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Although multiple criteria mathematical program (MCMP), as an alternative method of classification,
has been used in various real-life data mining problems, its mathematical structure of solvability is
still challengeable. This paper proposes a regularized multiple criteria linear program (RMCLP) for two
classes classification problems . It first adds some regularization terms in the objective function of
the known multiple criteria linear program (MCLP) model for possible existence of solution. Then the
paper describes the mathematical framework of the solvability. Finally, a series of experimental tests
are conducted to illustrate the performance of the proposed RMCLP with the existing methods: MCLP,
multiple criteria quadratic program (MCQP), and support vector machine (SVM). The results of four
publicly available datasets and a real-life credit dataset all show that RMCLP is a competitive method
in classification. Furthermore, this paper explores an Ordinal RMCLP (ORMCLP) model for ordinal
multi-group problems. Comparing ORMCLP with traditional methods such as One-Against-One, One-
Against-The rest on large-scale credit card dataset, experimental results show that both ORMCLP and
RMCLP perform well.

multiple criteria mathematical program, regularized multiple criteria mathematical program, classification, data mining.

1 Introduction

For the last decade, the researchers have extensively ap-
plied a quadratic program, known as Vapnik’s Support
Vector Machine (SVM) [1−8], into classification as well
as various data analysis. However, using optimization
techniques to deal with data separation and data analysis
goes back to more than forty years ago [9−12]. Accord-
ing to Mangasarian [13], his group has formulated linear

program as a large margin classifier in 1960’s. In 1970’s,
Charnes and Cooper initiated Data Envelopment Analysis
where a fractional programming is used to evaluate deci-
sion making units, which is economic representative data
in a given training dataset [14]. From 1980’s to 1990’s,
Glover proposed a number of linear programming models
to solve discriminant problems with a small sample size
of data [15,16]. Then, since 1998 Shi and his colleagues ex-
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tended such a research idea into classification via multiple
criteria linear programming (MCLP) and multiple crite-
ria quadratic programming (MQLP), which differ from
statistics, decision tree induction, and neural networks
[17−21]. These mathematical programming approaches
to classification have been applied to handle many real-
world data mining problems, such as credit card portfolio
management [22−23], bioinformatics [24,25], fraud manage-
ment [26], information intrusion and detection [27,28], firm
bankruptcy [29], etc.

However, the structure of the MCLP models cannot en-
sure there is always a solution. To overcome this short-
coming, the objective of this paper is to propose regu-
larized multiple criteria linear programs (RMCLP) with
existence of solution for classification. Rest of the paper
proceeds as follows. Section 2 introduces the basic no-
tions and formulation of MCLP. Then section 3 describes
the mathematical framework of the solvability. Section 4
uses a series of experimental tests to illustrate the perfor-
mance of the proposed RMCLP with the existing meth-
ods: MCLP, MCQP, and SVM. The experimental results
of four publicly available datasets and a real-life credit
dataset all show that RMCLP is a competitive method in
classification. Based on the above sections, Section 5 con-
structs an ordinal RMCLP model (ORMCLP) for multi-
group classification problems, and the model also shows
its efficiency through real-life credit dataset. Finally Sec-
tion 6 gives the conclusions.

2 Regularized MCLP for Data Mining

Given an matrix A ∈ Rm×n and vectors d, c ∈ Rm
+ , the

multiple criteria linear programming (MCLP) has the fol-
lowing version

min
u,v

dT u− cT v, (1)

s.t. aix− ui + vi = b, i = 1, 2, . . . , l,

aix + ui − vi = b, i = l + 1, l + 2, . . . , m,

u, v > 0,

where ai is the ith row of A which contains all given data.
The MCLP model is a special linear program, and has

been successfully used in data mining for a number of ap-
plications with large data sets [21,22,24−29]. However, we
cannot ensure this model always has a solution. Obvi-
ously the feasible set of MCLP is nonempty, as the zero
vector is a feasible point. For c > 0, the objective func-

tion may not have a lower bound on the feasible set. In
this paper, to ensure the existence of solution, we add reg-
ularization terms in the objective function, and consider
the following regularized MCLP

min
z

1
2
xT Hx +

1
2
uT Qu + dT u− cT v, (2)

s.t. aix− ui + vi = b, i = 1, 2, . . . , l,

aix + ui − vi = b, i = l + 1, l + 2, . . . , m,

u, v > 0,

where z = (x, u, v, b) ∈ Rn+m+m+1, H ∈ Rn×n and
Q ∈ Rm×m are symmeteric positive definite matrices.
The regularized MCLP is a convex quadratic program.
Although the objective function

f(z) :=
1
2
xT Hx +

1
2
uT Qu + dT u− cT v

is not a strictly convex function, we can show that (2) al-
ways has a solution. Moreover, the solution set of (2) is
bounded if H, Q, d, c are chosen appropriately.

Let I1 ∈ Rl×l, I2 ∈ R(m−l)×(m−l) be identity matri-
ces,

A1 =




a1

...

al


 , A2 =




al+1

...

am


 ,

A =

(
A1

A2

)
, E =

(
−I1

I2

)
,

and e ∈ Rm be the vector whose all elements are 1. Let

B =
(

A E −E −e
)

.

The feasible set of (2) is given by

F = {z | Bz = 0, u > 0, v > 0}.
Since (2) is a convex program with linear constraints,

the known KKT condition is a necessary and sufficient
condition for optimality. To show that f(z) is bounded
on F , we will consider the the KKT system of (2).

3 Solution set of RMCLP

Without loss of generality, we assume that l > 0 and
m− l > 0.
Theorem 1. The solution set of RMCLP (2) is nonempty.
Proof. We show that under the assumption that l >

0,m − l > 0, the objective function has a lower bound.
Note that the first terms in the objective function are non-
negative. If there is sequence zk in F such that f(zk) →
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−∞, then there is i such that vk
i → ∞, which, together

with the constraints of (2), implies that there must be j

such that |xk
j | → ∞ or uk

j → ∞. However, the objec-
tive function has quadratic terms in x and u which are
larger than the linear terms when k → ∞. This contra-
dicts f(zk) → −∞. Therefore, by the Frank-Wolfe The-
orem, the regularized MCLP (2) always has a solution.
We complete the proof.

Now we show that the solution set of problem (2) is
bounded if parameters H, Q, d, c are chosen appropri-
ately.
Theorem 2. Suppose that AH−1AT is nonsingular. Let
G = (AH−1AT )−1, µ = 1/eT Ge and

M =(
Q + EGE − µEGeeT GE µEGeeT GE − EGE

−EGE + µEGeeT GE EGE − µEGeeT GE

)
,

q =

(
d

−c

)
y =

(
u

v

)
.

Then problem (2) is equivalent to the linear complemen-
tarity problem

My + q > 0, y > 0, yT (My + q) = 0. (3)

If we choose Q and H such that M is a positive semidef-
inite matrix and c, d satisfy

d + 2Qe > (µEGeeT GE − EGE)e > c, (4)

then problem (2) has a nonempty and bounded solution
set [30].
Proof. Let us consider the KKT condition of (2)

Hx + AT λ = 0

−c− Eλ− β = 0

Qu + Eλ + d− α = 0

Bz = 0

eT λ = 0

u > 0, α > 0, αT u = 0

v > 0, β > 0, βT v = 0.

From the first three equalities in the KKT condition, we
have

x = −H−1AT λ

β = −c− Eλ

α = Qu + Eλ + d.

Substituting x in the 4th equality in the KKT condition
gives

λ = G(Eu− Ev − eb).

Furthermore. from the 5th equality in the KKT condition,
we obtain

b = µeT GE(u− v).

Therefore, β and α can be defined by u, v as

β = −c− EG(Eu− Ev − eb)

= −c− EG(Eu− Ev − µeeT GE(u− v))

and

α = d + Qu + EG(Eu− Ev − eb)

= d + Qu + EG(Eu− Ev − µeeT GE(u− v)).

This implies that the KKT condition can be written as the
linear complementarity problem (3). Since problem (2) is
a convex problem, it is equivalent to the linear comple-
mentarity problem (3).

Let u = 2e, v = e and y0 = (2e, e). Then from (4),
we have

My0 + q

=

(
2Qe + EGEe− µEGeeT GHe + d

µEGeeT GEe− EGEe− c

)
> 0

which implies that y0 is a trictly feasible point of (3).
Therefore, when M is a positive semidefinite matrix, the
solution set of (3) is nonempty and bounded [30].

Let y∗ = (u∗, v∗) be a solution of (3), then z∗ =
(x∗, u∗, v∗, b∗) with

b∗ = µeT GE(u∗ − v∗) and

x∗ = −HAT G(Eu∗ − Ev∗ − µeeT GE(u∗ − v∗))

is a solution of (2). Moreover, from the KKT condition, it
is easy to verify that the boundness of the solution set of
(3) implies the boundness of the solution set of (2).

4 Numerical test

In this section, we will compare the performance of RM-
CLP with other methods: MCLP, MCQP, and SVM on
four publicly available datasets from UCI Machine Learn-
ing Repository [31] and credit card dataset. Here we only
use SVM with linear Kernel because the other three algo-
rithms are linear classifiers.

For every dataset, we randomly separate it into two
parts, one part is for training, and the other for testing,
then apply the above four algorithms to train and test.
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This process is performed ten times, every time the ac-
curacy on training and testing are recorded, at last the av-
erage accuracy is computed and shown in Table 1-Table
4.

In every training, parameters in every algorithm are se-
lected in some discrete set in order to get the best accu-
racy. For example, the parameters in RMCLP needed to
be chosen are H, Q, d, c, so we choose H in a set of sev-
eral special matrixes, and Q in another set of several given
matrixes, d and c in the sets of several given vectors.

From Table 1 to Table 4 we can see that the perfor-
mance of RMCLP is better than MCLP, MCQP, and al-
most the same with SVM in linear Kernel.

Table 1 Test On Australian Dataset

Classification Training ( 200 ) + Testing ( 490 )

Algorithms Training Accu. Testing Accu.

MCLP 78.0% 75.5%

MCQP 89.0% 84.5%

RMCLP 91.0% 89.2%

SVM 91.2% 88.9%

Table 2 Test On German Dataset

Classification Training ( 200 ) + Testing ( 800 )

Algorithms Training Accu. Testing Accu.

MCLP 72.0% 66.5%

MCQP 73.5% 71.5%

RMCLP 75.0% 72.5%

SVM 74.6% 73.1%

Table 3 Test On Heart Dataset

Classification Training ( 100 ) + Testing ( 170 )

Algorithms Training Accu. Testing Accu.

MCLP 79.0% 77.5%

MCQP 88.0% 83.2%

RMCLP 87.0% 84.7%

SVM 89.5% 87.6%

Table 4 Test On Splice Dataset

Classification Training ( 400 ) + Testing ( 600 )

Algorithms Training Accu. Testing Accu.

MCLP 84.3% 70.8%

MCQP 86.5% 74.7%

RMCLP 87.6% 76.2%

SVM 87.9% 76.1%

Now we test the performance of RMCLP on credit card
dataset.

The 6000 credit card records used in this paper were
selected from 25,000 real-life credit card records of a ma-
jor US bank. Each record has 113 columns or variables
to describe the cardholders’ behaviors, including balance,
purchases, payment cash advance and so on. With the
accumulated experience functions, we eventually get 65
variables from the original 113 variables to describe the
cardholders’ behaviors.

Cross-validation is frequently used for estimating gen-
eralization error, model selection, experimental design
evaluation, training exemplars selection, or pruning out-
liers [32]. There are three kinds of cross validation meth-
ods: holdout cross validation, k-fold cross validation, and
leave-one-out cross validation that are widely used [33].
In this paper we chose the holdout method on credit card
dataset.

The holdout method separates data into training set and
testing set, taking no longer to compute. The process to
select training and testing set is described as follows: first,
the bankruptcy dataset (960 records) is divided into 10 in-
tervals (each interval has approximately 100 records).
Within each interval, 50 records are randomly selected.
Thus the total of 500 bankruptcy records is obtained after
repeating 10 times. Then, as the same way, we get 500
current records from the current dataset. Finally, the total
of 500 bankruptcy records and 500 current records are
combined to form a single training dataset, with the re-
maining 460 lost records and 4540 current records merge
into a testing dataset. The following steps are designed to
carry out cross-validation:

Algorithm 1.
Step 1: Generate the training set (500 bankruptcy records
+ 500 current records) and testing set (460 bankruptcy
records + 4540 current records);
Step2: Apply the RMCLP model to compute as the best
weights of all 65 variables with given values of control
parameters (H, D, h, d, c);
Step3: The classification scorei = aix has been calcu-
lated to check the performance of the classification;
Step4: If the classification result of Step 3 is unac-
ceptable, choose different values of control parameters
(H, D, h, d, c) and go back to Step 1;

We have computed 10 group dataset and the result
is shown in Table 5. The columns ”bankruptcy” and
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”current” refer to the number of records that were cor-
rectly classified as ”bankruptcy” and ”current”, respec-
tively. The column ”accuracy” was calculated using cor-
rectly classified records divided by the total records in
that class. For instance, 87.20% accuracy of Dataset one
for bankruptcy record in the training dataset was calcu-
lated using 436 divided by 500 and means that 87.20% of
bankruptcy records were correctly classified.

It can be observed that for the training sample, the
average accuracy of RMCLP on bankruptcy records is
86.74%, on current records is 70.08%. Out of the
ten testing dataset result, the highest accuracy for the
bankruptcy records is 87.83% and lowest is 83.04%, av-
eraging to 85.44%. The highest and lowest testing ac-
curacy’s deviation reaches 2.39% and 2.40%; for current
records testing accuracy reached the highest of 68.72%
and the lowest of 67.22%, averaging to 67.97%, the high-
est and lowest prediction accuracy’s deviation are both
0.75%. Through the cross-validation of ten groups, we
can conclude that RMCLP model is not only accurate but
also stable to classify the credit card dataset.

Table 5 Cross-validation on Credit Card Dataset

cross Training Set (500 Lost + 500 Current )

validation Lost Accuracy Current Accuracy

DS 1 436 87.20% 356 71.20%

DS 2 434 86.80% 352 70.40%

DS 3 438 87.60% 347 69.40%

DS 4 439 87.80% 348 69.60%

DS 5 428 85.60% 353 70.60%

DS 6 430 86.00% 361 72.20%

DS 7 437 87.40% 342 68.40%

DS 8 437 87.40% 350 70.00%

DS 9 426 85.20% 356 71.20%

DS 10 432 86.40% 339 67.80%

cross Testing Set (460 Lost + 4540 Current )

validation Lost Accuracy Current Accuracy

DS 1 399 86.74% 3057 67.33%

DS 2 389 84.57% 3120 68.72%

DS 3 390 84.78% 3089 68.04%

DS 4 396 86.09% 3059 67.38%

DS 5 382 83.04% 3085 67.95%

DS 6 404 87.83% 3102 68.33%

DS 7 396 86.09% 3074 67.71%

DS 8 397 86.30% 3057 67.33%

DS 9 390 84.78% 3036 66.87%

DS 10 396 86.09% 3052 67.22%

5 Ordinal Multi-group RMCLP Classifica-
tion Models

In this section we will generalize a new version of RM-
CLP to tackle multi-group classification problem. So far,
there have been two ways to deal with the multi-group
problems. The first way is to construct a model which
is capable to handle multi-group classification, such as
the well-know Decision Tree model. The second method
is the hierarchical methods, such as the One-Against-All
strategy and the One-Against-One strategy.

Before giving our model, we first discuss the proba-
bility distribution of multi-group dataset . Since we can
only get small training samples and we cannot know the
whole distribution of the dataset before we do data mining
(otherwise we need not do data mining), it is necessary to
consider some hypotheses (H1 and H2) .
H1: The distribution of the dataset is in both linear and

ordinal order, as depicted in Fig. 1.

Fig. 1

H2: The distribution of the dataset is only in linear or-
der, as depicted in Fig. 2.

Fig. 2

5.1 Ordinal RMCLP
In case of H1, we can find a direction x on which all the
records’ projection is linear separable. As far as three-
group classification problem is considered, we can find a
direction x and a group of hyper planes (b1, b2), to any
sample ai , if aix < b1, then ai belongs to group 1, i.e.
ai ∈ G1 ; if b1 6 aix < b2, then ai ∈ G2; and if

Yong Shi et al. Sci China Ser F-Inf Sci | Jan. 2009 | vol. 52 | no. 1 | 1-? 5



aix > b2, then ai ∈ G3 . Extending this method to n

group classification, we can also find a direction x and n-
1 dimension vector b = (b1, b2, · · · , bn−1)T ∈ Rn−1, to
make sure that to any sample ai:

aix < b1, ∀ai ∈ G1,

bk−1 6 aix < bk, ∀ai ∈ Gk, 1 < k < n, (5)

aix > bn−1, ∀ai ∈ Gn.

Now, we deduce the multi-group RMCLP classifica-
tion model under condition H1. We first define ck =
bk−1 + bk

2
as the midline in group k . Then, to the

misclassified records, we define u+
i as the distance from

ck to aix, which equals ck − aix, when misclassify a
group k′s record into group j(j < k) , and we de-
fine u−i as the distance from aix to ck , which equals
aix− ck, when misclassify a group k′s record into group
j(j > k) . Similarly, to the correct classified records,
we define v−i when ai is in the left side of ck , and we
define v+

i when ai is in the right side of ck. When we
have an n groups training sample with size m, we have
u = (u+

i , u−i ) ∈ R2m, v = (v+
i , v−i ) ∈ R2m, and

we can build a Ordinal Regularized Multi-Criteria Linear
Programming (ORMCLP) as follows:

min
z

1
2
xT Hx +

1
2
uT Qu + dT u + cT v, (6)

s.t. aix− u−i − v−i + v+
i =

1
2
b1, ∀ai ∈ G1,

aix− u−i + u+
i − v−i + v+

i =
1
2
(bk−1 + bk),

∀ai ∈ Gk, 1 < k < n,

aix + u+
i − v−i + v+

i = 2bn−1, ∀ai ∈ Gn,

u+
i , u−i , v+

i , v−i > 0, i = 1, · · · ,m.

To illustrate the proposed (6), we analyze its perfor-
mance by a small synthetic dataset. As described in Table
6, we suppose there are three groups, G1, G2 and G3. G1

has two records, a1 and a2; G2 has two records, a3 and
a4; G3 has a5 and a6, each record has two variables R1

and R2. We then suppose the separation hyper planes be
b1 = 2 and b2 = 4, and the H and Q be the identity
matrix. d and c be the vectors with all elements equal to
1.Then we can build the three-group classification prob-

lem as:

min
z

1
2

∑
i

x2
i +

1
2

∑
i

(u−i )2 +
1
2

∑
i

(u+
i )2 +

∑
i

u−i

+
∑

i

u+
i +

∑
i

v−i +
∑

i

v+
i ,

a1x1 − u−1 − v−1 + v+
1 = 1,

a2x2 − u−2 − v−2 + v+
2 = 1,

a3x3 − u−3 + u+
1 − v−3 + v+

3 = 2, (7)

a4x4 − u−4 + u+
2 − v−4 + v+

4 = 2,

a5x5 + u+
3 − v−5 + v+

5 = 4,

a6x6 + u−4 − v−6 + v+
6 = 6,

We use the optimization package in Matlab 7.0 to
solve this quadratic programming, and we can get x =
(1.0789,−0.3421) as the projection vector. Then we list
each record’s inner product with x as follows:

G1 : a1x = 0.736 < 2, a2x = 1.1315 < 2; (8)

G2 : a3x = 2.6051 ∈ [2, 4], a4x = 2.9998 ∈ [2, 4];

G3 : a5x = 6.8681 > 4, a6x = 7.9996 > 4.

From (8), we can see that a1 and a2, which belong to
G1, are in the left side of b1, a3 and a4, which belong
to G2, are between the b1 and b2, a5 and a6, which be-
long to G3, are in the right side of b2. It means ORMCLP
perfectly classifies this small synthetic dataset.

Table 6 Cross-validation on Credit Card Dataset

Three Samples

Groups No. R1 R2 aix

G1 a1 1 1 0.736

G1 a2 2 3 1.1315

G2 a3 4 5 2.6051

G2 a4 5 7 2.9998

G3 a5 7 2 6.8681

G3 a6 9 5 7.9996

5.2 Hierarchical Methods
Although ORMCLP performs well in case ofH1, it would
not work well under hypothesis H2. Then we can intro-
duce another two traditional hierarchical methods: One-
Against-Rest and One-Against-One for RMCLP[34,35].
With One-Against-The Rest strategy, we transform the
k groups’ classification problem into k − 1 two group’s
classification problems. Each time we extract one of the
k groups as the first group, and combine the remained
k−1 groups as the second group, then we can build model
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use two group RMCLP. In One-Against-One strategy, we
build k(k−1)/2 models between each pairs, and then we
use the winner tree to decide the final results. Since many
papers [36] prove these two hierarchical methods’ perfor-
mance on multi-group classification, we do not need to
test it on synthetic dataset as we did on ORMCLP.

5.3 Experiments on Credit Card Dataset

We now apply our new ORMCLP model to deal with real-
life credit card dataset as used in Section 4. Suppose we
define five classes for this dataset using a label variable:
The Number of Over-limits[37]. The five classes are de-
fined as Bankrupt charge-off accounts (THE NUMBER
OF OVER-LIMITS> 13), Non-bankrupt charge-off ac-
counts (7 6THE NUMBER OF OVER-LIMITS6 12),
Delinquent accounts (3 6THE NUMBER OF OVER-
LIMITS6 6), Current accounts (1 6THE NUMBER OF
OVER-LIMITS6 2), and Outstanding accounts (no over
limit). Bankrupt charge-off accounts are accounts that
have been written off by credit card issuers due to reasons
other than bankrupt claims. The charge-off policy may
vary among authorized institutions. Delinquent accounts
are accounts that have not paid the minimum balances
for more than 90 days. Current accounts are accounts
that have paid the minimum balances. The outstanding
accounts are accounts that have not balances. In our
randomly selected 6000 records, there are 72 Bankrupt
charge-off accounts, 205 Non-bankrupt charge-off ac-
counts, 454 Delinquent accounts, 575 Current accounts
and 4694 outstanding accounts. These records will be
used as the data source of our following experiments.

Table 7 Three Groups Training

3 Groups ORMCLP O-A-R O-A-O

(50+50+50) Rec. Perc. Rec. Perc. Rec. Perc.

Bankrupt 48 96.0% 47 94.0% 28 56.0%

Non-Bankrupt 44 88.0% 32 64.0% 50 100.0%

Delinquent 50 100.0% 48 96.0% 50 100.0%

142 94.7% 127 84.7% 128 85.3%

Table 8 Three Groups Testing

3 Groups ORMCLP O-A-R O-A-O

(22+155+404) Rec. Perc. Rec. Perc. Rec. Perc.

Bankrupt 12 54.5% 16 72.7% 6 27.3%

Non-Bankrupt 12 7.7% 41 26.5% 55 35.5%

Delinquent 402 99.5% 313 77.5% 398 98.5%

426 73.32% 370 63.68% 459 79.0%

Table 9 Four Groups Training

4 Groups ORMCLP O-A-R O-A-O

(50+50+50+50) Rec. Perc. Rec. Perc. Rec. Perc.

Bankrupt 50 100.0% 40 80.0% 49 98.0%

Non-Bankrupt 46 92.0% 26 52.0% 50 100.0%

Delinquent 47 94.0% 25 50.0% 50 100.0%

Current 50 100.0% 30 60.0% 50 100.0%

193 96.5% 121 60.5% 199 99.5%

Table 10 Four Groups Testing

4 Groups ORMCLP O-A-R O-A-O

(22+155+404+525) Rec. Perc. Rec. Perc. Rec. Perc.

Bankrupt 16 72.7% 14 63.6% 14 63.6%

Non-Bankrupt 52 33.5% 29 18.7% 55 35.5%

Delinquent 38 9.4% 146 36.1% 270 66.8%

Current 525 100.0% 296 56.4% 515 98.1%

631 57.05% 485 43.85% 854 77.22%

Table 11 Five Groups Training

5 Groups ORMCLP O-A-R O-A-O

(50+50+50+50+50) Rec. Perc. Rec. Perc. Rec. Perc.

Bankrupt 46 92.0% 28 56.0% 49 98.0%

Non-Bankrupt 49 98.0% 17 34.0% 50 100.0%

Delinquent 47 94.0% 19 38.0% 50 100.0%

Current 50 100.0% 28 56.0% 50 100.0%

Outstanding 50 100.0% 48 96.0% 50 100.0%

242 96.8% 140 56.0% 249 99.6%

Table 12 Five Groups Testing

5 Groups ORMCLP O-A-R O-A-O

(22+155+404

+525+4644) Rec. Perc. Rec. Perc. Rec. Perc.

Bankrupt 13 59.1% 11 50.0% 14 63.6%

Non-Bankrupt 130 83.9% 21 13.5% 55 35.5%

Delinquent 273 67.6% 76 18.8% 270 66.8%

Current 161 30.7% 99 18.9% 515 98.1%

Outstanding 4644 100.0% 3226 69.5% 3964 85.4%

5221 90.8% 3433 59.7% 4818 83.79%

In the following experiments, we test the ORMCLP,
One-Against-Rest RMCLP and One-Against-One RM-
CLP on three groups, four groups and five groups credit
card classification respectively. Table 7 and Table 8 are
the training and testing results on three groups’ clas-
sification. Table 9 and Table 10 are the training and
testing results on four groups’ classification. Table 11
and Table 12 are the training and testing results on five
groups’ classification. From the Table 7 to Table 12,
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the first column is the name of each group; the second
and the third column are the correctly classified number
and accuracy by ORMCLP, the fourth and the fifth col-
umn are the correctly classified number and accuracy by
One-Against-All-Rest RMCLP model; the sixth and the
seventh column are the correctly classified number and
accuracy by One-Against-One RMCLP model; the last
line is the totally correct classified records and the ac-
curacy. For example, from the last line of Table 8, we
know that ORMCLP has correctly classified 426 records,
the accuracy is 426/581 = 73.32%. From these re-
sult tables, we can see that. For the three groups’ clas-
sification, ORMCLP’s training and testing accuracy are
94.7% and 73.32% respectively; One-Against-Rest RM-
CLP are 84.7% and 63.68% respectively; One-Against-
One RMCLP are 85.3% and 79.00% respectively; to
the four groups’ classification, ORMCLP’s training and
testing accuracy are 96.5% and 57.05% respectively;
One-Against-Rest RMCLP are 60.5% and 43.85% re-
spectively; One-Against-One RMCLP are 99.5% and
77.22% respectively; For the five groups’ classifica-
tion, ORMCLP’s training and testing accuracy are 96.8%
and 90.80% respectively; One-Against-Rest RMCLP are
56.0% and 59.70% respectively; One-Against-One RM-
CLP are 99.6% and 83.79% respectively. That is to
say, although One-Against-Rest RMCLP shows unsta-
ble and inaccurate on the testing dataset, ORMCLP and
One-Against-One RMCLP are successfully separate each

group. Moreover, One-Against-One RMCLP performs
better than ORMCLP on three and four groups’ classi-
fication, while ORMCLP is better than One-Against-One
RMCLP on five groups’ classification.

6 Conclusion

In this paper, a regularized multiple criteria linear pro-
gram (RMCLP) has been proposed for classification prob-
lems in data mining. Comparing with the known mul-
tiple criteria linear program (MCLP) model, this model
guarantees the existence of solution and is mathemati-
cally solvable. In addition to describing the mathematical
structure, this paper has also conducted a series of exper-
imental tests on comparison of MCLP, multiple criteria
quadratic program (MCQP), and support vector machine
(SVM) on several datasets. All results have shown that
RMCLP is a competitive method in classification.

Furthermore, we have also proposed a new method
to deal with ordinal multi-group classification problem:
Ordinal RMCLP. Numerical test on real-life dataset has
proved its efficiency.

There are some research problems still remaining to be
explored. For example, is there similar solution structure
for MCQP as for MCLP? What kinds of kernel functions
can affect the solution of MCLP and MCQP? We shall
continue working on these problems and report any sig-
nificant results in the near future.
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