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EXISTENCE OF SOLUTIONS TO SYSTEMS OF
UNDERDETERMINED EQUATIONS AND SPHERICAL DESIGNS∗
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Abstract. This paper is concerned with proving the existence of solutions to an underdetermined
system of equations and with the application to existence of spherical t-designs with (t + 1)2 points
on the unit sphere S2 in R3. We show that the construction of spherical designs is equivalent to
solution of underdetermined equations. A new verification method for underdetermined equations is
derived using Brouwer’s fixed point theorem. Application of the method provides spherical t-designs
which are close to extremal (maximum determinant) points and have the optimal order O(t2) for the
number of points. An error bound for the computed spherical designs is provided.
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1. Introduction. Let c : Rn → Rm be a continuously differentiable function
with m < n. Suppose that x̂ is an approximate solution of the underdetermined
system of nonlinear equations

c(x) = 0(1.1)

and the Jacobian c′(x) of c at x̂ has full row rank. We are interested in the existence
of a solution of (1.1) in a neighborhood of x̂.

Underdetermined systems of equations arise in constrained optimization prob-
lems, continuation methods for underdetermined equations, etc. [3, 12, 14, 21]. This
paper gives a verification method for solutions of the underdetermined equations (1.1).
The main difficulty in proving the existence of solutions of an underdetermined sys-
tem of equations is that the Jacobian c′(x) is an m × n matrix with m < n. Let
c′(x̂)+ be the Moore–Penrose pseudoinverse of c′(x̂). A popular method for verifying
the existence of solutions of nonlinear equations is to use a Krawczyk-type interval
operator [1]. Replacing the inverse by a Moore–Penrose pseudoinverse, we can get a
Krawczyk-type interval operator

K(X) = x̂− c′(x̂)+c(x̂) + (I − c′(x̂)+C ′(X))(X − x̂),(1.2)

where X is an interval in Rn defined by

X = [x̂− h, x̂ + h], h ∈ Rn, h ≥ 0,

and C ′(X) is an interval arithmetic evaluation satisfying

c′(x) ∈ C ′(X) for x ∈ X.
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It can be shown [1] that there is a solution of (1.1) in X if

K(X) ⊆ X(1.3)

and c′(x̂) has full row rank. However, the enclosure (1.3) rarely holds due to the
equality [8]

‖I − c′(x̂)+c′(x̂)‖2 = min{1, n−m}

and the fact that

K(X) ⊆ X ⇒ ‖I − c′(x̂)+c′(x)‖∞ ≤ 1 ∀x ∈ X.

In section 2 we present a new verification method for underdetermined systems of
(1.1) which does not need the generalized inverse c′(x̂)+.

A cubature (numerical integration) rule for the unit sphere S2 = {y ∈ R3 :
‖y‖2 = 1} is a set of N points y� ∈ S2 and weights w� for � = 1, . . . , N such that

∫
S2

f(y)dy ≈
N∑
�=1

w�f(y�).

Let Pt ≡ Pt(S
2) be the linear space of restrictions of polynomials of degree ≤ t in 3

variables to S2. The dimension of the space Pt is dt := (t + 1)2. Spherical t-designs,
introduced in [5], are sets of N points {y1, y2, . . . , yN} ⊂ S2 such that the equally
weighted (w� = |S2|/N = 4π/N , � = 1, . . . , N) cubature rule is exact for all spherical
polynomials of degree at most t, that is,

∫
S2

p(y)dy =
4π

N

N∑
�=1

p(y�) ∀p ∈ Pt.

For t ≥ 1, the existence of a spherical t-design was proved in [19]. Commonly, the
interest is in the smallest number N∗

t of points required to give a spherical t-design.
Lower bounds on N∗

t given in [5] are

N∗
t ≥ (t + 1)(t + 3)

4
if t is odd,

N∗
t ≥ (t + 2)2

4
if t is even.

A spherical t-design which achieves the lower bounds is called a tight spherical t-
design. However, for t ≥ 2, it is known that tight spherical t-designs do not exist [5].
Hardin and Sloane [7] have extensively investigated spherical designs on S2 and sug-
gested a sequence of putative spherical t-designs with 1

2 t
2 + o(t2) points. A 7-design

with 24 points was first found by McLaren in 1963 [13]. Korevaar and Meyers [10] con-
sidered the construction for spherical t-designs with O(t3) points on S2. An approach
for the numerical calculation of spherical designs using multiobjective optimization
was studied by Maier [11], and computational proof of the existence of spherical de-
signs using interval methods [9] was investigated by Hardin and Sloane [7].

Extremal (or maximum determinant) points [20] are sets of (t+ 1)2 points on S2

which maximize the determinant of a basis matrix for an arbitrary basis of Pt. Sloan
and Womersley [20, 22] showed that extremal systems have very nice geometrical
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properties as the points are well separated and the computed interpolatory cubature
weights are positive (w� > |S2|/(2N) for � = 1, . . . , N for degrees up to t = 150).
Also the condition number of the basis matrix grows slowly, giving confidence in the
calculated cubature weights. Proving the positivity of the cubature weights for all
degrees t for the extremal points is still an open question. Other systems of points,
such as minimum energy points, often have basis matrices with such high condition
numbers that no confidence can be placed in the calculated cubature weights.

Equal weight cubature rules, or spherical designs, are simpler to implement and
there is no question about the positivity of the weights. There are many different
characterizations of spherical t-designs [6]. However, these can be very ill conditioned.
Extremal points provide excellent starting points for numerically finding solutions to
an underdetermined, but highly nonlinear, system of equations which characterize
spherical t-designs with (t + 1)2 points. Application of the verification method to
the system of equations then proves the existence of spherical t-designs which are
close to the calculated points and have the optimal order O(t2) for the number of
points. Moreover, spherical designs with (t+1)2 points which also have a basis matrix
with a determinant close to the maximum are simultaneously good for cubature and
interpolation. Computed spherical t-designs with (t + 1)2 points for degrees up to
t = 50 are available from http://www.maths.unsw.edu.au/∼rsw/Sphere.

The focus here is not on finding a spherical t-design with the minimal number of
points, but rather proving the existence of spherical t-designs with (t+1)2 points close
to an extremal system. Once existence of a spherical design with (t + 1)2 points is
established one can then look for extremal spherical designs, that is, systems of (t+1)2

points which maximize the determinant of a basis matrix subject to the constraints
that they are spherical t-designs.

In section 3 we reformulate the calculation of a spherical t-design with (t + 1)2

points as an underdetermined system of nonlinear equations (1.1) with m = (t+1)2−1
equations and n = 2(t + 1)2 − 3 variables. We show that a sufficient and necessary
condition for the existence of solutions to the system of equations is existence of a
spherical t-design with (t+ 1)2 points. In section 4, we apply the verification method
to find new spherical t-designs. The computed spherical designs Ŷ = {ŷ1, . . . , ŷdt

} are
compared with the extremal (maximum determinant) points, and error bounds of Ŷ
to exact spherical designs are given.

For a given m × n matrix A, let AI be the submatrix of A whose entries lie in
the columns of A indexed by I. For a given vector x ∈ Rn, let xI be the subvector
of x whose entries of x are indexed by I.

2. A verification method. Let x̂ be a computed solution of (1.1). Let B be
an index set {k1, k2, . . . , km} such that c′B(x̂) ∈ Rm×m is nonsingular. Define the
function H : Rn → Rn by

HB(x) = xB − c′B(x̂)−1c(x),(2.1)

HN (x) = xN − α(xN − x̂N ),(2.2)

where N = {1, 2, . . . , n}/B and α ∈ (0, 1) is a constant. Obviously, if x∗ ∈ Rn is a
fixed point of H, that is, H(x∗) = x∗, then we have c(x∗) = 0 with x∗

N = x̂N . Choose
two nonnegative numbers r1 and r2 and define the convex set

X = {x ∈ Rn : ‖xB − x̂B‖ ≤ r1, ‖xN − x̂N ‖ ≤ r2} .
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Theorem 2.1. Suppose that c : Rn → Rm is continuously differentiable, c′ has
full row rank at x̂, and

‖c′B(x) − c′B(x̂)‖ ≤ K‖x− x̂‖ for x ∈ X.(2.3)

(1) There is a solution of (1.1) in X if

‖c′B(x̂)−1c(x̂)‖ + ‖c′B(x̂)−1‖
(

1

2
K(r1 + r2)r1 + max

x∈X
‖c′N (x)‖r2

)
≤ r1.(2.4)

(2) There is no solution of (1.1) in X if

‖c′B(x̂)−1c(x̂)‖ − ‖c′B(x̂)−1‖
(

1

2
K(r1 + r2)r1 + max

x∈X
‖c′N (x)‖r2

)
> r1.(2.5)

Proof. (1) By the continuity of c′(x) and the mean value theorem, we find

HB(x) = x̂B − c′B(x̂)−1c(x̂) + xB − x̂B − c′B(x̂)−1(c(x) − c(x̂))

= x̂B − c′B(x̂)−1c(x̂) + xB − x̂B − c′B(x̂)−1

∫ 1

0

c′(x + t(x̂− x))(x− x̂)dt

= x̂B − c′B(x̂)−1c(x̂) + xB − x̂B − c′B(x̂)−1

∫ 1

0

c′B(x + t(x̂− x))(xB − x̂B)dt

−c′B(x̂)−1

∫ 1

0

c′N (x + t(x̂− x))(xN − x̂N )dt

= x̂B − c′B(x̂)−1

[
c(x̂) +

∫ 1

0

(c′B(x̂) − c′B(x + t(x̂− x)))(xB − x̂B)dt

+

∫ 1

0

c′N (x + t(x̂− x))(xN − x̂N )dt

]
.

Therefore, for any x ∈ X, we have

‖HB(x) − x̂B‖

≤ ‖c′B(x̂)−1c(x̂)‖ + ‖c′B(x̂)−1‖
∫ 1

0

‖c′B(x̂) − c′B(x + t(x̂− x))‖‖xB − x̂B‖dt

+ ‖c′B(x̂)−1‖
∫ 1

0

‖c′N (x + t(x̂− x))‖‖xN − x̂N ‖dt

≤ ‖c′B(x̂)−1c(x̂)‖ + ‖c′B(x̂)−1‖
(∫ 1

0

(1 − t)K‖x̂− x‖r1dt +

∫ 1

0

max
x∈X

‖c′N (x)‖r2dt
)

≤ ‖c′B(x̂)−1c(x̂)‖ + ‖c′B(x̂)−1‖
(

1

2
K(r1 + r2)r1 + max

x∈X
‖c′N (x)‖r2

)
.

Here we use the facts that x + t(x̂ − x) ∈ X, ‖xB − x̂B‖ ≤ r1, and ‖xN − x̂N ‖ ≤ r2
for all x ∈ X and t ∈ [0, 1].

This implies that if (2.4) holds, then for any x ∈ X we have

‖HB(x) − x̂B‖ ≤ r1.

Moreover, by the definition of H, we always have

‖HN (x) − x̂N ‖ = (1 − α)‖xN − x̂N ‖ ≤ r2.
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Therefore, (2.4) implies that H maps X into itself; that is,

H(x) ∈ X for any x ∈ X.(2.6)

Using Brouwer’s fixed point theorem, (2.6) implies that there is a fixed point x∗ of H
in X. From the definition of H, x∗ is a solution of (1.1).

(2) Assume that (2.5) holds and there is a solution x∗ in X. Following the proof
for part (1), we have

r1 ≥ ‖x∗
B − x̂B‖

= ‖HB(x∗) − x̂B‖

≥ ‖c′B(x̂)−1c(x̂)‖ − ‖c′B(x̂)−1‖
∫ 1

0

‖c′B(x̂) − c′B(x∗ + t(x̂− x∗))‖‖xB − x̂B‖dt

−‖c′B(x̂)−1‖
∫ 1

0

‖c′N (x∗ + t(x̂− x∗))‖‖xN − x̂N ‖dt

≥ ‖c′B(x̂)−1c(x̂)‖ − ‖c′B(x̂)−1‖
(

1

2
K(r1 + r2)r1 + max

x∈X
‖c′N (x)‖r2

)
> r1.

This is a contradiction, which completes the proof.

Without loss of generality, we assume that r1 �= 0. Let τ ∈ (0, 1
2 ). Define a subset

of X:

Xτ = {x | ‖xB − x̂B‖ ≤ τr1, ‖xN − x̂N ‖ ≤ τr2}.

Then we have the following corollary.

Corollary 2.2. Under the assumptions of Theorem 2.1, inequality (2.4) implies
that c′B(x) is nonsingular for all x ∈ Xτ and the solution x∗ of (1.1) with x∗

N = x̂N
is unique in Xτ .

Proof. For any x ∈ Xτ (x �= x̂), inequality (2.4) implies that

r1 ≥ ‖c′B(x̂)−1‖1

2
K(r1 + r2)r1

≥ ‖c′B(x̂)−1‖ 1

2τ
K‖x− x̂‖r1

> ‖c′B(x̂)−1‖K‖x− x̂‖r1
≥ r1‖c′B(x̂)−1‖‖c′B(x̂) − c′B(x)‖
≥ r1‖I − c′B(x̂)−1c′B(x)‖.

Dividing r1 in both sides, we find

‖I − c′B(x̂)−1c′B(x)‖ < 1.

Hence c′B(x) is nonsingular. By the implicit function theorem [16], the solution x∗ of
(1.1) with x∗

N = x̂N is unique in Xτ .

Remark 2.1. For the case m = n, we have x = xB, c′B(x) = c′(x), and (2.4)
reduces to

‖c′(x̂)−1c(x̂)‖ +
1

2
K‖c′(x̂)−1‖r2 ≤ r.(2.7)
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This is a quadratic inequality in r. If

ρ := K‖c′(x̂)−1c(x̂)‖‖c′(x̂)−1‖ ≤ 1

2
,(2.8)

then (2.7) holds for all r satisfying

1 −
√

1 − 2ρ

K‖c′(x̂)−1‖ ≤ r ≤ 1 +
√

1 − 2ρ

K‖c′(x̂)−1‖ .

By Theorem 2.1, there is a solution in X = {x ∈ Rn : ‖x− x̂‖ ≤ r}. Therefore, The-
orem 2.1 is a generalization of the Kantorovich theorem [16] for the existence of the
solution.

3. Spherical designs. In this section we describe a method of reformulating
construction of spherical t-designs as an underdetermined system of nonlinear equa-
tions.

For a given positive integer t, a set of points Y = {y1, . . . , ydt} ⊂ S2 is called a
fundamental system if the zero polynomial is the only member of Pt that vanishes at
each point yj , j = 1, 2, . . . , dt. The requirement

dt = (t + 1)2 = dim Pt

ensures that the basis matrix is square.

Y is called an extremal system if these points maximize the determinant of the
interpolation matrix with respect to an arbitrary basis of Pt. An extremal system is
obviously a fundamental system. Sloan and Womersley [20] showed that the extremal
fundamental systems have excellent geometrical properties and surprisingly good per-
formance for numerical integration. However, it is unknown whether there is always
a spherical t-design in a neighborhood of an extremal fundamental system. Our aim
is to verify its existence.

Let L� : [−1, 1] → R be the usual Legendre polynomial [2]. The Rodrigues
representation yields

L�(z) =
1

2�

[�/2]∑
k=0

(−1)k(2�− 2k)!

k!(�− k)!(�− 2k)!
z�−2k,(3.1)

where [�/2] is the floor function. Let

Jt(z) =
1

4π

t∑
�=0

(2� + 1)L�(z), z ∈ [−1, 1],

which is a normalized Jacobi polynomial. The Gram matrix G ≡ G(Y ) is a symmetric
positive semidefinite dt × dt matrix with elements

Gi,j = Jt(y
T
i yj).

The functions

gi(y) = Jt(y
T
i y), i = 1, . . . , dt, y ∈ S2,
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belong to Pt. If G is nonsingular, {g1, . . . , gdt
} is a basis for Pt. For a given arbitrary

function f ∈ C(S2), the unique polynomial interpolant Λf for the set Y is

(Λf)(y) =

dt∑
i=1

vigi(y).

Here the vector of weights v = (v1, . . . , vdt
) is the solution of the linear system of

equations

Gv = b,(3.2)

where bi = f(yi), i = 1, 2 . . . , dt.
The cubature rule

Qdt(f) =

dt∑
i=1

wif(yi) ≈
∫
S2

f(y)dy

is exact for all polynomials p of degree ≤ t if w satisfies the system of linear equations

Gw = e,(3.3)

where e = (1, 1, . . . , 1)T ∈ Rdt . In particular, the cubature rule is exact for the
constant polynomial 1 ∈ Pt. Thus

∫
S2

1 dy = |S2| = 4π =

dt∑
i=1

wi.

Hence the average cubature weight is

wavg =
4π

dt
.

Numerical results given in [22] show that the weights defined by (3.3) with the
coefficient matrix G(Ȳ ), where

log det G(Ȳ ) = max
Y⊂S2

log det G(Y ),(3.4)

are all positive and the scaled weights wi/wavg lie in [1/2, 3/2].
The set of points Ȳ = {ȳ1, . . . , ȳdt} defined by (3.4) is an extremal fundamental

system. It is conjectured that there is a spherical t-design which is very close to an
extremal fundamental system; that is, there is a set of points Y ∗ = {y∗1 , y∗2 , . . . , y∗dt

}
in a neighborhood of Ȳ = {ȳ1, . . . , ȳdt

} such that

∫
S2

p(y)dy =

dt∑
i=1

wip(y
∗
i ) ∀p ∈ Pt

and equal weights

wi =
4π

dt
, i = 1, 2, . . . , dt.(3.5)



UNDERDETERMINED EQUATIONS AND SPHERICAL DESIGNS 2333

To explore this conjecture, we reformulate the problem as an underdetermined
system of nonlinear equations. The matrix G is rotationally invariant, so the set of
points can be normalized so that the first point is at the north pole and the second is
on the prime meridian. Hence a spherical parametrization θj ∈ [0, π] and φj ∈ [0, 2π)
of the points yj , j = 1, 2, . . . , dt, has φ1 = 0, θ1 = 0, and φ2 = 0, giving a total of
2dt − 3 variables.

Let

n = 2dt − 3, m = dt − 1,

and let

xi−1 = θi, i = 2, 3, . . . , dt,
xdt+i−3 = φi, i = 3, 4, . . . , dt.

The set of points Y = {y1, . . . , ydt
} and the vector of variables x ∈ Rn are uniquely

related by

y1 =

⎡
⎣ 0

0
1

⎤
⎦ , y2 =

⎡
⎣ sinx1

0
cosx1

⎤
⎦ , yi =

⎡
⎣ sin θi cosφi

sin θi sinφi

cos θi

⎤
⎦ =

⎡
⎣ sinxi−1 cosxdt+i−3

sinxi−1 sinxdt+i−3

cosxi−1

⎤
⎦ .

The simple bounds on θi and φi can be ignored due to the periodicity of the sin and
cos functions. Hence the matrix G can be regarded as a function of x whose elements
are defined by

Gi,j(x) = Jt(y
T
i yj).

Define the function c : Rn → Rm by

c(x) = EG(x)e,(3.6)

where E is the m× dt matrix

E =

⎛
⎜⎜⎜⎜⎝

1 −1 0 . . . 0

1 0 −1
. . .

...
...

...
. . .

. . . 0
1 0 . . . 0 −1

⎞
⎟⎟⎟⎟⎠ .

This is motivated by the simple, but critical, observation that any cubature rule
which is exact for constants has

∑dt

i=1 wi = 4π, so one only requires that w1 = wi for
i = 2, . . . , dt to get (3.5). In fact the system of dt equations G(x)e−wavge = 0 has a
Jacobian with only rank dt − 1.

The following theorem states the relation between a spherical t-design and a zero
of the function c defined by (3.6).

Theorem 3.1. Suppose that G(x∗) is nonsingular. Then x∗ corresponds to a
spherical t-design with (t + 1)2 points if and only if c(x∗) = 0.

Proof. Let x∗ be a solution of c(x) = 0, and let {y∗1 , y∗2 , . . . , y∗dt
} be the set of

points defined by x∗. First it is shown that {y∗1 , y∗2 , . . . , y∗dt
} is a spherical t-design.

Since G(x∗) is nonsingular, {y∗1 , y∗2 , . . . , y∗dt
} is a fundamental system and the

functions

gj(y) = G(y∗j
T y), j = 1, 2, . . . , dt,



2334 XIAOJUN CHEN AND ROBERT S. WOMERSLEY

form a basis of Pt. Hence for any p ∈ Pt there are scalars αj , j = 1, . . . , dt, such that

p(y) =

dt∑
j=1

αjgj(y).

Note that (see [17] for an example)∫
S2

gj(y)dy = 1 ∀ j = 1, . . . , dt.(3.7)

Moreover, c(x∗) = 0 implies that all components of G(x∗)e are equal. Hence we can
write

G(x∗)e = μe,

where μ is a scalar. Because of the nonsingularity of G(x∗), μ �= 0. This yields

∫
S2

gj(y)dy = 1 =
1

μ

dt∑
k=1

Gj,k(x
∗), j = 1, 2, . . . , dt.

We calculate the integral

∫
S2

p(y)dy =

dt∑
j=1

αj

∫
S2

gj(y)dy

=
1

μ

dt∑
j=1

αj

dt∑
k=1

Gj,k(x
∗)

=
1

μ

dt∑
k=1

dt∑
j=1

αjGj,k(x
∗)

=
1

μ

dt∑
k=1

dt∑
j=1

αjgj(y
∗
k)

=
1

μ

dt∑
k=1

p(y∗k).

In particular, for p(y) ≡ 1, the area of the sphere is

|S2| = 4π =

∫
S2

p(y)dy =
1

μ

dt∑
k=1

p(y∗k) =
dt
μ
.

Thus μ = dt/4π, and therefore {y∗1 , y∗2 , . . . , y∗dt
} is a spherical t-design.

Now we prove that c(x∗) = 0 if x∗ corresponds to a spherical t-design with (t+1)2

points. By the definition of a spherical t-design, for any p ∈ Pt,

∫
S2

p(y)dy =
4π

dt

dt∑
k=1

p(y∗k).
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In particular, as gj ∈ Pt,∫
S2

gj(y)dy =
4π

dt

dt∑
k=1

gj(y
∗
k), j = 1, 2, . . . , dt.

Hence, from the definition of gj and (3.7), we find

4π

dt

dt∑
k=1

Gj,k(x
∗) =

4π

dt

dt∑
k=1

gj(y
∗
k) = 1.

This implies

G(x∗)e =
dt
4π

e,

and thus

c(x∗) = EG(x∗)e =
dt
4π

Ee = 0.

Let x̂ ∈ Rn correspond to the set of points Ŷ = {ŷ1, . . . , ŷdt} on the sphere. The
condition for the cubature rule

Qdt(f) =

dt∑
i=1

wif(ŷi)

to be exact for all polynomials in Pt is that w = (w1, . . . , wdt)
T is the solution of

G(x̂)w = e.

From Theorem 3.1, we know that w = G(x̂)−1e = (4π/dt)e if and only if c(x̂) = 0.
The following theorem gives a result of the weights for the case c(x̂) �= 0.

Theorem 3.2. Suppose that G(x̂) is nonsingular. Let w = G(x̂)−1e. Then

max
1≤i≤dt

|w1 − wi| ≤
4

‖G(x̂)e‖∞
‖G(x̂)−1‖∞‖c(x̂)‖∞.(3.8)

Proof. Let ‖ · ‖ = ‖ · ‖∞ and let |(G(x̂)e)i0 | = ‖G(x̂)e‖. Then μ := (G(x̂)e)i0 �= 0
and

‖μe−G(x̂)e‖ ≤ ‖μe− (G(x̂)e)1e‖ + ‖(G(x̂)e)1e−G(x̂)e‖
≤ 2‖c(x̂)‖.

Now, by the definition of the matrix E, we have

max
1≤i≤dt

|w1 − wi| = ‖EG(x̂)−1e‖

= ‖EG(x̂)−1e− 1

μ
Ee‖

=
1

|μ| ‖μEG(x̂)−1e− EG(x̂)−1G(x̂)e‖

=
1

|μ| ‖EG(x̂)−1(μe−G(x̂)e)‖

≤ 2

|μ| ‖E‖‖G(x̂)−1‖‖c(x̂)‖

=
4

|μ| ‖G(x̂)−1‖‖c(x̂)‖.
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4. Numerical verification of spherical t-designs. In this section, we use
Theorems 2.1 and 3.1 to verify the existence of spherical t-designs. In particular, we
use (2.4) to verify the existence of solutions to the system

c(x) := EG(x)e = 0.(4.1)

Note that the highly nonlinear function c(·) is in C∞(Rn) as long as the points are
not at the south pole, which can easily be checked. (The first point is always the north
pole and is not allowed to vary.) To save computational cost, let xB = (x1, . . . , xdt−1)

T

and set r2 = 0. Hence c′B(x) is the first (dt − 1) columns of c′(x) for x ∈ X, where

X = {x | ‖xB − x̂B‖ ≤ r1, xN = x̂N }.

The expansion (3.1) is used to calculate the derivatives of ci(x). Moreover, we
can give an upper bound for the second derivatives. Since for i, j = 1, . . . , dt, Gij(x)
are polynomials of degree t, the function

ci(x) = (G(x)e)1 − (G(x)e)i+1 =
1

4π

dt∑
j=1

t∑
�=0

(2� + 1)
(
L�(y

T
1 yj) − L�(y

T
i+1yj)

)

is polynomial of degree ≤ t. The first derivative of ci is

∂ci(x)

∂xk
=

1

4π

dt∑
j=1

t∑
�=0

(2� + 1)

(
L′
�(y

T
1 yj)

∂(yT1 yj)

∂xk
− L′

�(y
T
i+1yj)

∂(yTi+1yj)

∂xk

)
,

and the second derivative of ci is

∂2ci(x)

∂xk∂xν
=

1

4π

dt∑
j=1

t∑
�=0

(2� + 1)

(
L′′
� (yT1 yj)

∂(yT1 yj)

∂xk

∂(yT1 yj)

∂xν
+ L′

�(y
T
1 yj)

∂2(yT1 yj)

∂xk∂xν

−L′′
� (yTi+1yj)

∂(yTi+1yj)

∂xk

∂(yTi+1yj)

∂xν
− L′

�(y
T
i+1yj)

∂2(yTi+1yj)

∂xk∂xν

)
.

Note that we consider only the first (dt − 1) columns of c′(x) with respect to xB. Let

∇y2 =

⎡
⎣ cosx1

0
− sinx1

⎤
⎦ , ∇yi =

⎡
⎣ cosxi−1 cosxdt+i−3

cosxi−1 sinxdt+i−3

− sinxi−1

⎤
⎦ .

For k, ν ≤ dt − 1, we have

∂(yT1 yj)

∂xk
=

{
yT1 ∇yj if k = j − 1,
0 otherwise;

∂2(yT1 yj)

∂xk∂xν
=

{
−yT1 yj if k = ν = j − 1,
0 otherwise;

∂(yTi+1yj)

∂xk
=

⎧⎨
⎩

yTi+1∇yj if k = j − 1,
yTj ∇yi+1 if k = i,
0 otherwise;

∂2(yTi+1yj)

∂xk∂xν
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−yTi+1yj if k = ν = j − 1
or k = ν = i,

∇yTi ∇yj if k = j − 1, ν = i
or k = i, ν = j − 1,

0 otherwise.
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We use the relations |yTi yj | ≤ 1 and |∇yTi yj | ≤ 1 to give an upper bound K for the
second derivatives of c(·) with respect to the first dt−1 variables. This, together with
xN = x̂N , implies

‖c′B(x) − c′B(x̂)‖ ≤ K‖x− x̂‖.

The infinity norm was used in the numerical implementation, so in the rest of this
section ‖ · ‖ denotes ‖ · ‖∞.

The procedure for verifying the existence of a spherical t-designs is as follows:
1. Find an approximate solution x̂ of c(x) = 0 starting from x̄ corresponding to

an extremal fundamental system Ȳ .
2. Calculate c′B(x̂) and K.
3. Calculate

ρ = K‖c′B(x̂)−1c(x̂)‖ ‖c′B(x̂)−1‖.(4.2)

If ρ ≤ 1
2 , then there is a solution of (4.1) in the set

X = {x ∈ Rn : ‖xB − x̂B‖ ≤ r1, xN = x̂N },

where

r1 =
1 −

√
1 − 2ρ

K‖c′B(x̂)−1‖ .

If ρ > 1
2 , then (4.1) has no solution in

X = {x ∈ Rn : ‖xB − x̂B‖ ≤ γ1, xN = x̂N },

where

γ1 =

√
1 + 2ρ− 1

K‖c′B(x̂)−1‖ .

Note that the natural residual ‖c(x)‖2 has many local minimizers. To find a
good approximate solution of c(x) = 0, we choose several starting points around the
extremal system and use the Gauss–Newton method with line search. The interest in
starting from an extremal system stems from Figure 2 in [20] and Theorem 3.1. The
cubature weights for the computed extremal system of [20] are very close to 4π/dt
and they maximize the determinant G(x). Extremal systems can be downloaded from
http://www.maths.unsw.edu.au/∼rsw/Sphere.

Numerical results are given in Table 1, where x̄ is the vector corresponding to an
extremal fundamental system Ȳ , x̂ is an approximate solution of c(x) = 0,

ŵ = G(x̂)−1e

is the weight for the cubature rule, and Ŷ = {ŷ1, . . . , ŷdt
} is the set of points corre-

sponding to x̂.
As the cubature rule is exact for the constant polynomial 1 ∈ Pt, the average

weight is ŵavg = 4π/dt. From the last column of Table 1, we see that all weights are
positive and ∣∣∣∣ŵi −

4π

dt

∣∣∣∣ ≤ wmax − wmin ≈ 0.
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Table 1

Extremal points x̄, computed spherical designs x̂, exact spherical design x∗, ‖x̂ − x∗‖ ≤ r1,

x ∈ R2(t+1)2−3.

t dt ‖c(x̄)‖ ‖c(x̂)‖ log detG(x̄) log detG(x̂) r1 ‖x̄− x̂‖ ŵmax − ŵmin

2 9 0.0245 4.44e-16 -3.2134 -3.2157 1.01e-15 0.0255 1.55e-15
3 16 0.4299 2.66e-15 3.3867 2.5779 2.36e-15 0.2742 1.88e-15
4 25 0.3898 7.32e-15 16.1396 15.9337 1.80e-14 0.1002 3.33e-15
5 36 0.6318 7.54e-15 36.1736 35.4829 1.34e-14 0.2595 2.10e-14
6 49 1.1376 2.62e-14 64.0948 62.6443 3.45e-14 0.1918 3.88e-15
7 64 0.9189 6.03e-14 100.6942 100.4167 5.07e-14 0.1277 4.10e-15
8 81 1.3713 1.92e-13 146.1926 144.3611 1.15e-13 0.2974 8.54e-15
9 100 1.4023 4.52e-13 201.5589 186.2265 1.84e-13 0.2526 7.88e-13
10 121 3.7879 8.07e-13 266.3178 265.5019 6.14e-11 0.0358 2.40e-14

Hence the set Ŷ can be considered as computed spherical t-designs. These designs
are new. Moreover, from Theorem 2.1 and ‖x̂ − x∗‖ ≤ r1, an error bound for the
computed spherical t-designs to an exact spherical design {y∗1 , . . . , y∗dt

} corresponding
to the exact solution x∗ of c(x) = 0 is

max
1≤i≤dt

‖y∗i − ŷi‖ ≤ 2‖x̂− x∗‖ ≤ 2r1,

where the first inequality uses the relation between x and y.
The numerical results also give an error bound for the extremal system

max
1≤i≤dt

‖y∗i − ȳi‖ ≤ 2‖x∗ − x̄‖

≤ 2(‖x∗ − x̂‖ + ‖x̂− x̄‖)
≤ 2(r1 + ‖x̄− x̂‖).

The interpolatory cubature rule

Et(f) =
4π

dt

dt∑
j=1

f(ŷj)

associated with Ŷ provides high-order numerical integration on the sphere. In par-
ticular, by Theorem 4.1 in [20], the worst-case error in a particular Sobolev space
is ∣∣∣∣

∫
S2

f(y)d(y) − Et(f)

∣∣∣∣ = 4πD(Ŷ ) =: e(Et),

where D(Ŷ ) is the Cui–Freeden generalized discrepancy [4]

D(Ŷ ) =
1

2
√
πdt

⎡
⎣ dt∑
j=1

dt∑
i=1

(
1 − 2log

(
1 +

√
(1 − ŷTi ŷj)/2

))⎤⎦
1/2

.

Table 2 gives the values D(Ŷ ) and e(Et). These values are better than the values
reported by Sloan and Womersley [20]. The values given in [20] use extremal points
and are better than the values reported by Cui and Freeden [4].

The computed spherical t-designs with (t + 1)2 points are available from http://
www.st.hirosaki-u.ac.jp/∼chen/index.html. Computations for these low degrees were
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Table 2

Worst case for the equal weight rule Et and generalized discrepancy for computed spherical
designs.

t dt e(Et) D(Ŷ )
2 9 0.349478 0.027811
3 16 0.229009 0.018239
4 25 0.162440 0.012927
5 36 0.123579 0.009834
6 49 0.098188 0.007814
7 64 0.079817 0.006352
8 81 0.067223 0.005349
9 100 0.058809 0.004680
10 121 0.049576 0.003945

performed by using MATLAB 6.1 on an IBM PC with 128MB memory and 500
MHz [15,18].

Remark 4.1. This paper presents a new verification method for underdetermined
systems of equations and uses this method to verify computed spherical t-designs. In
comparison the Krawczyk-type interval operator method (1.3) failed for these under-
determined equations. This can be explained as follows.

Consider K(X) on an interval X which has an interior point x̂. For any x ∈ X,
c′(x) is singular, and there is an xb on the boundary of X such that c′(x)(xb− x̂) = 0.
This implies that

xb − c′(x̂)+c(x̂) = x̂− c′(x̂)+c(x̂) + (I − c′(x̂)+c′(x))(xb − x̂) ∈ K(X).

It is almost impossible to have xb − c′(x̂)+c(x̂) ∈ X for all such boundary points xb

of X with c′(x̂)+c(x̂) �= 0. Hence K(X) ⊆ X always fails. On the other hand, the
new verification method has no problems with the null space of c′(x). The following
example shows the advantage of the new method. Let

c(x) = 1 + x1 + x2 + x1x2, X =
1

4

(
[−5,−1]

[1 + h, 3 − h]

)
, x̂ =

1

4

(
−3

2

)
,

where h ∈ [0, 1]. Let B = {1} and N = {2}. Straightforward calculation gives

c(x̂) =
3

8
, c′(x) = (1 + x2, 1 + x1), c′(x̂) =

1

4
(6, 1), c′B(x̂)−1c(x̂) =

1

4
.

It is easy to show that a Lipschitz constant for c′B(x) is K = 1, and that

max
x∈N

‖c′N (x)‖ =
3

4
.

Hence statement (1) of Theorem 2.1 holds with

‖c′B(x̂)−1c(x̂)‖ + ‖c′B(x̂)−1‖
(

1

2
K(r1 + r2)r1 + max

x∈N
‖c′N (x)‖r2

)
=

1

2
− h

6
≤ r1 =

1

2

for all h ∈ [0, 1]. Now we show that K(X) ⊆ X fails for all h ∈ [0, 1]. Interval
calculation gives

c′(x̂)+C ′(X) =
4

37

(
6
1

)(
1 +

1

4
[1 + h, 3 − h], 1 +

1

4
[−5,−1]

)
,
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(I − c′(x̂)+C ′(X))(X − x̂) =
1

37 × 4

(
[−80 + 30h, 80 − 30h]
[−52 + 40h, 52 − 40h]

)
,

and the radii of X and K(X) satisfy

R(X) −R(K(X)) =
1

4

(
2

1 − h

)
− 1

148

(
80 − 30h
52 − 40h

)
=

1

148

(
−6 + 30h
−15 + 3h

)
.

Since the second component of the radii R2(X) −R2(K(X)) < 0 for all h ∈ [0, 1], we
find that K(X) �⊆ X for all h ∈ [0, 1].

Acknowledgment. We thank Prof. Andreas Frommer for his encouraging com-
ments on Remark 4.1.

REFERENCES

[1] G. Alefeld, A. Gienger, and F. Potra, Efficient numerical validation of solutions of non-
linear systems, SIAM J. Numer. Anal., 31 (1994), pp. 252–260.

[2] G. E. Andrews, R. Askey, and R. Roy, Special Functions, Cambridge University Press,
Cambridge, UK, 1999.

[3] X. Chen and T. Yamamoto, Newton-like methods for solving underdetermined nonlinear equa-
tions with nondifferentiable terms, J. Comput. Appl. Math., 55 (1994), pp. 311–324.

[4] J. Cui and W. Freeden, Equidistribution on the sphere, SIAM J. Sci. Comput., 18 (1997),
pp. 595–609.

[5] P. Delsarte, J. M. Goethals, and J. J. Seidel, Spherical codes and designs, Geom. Dedicata,
6 (1977), pp. 363–388.

[6] J. M. Goethals and J. J. Seidel, Spherical designs, in Relations between Combinatorics and
Other Parts of Mathematics, Proc. Sympos. Pure Math. 34, AMS, Providence, RI, 1979,
pp. 255–272.

[7] R. H. Hardin and N. J. A. Sloane, McLaren’s improved snub cube and other new spherical
designs in three dimensions, Discrete Comput. Geom., 15 (1996), pp. 429–441.

[8] N. J. Higham, Accuracy and Stability of Numerical Algorithms, SIAM, Philadelphia, 1996.
[9] R. B. Kearfott, Rigorous Global Search: Continuous Problems, Kluwer Academic Publishers,

Norwell, MA, 1996.
[10] J. Korevaar and J. L. H. Meyers, Spherical Faraday cage for the case of equal point charges

and Chebyshev-type quadrature on the sphere, Integral Transform. Spec. Funct., 1 (1993),
pp. 105–117.

[11] U. Maier, Numerical calculation of spherical designs, in Advances in Multivariate Approxima-
tion, Math. Res. 107, W. Haubmann, K. Jetter, and M. Reimer, eds., Wiley-VCH, Berlin,
1999, pp. 213–226.

[12] J. M. Mart́ınez, Quasi-Newton methods for solving underdetermined nonlinear simultaneous
equations, J. Comput. Appl. Math., 34 (1991), pp. 171–190.

[13] A. D. McLaren, Optimal numerical integration on a sphere, Math. Comp., 17 (1963), pp. 361–
383.

[14] K. H. Meyn, Solution of underdetermined nonlinear equations by stationary iteration methods,
Numer. Math., 42 (1983), pp. 161–172.

[15] S. Oishi and S. M. Rump, Fast verification of solutions of matrix equations, Numer. Math.,
90 (2002), pp. 755–773.

[16] J. M. Ortega and W. C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several
Variables, Academic Press, New York, 1970.

[17] M. Reimer, Constructive Theory of Multivariate Functions, Bibliographisches Institut,
Mannheim, Germany, 1990.

[18] S. M. Rump, INTLAB—INTerval LABoratory, a Matlab Toolbox for Verified Computa-
tions, Version 3.1, 2002; available online from http://www.ti3.tu-harburg.de/rump/intlab/
index.html.

[19] P. D. Seymour and T. Zaslavsky, Averaging sets: A generalization of mean values and
spherical designs, Adv. Math., 52 (1984), pp. 213–240.

[20] I. H. Sloan and R. S. Womersley, Extremal systems of points and numerical integration on
the sphere, Adv. Comput. Math., 21 (2004), pp. 102–125.



UNDERDETERMINED EQUATIONS AND SPHERICAL DESIGNS 2341

[21] H. F. Walker and L. T. Watson, Least-change secant update methods for underdetermined
systems, SIAM J. Numer. Anal., 27 (1990), pp. 1227–1262.

[22] R. S. Womersley and I. H. Sloan, How good can polynomial interpolation on the sphere be?,
Adv. Comput. Math., 14 (2001), pp. 195–226.


