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1 Introduction

All stochastic variational models involve inherently a “dynamic” component that takes into ac-
count decisions taken over time, or/and space, where the decisions depend on the information
that will become available as the decision process evolves. So far, the models proposed for
stochastic variational inequalities have either bypassed or not made explicit this particular fea-
ture(s). Various “stochastic” extensions of variational inequalities have been proposed in the
literature but so far relatively little concern has been paid to the ‘dynamics’ of the decision, or
solution, process that is germane to all stochastic variational problems: stochastic programs,
stochastic optimal control, stochastic equilibrium models in economics or finance, stochastic
games, and so on. The “dynamics” of the model considered here are of limited scope. What is
essential is that it makes a distinction between two families of variables: (i) those that are of
the “here-and-now” type and cannot depend on the outcome of random events to be revealed at
some future time or place and (ii) those that are allowed to depend on these outcomes. Our re-
striction to the two-stage model allows for a more detailed exposition and analysis as well as the
development of computational guidelines, implemented here in a specific instance. By empathy
with the terminology used for stochastic programming models, one might be tempted to refer to
such a class of problems as stochastic variational inequalities with recourse but, as we shall see
from the formulation and examples, that would not quite catch the full nature of the variables,
mostly because the decision-variables aren’t necessarily chosen sequentially. We shall refer to
this “short horizon” version as a two-stage stochastic variational inequality. In principle, the
generalization to a multistage model is not challenging, at least conceptually, notwithstanding
that a careful description of the model might become rather delicate, involved and technically,
not completely trivial; a broad view of multistage models, as well as some of their canonical
features, is provided in [58].

We consider the two-stage stochastic variational inequality: Given the (induced) probability
space (Ξ ⊂ IRN ,A, P ), find

(
x ∈ IRn1 , u : Ξ → IRn2 , A-measurable

)
such that the following

collection of variational inequalities is satisfied4:

−IE[G
(
ξ, x, uξξξ

)
] ∈ ND(x)

−F
(
ξ, x, uξξξ

)
∈a.s.NCξξξ

(
H(x, uξξξ)

)
with

• G : (Ξ, IRn1 , IRn2) → IRn1 a vector-valued function, continuous with respect to (x, u) for all
ξ ∈ Ξ, A-measurable and summable with respect to ξ.

• ND(x) the normal cone to the closed-convex set D ⊂ IRn1 at x ∈ IRn1 .

• F : (Ξ, IRn1 , IRn2) → IRn2 a vector-valued function, continuous with respect to (x, u) for all
ξ ∈ Ξ and A-measurable with respect to ξ.

• NCξ

(
v
)
the normal cone to the closed-convex set Cξ ⊂ IRn2 at v ∈ IRn2 , the random set Cξξξ

is A-measurable.
4Bold face ξ is reserved to denote the random vector of parameters whereas ξ refers to a specific realization

of ξ.
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• H : (IRn1 , IRn2) → IRn2 a continuous vector-valued function.

The definition of the normal cone yields the following, somewhat more explicit, but equivalent
formulation:

find x̄ ∈ D and ū : Ξ → IRn2 , A-measurable, such that H(x̄, ūξξξ) ∈a.s. Cξξξ and
⟨IE[G(ξ, x̄, ūξξξ)], x− x̄⟩ ≥ 0, ∀x ∈ D,

⟨F (ξ, x̄, ūξξξ), v −H(x̄, ūξξξ)⟩ ≥ 0, ∀v ∈ Cξξξ, P -a.s.

The model assumes that the uncertainty can be described by a random vector ξ with known
distribution P and a two-stage decision process: (i) x to be chosen before the value ξ of ξ is
revealed (observed) and (ii) u to be selected with full knowledge5 of the realization ξ. From the
decision-maker’s viewpoint, the problem can be viewed as choosing a pair (x, ξ 7→ uξ) where u
depends on the events that might occur, or in other words, is A-measurable. It is noteworthy
that in our formulation of the stochastic variational inequality this pair is present, in one way
or another, in each one of our examples. We find it advantageous to work here with this slightly
more explicit model where the first collection of inclusions suggest the presence of (expected)
equilibrium constraints; in [58], taking a somewhat more comprehensive approach, it is shown
how these “equilibrium constraints” can be incorporated in a global, possibly more familiar,
variational inequality of the same type as the second inclusion.

This paper is organized as follows. In §2, we devote a review on some fundamental exam-
ples and applications that are special cases of this model. In the last two examples in §2, we
concentrate our attention on the stochastic traffic flow problems with the accent being placed
on getting implementable solutions. To do this we show how an alternative formulation, based
on the Expected Residual Minimization (ERM) might actually be more adaptable to coming
with solutions that are of immediate interest to the initial design or capacity expansion of traffic
networks. In §3, we develop the basic properties of such a model, lay out the theory to justify
deriving solutions via a sample average approximation approach in §4 and finally, in §5, describe
an algorithm procedure based on the Douglas-Rachford splitting method which is then illustrated
by numerical experimentation involving a couple of “classical-test” networks. One of the basic
goals of this article was to delineate the relationships between various formulations of stochastic
variational inequalities as well as to show how the solution-type desired might also lead us to
work with some variants that might not fit perfectly the canonical model.

2 Stochastic variational inequalities: Examples

When ξ is discretely distributed with finite support, i.e., Ξ is finite, one can write the problem
as:

find
(
x, (uξ, ξ ∈ Ξ)

)
such that

{
−IE[G(ξ, x, uξ)] ∈ ND(x).

−F (ξ, x, uξ) ∈ NCξ
(H(x, uξ)), ∀ ξ ∈ Ξ.

5A further refinement of the model would allow for the possibility that only partial observation is available in
which case one would have to change A-measurability to measurability with respect to a sub-sigma field.
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When expressed in this form, we are just dealing with a, possibly extremely large, deterministic
variational inequality. How large will depend on the cardinality |Ξ| of the support and this
immediately raises the question of the design of solution procedures for large scale variational
inequalities. The difficulty in finding a solution might also depend on how challenging it is to
compute IE[G(ξ, x, uξ)], even when G doesn’t depend on u.

Of course, both the choice of x and the realization ξ of the random components of the problem
influence the ‘upcoming’ environment so we can also think as the state of the system being de-
termined by the pair (ξ, x) and occasionally it will be convenient, mostly for technical reasons,
to view the u-decision as a function of the state, i.e., (ξ, x) 7→ u(ξ, x), cf. §3.

On the other hand, various generalizations are possible:

(a) One could also have D depend on ξ and x, in which case we are dealing with a random
convex-valued mapping: D : Ξ×IRn1 →→ IRn1 and one would, usually, specify the continuity
properties of D with respect to ξ and x; the analysis then enters the domain of stochastic
generalized equations and can get rather touchy [62, 45, 46]. Here, we restrict our analysis
to the case when D is independent of ξ and x.

(b) Another extension is the case when there are further global type constraints on the choice
of the functions u, for example, constraints involving IE[uξ] or equilibrium-type constraints
[47, 9].

(c) The formulation can be generalized to a two-stage stochastic quasi variational inequality
or generalized Nash equilibrium. For example the second-stage variational inequality
problem can be defined as follows:

−F
(
ξ, x, uξξξ

)
∈a.s. NCξξξ(x)

(H(x, uξξξ)),

where the set Cξξξ depends on x [21]. However, the analysis of the generalization is not
trivial and deserves a separate analysis. In this paper, we restrict our analysis to the case
when Cξξξ is independent of x.

In order to illustrate the profusion of problems that are covered by this formulation we are
going to go through a series of examples including some that are presently understood, in the
literature, to fall under the “stochastic variational inequality” heading.

2.1 One-stage examples

2.1 Example Single-stage problems. This is by all means the class of problems that, so far,
has attracted the major interest in the literature. In terms of our notation, it reads

find x̄ ∈ D ⊂ IRn such that −IE[G(ξ, x̄)] ∈ ND(x̄),

where D is a closed convex set, possibly bounded and often polyhedral, for all x ∈ D, the vector-
valued mapping ξ 7→ G(ξ, x) ∈ IRn is summable and x 7→ IE[G(ξ, x)] is continuous. Especially
in the design of solution procedures, it is convenient to rely on the alternative formulation,

find x̄ ∈ D ⊂ IRn such that ∀x ∈ D, ⟨IE[G(ξ, x̄)], x− x̄⟩ ≥ 0.
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Detail. It’s only with some hesitation that one should refer to this model as a “stochastic
variational equality.” Although, certain parameters of the problem are random variables and
the solution will have to take this into account, this is essentially a deterministic variational
inequality with the added twist that evaluating IE[G(ξ, x)], usually a multidimensional integral,
requires relying on quadrature approximation schemes. Typically, P is then approximated by a
discrete distribution with finite support, obtained via a cleverly designed approximation scheme
or as the empirical distribution derived from a sufficiently large sample. So far, no cleverly
designed approximation scheme has been proposed although the approach used by Pennanen
and Koivu in the stochastic programming context might also prove to be effective [49, 48] in
this situation. To a large extent the work has been focused on deriving convergence of the
solutions of approximating variational inequalities where P has been replaced by a sequence of
empirical probability measures P ν , generated from independent samples of ξ: ξ1, ξ2, ...., ξν . The
approximating problem:

find xν ∈ D ⊂ IRn such that −ν−1
∑ν

k=1
G(ξk, xν) ∈ ND(x

ν).

Two basic questions then become:
(i) Will the solutions xν converge to a solution of the given problem when the number of

samples gets arbitrarily large?

(ii) Can one find bounds that characterize the error, i.e., can one measure the distance
between xν and the (set of) solution(s) to the given variational inequality.

There is a non-negligible literature devoted to these questions which provides satisfactory answers
under not too stringent additional restrictions, cf. [25, 31, 28, 35, 32, 60, 5, 40, 41, 38, 65, 30].

In [27] Gürkan, Özge and Robinson rely on solving a variational inequality of this type to price
an American call option with strike price K for an instrument paying a dividend d at some time
τ ≤ T . The expiration date comes down to calculating the expectation of the option-value based
on whether the option is exercised, or not, at time τ− just before the price of the (underlying)
instrument drops by d which otherwise follows a geometric Brownian motion, cf. [27, Section 3]
and the references therein. The authors rely on the first order optimality conditions, generating a
one-stage stochastic variational inequality where the vector-valued mapping G(ξ, ·) corresponds
to the gradient of the option-value along a particular price-path. It turns out that contrary
to an approach based on a sample-path average approximation of these step functions [27, Fig-
ure 1] the sample average approximation of their gradients is quite well-behaved [27, Figure 2].

2.2 Example Stochastic linear complementarity problem. The stochastic linear complemen-
tarity version of the one-stage stochastic variational inequality,

0 ≤a.s. Mξx+ qξ ⊥a.s. x ≥ 0,

where some or all the elements of the matrix M and vector q are potentially stochastic, was
analyzed by Chen and Fukushima [8] suggesting in the process a solution procedure based on
“ERM: Expected Residual Minimization.”
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Their residual function can be regarded as a relative of the gap function used by Facchinei and
Pang to solve deterministic variational inequalities [21]. More specifically,

IE[∥Φ(ξ, x)∥2] with Φ(ξ, x) =

φ
(
(Mξx+ qξ)1, x1

)
...

φ
(
(Mξx+ qξ)n, xn

)


is minimized for x ∈ IRn
+, where φ : IR2 → IR is such that φ(a, b) = 0 if and only if (a, b) ∈ IR2

+,
ab = 0; for example, the min-function φ(a, b) = min

{
a, b

}
and the Fisher-Burmeister function

φ(a, b) = (a+ b)−
√
a2 + b2 satisfy these conditions. Quite sharp existence results are obtained,

in particular, when only the vector q is stochastic. They are complemented by convergence
result when the probability measure P is replaced by discrete empirical measures generated via
(independent) sampling. The convergence of the stationary points is raised in [8, Remark 3.1].

The stochastic linear complementarity problem gets recast as a (stochastic) optimization
problem where one is confronted with an objective function defined as a multi-dimensional inte-
gral. Convergence of the solutions of the discretized problems can then be derived by appealing
to the law of large numbers for random lsc (lower semicontinuous) functions [2, 37].

The solution provided by the ERM-reformulated problem

min
x≥0

IE[∥Φ(ξ, x)∥2]

doesn’t, strictly speaking, solve the originally formulated complementarity problem for every
realization ξ; this could only occur if the optimal value turns out to be 0, or equivalently, if one
could find a solution that satisfies for (almost) all ξ, the system 0 ≤a.s. Mξx+ qξ ⊥a.s. x ≥ 0.

The residual function ∥Φ(ξ, x)∥ can be considered as a cost function which measures the
loss at the event ξ and decision x. The ERM formulation minimizes the expected values of the
loss for all possible occurrences due to failure of the equilibrium. Recently Xie and Shanbhag
construct tractable robust counterparts as an alternative way to using the ERM approach [66].

2.2 Two-stage examples

Our first two examples in this subsection haven’t been considered, so far, in the literature but in
some ways best motivates our formulation, cf. §1, in the same way that optimality conditions for
(deterministic) linear and nonlinear optimization problems lead us to a rich class of variational
inequalities [21].

2.3 Example Optimality conditions for a stochastic program. Not unexpectedly, the optimality
conditions for a stochastic program with recourse (two-stage) lead immediately to a two-stage
stochastic variational inequality. Here, we only develop this for a well-behaved simple (linear)
recourse problem; to deal with more general formulations one has to rely on the full duality
theory developed in [53, 58]. The class of stochastic programs considered are of the following
(classical) type:

min ⟨c, x1⟩+ IE[Q(ξ, x1)] subject to Ax1 ≥ b, x1 ≥ 0,
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with
Q(ξ, x1) = inf

{
⟨qξ, x2⟩

∣∣Wξx
2 ≥ dξ − Tξx

1, x2 ≥ 0
}
,

where the matrices and vectors subscripted by ξ indicate that they depend on the realization of a
(global) random variable ξ with support Ξ; for any fixed ξ: x1 ∈ IRn1 , x2ξ ∈ IRn2 , A ∈ IRm1×n1 , b ∈
IRm1 , qξ ∈ IRn2 ,Wξ ∈ IRm2×n2 , dξ ∈ IRm2 and Tξ ∈ IRm2×n1 .

Detail. Let’s assume,
relatively complete recourse: for all x1 satisfying the (explicit) constraints C1 =

{
x1 ∈

IRn1
∣∣Ax1 ≥ b, x1 ≥ 0

}
and all ξ ∈ Ξ, one can always find a feasible recourse x2ξ , i.e.,

Q(ξ, x1) <∞ on Ξ× C1, and
strict feasibility: for some ε > 0, arbitrarily small, one can find x1 ∈ C1 and x̃2 ∈ L∞

n2
such

that x̃2 ≥a.s. 0 and for almost all ξ: Wξx̃
2
ξ > ε̃+ dξ − Tξx

1, where ε̃ is simply an m2 dimensional
vector of ε’s.

For a problem of this type,
(
x̄1, x̄2) ∈ IRn1

+ ×L∞
n2,+

is an optimal solution [54, 52] if and only
if

(a) it is feasible, i.e., satisfies the constraints,

(b) ∃ multipliers (y1 ∈ IRm1 , y2 ∈ L1
m2

) such that

0 ≤ y1 ⊥ Ax̄1 − b ≥ 0, 0 ≤a.s. y
2
ξ ⊥a.s. Tξx̄

1 +Wξx̄
2
ξ − dξ ≥a.s. 0,

(c)
(
x̄1, x̄2) minimize

IE[⟨c− A⊤y1 − T⊤
ξ y

2
ξ , x

1⟩+ ⟨qξ −W⊤
ξ y

2
ξ , x

2
ξ⟩]

for x1 ∈ IRn1
+ and x2 ∈ L∞

n2,+
.

This means that under these assumptions, the double pairs(
x1, x2),

(
y1, y2) ∈

(
IRn1

+ × L∞
n2,+

)
×
(
IRm1

+ × L1
m2,+

)
must satisfy the stochastic variational inequality:

0 ≤ y1 ⊥ Ax1 − b ≥ 0,

0 ≤ x1 ⊥ c− A⊤y1 − IE[T⊤
ξ y

2
ξ ] ≥ 0

and

0 ≤a.s. y
2
ξ ⊥a.s. Tξx

1 +Wξx
2
ξ − dξ ≥a.s. 0,

0 ≤a.s. x
2
ξ ⊥a.s. qξ −W⊤

ξ y
2
ξ ≥a.s. 0.

In terms of our general formulation in §1, the first pair of inequalities define the function G
and the set D = IRn1

+ × IRm1
+ whereas the second pair define F and the random convex set Cξξξ

with (x1, y1) corresponding to x and (x2, y2) corresponding to u; Cξ = IRn2
+ × IRm2

+ . Of course,
this can also be viewed as a stochastic complementarity problem albeit, in general, an infinite
dimensional one. When, the probability distribution P has finite support, one can remove the
“a.s.” in the second pair of inequalities and it’s a problem involving only a finite number of
variables and inequalities but this finite number might be truly considerable.
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2.4 Example A Walras equilibrium problem. In some ways, this example is an extension of
the preceding one except that it doesn’t lead to a stochastic complementarity problem but to a
stochastic variational inequality that might not have the wished-for monotonicity properties for
IE[G(ξ, ·)] and F .

Detail. We consider a stripped down version of the GEI-model, (General Equilibrium with
Incomplete Markets), but even this model has a variety of immediate applications in finance,
international commodity trading, species interaction in ecological models, . . . . The major dif-
ference with the extensive (economic) literature devoted to the GEI-model is the absence of a
so-called financial market that allows agents to enter into contracts involving the delivery of
goods at some future date.

Again, ξ provides the description of the uncertainty about the future events. We are dealing
with a finite number of (individual) agents i ∈ I. Each agent, endowed with vectors of goods
e1i ∈ IRL (here-and-now) and e2ξ,i (in the future), choose its consumption plan, c1⋆ here-and-now
and c2⋆ξ after observing ξ, so as to maximize their expected utilities v1i (c

1) + IE[v2i (c
2
ξ)], where

the utility functions (v1i , v
2
i ) are continuous, concave functions in (c1, c2) on closed convex sets

C1
i ⊂ IRn1

+ and C2
i ⊂ IRn2

+ respectively. One often refers to C1
i and C2

i as agent-i’s survival
sets; in some situations it would be appropriate to let C2

i also depend on ξ, this wouldn’t affect
significantly our ensuing development. Each agent can also engage in here-and-now activities
y ∈ IRmi that will use up a vector of goods T 1

i y which, in turn, will generate, possibly depending
on ξ, goods T 2

ξ,iy in the future; a simple example could be the saving of some goods and a
more elaborate one involving “home production.” The market process will allow each agent to
exchange its (modified) endowments (e1i − T 1

i y, e
2
ξ,i + T 2

ξ,iy) for its consumption at the prevalent
market prices p1 in the here-and-now market and p2ξ in the future market. Thus, each agent has
to find

(
c1⋆i , (c

2⋆
ξ,i, ξ ∈ Ξ)) that solves the following stochastic program with recourse:

max v1i (c
1) + IE[v2i (c

2
ξξξ)]

subject to ⟨p1, c1 + T 1
i y⟩ ≤ ⟨p1, e1i ⟩,

⟨p2ξξξ , c2ξξξ⟩ ≤a.s. ⟨p2ξξξ , e2ξξξ,i + T 2
ξξξ,iy⟩,

c1 ∈ C1
i , y ∈ IRmi

+ , c2ξξξ ∈a.s. C2
i , i ∈ I.

Given that all agents will aim, selfishly, to maximize their expected rewards taking only into
account their survival and budgetary limitations, the Walras equilibrium problem is to find a
(nonnegative) price system

(
p1, (p2ξ , ξ ∈ Ξ)

)
that will clear the here-and-now market and the

future markets, i.e., such that the total demand does not exceed the available supply:∑
i∈I

(e1i − c1⋆i ) ≥ 0,
∑

i∈I
(e2ξ,i − c2⋆ξ,i) ≥ 0, ∀a.s. ξ ∈ Ξ.

It’s common, as we do here, to assume6, that the endowments of the agents are such that
e1i ∈ intC1

i and, for all ξ ∈ Ξ, e2ξ,i ∈ intC2
i . This will guarantee that this Walras equilibrium

problem has a solution [33] and, in particular, that the agents’ problems are stochastic programs

6This assumption, usually made to be able to rely on differential topology tools to prove existence of an
equilibrium price system, is less than desirable from an applications viewpoint, cf. [34] for a workable assumption
which would unfortunately require a significantly more detailed description of the basic model.
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with relatively complete recourse and, consequently, the following optimality conditions apply:
the pair

(
c1⋆i , y

⋆
i , (c

2⋆
ξ,i, ξ ∈ Ξ)

)
is an optimal solution for agent-i if and only if

(a) it satisfies the budgetary constraints,

(b) ∃ multipliers
(
λ1i ∈ IR, (λ2·,i ∈ L1)

)
such that

0 ≤ λ1i ⊥ ⟨p1, e1i − T 1
i y

⋆
i − c1⋆i ⟩ ≥ 0, 0 ≤a.s. λ

2
ξ,i ⊥a.s. ⟨p2ξ , e2ξ,i + T 2

ξ,iy
⋆
i − c2⋆ξ,i⟩ ≥a.s. 0,

(c) and

c1⋆i ∈ argmaxc1∈C1
i
v1i (c

1)− λ1i ⟨p1, c1⟩,
c2⋆ξ,i ∈ argmaxc2∈C2

i
v2i (c

2)− λ2ξ,i⟨p2ξ , c2⟩, ∀a.s. ξ ∈ Ξ,

y⋆i ∈ argmaxy∈IRmi
+

−λ1i ⟨p1, T 1
i y⟩+ IE[λ2ξ,i⟨p2ξ , T 2

ξ,iy⟩].

Assuming the utility functions are differentiable, these last conditions can be translated in terms
of the first order optimality conditions for these programs:(

∇v1i (c1⋆i )− λ1i p
1
)
∈ NC1

i
(c1⋆i )(

∇v2i (c2⋆ξξξ,i)− λ2ξξξ,ip
2
ξξξ

)
∈a.s. NC2

i
(c2⋆ξξξ,i)

0 ≤ y⋆i ⊥
(
λ1i (T

1
i )

⊤p1 − IE[λ2ξξξ,i(T
2
ξξξ,i)

⊤p2ξξξ ]
)
≥ 0.

We can regroup these conditions so that fit the pattern of our two-stage formulation in §1: find
x =

(
(p1, c1i , yi, λ

1
i ), i ∈ I

)
and uξξξ =

(
(p2ξξξ , c

2
ξξξ,i, λ

2
ξξξ,i), i ∈ I

)
such that for all i ∈ I:

⟨p1, e1i − c1 − T 1
i yi⟩ ≥ 0, (feasibility)

0 ≤ λ1i ⊥ ⟨p1, e1i − T 1
i yi − c1i ⟩ ≥ 0, (multipliers complementarity)(

∇v1i (c1i )− λ1i p
1
)
∈ NC1

i
(c1i ) (c1-optimality)

0 ≤ yi ⊥
(
λ1i (T

1
i )

⊤p1 − IE[λ2ξξξ,i(T
2
ξξξ,i)

⊤p2ξξξ ]
)
≥ 0 (y-optimality)∑

i∈I
(e1i − c1i ) ≥ 0 (clearing the market)

and P -a.s.,

⟨p2ξξξ , e2ξξξ,i + T 2
ξξξ,iyi − c2ξξξ,i⟩ ≥a.s. 0, (feasibility)

0 ≤a.s. λ
2
ξξξ,i ⊥a.s. ⟨p2ξξξ , e2ξξξ,i + T 2

ξξξ,iyi − c2ξξξ,i⟩ ≥a.s. 0 (multipliers complementarity)(
∇v2i (c2ξξξ,i)− λ2ξξξ,ip

2
ξξξ

)
∈a.s. NC2

i
(c2ξξξ,i), (c2-optimality)∑

i∈I
(e2ξξξ,i − c2ξξξ,i) ≥a.s. 0. (clearing the market)

One approach in designing solution procedures for such a potentially whopping stochastic varia-
tional inequality is to attempt a straightforward approach relying, for example, on PATH Solver
[18]. Notwithstanding, the capabilities of this excellent package, it is bound to be quickly over-
whelmed by the size of this problem even when the number of agents and potential ξ-event is still
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quite limited7. An approach based on decomposition is bound to be indispensable. One could
rely on a per-agent decomposition first laid out in [24] and used in a variety of applications, cf.
for example [50]. Another approach is via scenarios (events) based decomposition, relying on
the Progressive Hedging algorithm [55, 56] and an approximation scheme as developed in [17].
Finally, one should also be able to expand on a splitting algorithm elaborated in §5 to allow for
an agent/scenario decomposition expected to be reasonably competitive.

The two last examples are stochastic variational inequalities that arise in connection with trans-
portation/communication problems whose one must take into account uncertainties about some
of the parameters of the problem. To fix terminology and notation, we begin with a brief descrip-
tion of the deterministic canonical model, the so called Wardrop equilibirum model; for excellent
and thorough surveys of this model, see [14, 44] and as far as possible we follow their overall
framework. There is no straightforward generalization to the “stochastic version” which is bound
to very much depend on the motivation, or in other words, on the type of solution one is inter-
ested in. Here, we are going to be basically interested in problems where the uncertainty comes
from the components of the underlying structure (network) or demand volume. Cominetti [13]
and the references therein consider an interesting set of alternative questions primarily related
to the uncertainty in the users’ information and behavior.

Given an oriented network N =
(
G (nodes),A (arcs)

)
together with for ca ≥ 0 the maximum

flow capacity for each arc (a) and demand hod for each origin(o)-destination(d) pairs. Rod are
all (acyclic) routes r connecting o to d with N being the arcs(a)/routes(r) incidence matrix, i.e.,
Na,r = 1 if arc a ∈ r. A route-flow f =

{
fr, r ∈ ∪odRod

}
results in an arc-flow x =

{
xa =

⟨Na, f⟩, a ∈ A
}
. The travel time on route r, assumed to be additive,

∑
a∈r ta(xa) where ta(·), a

congestion dependent function, specifies the travel time on arc a. Let

C =
{
(xa = ⟨Na, f⟩ ≤ ca, a ∈ A)

∣∣∣ f ≥ 0,
∑

r∈Rod

fr = hod ∀ od-pairs
}

be the polyhedral set of the arc-flows satisfying the flow conservation constraints. One refers to
x⋆ = Nf ⋆ ∈ C as a Wardrop equilibrium if

∀ od-pairs,∀ r ∈ Rod with f
⋆
r > 0,

∑
a∈r

ta(x
⋆
a) is the minimal od-travel-time,

i.e., flow travels only on shortest routes. A minor variation, due to the capacity constraints on
the arcs, of the authoritative argument of Beckmann et all [4], shows that these feasibility and
equilibrium can be interpreted as the first order optimality condition of the convex program

min
∑

a∈A

∫ xa

0

ta(z) dz, x = (xa, a ∈ A) ∈ C.

Indeed, x⋆ is optimal if and only if it satisfies the variational inequality:∑
a∈A

ta(x
⋆
a)(xa − x⋆a) ≥ 0, ∀ x ∈ C.

7Also homotopy-continuation method [16, 7, 11, 15] would also quickly run out of steam. A hybrid model,
where first and second-period decisions are chosen simultaneously, is considered in [59], which because of its
special structure attenuates to some extent the size issue and renders it computationally more accessible.
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2.5 Example Prevailing flow analysis. The main motivation in [10], which by the way is proba-
bly the first article to introduce a(n elementary) formulation of a two-stage stochastic variational
inequality, was to determine the steady flow f that would prevail given an established network
but where the origin(o)-destination(d) demand as well as the arcs capacities are subject to (sto-
chastic) perturbations. The individual users would make adjustments to their steady-equilibrium
routes, depending on these perturbations ξ, by choosing a recourse decision uξ that ends up to
be the “nearest feasible” route to their steady-route. Although, one would actually like to place
as few restrictions as possible on the class of recourse functions (ξ, f) 7→ u(ξ, f), from a mod-
eling as well as a computational viewpoint, one might be satisfied with some restrictions or the
application might dictate these restrictions as being the only really implementable “recourse”
decisions; in [10] “nearest feasible” was interpreted as meaning the projection on the feasible
region.

Detail. Recasting the problem considered in [10] in our present notation, it would read: find
(f, uξ) such that for all ξ ∈ Ξ,

−F (ξ, f, uξ) ∈a.s. NCξ
(uξ) with uξ = prjCξ

(f)

and
Cξ =

{
u ∈ IRn2

∣∣Au = bξ, u ≥ 0
}
.

This problem comes with no additional variational inequality, i.e., of the type −IE[G(·)] ∈ ND(·).
Actually, in [10], it’s assumed that one can restrict the choice of f to a set D ⊂ IRn

+ which will
guarantee that for all ξ, one can find uξ so that the corresponding variational inequality is solv-
able. This is a non-trivial assumption and it is only valid if we expect the perturbations of both
the od-demand and those modifying the capacities to be relatively small, i.e., can essentially be
interpreted as “noise” affecting these uncertain quantities.

2.6 Example Capacity expansion. Arc capacity expansion,
(
ca → ca + xa, a ∈ A

)
, is being

considered for an existing, or to be designed, network (traffic, data transmission, high-speed rail,
. . . ). Only a limited pool of resources is available and thus, determine a number of constraints
on the choice of x. To stay in tune with our general formulation of the two-stage model and
provide a wide margin of flexibility in the formulation of these x-constraints, we express them
as a variational inequality ⟨G(x), x′ − x⟩ ≥ 0 for all x′ ∈ D where D is a closed convex subset
of IRL, G : IRL → IRL is a continuous vector-valued mapping and L = |A|. The overall
objective is to determine the arcs where capacities expansion will be most useful, i.e., will as
well as possible respond to the “average” needs of the users of this network (minimal travel
times, rapid connections, . . . ). We interpret this to mean that the network flow will be at, or
at least seek, a Wardrop equilibrium based on the information available: each od-pair demand
and arcs’ capacity both of which are subject to stochastic fluctuations. Taking our clue from
the deterministic version described earlier, given a capacity expansion x and an environment
ξ ∈ Ξ affecting both demands and capacities, a solution

(
u⋆ξ,a, a ∈ A

)
of the following variational

inequality would yield a Wardrop equilibrium:∑
a∈A

ta(ξ, u
⋆
ξ,a)(ua − u⋆ξ,a) ≥ 0, ∀u = (ua, a ∈ A) ∈ Cξ

10



with
Cξ =

{
u ≤ cξ

∣∣∣ u = Nf, f ≥ 0,
∑

r∈Rod

fr = hξ,od ∀ od-pairs
}
.

Our two-stage stochastic variational inequality, cf. §1, would take the form:

find
(
x⋆, u⋆ : Ξ×D → IRL, A-measurable in ξ

)
such that

−G(x⋆) ∈ ND(x
⋆)

−F (ξ, u⋆(ξ, x⋆)) ∈a.s. NCξξξ
(u⋆(ξ, x⋆)),

where

F (ξ, u) =
(
ta(ξ, u)

)
a∈A.

Detail. However, finding the solution to this particular stochastic variational inequality might
not provide us with a well thought out solution to the network design problem: find optimal
arc-capacities extension x that would result in expected minimal changes in the traffic flow when
there are arbitrary, possibly significant, perturbations in the demand and the capacities. These
concerns lead us to a modified formulation of this problem which rather than simply asking for a
(feasible) solution of the preceding stochastic variational inequality wants to take into account a
penalty cost associated with the appropriate recourse decisions when users are confronted with
specific scenarios ξ ∈ Ξ. A “recourse cost” needs to be introduced. It’s then also natural, and
convenient computationally, to rely on an approach that allows for the possibility that in unusual
circumstances some of the preceding variational inequalities might actually fail to be satisfied.
This will be handled via a residual function. This application oriented reformulation results in
a recasting of the problem and brings it closer to what has been called an Expected Residual
Minimization or ERM-formulation. The analysis and the proposed solution procedure in the sub-
sequent sections is devoted to this re-molded problem. Although this ERM-reformulation, see (4)
below and §5, might usually8 only provide an approximate solution of the preceding variational
inequality, it provides a template for the design of optimal networks (traffic, communication,. . . )
coming with both structural and demand uncertainties as argued in the next section.

3 An Expected Residual Minimization formulation

We proceed with an ERM-formulation that in some instances might provide a solution which
better suits the overall objective of the decision maker, cf. §5. Our focus will be on a partic-
ular class of stochastic variational inequalities which, in particular, include a number of traf-
fic/communication problems (along the lines of Example 2.6):

find
(
x̄ ∈ IRn, ū : Ξ×D → IRn, A-measurable in ξ

)
such that

−G(x̄) ∈ ND(x̄),

−F (ξ, ū(ξ, x̄)) ∈a.s. NCξξξ
(ū(ξ, x̄)),

8However, strict compliance can still be enforced in the ERM-reformulation by selecting the parameter λ in
the objective of (4), below, sufficiently large.
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where
∀ξ ∈ Ξ : Cξ ⊂ IRn, closed, convex, ξ 7→ Cξ A-measurable,

D is closed and convex, and G : IRn → IRn and F : Ξ × IRn → IRn, as in §1, are continuous
vector-valued functions in x and u respectively for all ξ ∈ Ξ, and F is A-measurable in ξ for
each u ∈ IRn.

The dependence of F on x is assimilated in u by letting it depend on the state of the system
determined by (ξ, x); it is thus convenient in the ensuing analysis to view F as just a function
of ξ and u. A convenient interpretation is to think of xa as the “average” flow that would pass
through arc a when uncertainties aren’t taken into account whereas, when confronted with sce-
nario ξ, the actual flow would turn out to be uξ,a. Let’s denote by yξ =

(
yξ,a = uξ,a−xa, a ∈ A

)
the “recourse” required to adapt xa to the events/scenario ξ, this will come at an expected
cost (time delay) to the users. Since x̄ is conceivably a Wardrop equilibrium, these adjustments
will usually result in less desirable solutions. Such flow adjustments will come at a cost, say
1
2⟨yξ, Hyξ⟩, i.e. a generalized version of a least square cost proportional to the recourse decisions.
This means that H, usually but not necessarily a diagonal matrix, would be positive definite.
So, rather than viewing our decision variables as being uξ, we can equivalently formulate the
recourse decisions in terms of the yξ, but now at some cost, and define uξ = x+ yξ. In fact, let
us go one step further and enrich our model by treating these yξ as activities9 that result in a
flow adjustment Wyξ and, hence, uξ = x +Wyξ; whenever W = I, the yξ just compensate for
deviations from x.

When dealing with a deterministic variational inequality −G(x) ∈ ND(x), it is well known that
its solution can be found by solving the following optimization problem

min θ(x) subject to x ∈ D,

where θ is a residual (gap-type) function, i.e., such that θ ≥ 0 on D and θ(x) = 0 if and only
if x ∈ D solves the variational inequality. In this article, we work with the following residual
function, to which one usually refers as the regularized gap function [26]

θ(x) = maxv∈D⟨x− v,G(x)⟩ − α

2
∥x− v∥2 (1)

for some α > 0. In terms of the overall framework of §1, this residual function-type will be
attached to the inclusion −G(x) := −IE[G(ξ, x)] ∈ ND(x). The corresponding optimization
problem reads

min
x∈D

[
θ(x) = max

v∈D
⟨x− v, IE[G(ξ, x)]⟩ − α

2
∥x− v∥2

]
. (2)

When dealing with the second inclusions −F (ξ, u(ξ, x)) ∈ NCξ
(u(ξ, x)) for P -almost all ξ ∈ Ξ,

one could similarly introduce a collection of residual functions θ̃(ξ, u) whose properties would be
similar to those of θ and ask that with probability 1, θ̃(ξ, u(ξ, x)) = 0 if and only if the function
(ξ, x) 7→ u(ξ, x) satisfies the corresponding stochastic variational inequality. This certainly might
be appropriate in certain instances, but in a variety of problems one might want to relax this con-
dition and replace it by a weaker criterion, namely that the Expected Residual IE[θ̃(ξ, u(ξ, x))] be

9Regulations introduced by the transportation-authority, the closing of certain links, etc.
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minimal. A somewhat modified definition of a residual function will be more appropriate when
dealing with this “collection of variational inequalities”, we adopt here the one introduced in [10].

3.1 Definition (SVI-Residual function). Given a closed, convex set D ⊂ IRn and the random
vector ξ defined on (Ξ,A, P ), let us consider the following collection of variational inequalities
(SVI):

find
(
x̄ ∈ IRn, ū : Ξ×D → IRn, A-measurable in ξ

)
such that

−F
(
ξ, ū(ξ, x̄)

)
∈a.s. NCξ

(ū(ξ, x̄)).

A function r : Ξ×IRn → IR+ is a residual function for these inclusions if the following conditions
are satisfied:

(i) P -almost all ξ ∈ Ξ, r(ξ, u) ≥ 0 for all u ∈ Cξ,

(ii) For any u : Ξ×D → IRn, it holds that

−F
(
ξ, u(ξ, x)

)
∈a.s. NCξ

(u(ξ, x)) ⇔ r(ξ, u(ξ, x)) =a.s. 0 and u(ξ, x) ∈a.s. Cξ.

The stochastic variational inequality in this definition is in line with the second a.s.-inclusion in
Example 2.6. We will work with a concrete example of SVI-residual functions: the regularized
gap residual function with α > 0,

r(ξ, u) = max
v∈Cξ

{
⟨u− v, F (ξ, u)⟩ − α

2
∥u− v∥2

}
; (3)

We will show in Theorem 3.3 that the above function satisfies the two conditions in Definition 3.1.
The use of residual functions leads us to seeking a solution of the stochastic program

minx∈D θ(x) + λIE[r(ξ, u(ξ, x)) +Q(ξ, x)]
where u(ξ, x) = x+Wy∗ξ , Q(ξ, x) = 1

2
⟨y∗ξ , Hy∗ξ ⟩, ∀a.s. ξ ∈ Ξ,

y∗ξ = argmin
{

1
2
⟨y,Hy⟩

∣∣x+Wy ∈ Cξ
}
.

(4)

With the positive definite property of H and the convexity of Cξ, u(ξ, x) is uniquely defined
by the unique solution y∗ξ of the second stage optimization problem in (4). Moreover, with the
residual functions θ and r defined in (1) and (3), respectively, the positive parameter λ in (4)
allows for a further adjustment of the weight to ascribe to the required recourse decisions and
residuals; with λ relatively large, and adjusting H ≻ 0 correspondingly, one should end up with a
solution that essentially avoids any violation of the collection (SVI) of variational inequalities10.

10Problem (4) includes the expected value (EV) [28, 32, 41, 61] and the expected residual minimization (ERM)
[1, 8, 10, 12, 22, 42, 69] for stochastic variational VI and stochastic complementarity problems as special cases.
In particular, if we set λ = 0, then problem (4) is equivalent to the problem: find x∗ ∈ D such that

⟨(x− x∗), IE[G(ξ, x∗)]⟩ ≥ 0, ∀x ∈ D.

On the other hand, if our variational inequality only involves inclusions of the (second) type −F (ξ, x) ∈a.s. NC(x)
with C = C† independent of ξ, then problem (4) reduces to the (pure) ERM-formulation

minx∈D=C† IE[r(ξ, x)];

for complementarity problems one has C† ≡ IRn
+.
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3.2 Assumption Assume

(i) W has full row rank;

(ii) for almost all ξ, Cξ ⊂ C†, a compact convex set.

For almost all ξ, since Cξ is convex and compact, it is easy to show that for these ξ, u 7→ r(ξ, u)
is continuous. On the other hand, for each fixed u, it follows from [57, Theorem 14.37] that
ξ 7→ r(ξ, u) is measurable. This means that r is a Carathéodory function. In addition, consider
for each ξ ∈ Ξ,

v(ξ, u) = prjCξ

(
u− 1

α
F (ξ, u)

)
. (5)

Recall that v(ξ, u) attains the maximum in (3). Clearly, u 7→ v(ξ, u) is continuous, and for each
fixed u, the measurability of ξ 7→ v(ξ, u) again follows from [57, Theorem 14.37]. Consequently,
also v is a Carathéodory function.

3.3 Theorem (Residual function) When Assumption 3.2 is satisfied, r is a residual function for
our collection (SVI) and for any x ∈ D and almost every ξ ∈ Ξ, the function r(ξ, u(ξ, x))+Q(ξ, x)
in (4) is finite, nonnegative with

v(ξ, u(ξ, x)) = prjCξ

(
u(ξ, x)− 1

α
F (ξ, u(ξ, x))

)
(6)

as the unique maximizer of the maximization problem in (3).

Proof. Let x ∈ D and u : Ξ × D → IRn be A-measurable in ξ. We now check the two
conditions in Definition 3.1. First of all, we see that r(ξ, u) is nonnegative for all u ∈ Cξ from
the definition. Moreover, from the property of the regularized gap function for VI, we have
r(ξ, u(ξ, x)) = 0 and u(ξ, x) ∈ Cξ if and only if u(ξ, x) solves the (deterministic) variational
inequality −F (ξ, u(ξ, x)) ∈ NCξ

(u(ξ, x)) for fixed ξ ∈ Ξ. Thus, it follows that r is a residual
function of this collection of variational inequalities −F (ξ, u(ξ, x)) ∈a.s. NCξ

(u(ξ, x)), ξ ∈ Ξ.
We next show that for any x ∈ D, the y∗ξ in (4) is, in fact, uniquely defined. To this end,

consider y = W⊤(WW⊤)−1(prjCξ
x − x), where WW⊤ is invertible by Assumption 3.2. Then

Wy = prjCξ
x − x and Wy + x ∈ Cξ which means that the feasible set of the second stage

optimization problem in (4), i.e.,
{
y
∣∣x + Wy ∈ Cξ

}
, is nonempty. Moreover, for almost all

ξ ∈ Ξ, this set is closed and convex since Cξ is compact and convex. Consequently, the second
stage optimization problem in (4) has a strongly convex objective and a nonempty closed convex
feasible set. Therefore, it has a unique minimizer y∗ξ , and ξ 7→ y∗ξ is measurable thanks to [57,
Theorem 14.37].

Finally, for u(ξ, x) = x+Wy∗ξ , we recall the well-known fact that the problem

max
v∈Cξ

⟨u(ξ, x)− v, F (ξ, u(ξ, x))⟩ − α

2
∥u(ξ, x)− v∥2

has a solution, with the unique maximizer given by the projection (6). Thus, the function
r(ξ, u(ξ, x)) in (4) is also finite-valued. Furthermore, since H is positive definite and r is non-
negative, r(ξ, u(ξ, x)) + Q(ξ, x) has a finite nonnegative value at any x ∈ D for almost every
ξ ∈ Ξ. This completes the proof.
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Theorem 3.3 means that under Assumption 3.2, problem (4) is a stochastic program with com-
plete recourse, that is, for any x and almost all ξ, the second stage optimization problem in (4)
has a solution. In general, this is not an innocuous assumption but in the context that we are
considering it only means that the set D has singled-out a set of possible traffic network layouts
that will guarantee that traffic will proceed, possibly highly disturbed and arduously, whatever
be the perturbations resulting from the stochastic environment ξ.

We need the following to guarantee the objective of (4) is finite-valued:

3.4 Assumption The functions F (ξ, ·) and G(·) are continuously differentiable for all ξ ∈ Ξ.
Moreover, for any compact set Ω, there are functions d, ρ : Ξ → IR+ such that

∥F (ξ, u)∥ ≤ dξ and ∥∇F (ξ, u)∥ ≤ ρξ

for all u ∈ Ω, where d ∈ L∞
1 and ρ ∈ L1

1.

3.5 Lemma Suppose Assumptions 3.2 & 3.4 hold. Then for almost all ξ, r is continuously
differentiable and its gradient is given by

∇r(ξ, u) = F (ξ, u)− (∇F (ξ, u)− αI)(v(ξ, u)− u). (7)

Moreover, for any measurable uξ ∈a.s. Cξ, both ξ 7→ r(ξ, uξ) and ξ 7→ ∇r(ξ, uξ) are not only
measurable but actually summable uniformly in uξ. In particular, this means that the objective
function in (4) is well defined at any x ∈ D, and the optimal value of (4) is finite.

Proof. From Theorem 3.2 in [26], we know that r(ξ, ·) is continuously differentiable and its
gradient is given by (7). Moreover, notice that r(ξ, u) and its gradients with respect to u
are both Carathéodory functions. Hence, the measurability of r(ξ, uξ) and ∇r(ξ, uξ) for any
measurable function uξ follows. We now establish uniform summability.

Since C† is compact, for an u ∈ C†, ∥u∥ ≤ γ for some γ > 0. This together with Assump-
tion 3.4 yields r(ξ, uξ) ≤ 2γdξ +

α
2
(2γ)2 and

∥∇r(ξ, uξ)∥ ≤ ∥F (ξ, uξ)∥+ ∥∇F (ξ, uξ)− αI∥∥v(ξ, uξ)− uξ∥ ≤ dξ + 2γ(ρξ + α) =: drξ.

This proves uniform summability.
Finally, let x be feasible for (4) and consider the corresponding y∗ξ (exists and is measurable

according to the proof of Theorem 3.3). Set ŷ = W⊤(WW⊤)−1(prjCξ
x−x). Then Wŷ+x ∈ Cξ

and hence we have from the definition of y∗ξ and C† that ⟨y∗ξ , Hy∗ξ ⟩ ≤ ⟨ŷ, Hŷ⟩ ≤ c for some
constant c > 0 (that depends on x but is independent of ξ). Hence

θ(x) + λIE[r(ξ, u(ξ, x)) +Q(ξ, x)] ≤ θ(x) + 2λγIE[dξ] + 2λαγ2 +
λc

2
,

which implies the well-definedness of the objective in (4) and the finiteness of the optimal value.
This completes the proof.

Lemma 3.5 establishes the differentiability of r and the finiteness of optimal value of (4). How-
ever, the objective function of problem (4) involves minimizers of constrained quadratic programs

15



for ξ ∈ Ξ and is not necessarily differentiable even when the sample is finite, despite the fact
that the function r(ξ, ·) in (3) is continuously differentiable for almost all ξ ∈ Ξ.

Below, we adopt the strategy of the L-shaped algorithm for two-stage stochastic optimization
problems [64, 6, 36] to obtain a relaxation of (4), whose objective function will be smooth when
the sample is finite. We start by rewriting the recourse program. First, observe that the second
stage problem is the same as

min
1

2
⟨y,Hy⟩ subject to Wy = u− x, u ∈ Cξ.

With the substitution z = H
1
2y, the above problem is equivalent to

min
1

2
∥z∥2 subject to WH− 1

2 z = u− x, u ∈ Cξ. (8)

Observe that for each fixed u and x, the minimizer of min
{

1
2
∥z∥2

∣∣WH− 1
2 z = u− x

}
is

z = H− 1
2W⊤B(u− x) where B = (WH−1W⊤)−1. (9)

Plugging this expression back in (8), the second stage problem is further equivalent to

min
1

2
⟨u− x,B(u− x)⟩ subject to u ∈ Cξ,

whose unique solution u∗ξ can be interpreted as a weighted projection of x onto Cξ for each ξ ∈ Ξ.
From this and (9), for each ξ ∈ Ξ, the unique solution y∗ξ of the second stage problem is given
by

y∗ξ = argmin
{1
2
⟨y,Hy⟩

∣∣x+Wy ∈ Cξ
}
= H−1W⊤B(u∗ξ − x). (10)

Combining the preceding reformulation of the second stage problem with the idea of the L-shaped
algorithm, we are led to the following problem, whose objective is smooth when the sample is
finite:

min θ(x) + λIE[r(ξ, uξ) +
1
2
⟨uξ − x,B(uξ − x)⟩]

subject to x ∈ D, uξ ∈a.s. Cξ.
(11)

It is not hard to see that the optimal value of (11) is smaller than that of (4) since fewer restric-
tions are imposed on uξ, or, equivalently on yξ in (10). Hence, it follows from Lemma 3.5 that
the optimal value of (11) is also finite.

Unlike (4) which only depends explicitly on the finite dimensional decision variable x, problem
(11) depends also explicitly on the measurable function ξ 7→ uξ. However, notice that (11) can
be equivalently rewritten as

min
x∈D

{
θ(x) + λ min

u∈L∞
n

IE

[
r(ξ, uξ) +

1

2
⟨uξ − x,B(uξ − x)⟩+ δCξ

(uξ)

]}
, (12)
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where δCξ
is the indicator function of the set Cξ which is zero inside the set and is infinity

otherwise. We next recall the following result, which allows interchange of minimization and
integration. This is a consequence of the finiteness of the optimal value of the inner minimization
in (12) (thanks to Lemma 3.5), Exercise 14.61 and Theorem 14.60 (interchange of minimization
and integration) in [57].

3.6 Lemma Under Assumptions 3.2 & 3.4, for any fixed x ∈ D, we have

min
u∈L∞

n

IE[Φ(ξ, uξ)] = IE[min
u∈IRn

Φ(ξ, u)], (13)

where

Φ(ξ, u) = r(ξ, u) +
1

2
⟨u− x,B(u− x)⟩+ δCξ

(u).

Moreover, for ū ∈ L∞
n ,

ū ∈ argmin
u∈L∞

n

IE[Φ(ξ, uξ)] ⇔ ūξ ∈ argmin
u∈IRn

Φ(ξ, u), ξ ∈ Ξ, a.s. (14)

Using the above result, one can further reformulate (11) equivalently as

min
x∈D

φ(x) := θ(x) + λIE[ψ(ξ, x)]

ψ(ξ, x) := min
u∈Cξ

r(ξ, u) +
1

2
⟨u− x,B(u− x)⟩,

(15)

which is an optimization problem that depends only explicitly on the finite dimensional decision
variable x. Moreover, for each x ∈ D, from (14), we have u∗ ∈ L∞

n attaining the minimum of
the inner minimization problem in (12) if and only if its value at ξ, i.e., u∗ξ , is a minimizer of
the minimization problem defining ψ(ξ, x) for almost all ξ ∈ Ξ. We note that ψ(ξ, x) is also a
Carathéodory function: the measurability with respect to ξ for each fixed x follows from [57,
Theorem 14.37], while the continuity with respect to x for almost all ξ follows from the com-
pactness of Cξ and the continuity of (u, x) 7→ r(ξ, u) + 1

2
⟨u − x,B(u − x)⟩. In addition, thanks

to Lemma 3.5, it is not hard to check that the objective in (15) is finite at any x ∈ D under
Assumptions 3.2 & 3.4.

We show next that both (4) and (11) (and hence (15)) are solvable, and discuss their relationship.

3.7 Theorem (Solvability) Suppose Assumptions 3.2 & 3.4 hold. Then problems (4) and (11)
are solvable. Let ν1 and ν2 be the optimal values of (4) and (11), respectively. Then ν1 ≥ ν2.
Moreover, if for any x ∈ D and x+Wy, x+Wz ∈ Cξ, we have

|r(ξ, x+Wy)− r(ξ, x+Wz)| ≤ 1

2
|⟨y,Hy⟩ − ⟨z,Hz⟩|, ξ ∈ Ξ, a.s. (16)

then the two problems have the same optimal values.

Proof. According to Lemma 3.5 and the preceding discussions, the optimal value of both prob-
lems (4) and (11) are finite. We show that the values are attained.
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We first show that the optimal value of problem (4) is attained. To this end, consider
∥x∥ → ∞. Then from the boundedness of C† ⊇ Cξ, it follows that ∥y∗ξ∥ in (4) must go to ∞
uniformly in ξ except for a set of measure zero, which implies that IE[Q(ξ, x)] goes to ∞ in
(4). This together with the nonnegativity of r and θ shows that the objective function of (4),
as a function of x, is level bounded. Next, we show that the objective is lower semicontinuous.
To this end, consider a sequence xk → x0. From the discussions in (8) to (10) and using the
continuity of weighted projections, we see that u(ξ, xk) → u(ξ, x0) for almost all ξ ∈ Ξ. This
implies the continuity of x 7→ r(ξ, u(ξ, x))+Q(ξ, x), which is a nonnegative function, and Fatou’s
lemma gives the lower semicontinuity of IE[r(ξ, u(ξ, x)) +Q(ξ, x)]. The lower semicontinuity of
the objective of (4) now follows upon recalling that θ(x) is continuous. Hence (4) has a solution
x∗, from which one can easily construct the second stage solution y∗ξ .

We now show that the optimal value of problem (11) is attained. Note that from the discus-
sion preceding this lemma, one can equivalently consider problem (15). For this latter problem,
observe that

φ(x) ≥ λIE[ψ(ξ, x)] ≥ λ

2
IE[minu∈Cξ

⟨u− x,B(u− x)⟩] ≥ λ

2
minu∈C†⟨u− x,B(u− x)⟩,

where the first two inequalities follow from the nonnegativity of the residual functions, and the
third inequality follows from Cξ ⊆ C†. The above relation together with the positive definiteness
of B and the compactness of C† shows that the objective function of (15) is level bounded. We
note also that the objective is lower semicontinuous, which is a consequence of the continuity
of θ(x), the continuity of ψ(ξ, x) in x and Fatou’s lemma. Hence an optimal solution x∗ exists,
from which the corresponding u∗ξ that minimizes the subproblem defining ψ(ξ, x) can be obtained
easily. From this and the relationship between the solutions of (11) and (15), one concludes that
a solution of problem (11) exists.

Next, we consider the relationship between the optimal values of (4) and (11), which we denote
by ν1 and ν2, respectively. Obviously, ν1 ≥ ν2.

Suppose in addition that (16) holds, then ν1 = ν2. Indeed, to this end, let (x2, u2ξ) be a
solution of (11) and x1 be a solution of (4). Set

y2∗ξ = argmin

{
1

2
⟨y,Hy⟩

∣∣∣∣x2 +Wy ∈ Cξ

}
and y2ξ = H−1W⊤B(u2ξ − x2). Since u2ξ = x2 +Wy2ξ ∈ Cξ, we have

⟨y2∗ξ , Hy2∗ξ ⟩ − ⟨y2ξ , Hy2ξ ⟩ ≤ 0.
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Using this inequality, condition (16) and ⟨y2ξ , Hy2ξ ⟩ = ⟨u2ξ − x2, B(u2ξ − x2)⟩ yields

ν1 = θ(x1) + λIE[r(ξ, u(ξ, x1)) +Q(ξ, x1)]

≤ θ(x2) + λIE[r(ξ, u(ξ, x2)) +Q(ξ, x2)]

= θ(x2) + λIE[r(ξ, x2 +Wy2∗ξ ) +
1

2
⟨y2∗ξ , Hy2∗ξ ⟩]

≤ θ(x2) + λIE[r(ξ, u2ξ) +
1

2
⟨y2ξ , Hy2ξ ⟩]

+λIE[|r(ξ, x2 +Wy2∗ξ )− r(ξ, x2 +Wy2ξ )| −
1

2
|⟨y2∗ξ , Hy2∗ξ ⟩ − ⟨y2ξ , Hy2ξ ⟩|]

≤ θ(x2) + λIE[r(ξ, u2ξ) +
1

2
⟨u2ξ − x2, B(u2ξ − x2)⟩] = ν2.

Therefore, problems (4) and (11) have the same optimal values.

Similarly to Lemma 3.5, we now study the differentiability of the objective function of problem
(11). Let

f(ξ, x, u) = r(ξ, u) +
1

2
⟨u− x,B(u− x)⟩,

where r is given by (3). The proof of the following lemma is similar to that of Lemma 3.5 and
will thus be omitted.

3.8 Proposition Suppose that Assumptions 3.2 & 3.4 hold. Then for almost all ξ, f is contin-
uously differentiable and its gradient is given by

∇f(ξ, x, u) =
(

∇uf(ξ, x, u)
∇xf(ξ, x, u)

)
=

(
∇r(ξ, u) +B(u− x)
B(x− u)

)
. (17)

Moreover, f(ξ, x, uξ) and ∇f(ξ, x, uξ) are measurable in ξ. Furthermore, for any compact set
D̄ ⊆ D, there are df , ρf ∈ L1

1 such that ∥f(ξ, x, uξ)∥ ≤ dfξ and ∥∇f(ξ, x, uξ)∥ ≤ ρfξ whenever
uξ ∈ Cξ and x ∈ D̄.

In general, a two-stage stochastic VI cannot be reformulated as a convex two-stage stochastic
optimization problem. Below, we show that convexity is inherited partially in f from a linear
two-stage stochastic optimization problem. This proposition will be used in the next section to
establish, for this particular class of problems, a stronger convergence result for linear two-stage
stochastic optimization problems.

3.9 Proposition Under Assumptions 3.2 & 3.4, if for ξ ∈ Ξ, F (ξ, x) =Mξx+qξ and infξ∈Ξ λmin(B+
Mξ+M

⊤
ξ ) > α, then f(ξ, x, ·) is strongly convex for each x ∈ D, with a strong convexity modulus

independent of x and ξ. Moreover, if infξ∈Ξ λmin(Mξ +M⊤
ξ ) ≥ α, then f(ξ, ·, ·) is convex.

Proof. For a fixed ξ, notice that the function

f(ξ, x, u) = max
v∈Cξ

⟨u− v,Mξu+ qξ⟩ −
α

2
∥u− v∥2 + 1

2
⟨u− x,B(u− x)⟩
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is convex in u if the function

φ(ξ, x, u, v) = ⟨u− v,Mξu+ qξ⟩ −
α

2
∥u− v∥2 + 1

2
⟨u− x,B(u− x)⟩

is convex in u for any fixed v ∈ IRn and x ∈ IRn. Since

∇2
uuφ(ξ, x, u, v) =Mξ +M⊤

ξ − αI +B

is positive definite, φ(ξ, x, ·, v) and thus f(ξ, x, ·) is convex. The independence of the modulus on
x can be seen from the fact that∇2

uuφ(ξ, x, u, v) does not depend on x, while the independence on
ξ can be seen from the assumption on the eigenvalue. Finally, when infξ∈Ξ λmin(Mξ +M⊤

ξ ) ≥ α,
the convexity of f(ξ, ·, ·) in (x, u) follows from the positive semi-definiteness of the matrix(

∇2
uuφ(ξ, x, u, v) ∇2

uxφ(ξ, x, u, v)
∇2
xuφ(ξ, x, u, v) ∇2

xxφ(ξ, x, u, v)

)
=

(
Mξ +M⊤

ξ − αI +B −B
−B B

)
∈ IR2n×2n.

This completes the proof.

3.10 Remark In [1], Agdeppa, Yamashita and Fukushima defined a convex ERM formulation
for the stochastic linear VI by using the regularized gap function under the assumption that
infξ∈Ξ λmin(Mξ +M⊤

ξ ) > α. In [10], Chen, Wets and Zhang defined a convex ERM formulation
for the stochastic linear VI by using the gap function under a weaker assumption that E[Mξ+M

⊤
ξ ]

is positive semi-definite. In this paper, Lemma 3.9 shows that for any stochastic linear VI, we
can choose a positive definite matrix B to define a convex optimization problem in the second
stage of the generalized ERM formulation (11).

To end this section, we include a corollary concerning the entire objective function of (11).

3.11 Corollary Suppose that Assumptions 3.2 & 3.4 hold. Then the objective function θ(x) +
λIE[f(ξ, x, uξ)] is well defined at any x ∈ D and any measurable function uξ ∈ Cξ. Moreover,
if G(x) = IE[Mξ]x + IE[qξ], then the objective function is convex under all the assumptions of
Proposition 3.9.

4 Convergence analysis

In this section, we discuss a sample average approximation (SAA) for (15) (and hence, equiva-
lently, (11)) and derive its convergence. Let G(x) = IE[F (ξ, x)] and ξ1, . . . , ξν be iid (independent
and identically distributed) samples of ξ and

Gν(x) =
1

ν

ν∑
i=1

F (ξi, x)

θν(x) = max
v∈D

⟨x− v,Gν(x)⟩ − α

2
∥x− v∥2

ψ(ξi, x) = minu∈Cξi
r(ξi, u) +

1

2
⟨u− x,B(u− x)⟩.
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Note that Gν and θν are continuous P -a.s. for all ν, and recall that ψ is a Carathéodory function;
cf. the discussion following (15). We consider the following SAA of (15) (and hence, equivalently,
(11)):

minx∈D φ
ν(x) := θν(x) +

λ

ν

ν∑
i=1

ψ(ξi, x). (18)

Let X∗ and Xν be the solution sets of problems (15) and (18). We will give sufficient conditions
for that X∗ and Xν to be nonempty and bounded, and for any cluster point of a sequence
{xν}xν∈Xν to be in X∗.

4.1 Lemma Under Assumptions 3.2 & 3.4, X∗ and Xν are nonempty P -a.s. for all ν. Moreover,
there exists a compact convex set D̄ ⊆ D so that X∗ ⊆ D̄ and Xν ⊆ D̄ P -a.s. for all ν.

Proof. From the nonnegativity of r(ξ, u), we have for almost all ξ ∈ Ξ,

ψ(ξ, x) = minu∈Cξ
r(ξ, u) +

1

2
⟨u− x,B(u− x)⟩

≥ minu∈Cξ

1

2
⟨u− x,B(u− x)⟩

≥ λB
2

minu∈C† ∥u− x∥2

=
λB
2
∥ prjC† x− x∥2,

where λB > 0 is the smallest eigenvalue of the matrix B. On the other hand, recall from
Assumption 3.2 that there exists τ > 0 so that ∥u∥ ≤ τ for all u ∈ C†, and from Assumption 3.4
that ∥F (ξ, u)∥ ≤ dξ for some d ∈ L∞

1 . Hence, for a fixed x0 ∈ D, we have

ψ(ξν , x0) ≤ sup
u∈C†

r(ξν , u) +
∥B∥
2

(τ + ∥x0∥)2 ≤ 2τdξν +
α

2
(2τ)2 +

∥B∥
2

(τ + ∥x0∥)2 ≤ γ1

for some constant γ1 P -a.s. for all ν, since d ∈ L∞
1 . Furthermore, we have

θν(x0) =

⟨
x0 − prjD

(
x0 −

1

α
Gν(x0)

)
, Gν(x0)

⟩
− α

2

∥∥∥∥x0 − prjD

(
x0 −

1

α
Gν(x0)

)∥∥∥∥2

≤ γ2

P -a.s. for all ν, since F (·, x0) ∈ L∞
1 .

Hence we have

{x ∈ D |φν(x) ≤ φν(x0)} ⊆
{
x ∈ D

∣∣∣∣ λν
ν∑
i=1

ψ(ξi, x) ≤ φν(x0)

}
⊆

{
x ∈ D

∣∣∣∣ λν
ν∑
i=1

ψ(ξi, x) ≤ λγ1 + γ2

}
⊆ {x ∈ D |λ · λB∥ prjC† x− x∥2 ≤ 2(λγ1 + γ2)}

(19)

P -a.s. for all ν, and that

{x ∈ D |φ(x) ≤ φ(x0)} ⊆ {x ∈ D |λ · λB∥ prjC† x− x∥2 ≤ 2φ(x0)}. (20)
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These, together with the boundedness of C†, imply that the level sets of φν(·) and φ(·), are
bounded and are included in a compact set that is independent of ξ, P -a.s. for all ν. Moreover,
the objective functions of (15) and (18) are all lower semicontinuous, and θ, θν , ψ(ξ, x) are
nonnegative. Hence X∗ and Xν are nonempty P -a.s. for all ν. Finally, from (19) and (20), one
can choose for D̄ = {x ∈ D |λ · λB∥ prjC† x− x∥2 ≤ 2max{φ(x0), λγ1 + γ2}}.

4.2 Theorem (Convergence theorem) Suppose Assumptions 3.2 & 3.4 hold. Then φν converges
to φ a.s.-uniformly on the compact set D̄ specified in Lemma 4.1. Let {xν} be a sequence of
minimizers of problems (18) generated by iid samples. Then {xν} is P -a.s. bounded and any
accumulation point x∗ of {xν} as ν → ∞ is P -a.s. a solution of (15).

Proof. From Lemma 4.1, the convex compact set D̄ ⊆ D is such that X∗ ⊆ D̄,

minx∈D̄ φ(x) = minx∈D φ(x) = minx∈IRn φ(x) + δD(x)

and for P -a.s. all ν,

minx∈D̄ φ
ν(x) = minx∈D φ

ν(x) = minx∈IRn φν(x) + δD(x).

Note that φν(x) = θν(x) + λ
ν

∑ν
i=1 ψ(ξ

i, x). To analyze the convergence, we first show that
θν(x) converges to θ(x) P -a.s. uniformly on D̄. Since D̄ is a nonempty compact subset of IRn,
F (ξ, ·) is continuous at x for almost every ξ ∈ Ξ, ∥F (ξ, x)∥ ≤ dξ for some d ∈ L∞

1 due to
Assumption 3.4, and the sample is iid, we can apply Theorem 7.48 in [61] to claim that Gν(x)
converges to G(x) a.s.-uniformly on D̄, that is, for any ε > 0, there is ν̂ such that for any
ν ≥a.s. ν̂, one has

supx∈D̄ |G(x)−Gν(x)| < ε.

Moreover, from the definition of θ in (1), we have

θ(x) = ⟨x− v(x), G(x)⟩ − α

2
∥x− v(x)∥2

θν(x) = ⟨x− vν(x), Gν(x)⟩ − α

2
∥x− vν(x)∥2,

where

v(x) = prjD

(
x− 1

α
G(x)

)
and vν(x) = prjD

(
x− 1

α
Gν(x)

)
.

Obviously, one has for ν ≥a.s. ν̂,

supx∈D̄ ∥v(x)− vν(x)∥ ≤ supx∈D̄
1

α
∥G(x)−Gν(x)∥ < ε

α
.

From the boundedness of D̄ and the continuity ofG, there is γ > 0 such that max{∥z∥, ∥prjD(z)∥, ∥G(z)∥} ≤
γ for any z ∈ D̄. Hence we obtain for ν ≥a.s. ν̂,

supx∈D̄ |θ(x)− θν(x)| ≤ supx∈D̄(∥vν(x)− x∥∥G(x)−Gν(x)∥+ ∥v(x)− vν(x)∥∥G(x)∥
+2γα∥v(x)− vν(x)∥)

< (4 +
1

α
)γε.
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Hence, θν(x) converges to θ(x) a.s.-uniformly on D̄. Similarly, again by using Theorem 7.48
in [61], we can show that 1

ν

∑ν
i=1 ψ(ξ

i, x) → IE[ψ(ξ, x)] a.s.-uniformly on D̄. Consequently, φν

converges to φ a.s.-uniformly on D̄ as claimed.
Combining the convergence result with Theorem 7.11, Theorem 7.14 and Theorem 7.31 in

[57], we obtain further that

lim sup
ν→∞

argminx∈D̄φ
ν(x) ⊆ argminx∈D̄φ(x).

Since D̄ is compact, we conclude further that {xν} is a.s. bounded and any accumulation point
of {xν}, as ν → ∞, is a.s. a solution x∗ of (15).

It is worth noting that the function

φ(x) =
(
max
v∈D

⟨x− v, IE[G(ξ, x)]⟩ − α

2
∥x− v∥2

)
+ λIE[ψ(ξ, x)]

is the sum of an EV formulation for the first stage and an ERM formulation for the second stage
of the two stage stochastic VI. The convergence analysis of SAA for the EV formulation of a
single stage stochastic VI in [61] cannot be directly applied to φν .

We next present a result in the presence of convexity: when F (ξ, ·) is an affine mapping,
we can obtain further results if a first-order growth condition is satisfied. For the same reason
explained above, the corresponding results in [61] cannot be directly applied.

4.3 Theorem (Convergence theorem for the convex problem) In addition to Assumptions 3.2
& 3.4, suppose that for ξ ∈ Ξ, F (ξ, u) = Mξu + qξ. Let θ(x) be defined by (1) with G(x) =
IE(F (ξ, x)) and infξ∈Ξ λmin(Mξ +M⊤

ξ ) > α. Then φ and φν are strongly convex P -a.s. for all
ν. Let {xν} be a sequence of minimizers of problems (18) and the samples be iid. Then φν

converges to φ a.s.-uniformly on the compact set D̄ specified in Lemma 4.1. Moreover, let x∗ be
the unique solution of (15) such that

φ(x) ≥ φ(x∗) + c∥x− x∗∥, ∀x ∈ D̄, (21)

where c > 0 is a constant.11 Then a.s., we have xν = x∗ for all sufficiently large ν.

Proof. From Theorem 3.2 in [26], the functions θ and θν defined by the regularized gap function
are strongly convex and continuously differentiable P -a.s. for all ν. Moreover, we also have the
convexity of ψ(ξ, ·) and ψν(ξ, ·) from the second conclusion in Proposition 3.9. Hence φ and φν

are strongly convex P -a.s. for all ν.
The a.s.-uniform convergence of φν to φ on D̄ is obtained from Theorem 4.2. Alternatively,

we have a much simpler proof thanks to the presence of convexity: since φν(x) → φ(x) at
each x ∈ D̄ a.s., we have φν(x) → φ(x) for every x in any countable dense subset of D̄ a.s.,
and consequently, using Theorem 10.8 from [51], we can also conclude that φν converges to φ
a.s.-uniformly on D̄.

Next, assume in addition that (21) holds at the unique solution x∗ of (15). We first recall
from [61, Theorem 7.54] that using the convexity and the differentiability of φν(·) and φ(·), we

11The solution x∗ is called a sharp solution in [61, Definition 5.22]. A sufficient condition for (21) is that
min1≤i≤n |∇φ(x∗)|i > c and min1≤i≤n(∇φ(x∗))i(x− x∗)i ≥ 0, ∀x ∈ D̄.
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have ∇φν(x∗) converging to ∇φ(x∗) a.s.-uniformly on the unit sphere. Combining this with (21),
we have for large enough ν

⟨∇φν(x∗), h⟩ ≥ c

2
∥h∥, ∀h ∈ TD̄(x∗),

where T is the tangent cone to D̄ at x∗. This implies that x∗ is the unique minimizer of φν on
D̄ and hence xν = x∗.

We close this section with the following result concerning a Lipschitz continuity property of
ψ when F (ξ, ·) is affine. The conclusion might be useful for future sensitivity analysis.

4.4 Proposition In addition to Assumptions 3.2 & 3.4, if for ξ ∈ Ξ, F (ξ, u) = Mξu + qξ and
infξ∈Ξ λmin(B+Mξ+M

⊤
ξ ) > α, then for any arbitrary compact set D̄ ⊆ D, there is a measurable

function κ : Ξ → IR+ with κ ∈ L1
1 such that for any x, z ∈ D̄ ⊆ D, we have

|ψ(ξ, x)− ψ(ξ, z)| ≤ κ(ξ)∥x− z∥.

Proof. Let D̄ ⊆ D be an arbitrary compact set. For any x, z ∈ D, and ξ ∈ Ξ, let

ū = argminu∈Cξ
f(ξ, x, u) and w̄ = argminw∈Cξ

f(ξ, z, w). (22)

In particular, we have from the definition of ψ that

ψ(ξ, x) = r(ξ, ū) +
1

2
⟨ū− x,B(ū− x)⟩ and ψ(ξ, z) = r(ξ, w̄) +

1

2
⟨w̄ − z,B(w̄ − z)⟩. (23)

From Proposition 3.9, f(ξ, x, ·) is strongly convex. Using this, Proposition 3.8, (22) and the
first-order optimality conditions, we have

⟨∇r(ξ, ū) +B(ū− x), w̄ − ū⟩ ≥ 0 and ⟨∇r(ξ, w̄) +B(w̄ − z), ū− w̄⟩ ≥ 0.

Adding these two inequalities, we obtain that

−⟨∇r(ξ, ū)−∇r(ξ, w̄) +B(ū− w̄), ū− w̄⟩+ ⟨x− z, B(ū− w̄)⟩ ≥ 0.

Combining this with the strong convexity of f with respect to u established in Proposition 3.9,
we have further that

σ∥ū− w̄∥2 ≤ ⟨∇r(ξ, ū)−∇r(ξ, w̄) +B(ū− w̄), ū− w̄⟩ ≤ ∥B∥∥x− z∥∥ū− w̄∥,

where σ > 0 is independent of x, z and ξ. Hence, we obtain that the solution is Lipschitz
continuous, that is,

∥ū− w̄∥ ≤ ∥B∥
σ

∥x− z∥, (24)

whenever x, z ∈ D. Next, by the definition of r and Theorem 3.3, we have

r(ξ, u) =

⟨
u− prjCξ

(
u− 1

α
F (ξ, u)

)
, F (ξ, u)

⟩
− α

2

∥∥∥∥u− prjCξ

(
u− 1

α
F (ξ, u)

)∥∥∥∥2

.
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Since the projection and F are Lipschitz continuous, ∥F (ξ, u)∥ ≤ dξ and ∥∇F (ξ, u)∥ ≤ ρξ for
some d ∈ L∞

1 and ρ ∈ L1
1, and Cξ ⊆ C† for almost all ξ ∈ Ξ, there is κ1 ∈ L1

1 such that whenever
u,w ∈ Cξ,

|r(ξ, u)− r(ξ, w)| ≤ κ1(ξ)∥u− w∥. (25)

Finally, since D̄ and C† are bounded, there is L > 0 such that for any y ∈ D̄ ∪ C†, we have
∥y∥ ≤ L/2.

Combining this with (23), (24) and (25), we obtain the following Lipschitz continuity property
of ψ for any x, z ∈ D̄:

|ψ(ξ, x)− ψ(ξ, z)| ≤
[
κ1(ξ)

∥B∥
σ

+ L∥B∥
(
1 +

∥B∥
σ

)]
∥x− z∥.

This completes the proof.

Proposition 4.4 provides sufficient conditions for the Lipschitz continuity of ψ with modulus
κ(ξ), which can be used for deriving convergence rate. Indeed, if we have in addition that

IE[etκ(ξ)] <∞ for all t close to 0,

and for any x ∈ D̄,
IE[et(ψ(ξ,x)−IE[ψ(ξ,x)])] <∞ for all t close to 0,

then for any ε > 0, there exist positive constants c(ε) and β(ε) such that

Prob

(
sup
x∈D̄

∣∣∣∣1ν
ν∑
i=1

ψ(ξi, x)− IE[ψ(ξ, x)]

∣∣∣∣ ≥ ε

)
≤ c(ε)e−νβ(ε)

for all ν. See [61, Theorem 7.65] for reference.

5 Implementation and experimentation

We begin with a more detailed reformulation of Example 2.6, more compatible with our com-
putational approach, in particular it provides a more explicit version of the flow-conservation
equations; in the traffic transportation community all possible node pairs are implicitly included
in the od-collection even those with d = o and hoo = 0 when the o-node is simply a transhipment
node. We follow the Ferris-Pang multicommodity formulation [23] which associates a (differ-
ent) commodity with each destination node d ∈ D ⊂ N . In their formulation, a commodity is
associated with each destination node in D ⊆ N and xj ∈ IR|A| representing the flows of the
commodities j = 1, 2, . . . , |D| with xja denoting the flow of commodity j on arc a ∈ A.

Let V = (vij) denote the node-arc incidence matrix with entries vij = 1 if node i has outgoing
flows on arc j, vij = −1 if node i has incoming flows on arc j, and vij = 0 otherwise. The
following condition represents conservation of flows of commodities,

V xj = dj, xj ≥ 0, j ∈ D, (26)
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where dji is demand at node i ∈ N for commodity j.

Let

A =

 V
. . .

V

 ∈ IR|D||N |×|D||A|, x =

 x1

...
x|D|

 ∈ IR|D||A|, b =

 d1

...
d|D|

 ∈ IR|D||N |.

Then (26) can be written as
Ax = b, x ≥ 0.

If we add the constraints on capacity ca of travel flows on each arc a, then the constraints on
the arc flows are presented as follows

Ax = b, 0 ≤ x, Px ≤ c,

where P = (I, . . . , I) ∈ IR|A|×|D||A| and I is the |A| × |A| identity matrix.

Traffic equilibrium models are built based on travel demand, travel capacity on each arc and
travel flows via nodes. The demand and capacity depend heavily on various uncertain param-
eters, such as weather, accidents, etc. Let Ξ ⊆ IRN denote the set of uncertain factors. Let
(djξ)i > 0 denote the stochastic travel demand at the ith node for commodity j and (cξ)a denote
the stochastic capacity of arc a.

For a realization of random vectors djξ ∈ IR|N | and cξ ∈ IR|A|, ξ ∈ Ξ, an assignment of flows to

all arcs for commodity j is denoted by the vector ujξ ∈ IR|A|, whose component (ujξ)a denotes the
flow on arc a for commodity j.
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Figure 1: The 7-links, 6-paths network

The network in Figure 1 from [67] has 5 nodes, 7 arcs and 2 destination nodes {4, 5}. The
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node-arc matrix for the network in Figure 1 is given as follows.

V =


0 0 1 1 0 0 0
1 0 −1 0 1 0 1
0 1 0 −1 0 1 −1
−1 0 0 0 0 −1 0
0 −1 0 0 −1 0 0


and the matrices and vectors are as follows

A =

(
V 0
0 V

)
∈ IR10×14, uξ ∈ IR14, bξ ∈ IR10, cξ ∈ IR7.

For a forecast robust arc flows x, let the feasible set for each realization ξ be

Cξ = {uξ |Auξ = bξ, 0 ≤ uξ, Puξ ≤ cξ},

where Puξ =
∑|D|

j=1 u
j
ξ is the total travel flows.

The arc travel time function h(ξ, ·) : IR|D||A| → IR|A| is a stochastic vector and each of its entries
ha(ξ, uξ) is assumed to follow a generalized Bureau of Public Roads (GBPR) function,

ha(ξ, uξ) =
(
ηa + τa

((Puξ)a
(γξ)a

)na
)
, a = 1, . . . , |A|, (27)

where ηa, τa, (γξ)a and na are given positive parameters, and (Puξ)a is the total travel flows on
each arc a ∈ A. Let

F (ξ, uξ) = P Th(ξ, uξ).

Then

∇uF (ξ, uξ) = P Tdiag
(
τana

(Puξ)
na−1
a

(γξ)na
a

)
P,

which is symmetric positive semi-definite for any uξ ∈ Cξ ⊆ IR
|D||A|
+ . One commonly considered

special case is when na = 1, for all a ∈ A. In this case, F (ξ, uξ) =Mξuξ + q, where

Mξ = P Tdiag

(
τa

(γξ)a

)
P and q = P T (η1, . . . , η|A|)

T . (28)

Here, we have rank(P ) = |A|, and that for any ξ ∈ Ξ, Mξ ∈ IR|D||A|×|D||A| is a positive semi-
definite matrix. Thus, IE[Mξ] is positive semi-definite. Another commonly considered case is
when na = 3, for all a ∈ A; see [23] and our numerical experiments in Section 5.2.

To define a here-and-now solution x, let

D = {x |Ax = IE[bξ], 0 ≤ x, Px ≤ IE[cξ]}

and G(x) = P T h̄(x) where the components of h̄ is defined by

h̄a(x) = ηa + τa(Px)
na
a IE[(γξ)

−na
a ], a = 1, . . . , |A|.
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The deterministic VI formulation for Wardrop’s user equilibrium, seeks a forecast arc flows x ∈ D
satisfying

−G(x) ∈ ND(x). (29)

On the other hand, the stochastic VI formulation for Wardrop’s user equilibrium, seeks an
equilibrium arc flow uξ ∈ Cξ for a known event ξ ∈ Ξ, such that

−F (ξ, uξ) ∈a.s. NCξ
(uξ). (30)

In general, the solution sets of the variational inequalities (29) and (30) can have multiple
solutions. Naturally, a here-and-now solution x should have minimum total distances to the
solution set of (30) for almost all observations ξ ∈ Ξ. It can be written as a mathematical
programming with equilibrium constraints [43] as the following

min IE[∥uξ − x∥2]
subject to −G(x) ∈ ND(x), −F (ξ, uξ) ∈a.s. NCξ

(uξ), ξ ∈ Ξ.
(31)

Recalling the definitions of the residual functions induced by the regularized gap function given
in §3, we have

−G(x) ∈ ND(x) ⇔ θ(x) = 0 and x ∈ D,

−F (ξ, uξ) ∈ NCξ
(uξ) ⇔ r(ξ, uξ) = 0 and uξ ∈ Cξ.

Note that θ(x) ≥ 0, r(ξ, uξ) ≥ 0 for x ∈ D and uξ ∈ Cξ, and they are continuously differentiable.
It is natural to consider the following l1 penalty problem which trades-off optimization of total
distance and the violation of the constraints in (31):

min 1
λρ
θ(x) + 1

ρ
IE[r(ξ, uξ)] + IE[∥uξ − x∥2]

subject to x ∈ D, uξ ∈a.s. Cξ, ξ ∈ Ξ,
(32)

for some positive numbers λ and ρ. Notice that this is a special case of (11), which was derived
in §3 as a relaxation of (4). Our discussion above provided an alternative interpretation of this
problem as an l1 penalty problem.

Using Lemma 3.6, we see that (32) is further equivalent to the following problem

minx∈D θ(x) + λIE[ψ(ξ, x)]
where ψ(ξ, x) = minuξ∈Cξ

r(ξ, uξ) + ρ∥uξ − x∥2. (33)

In this problem, for each ξ ∈ Ξ, the decisions uξ are dependent on a forecast arc flows x. The
two-stage stochastic program (33) uses x as the first stage decision variable, and uξ as the second
stage variable.

In a stochastic environment, ξ belongs to a set Ξ representing future states of knowledge. The
stochastic optimization approach (32) (equivalently, (33)) is to find a vector x∗ which minimizes
the expected residual values with recourse cost. The main role of traffic model is to provide
a forecast for future traffic states. The solution of the stochastic optimization approach (32)
is a “here-and-now” solution which provides a robust forecast and has advantages over other
models for long term planning. Stochastic traffic assignment on path flow has been formulated
as stochastic complementarity problems and stochastic variational inequalities in [1, 10, 69]
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5.1 The Douglas-Rachford splitting method

In this section, we focus on problem (32), which is a special case of (11) with B = 2ρI and

D = {x ∈ IR
|D||A|
+ |Ax = IE[bξ], Px ≤ IE[cξ]}. We will discuss an algorithm for solving the

following SAA of problem (32), for any fixed ν:

min θ(x) + λ
ν

∑ν
i=1

[
r(ξi, uξi) + ρ∥uξi − x∥2

]
subject to x ∈ D, uξi ∈ Cξi ∀ i = 1, . . . , ν,

(34)

where
{
ξ1, . . . , ξν

}
is an iid sample of Ξ of size ν.

Notice that the objective of (34) is highly structured: the decision variables are only related due
to the quadratic term λρ

ν

∑ν
i=1 ∥uξi − x∥2; if this quadratic term was absent, then the problem

would be decomposed into ν + 1 smaller independent optimization problems that can be solved
in parallel. This observation leads us to consider splitting methods in which the objective is
decoupled into two parts and minimized separately. One such method is the Douglas-Rachford
(DR) splitting method. This method was first proposed in [19] for solving feasibility problems
and has been extensively studied in the convex scenario; see, for example, [3, 20, 29]. Moreover,
the global convergence of the method for some class of problems with nonconvex objectives has
been recently studied and established in [39].

To apply the DR splitting method, we first note that (34) can be equivalently written as a
minimization problem that minimizes the sum of the following two functions:

f(U, x) :=
λρ

ν

ν∑
i=1

∥uξi − x∥2, g(U, x) := θ(x) + δD(x) +
λ

ν

ν∑
i=1

(r(ξi, uξi) + δCξi
(uξi)), (35)

where g is a proper closed function and f is a quadratic function whose Lipschitz continuity
modulus is 2λρ

(
1 + 1

ν

)
, and U is the vector in IRν|D||A| formed by stacking uξi , i.e.,

U =
[
uTξ1 · · · uTξν

]T
.

Each iteration of the DR splitting method then involves solving regularized optimization prob-
lems related to f , g and the current iterates, as well as updating the “dual” variables. The DR
splitting method applied to solving (34) is presented in (36), where we denote by V (resp., Z)
the vector in IRν|D||A| formed by stacking vi (resp., zi) for notational convenience, i.e.,

V =
[
vT1 · · · vTν

]T
, Z =

[
zT1 · · · zTν

]T
.

The global convergence of the sequence generated by this method to stationary points of (34)
follows immediately from [39, Theorem 1], [39, Theorem 4] and our choice of step-size parameter
µ. However, notice that the subproblems for the (U, x)-update are nonconvex in general. Con-
sequently, in practice, it is hard to compute global minimizers for these subproblems and typical
optimization solvers are only guaranteed to return a stationary point satisfying the first-order
optimality conditions. Fortunately, a closer look at the proofs of [39, Theorem 1] and [39, Theo-
rem 4] reveals that, for the convergence proofs to remain valid, one only needs to update (U, x)
so that
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Douglas-Rachford splitting method for (34)

Step 0. Input {ζ0, Z0}, 0 < µ < ν
ν+1

√
1.5−1
2λρ

.

Step 1. Set

(V k+1, yk+1) = argmin
V,y

{
1
2µ
∥V − Zk∥2 + 1

2µ
∥y − ζk∥2 + λρ

ν

ν∑
i=1

∥vi − y∥2
}

xk+1 ∈ argmin
x∈D

{
θ(x) + 1

2µ
∥2yk+1 − ζk − x∥2

}
For i = 1, . . . , ν,

uk+1
ξi

∈ argmin
uξi∈Cξi

{
λ
ν
r(ξi, uξi) +

1
2µ
∥2vk+1

i − zki − uξi∥2
}
,

ζk+1 = ζk + (xk+1 − yk+1),

Zk+1 = Zk + (Uk+1 − V k+1).

(36)

Step 2. If a termination criterion is not met, go to Step 1.

1. (Uk+1, xk+1) is a first-order stationary point of the subproblems in the kth iteration; and

2. the subproblem objective values in the kth iteration at (Uk+1, xk+1) are smaller than those
at (Uk, xk).

Thus, in practice, one can apply any optimization solver that employs a descent algorithm for
solving the nonconvex subproblems corresponding to the (U, x)-update approximately. On the
other hand, the (V, y)-updates for this algorithm can be solved explicitly and efficiently by ex-
ploiting the arrow-shaped structure of the Hessian of the quadratic optimization problem.

Finally, we discuss a possible termination criterion for the algorithm. To this end, observe
from the definitions of f and g in (35) and the optimality conditions for the (V, y) and (U, x)-
subproblems in (36) that

0 = ∇f(V k+1, yk+1) +
1

µ
[(V k+1, yk+1)− (Zk, ζk)],

0 ∈ ∂g(Uk+1, xk+1) +
1

µ
[(Uk+1, xk+1)− 2(V k+1, yk+1) + (Zk, ζk)].

From these, it is not hard to deduce that

− 1

µ
[(Uk, xk)− (V k, yk)] + (∇f(Uk, xk)−∇f(V k, yk)) (37)

is an element of ∇f(Uk, xk) + ∂g(Uk, xk). The algorithm can thus be terminated with an ap-
proximate stationary point (Uk, xk) when the quantity in (37) is small in norm. For instance,
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one can terminate when(
L+

1

µ

)
∥(Uk, xk)− (V k, yk)∥

max{∥(Uk, xk)∥, ∥(V k, yk)∥, 1}
< tol (38)

for some tol > 0; here, L stands for the Lipschitz continuity modulus of ∇f .

5.2 Numerical simulations

We now report simulation results based on the networks described at the beginning of this sec-
tion. All codes were written in MATLAB and run in MATLAB R2011b.

We consider the case when na = 3 and compare the solution of our model against the solution
of the EV formulation (2). The latter problem is a nonlinear programming problem with the
smooth objective (1). In our experiments below, we choose α = 10 in (1) for the EV formulation
and solve the problem approximately by the MATLAB function fmincon12 using the default tol-
erance, initialized at the projection of the origin onto the feasible set. The projections onto D
(as well as Cξ considered below) are computed approximately by the MATLAB function lsqlin,13

using the default tolerance.

For our model, we choose α = 10 in (3), λ = 20 and ρ = 5. To initialize the algorithm, we set
{z0i } to be the approximate solutions to minuξi∈Cξi

r(ξi, uξi) for each i = 1, . . . , ν and ζ0 to be
the approximate solution to (2); these problems are solved approximately by fmincon using the
same settings as described above. On the other hand, we terminate when(

2λρ
ν + 1

ν
+

1

µ

)
∥(Uk, xk)− (V k, yk)∥

max{∥(Uk, xk)∥, ∥(V k, yk)∥, 1}
< tol, (39)

for some tol > 0. This termination criterion is motivated by (38). To speed up the convergence,
we use the same kind of heuristic for choosing µ as described in [39, Remark 4] and [63, Re-

mark 2.1]: we set µ = 150µ0, where µ0 :=
0.99ν
ν+1

√
1.5−1
2λρ

, and update µ = max{µ0, µ/2} when either

∥(V k, yk)∥ > 1010 or

∥(V k, yk)− (V k−1, yk−1)∥ > 106

k
.

In our experiment below, we use the same free travel time η in (27) as in [67], i.e.,

η =
[
6 4 3 5 6 4 1

]T
,

and τ = 0.15η. The demand vector and the link capacity both have a beta distribution, as in
[10, Example 4.1]. The lower bound for link capacity γξ is

[
10 10 20 20 10 10 10

]T
with

a mean of γ :=
[
15 15 30 30 15 15 15

]T
, and the parameters for the beta distribution are

(α, β) = (2, 2). We then set cξ in Cξ to be 10γ, independent of ξ ∈
{
ξ1, . . . , ξν

}
. For the demand

vector bξ, the lower bound b is
[
150 180

]T
and we set bξ = b +

[
120 96

]T ◦ beta(α, β), with

12In the options, we set optimset(’Display’,’off’,’Algorithm’,’interior-point’,’GradObj’,’on’).
13In the options, we set optimset(’Display’,’off’,’LargeScale’,’off’).
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the first entry corresponding to the OD pair 1 → 4. The corresponding parameters for the beta
distribution are (α, β) = (5, 1) in this case. Furthermore, we set tol = 5 × 10−5 in (39) in our
experiments for this network.

The computational results are given in Table 1, where we present results for sample sizes ν = 50,
100 and 150. We denote by x∗ the approximate solution to our model obtained from the DR
splitting method and xEV the solution to (2). For these solutions, we compute their projections
wξ onto Cξ for a larger sample Υν of size 20 × ν that contains

{
ξ1, . . . , ξν

}
, and report vio :=

1
20ν

∑
ξ∈Υν

maxv∈Cξ
(Pwξ − Pv)Th(ξ, wξ),

14 the CVaR given by

CVaR = inf
α
α+

1

2ν

∑
ξ∈Υν

[
max
v∈Cξ

(Pwξ − Pv)Th(ξ, wξ)− α

]
+

,

and the corresponding minimizer α∗ at which the above infimum is attained. Clearly, the smaller
these three quantities are, the closer wξ is to being optimal for the corresponding instance. Our
computational results show that the wξ constructed from our x∗ are better optimal solutions on
average for ξ ∈ Υν .

Size x∗ xEV
ν vio α∗ CVaR vio α∗ CVaR
50 1.834e4 3.259e4 4.046e4 1.821e4 3.207e4 3.994e4
100 1.856e4 3.409e4 4.138e4 1.913e4 3.520e4 4.326e4
150 1.791e4 3.162e4 3.934e4 1.833e4 3.290e4 4.079e4

Table 1: Computational result for the network from [67].

We next consider the Nguyen and Dupuis network, which contains 13 nodes, 19 arcs, 2 destina-
tions. See Figure 2.
We use the same free travel time η in (27) as in [68, Table 1], i.e.,

η = [ 7 9 9 12 3 9 5 13 5 9 9 10 9 6 9 8 7 14 11 ]T ,

and τ = 0.15η. Also, as in [10, Example 4.2], our demand vector has a beta distribution.

The lower bound b for the demand vector is
[
300 700 500 350

]T
, which corresponds to the

OD pairs 1 → 2, 1 → 3, 4 → 2 and 4 → 3. The parameters for the beta distribution are
(α, β) = (50, 10). The demand vector bξ is then generated according to b + 120 beta(α, β). On
the other hand, we generate the link capacity γξ exactly as in [10, Example 4.2]. We also set cξ
in Cξ to be 10γ, where γ is the mean of the three possible link capacities in [10, Example 4.2]
with the probability specified there, independent of ξ. Furthermore, we set tol = 5 × 10−4 in
(39) in our experiments for this network.

14The maximum value in the summand is computed using MATLAB function linprog, with the option set to
be optimset(’Display’,’off’,’Algorithm’,’active-set’).

32



1

4

2

3

5

12

6 7 8

9 10 11

13

1

1

2

3

4

5

6

7

8

9

10 11

13

12 1514

17

16

18

19

Origin

Origin

Destination

Destination

Figure 2: Nguyen and Dupuis Network with 19 links and 25 paths

The computational results are given in Table 2, where we present results for various sample sizes
ν = 50, 100 and 150 as before. We also report the same quantities as in Table 1: vio, the CVaR
and the corresponding α∗. Our computational results again show that the wξ constructed from
our x∗ are better optimal solutions on average for ξ ∈ Υν .

Size x∗ xEV
ν vio α∗ CVaR vio α∗ CVaR
50 7.126e3 1.689e4 1.759e4 9.176e3 2.594e4 2.643e4
100 7.628e3 1.829e4 1.894e4 1.076e4 3.086e4 3.110e4
150 7.139e3 1.682e4 1.755e4 9.059e3 2.520e4 2.557e4

Table 2: Computational result for the Nguyen and Dupuis network.
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