also a solution of EV formulation for SLCP(M(ω), q(ω)).

Now, for the ERM formulation (1.4) of SLCP(M(ω), q(ω)), we use the sample average
approximation method [14] to get the approximation of f(x) as

fN (x) :=
1
N

N∑
j=1

‖Φ(x, ωj)‖2,

where ωj is randomly generated by the given distribution. We use the “min” NCP
function to define Φ(x, ω) and randomly generate N = 1000 samples {ωj}. The sample
average approximation of the ERM problem minx∈R7

+
fN(x) is solved by fmincon in

the Matlab (version 7) tool box for constrained optimization. The average of computed
solutions for 100 simulations is

ξ = (72,60, 39, 68, 46)T , and τ = (2027,2506)T . (5.4)

Comparing this solution with that of the EV formulation, which is given by (5.3),
we find that the transportation flow on path a3 is comparable with that on a1 and a2,
and therefore we suggest that a3 should not be ignored. One of the reasons may be
that although the cost on a3 is much higher than those on a1 and a2 in average, road a3

becomes acceptable, or even preferable for users when the travel demand increases, since
the increase of cost on road a3 is much less than that on a1 and a2.

6 Final remark

The monotone SLCP has a wide range of applications in engineering and economics, and is
closely linked to the study of stochastic linear and quadratic programs. Our theoretical
and numerical study has revealed that the ERM formulation for the monotone SLCP
has various desirable properties. In particular, the ERM formulation produces robust
solutions with minimum sensitivity, high reliability, and low risk in violation of feasibility
with respect to random parameter variations in SLCP.
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