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Abstract

We consider a class of constrained optimization problems with a possibly nonconvex
non-Lipschitz objective and a convex feasible set being the intersection of a polyhedron
and a possibly degenerate ellipsoid. Such problems have a wide range of applications
in data science, where the objective is used for inducing sparsity in the solutions while
the constraint set models the noise tolerance and incorporates other prior information
for data fitting. To solve this class of constrained optimization problems, a common
approach is the penalty method. However, there is little theory on exact penalization
for problems with nonconvex and non-Lipschitz objective functions. In this paper, we
study the existence of exact penalty parameters regarding local minimizers, stationary
points and ϵ-minimizers under suitable assumptions. Moreover, we discuss a penalty
method whose subproblems are solved via a nonmonotone proximal gradient method
with a suitable update scheme for the penalty parameters, and prove the convergence
of the algorithm to a KKT point of the constrained problem. Preliminary numerical
results demonstrate the efficiency of the penalty method for finding sparse solutions
of underdetermined linear systems.

Keywords: Exact penalty, proximal gradient method, sparse solution,
nonconvex optimization, non-Lipschitz optimization.
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1 Introduction

We consider the following constrained optimization problem:

min
x

Φ(x)

s.t. x ∈ S := S1 ∩ S2,
(1.1)
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where Φ : IRn → IR is a nonnegative continuous function, S1 ⊆ IRn is a simple polyhedron,
and

S2 = {x : ∥Ax− b∥ ≤ σ, Bx ≤ h }.

Here A ∈ IRm×n, b ∈ IRm, σ ≥ 0, B ∈ IRℓ×n and h ∈ IRℓ are given matrices and vectors.
We emphasize that Φ is neither necessarily convex nor locally Lipschitz continuous. To
avoid triviality, we suppose that the feasible region S is nonempty.

Problem (1.1) is flexible enough to accommodate a wide range of optimization models
with important applications in imaging sciences, signal processing, and statistical variable
selections, etc. For example, with S1 = IRn and B being vacuous, i.e., S = S2 = {x :
∥Ax− b∥ ≤ σ}, problem (1.1) reduces to the following problem

min
x

Φ(x)

s.t. ∥Ax− b∥ ≤ σ.
(1.2)

This problem with Φ(x) = ∥x∥1 has been studied extensively for recovering sparse signals
from the possibly noisy measurements b; here, the parameter σ allows the user to explicitly
specify the tolerance for the noise level. We refer the readers to the comprehensive review
[3] for more details. In addition, we emphasize that the objective function Φ in our
model (1.1) is allowed to be nonsmooth and possibly nonconvex non-Lipschitz. This
enables the choice of various objective functions for inducing desirable structures in the
optimal solutions. For instance, when sparsity is of concern, one popular choice of Φ
is Φ(x) =

∑n
i=1 ϕ(xi), with ϕ being one of the widely used penalty functions, such as

the bridge penalty [16, 17], the fraction penalty [13] and the logistic penalty [23]. On
the other hand, we note that the simple polyhedron S1 can be used for incorporating
hard constraints/prior information that must be satisfied by the decision variables in
applications. For instance, if a true solution to (1.2) is known to be in a certain interval
[l, u] for some l < u, l and u ∈ IRn, then the S1 can be chosen to be [l, u] instead of
just IRn. Constraints of this kind arise naturally in applications such as image restoration,
where all gray level images have intensity values ranging from 0 to 1. As shown in [1,4,24],
incorporating the bound constraints can lead to substantial improvements in the quality
of the restored image.

While (1.1) is a very flexible model covering a wide range of applications, this opti-
mization problem is a constrained optimization problem, which is typically hard to solve.
In the case when Φ is convex, S1 = IRn and B is vacuous, i.e., (1.2), it is well known that
the problem is equivalent to solving

min
x

Hλ(x) := λ∥Ax− b∥2 +Φ(x) (1.3)

for some regularization parameter λ > 0, under some mild assumptions; see, for example,
[11]. Unlike (1.2), for many choices of Φ, the regularized formulation (1.3) can be solved
readily by various first-order methods such as the NPG method in [28]. This regularized
formulation has been extensively studied in both cases where Φ is convex or nonconvex
in the last few decades; see, for example, [3, 5–7, 9, 10, 12–14, 16, 17, 21, 23, 27, 29, 30].
Nevertheless, the equivalence between (1.2) and (1.3) does not hold in the nonconvex
scenario: indeed, for nonconvex Φ and certain data (A, b, σ), there does not exist a λ so that
problems (1.2) and (1.3) have a common global or local minimizer; see our Example 3.1.
In particular, one cannot solve (1.2) via solving the unconstrained problem (1.3) for a
suitable λ in general.
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In a hope of constructing a simpler optimization problem whose local/global minimizers
are closely related to (1.1), we resort to the penalty approach. While this is a standard
approach, there are two important new ingredients in our work. First, although exact
penalization for constrained optimization problems with a Lipschitz objective has been
well studied (see, for example, [25]), to the best of our knowledge, there is little theory
and development for problems with nonconvex non-Lipschitz objectives such as problem
(1.1) with ϕ being the bridge penalty. Second, we consider partial penalization that keeps
the constraints S1 in (1.1). Recall that the set S1 in (1.1) can be used to model hard
constraints that must be satisfied or simple constraints that can be easily satisfied1, while
the set S2 can be used to model soft constraints that only need to be approximately
satisfied. Consequently, it can be advantageous to be able to penalize only the constraints
corresponding to S2 and keep the hard constraints S1.

The penalty problem we consider is

min
x∈S1

Fλ(x) := λ[(∥Ax− b∥2 − σ2)+ + ∥(Bx− h)+∥1] + Φ(x) (1.4)

for some λ > 0, where a+ denotes the vector whose ith entry is max{ai, 0} for any a ∈ ℜn.
In this paper, we derive various (partial) exact penalization results regarding (1.1) and
(1.4). Specifically, under some suitable assumptions, we establish that:

(i) any local minimizer of problem (1.1) is also that of problem (1.4), provided that
λ ≥ λ∗ for some λ∗ > 0;

(ii) any global minimizer of problem (1.1) is an ϵ-global minimizer of problem (1.4),
provided that λ ≥ λ∗ for some λ∗ > 0;

(iii) the projection of any global minimizer of problem (1.4) onto the feasible set S of
problem (1.1) produces an ϵ-global minimizer of problem (1.1), provided that λ ≥ λ∗
for some λ∗ > 0.

Consequently, problem (1.4) is an exact penalty formulation for (1.1), and an approximate
solution of problem (1.1) can be obtained by solving (1.4) with λ = λ∗ if an exact penalty
parameter λ∗ is known.

In practice, the value of such λ∗ is, however, generally unknown. Owing to this, we
further propose a penalty method for solving (1.1) whose subproblems are (partially)
smoothed and then solved approximately via a nonmonotone proximal gradient (NPG)
method [28] with a suitable update scheme for the penalty and smoothing parameters. It
is noteworthy that the NPG method originally studied in [28] was proposed for minimizing
the sum of a possibly nonsmooth function and a smooth function whose gradient is globally
Lipschitz continuous. Nevertheless, the gradient of the smooth component associated
with our subproblems is locally but not globally Lipschitz continuous. We are fortunately
able to show that this NPG method is indeed capable of solving a more general class of
problems which includes our subproblems as a special case. In addition, we show that
any accumulation point of the sequence generated by our penalty method is a KKT point
of (1.1) under suitable assumptions. Finally, to benchmark our approach, we consider a

sparse recovery problem and compare (1.2) with Φ(x) =
∑n

i=1 |xi|
1
2 solved by our penalty

method against two other approaches: solving (1.2) with Φ(x) = ∥x∥1 by the SPGL1 [2]

1This means that the projection onto S1 is easy to compute.
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for finding sparse solutions, and solving (1.3) with Φ(x) =
∑n

i=1 |xi|
1
2 for a suitably chosen

λ. Our numerical results demonstrate that the solutions produced by our approach are
sparser and have smaller recovery errors than those found by the other approaches.

The rest of the paper is organized as follows. We present notation and preliminary
materials in Section 2. In Section 3, we study the existence of exact penalty parameters
regarding local minimizers and ϵ-minimizers. In Section 4, we discuss the first-order
optimality conditions for problems (1.1) and (1.4). We then propose a penalty method for
solving problem (1.1) with an update scheme for the penalty parameters and establish its
convergence to KKT points of (1.1). In Section 5, we conduct numerical experiments to
test the performance of our method in sparse recovery. Concluding remarks are given in
Section 6.

2 Notation and preliminaries

We use IR and IRn to denote the set of real numbers and the n-dimensional Euclidean
space. For any x ∈ IRn, let xi denote the ith entry of x, and Diag(x) denote the diagonal
matrix whose ith diagonal entry is xi, respectively. We denote the Euclidean norm of x by
∥x∥, the ℓ1 norm by ∥x∥1, the infinity norm (sup norm) by ∥x∥∞, and the p quasi-norm

by ∥x∥p := (
∑n

i=1 |xi|p)
1
p , for any 0 < p < 1. Moreover, we let |x|p denote the vector

whose ith entry is |xi|p and (x)+ denote the vector whose ith entry is max{xi, 0}. Given
an index set I ⊆ {1, . . . , n}, let Ī denote the complement of I. For any vector x, we write
xI ∈ IR|I| to denote the restriction of x onto I. We also denote by AI the matrix formed
from a matrix A by picking the columns indexed by I. In addition, we use kerA to denote
the null space of a matrix A.

For any closed set D, we let dist(x,D) = infy∈D ∥x − y∥ denote the distance from x
to D, and conv(D) denote the convex hull of D. We let PD(x) denote the set of closest
points in D to x ∈ IRn; this reduces to a singleton if D is additionally convex. For a closed
convex set D, the normal cone at x ∈ D is defined as

ND(x) := {y : yT (u− x) ≤ 0 ∀u ∈ D}.

The indicator function is denoted by δD, which is the function that is zero in D and is
infinity elsewhere. Finally, we let B(a; r) denote the closed ball of radius r centered at a,
i.e., B(a; r) = {x ∈ IRn : ∥x− a∥ ≤ r}.

We recall from [27, Definition 8.3] that for a proper lower semicontinuous function f ,
the (limiting) subdifferential and horizon subdifferential are defined respectively as

∂f(x) :=

{
v : ∃xk f→ x, vk → v with lim inf

z→xk

f(z)− f(xk)− ⟨vk, z − xk⟩
∥z − xk∥

≥ 0 ∀k
}
,

∂
∞
f(x) :=

{
v : ∃xk f→ x, λkv

k → v, λk ↓ 0 with lim inf
z→xk

f(z)− f(xk)− ⟨vk, z − xk⟩
∥z − xk∥

≥ 0 ∀k
}
,

where λk ↓ 0 means λk > 0 and λk → 0, and xk
f→ xmeans both xk → x and f(xk)→ f(x).

It is well known that the following properties hold:{
v : ∃xk f→ x, vk → v , vk ∈ ∂f(xk)

}
⊆ ∂f(x),{

v : ∃xk f→ x, λkv
k → v , λk ↓ 0 , vk ∈ ∂f(xk)

}
⊆ ∂∞

f(x).
(2.1)
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Moreover, if f is convex, the above definition of subdifferential coincides with the classical
subdifferential in convex analysis [27, Proposition 8.12]. Furthermore, for a continuously
differentiable f , we simply have ∂f(x) = {∇f(x)}, where ∇f(x) is the gradient of f at
x [27, Exercise 8.8(b)]. We also use ∂xif(x) to denote the subdifferential with respect to
the variable xi. Finally, when Φ(x) =

∑n
i=1 ϕ(xi) for some continuous function ϕ, we have

from [27, Proposition 10.5] that

∂Φ(x) = ∂ϕ(x1)× ∂ϕ(x2)× · · · × ∂ϕ(xn). (2.2)

For the convenience of readers, we now state our blanket assumptions on (1.1) explicitly
here for easy reference.

Assumption 2.1 (Blanket assumptions on (1.1)). Throughout this paper, Φ is a
nonnegative continuous function. The feasible set of (1.1) is S := S1 ∩ S2, where S1 is a
simple polyhedron given by {x : Dx ≤ d}, and

S2 = {x : ∥Ax− b∥ ≤ σ, Bx ≤ h }.

Moreover, A has full row rank and there exists x0 ∈ S so that ∥Ax0 − b∥ < σ.

We next present some auxiliary lemmas. The first lemma is a well-known result on
error bound concerning S1 and S2, obtained as an immediate corollary of [22, Theorem 3.1].

Lemma 2.1. There exists a C > 0 so that for all x ∈ IRn, we have

dist(x, S) ≤ C
[
(∥Ax− b∥2 − σ2)+ + ∥(Bx− h)+∥1 + ∥(Dx− d)+∥1

]
.

Consequently, for any x ∈ S1, we have

dist(x, S) ≤ C
[
(∥Ax− b∥2 − σ2)+ + ∥(Bx− h)+∥1

]
. (2.3)

The constant C in the above lemma cannot be explicitly computed in general. We
next present a more explicit representation of this constant in some special cases. We
start with the case where S1 = IRn and B is vacuous, i.e., S = S2 = {x : ∥Ax− b∥ ≤ σ}.
Lemma 2.2. Suppose that S = S2 = {x : ∥Ax− b∥ ≤ σ}. Then there exists a C > 0 so
that for all x,

dist(x, S) ≤ ∥A†∥(∥Ax− b∥ − σ)+ ≤ C(∥Ax− b∥2 − σ2)+.

Indeed, C can be chosen to be ∥A†∥
σ , where A† = AT (AAT )−1 is the pseudo-inverse of A.

Proof. Notice that S = A†B(b;σ) + kerA. Moreover, for any x, x − A†Ax ∈ kerA.
Thus, we have

dist(x, S) = dist(A†Ax+ [x−A†Ax], A†B(b;σ) + kerA)

≤ dist(A†Ax,A†B(b;σ)) ≤ ∥A†∥dist(Ax,B(b;σ)) = ∥A†∥(∥Ax− b∥ − σ)+,

where the last equality follows from a direct computation based on the fact that the
projection from any point u /∈ B(b;σ) onto B(b;σ) is b + σ u−b

∥u−b∥ . The conclusion of the
lemma now follows from the above estimate and the following simple relation:

(∥Ax− b∥ − σ)+ =

(
∥Ax− b∥2 − σ2

∥Ax− b∥+ σ

)
+

≤ 1

σ
(∥Ax− b∥2 − σ2)+.

We next consider the case where S is compact. We refer the readers to [8, Lemma 3.2.3]
and [8, Remark 3.2.4] for an explicit finite upper bound for the constant β in (2.4) below.
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Lemma 2.3. Suppose there exist xs ∈ S, R > δ > 0 so that supu∈B(xs;δ) ∥Au − b∥ ≤ σ
and S ⊆ B(xs;R). Then there exists β > 0 so that for all x ∈ IRn, we have

dist(x, S) ≤ 2

(
1 +

R

δ

)(
∥A†∥
σ

(∥Ax− b∥2 − σ2)+ + β

∥∥∥∥∥
(
Bx− h
Dx− d

)
+

∥∥∥∥∥
1

)
. (2.4)

Proof. Let Ω1 = {x : Bx ≤ h, Dx ≤ d} and Ω2 = {x : ∥Ax − b∥ ≤ σ}. Then
S = Ω1 ∩Ω2. From the assumptions and [20, Lemma 2.1] (see also [19, Lemma 4.10]), we
see that for all x ∈ IRn, we have

dist(x, S) ≤ 2

(
1 +

R

δ

)
max{dist(x,Ω1),dist(x,Ω2)}. (2.5)

The desired conclusion now follows from (2.5), Lemma 2.2 and [8, Lemma 3.2.3] (Hoffman
error bound).

We end this section with the following auxiliary lemmas concerning the function t 7→ tp,
0 < p < 1.

Lemma 2.4. Let 0 < p < 1. For any nonnegative numbers s and t, it holds that

|sp − tp| ≤ |s− t|p.

Proof. Without loss of generality, we may assume that s ≥ t. Consider h(r) :=
1−rp−(1−r)p for r ∈ [0, 1]. Simple differential calculus shows that h(r) ≤ h(0) = 0 = h(1)
whenever r ∈ [0, 1]. The desired conclusion then follows by setting r = t

s .

Lemma 2.5. Let 0 < p < 1. Then the following statements hold.

(i) Let h(t) = |t|p. Then ∂h(0) = ∂
∞
h(0) = IR.

(ii) Let H(x) =
∑n

i=1 |xi|p and fix any x∗ ∈ IRn. Let I := {i : x∗ ̸= 0}. Then

∂
∞
H(x∗) = {v : vi = 0 for i ∈ I}.

Proof. We first prove (i). Consider the set

∂̂h(0) :=

{
s ∈ IR : lim inf

t→0

|t|p − st
|t|

≥ 0

}
.

Since lim inft→0 |t|p−1 = ∞ due to 0 < p < 1, we see immediately that ∂̂h(0) = IR. Since
we have from [27, Theorem 8.6] that ∂̂h(0) ⊆ ∂h(0) and that ∂

∞
h(0) contains the recession

cone of ∂̂h(0), we conclude further that ∂h(0) = ∂
∞
h(0) = IR.

We next prove (ii). Part (i) together with the fact that ∂̂h(0) = IR and [27, Corol-
lary 8.11] shows that h(t) = |t|p is regular at 0. In addition, h is clearly regular at any
t ̸= 0. Then, according to [27, Proposition 10.5], we have

∂
∞
H(x∗) = ∂

∞
h(x∗1)× · · · ∂

∞
h(x∗n),

from which the conclusion follows immediately.
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3 Exact Penalization

Problem (1.1) is a constrained optimization problem, which can be difficult to solve when
the constraint set S is complicated. In the case when Φ is convex, σ > 0, S1 = IRn and
B is vacuous, i.e., (1.2), it is well known that the problem is equivalent to solving the
unconstrained optimization problem (1.3) for some suitable λ > 0; see, for example, [11].
However, as we will illustrate in the next example, this is no longer true for a general
nonconvex Φ.

Example 3.1. Consider the following one-dimensional optimization problem:

min
t

ϕ(t)

s.t. |t− a| ≤ γa
(3.1)

for some a > 0 and γ ∈ (0, 1). Assume that ϕ is strictly increasing on [0,∞).
It is clear that t∗ = (1− γ)a is the global minimizer of (3.1). Suppose that ϕ is twice

continuously differentiable at t∗. Then it is easy to check from the first-order optimality
condition that t∗ is a stationary point of

min
t

λ(t− a)2 + ϕ(t) (3.2)

only when λ = ϕ′(t∗)/(2γa), which is nonnegative since ϕ is monotone. Next, the second
derivative of the objective of (3.2) with λ = ϕ′(t∗)/(2γa) at t∗ is given by

2λ+ ϕ′′ (t∗) =
ϕ′(t∗)

γa
+ ϕ′′ (t∗) . (3.3)

If this quantity is negative, then t∗ cannot be a local minimizer of (3.2) even for λ =
ϕ′(t∗)/(2γa), and consequently, t∗ cannot be a local minimizer of (3.2) for any λ > 0.

Some concrete examples of ϕ and a such that (3.3) is negative are given below, where
the ϕ’s are building blocks for widely used nonconvex regularization functions.

1. bridge penalty ϕ(t) = |t|p for 0 < p < 1 [16,17].
For any a > 0, (3.3) equals p(t∗)p−2 (p− 2 + 1/γ). Hence, (3.3) is negative if p <
2− 1/γ. Since p is positive, this can happen when γ > 1/(2− p);

2. fraction penalty ϕ(t) = α|t|/(1 + α|t|) for α > 0 [13].
For any a > 0, a direct computation shows that (3.3) equals (α/γa) (1 + αt∗)−3 [1 +
(1 − 3γ)αa], which is negative when 1 + (1 − 3γ)αa < 0. Since a and α are both
positive, this can happen when γ > (1 + αa)/(3αa);

3. logistic penalty ϕ(t) = log(1 + α|t|) for α > 0 [23].
For any a > 0, (3.3) equals (α/γa) (1 + αt∗)−2 [1 + (1− 2γ)αa], which is negative
if 1 + (1 − 2γ)αa < 0. Since a and α are both positive, this can happen when
γ > (1 + αa)/(2αa).

Example 3.1 shows that the negativity of ϕ′′ prevents us from building a relationship
between (1.2) and (1.3) regarding global or local minimizers. In general, we cannot always
find a λ such that the intersection of the sets of global (local) minimizers of (1.2) and (1.3)
is nonempty, when ϕ is monotone and concave in [0,∞).
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In order to build a simpler optimization problem whose local/global minimizers are
related to the constrained problem (1.1) (which contains (1.2) as a special case) when Φ
is possibly nonconvex, we adopt the penalty approach. We hereby emphasize again that
there is little theory concerning the penalty approach when Φ is non-Lipschitz. Moreover,
it is not common in the literature to consider partial penalization that keeps part of
the constraints, S1, in the penalized problem (1.4). In this section, we shall study various
(partial) exact penalization results concerning the problems (1.1) and (1.4), for both locally
Lipschitz and non-Lipschitz objectives Φ.

3.1 A general penalization result

We first present some results regarding exact penalty reformulation for a general optimiza-
tion problem. These results will be applied in subsequent subsections to derive various
exact penalization results. The following lemma is similar to [18, Proposition 4]. For
self-contained purpose, we provide a simple proof.

Lemma 3.1. Consider the problem

min
x∈Ω1∩Ω2

f(x), (3.4)

where Ω1 and Ω2 are two nonempty closed sets in IRn. Assume that f is Lipschitz contin-
uous in Ω1 with a Lipschitz constant Lf > 0, and moreover, problem (3.4) has at least one
optimal solution. Suppose in addition that there is a function Q : Ω1 → IR+ satisifying

Q(x) ≥ dist(x,Ω1 ∩ Ω2) ∀x ∈ Ω1; Q(x) = 0 ∀x ∈ Ω1 ∩ Ω2. (3.5)

Then it holds that:

(i) if x∗ is a global minimizer of (3.4), then x∗ is a global minimizer of

min
x∈Ω1

f(x) + λQ(x) (3.6)

whenever λ ≥ Lf ;

(ii) if x∗ is a global minimizer of (3.6) for some λ > Lf , then x∗ is a global minimizer
of (3.4).

Proof. Since f is Lipschitz continuous in Ω1 with a Lipschitz constant Lf > 0, it
follows that for all λ ≥ Lf ,

f(x) + λ dist(x,Ω1 ∩ Ω2) ≥ f(y) ∀x ∈ Ω1, ∀y ∈ PΩ1∩Ω2(x),

which together with (3.5) implies that for any λ ≥ Lf ,

f(x) + λQ(x) ≥ f(y) ∀x ∈ Ω1, ∀y ∈ PΩ1∩Ω2(x).

Using this relation, one can observe that for all λ ≥ Lf ,

inf
x∈Ω1

{f(x) + λQ(x)} ≥ inf
x∈Ω1,y∈PΩ1∩Ω2

(x)
f(y) = inf

x∈Ω1∩Ω2

f(x)

= inf
x∈Ω1∩Ω2

f(x) + λQ(x) ≥ inf
x∈Ω1

{f(x) + λQ(x)} ,
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where the second equality follows from the fact that Q(x) = 0 for all x ∈ Ω1 ∩ Ω2.
Statement (i) follows immediately from this relation.

We next prove statement (ii). Suppose that x∗ ∈ Ω1 is a global minimizer of (3.6) for
some λ > Lf . Using this and Q(x) = 0 on Ω1 ∩ Ω2, we have

f(x∗) + λQ(x∗) ≤ f(x), (3.7)

for any x ∈ Ω1 ∩ Ω2. This together with (3.5) implies that for any x ∈ PΩ1∩Ω2(x
∗),

f(x∗) + λ dist(x∗,Ω1 ∩ Ω2) ≤ f(x).

Using this relation and Lipschitz continuity of f , one can obtain that for any x ∈ PΩ1∩Ω2(x
∗),

dist(x∗,Ω1 ∩ Ω2) ≤
1

λ
(f(x)− f(x∗)) ≤

Lf

λ
∥x− x∗∥ =

Lf

λ
dist(x∗,Ω1 ∩ Ω2),

which along with λ > Lf yields dist(x∗,Ω1 ∩ Ω2) = 0, that is, x∗ ∈ Ω1 ∩ Ω2. In addition,
by (3.7) and Q(x∗) ≥ 0, one can see that f(x) ≥ f(x∗) for any x ∈ Ω1 ∩ Ω2. Hence, x∗ is
a global minimizer of (3.4).

We next state a result regarding the local minimizers of problems (3.4) and (3.6),
whose proof is similar to that of Lemma 3.1 and thus omitted.

Corollary 3.1. Assume that f is locally Lipschitz continuous in Ω1 and Q satisfies (3.5).
Suppose that x∗ is a local minimizer of (3.4). Then there exists a λ∗ > 0 such that x∗ is
a local minimizer of (3.6) whenever λ ≥ λ∗.

3.2 When Φ is locally Lipschitz continuous

In this subsection, we consider the case where Φ is locally Lipschitz continuous and derive
the corresponding exact regularization results concerning models (1.1) and (1.4). This
covers a lot of regularization functions used in practice, including many difference-of-
convex functions; see, for example, [14, 29].

Our main result concerns local and global minimizers of models (1.1) and (1.4).

Theorem 3.1 (Local & global minimizers). Suppose that Φ is locally Lipschitz contin-
uous in S1 and x∗ is a local minimizer of (1.1). Then there exists a λ∗ > 0 such that x∗ is
a local minimizer of (1.4) whenever λ ≥ λ∗. If Φ is indeed globally Lipschitz continuous in
S1, then there exists a λ∗ > 0 such that any global minimizer of (1.1) is a global minimizer
of (1.4) whenever λ ≥ λ∗; moreover, if x∗ is a global minimizer of (1.4) for some λ > λ∗,
then x∗ is a global minimizer of (1.1).

Proof. From Lemma 2.1, we see that there exists a C > 0 so that for all x ∈ S1, we
have

dist(x, S) ≤ C
[
(∥Ax− b∥2 − σ2)+ + ∥(Bx− h)+∥1

]
.

The first conclusion now follows immediately from Corollary 3.1 by setting f(x) = Φ(x),
Q(x) = C

[
(∥Ax− b∥2 − σ2)+ + ∥(Bx− h)+∥1

]
, Ω1 = S1 and Ω2 = S2, while the second

conclusion follows from Lemma 3.1.
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Remark 3.1. It is not hard to see from the proof of Theorem 3.1 that with an explicit
error bound modulus C > 0 in (2.3), the λ∗ in the theorem can be chosen to be CL, where
L is a local (resp., global) Lipschitz constant Φ.

In the next example, we present explicit exact penalty functions for problem (3.1) with
some specific choices of ϕ.

Example 3.2. Notice that the fraction penalty function and the logistic penalty function
considered in Example 3.1 are (globally) Lipschitz continuous, and have a Lipschitz con-
stant α. From Theorem 3.1 and Remark 3.1, we conclude that any global minimizer of
(3.1) is a global minimizer of the problem

min
t

λ(|t− a|2 − γ2a2)+ + ϕ(t),

whenever λ ≥ α
γa , since C can be chosen to be ∥A†∥

σ = 1
γa by Lemma 2.2. The bridge

penalty function, on the other hand, is locally Lipschitz continuous everywhere except at
0. Since γ ∈ (0, 1), tp is Lipschitz continuous on [(1 − γ)a/2,∞) with Lipschitz constant
p[(1−γ)a/2]p−1. From Theorem 3.1 and Remark 3.1, we conclude that any local minimizer
of (3.1) is a local minimizer of the problem

min
t

λ(|t− a|2 − γ2a2)+ + ϕ(t),

whenever λ ≥ p[(1−γ)a/2]p−1

γa .

3.3 When Φ is not locally Lipschitz continuous at some points

In this subsection, we suppose that Φ(x) is not locally Lipschitz continuous at some points.
To proceed, we make an assumption for Φ that will be used subsequently.

Assumption 3.1. The function Φ(x) =
∑n

i=1 ϕ(xi) is continuous and nonnegative with
ϕ(0) = 0, and is locally Lipschitz continuous everywhere except at 0. Moreover, for any
L > 0, there exists an ϵ > 0 such that whenever |t| < ϵ, we have

ϕ(t) ≥ L|t|. (3.8)

It is not hard to show that the widely used bridge penalty function |x|p, for 0 < p < 1,
satisfies this assumption.

Theorem 3.2 (Local minimizers). Suppose that x∗ is a local minimizer of (1.1) with a
Φ satisfying Assumption 3.1. Then there exists a λ∗ > 0 such that x∗ is a local minimizer
of (1.4) whenever λ ≥ λ∗.

Proof. Suppose first that x∗ = 0. Fix any bounded neighborhood U of 0 and any λ > 0.
Let L denote a Lipschitz constant the function x 7→ λ[(∥Ax− b∥2− σ2)+ + ∥(Bx− h)+∥1]
on U . For this L, by Assumption 3.1, there exists a neighborhood V ⊆ U of zero such
that Φ(x) ≥ L∥x∥1 whenever x ∈ V . Then for any x ∈ V , we have

λ[(∥Ax− b∥2 − σ2)+ + ∥(Bx− h)+∥1] + Φ(x)

≥ λ[(∥Ax− b∥2 − σ2)+ + ∥(Bx− h)+∥1] + L∥x∥1
≥ λ[(∥Ax− b∥2 − σ2)+ + ∥(Bx− h)+∥1] + L∥x∥
≥ λ[(∥b∥2 − σ2)+ + ∥(−h)+∥1],
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where the last inequality follows from the definition of L being a Lipschitz constant. This
shows that x∗ = 0 is a local minimizer of (1.4) for any λ > 0. Thus, to complete the proof,
from now on, we assume that x∗ ̸= 0. Let I denote the support of x∗, i.e., I := {i : x∗i ̸= 0}.
Then I ̸= ∅.

Since x∗ is a local minimizer of (1.1), it follows that x∗I is a local minimizer of the
following optimization problem:

min
xI

∑
i∈I ϕ(xi)

s.t. ∥AIxI − b∥ ≤ σ, BIxI ≤ h, DIxI ≤ d.
(3.9)

Let ϵ̃ = 1
2 min{|x∗i | : i ∈ I} > 0. Then we can choose a small δ > 0 so that x∗I is a

local minimizer of (3.9) and that mini∈I |xi| > ϵ̃ for all xI ∈ B(x∗I ; δ). Next, consider
Ω1 = B(x∗I ; δ) and Ω2 = {xI : ∥AIxI − b∥ ≤ σ, BIxI ≤ h, DIxI ≤ d}. Then we have
from [19, Lemma 4.9] that

dist(xI ,Ω1 ∩ Ω2) ≤ 4 dist(xI ,Ω2)

for all xI ∈ Ω1. Using this and applying Corollary 3.1 with f(xI) =
∑

i∈I ϕ(xi), the Ω1

and Ω2 as defined above, and

Q(xI) = 4C
[
(∥AIxI − b∥2 − σ2)+ + ∥(BIxI − h)+∥1 + ∥(DIxI − d)+∥1

]
for the C given in Lemma 2.1, we conclude that there exists a λ∗ > 0 so that for any
λ ≥ λ∗, there is a neighborhood UI of 0 with UI ⊆ B(0; δ2) such that GI

λ(xI) ≥ GI
λ(x

∗
I)

whenever xI ∈ x∗I + UI , where

GI
λ(xI) = λ

[
(∥AIxI − b∥2 − σ2)+ + ∥(BIxI − h)+∥1 + ∥(DIxI − d)+∥1

]
+
∑
i∈I

ϕ(xi).

We now show that x∗ is a local minimizer of (1.4) with λ ≥ λ∗. Fix any ϵ > 0 and any
λ ≥ λ∗. Consider the (bounded) neighborhood U := UI × (−ϵ, ϵ)n−|I| of 0 and let M be a
Lipschitz constant the function

gλ(x) = λ
[
(∥Ax− b∥2 − σ2)+ + ∥(Bx− h)+∥1 + ∥(Dx− d)+∥1

]
over x∗ + U . Taking L = M in Assumption 3.1, we see that there exists an ϵ0 ∈ (0, ϵ)
such that (3.8) holds with M in place of L whenever |t| < ϵ0. Then, for any v ∈ UI ×
(−ϵ0, ϵ0)n−|I| with x∗ + v ∈ S1, we have

Fλ(x
∗ + v) = Fλ

(
x∗ +

(
vI
vĪ

))
= gλ

(
x∗ +

(
vI
vĪ

))
+
∑
i∈I

ϕ(x∗i + vi) +
∑
i/∈I

ϕ(vi)

≥ gλ
(
x∗I + vI

0

)
−M∥vĪ∥+

∑
i∈I

ϕ(x∗i + vi) +M∥vĪ∥1

≥ GI
λ(x

∗
I) = Fλ(x

∗),

where the first inequality follows from the Lipschitz continuity of gλ with Lipschitz constant
M and (3.8) with L = M , and the last inequality follows from the local optimality of
x∗I , while the second and the last equalities follow from ∥(D(x∗ + v) − d)+∥1 = 0 since
x∗ + v ∈ S1. This shows that x∗ is locally optimal for (1.4) with λ ≥ λ∗, and completes
the proof.

We next study ϵ-minimizers of (1.1) and (1.4), which are defined as follows.
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Definition 3.1. Let ϵ > 0.

1. We say that xϵ is an ϵ-minimizer of (1.1), if xϵ ∈ S and Φ(xϵ) ≤ inf
x∈S

Φ(x) + ϵ.

2. We say that xϵ is an ϵ-minimizer of (1.4), if xϵ ∈ S1 and Fλ(xϵ) ≤ inf
x∈S1

Fλ(x) + ϵ.

In order to establish results concerning ϵ-minimizers, we also need the following defi-
nition.

Definition 3.2. We say that a globally Lipschitz continuous function Ψ with a Lipschitz
constant L is an (L, ϵ)-approximation to Φ if 0 ≤ Ψ(x)− Φ(x) ≤ ϵ for all x.

As a concrete example of such an approximation, consider the case where Φ(x) =∑n
i=1 ϕ(xi) with ϕ(t) = |t|p for some 0 < p < 1. We can consider the following smoothing

function of |t|:

ψµ(t) =

{
|t| if |t| ≥ µ,
t2

2µ + µ
2 otherwise.

Notice that for a fixed µ > 0, the minimum and maximum values of ψµ(t)−|t| are attained
at |t| ≥ µ and t = 0, respectively. Let

Ψµ(x) =
n∑

i=1

ψµ(xi)
p.

Then we have from the above discussion and Lemma 2.4 that

0 ≤ Ψµ(x)− ∥x∥pp ≤ n
(µ
2

)p
. (3.10)

Moreover, for a fixed µ > 0, the function Ψµ is continuously differentiable. The maximum
value of |(ψµ(t)

p)′| is attained at t = µ, and hence we have

|Ψµ(x)−Ψµ(y)| ≤
√
npµp−1∥x− y∥. (3.11)

The inequalities (3.10) and (3.11) show that Ψµ is a (
√
npµp−1, n(µ/2)p)-approximation

to Φ when ϕ(t) = |t|p.
From the definition of an (L, ϵ)-approximation Ψ, it is easy to show that any global

minimizer of
min
x∈S1

Ψ(x)

s.t. ∥Ax− b∥ ≤ σ, Bx ≤ h,
(3.12)

is an ϵ-minimizer of (1.1). Conversely, any global minimizer x∗ of (1.1) is an ϵ-minimizer
of (3.12). Our next result concerns the global minimizers of (1.1) and the ϵ-minimizers of
(1.4).

Theorem 3.3 (ϵ-minimizers). Suppose that Φ admits an (L, ϵ/2)-approximation Ψ.
Then for any global minimizer x∗ of (1.1), there exists a λ∗ > 0 so that x∗ is an ϵ-
minimizer of (1.4) whenever λ ≥ λ∗, i.e.,

Fλ(x
∗) ≤ inf

x∈S1

Fλ(x) + ϵ; (3.13)

in particular, one can take λ∗ = CL, where C is the constant in Lemma 2.1.
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Proof. From the definition of an (L, ϵ/2)-approximation, we see that any global min-
imizer x∗ of (1.1) is an ϵ/2-minimizer of (3.12). Moreover, since Ψ is globally Lipschitz
continuous with Lipschitz constant L, we have for any x ∈ S1 that

L̃ dist(x, S) + Ψ(x) = L̃ ∥x− PS(x)∥+Ψ(x) ≥ Ψ(PS(x)) ≥ Ψ(x∗)− ϵ

2
,

where L̃ is any number greater than or equal to L and the second inequality follows
from the ϵ/2-optimality of x∗ for (3.12). This shows that x∗ is an ϵ/2-minimizer of the
optimization problem

min
x∈S1

L̃ dist(x, S) + Ψ(x).

Combining this fact with Lemma 2.1, it is not hard to show that x∗ is an ϵ/2-minimizer
of

min
x∈S1

CL̃
[
(∥Ax− b∥2 − σ2)+ + ∥(Bx− h)+∥1

]
+Ψ(x).

Using this and the fact that 0 ≤ Ψ(x)− Φ(x) ≤ ϵ/2 for all x, we have further that for all
x ∈ S1,

FCL̃(x) = CL̃
[
(∥Ax− b∥2 − σ2)+ + ∥(Bx− h)+∥1

]
+Φ(x)

≥ CL̃
[
(∥Ax− b∥2 − σ2)+ + ∥(Bx− h)+∥1

]
+Ψ(x)− ϵ

2

≥ CL̃
[
(∥Ax∗ − b∥2 − σ2)+ + ∥(Bx∗ − h)+∥1

]
+Ψ(x∗)− ϵ

2
− ϵ

2
= FCL̃(x

∗)− ϵ,

i.e., (3.13) holds with λ∗ = CL.
So far we have shown that if x∗ is locally or globally optimal for (1.1), then it is also

optimal in some sense for (1.4), when λ is sufficiently large. Conversely, it is clear that
if x∗ is optimal (locally or being an ϵ-minimizer) for (1.4) for some λ > 0, and x∗ is also
feasible for (1.1), then it is also optimal for (1.1). Our next result studies the case when
x∗ is not necessarily feasible for (1.1).

Theorem 3.4 (ϵ-minimizers feasible for (1.1)). Suppose that Φ(x) =
∑n

i=1 ϕ(xi) with
ϕ being Hölder continuous for some 0 < p < 1, i.e., there exists a K > 0 such that

|ϕ(s)− ϕ(t)| ≤ K|s− t|p

for any s, t ∈ IR. Take any ϵ > 0 and fix any x̃ ∈ S. Consider any

λ >
K

1
pCΦ(x̃)

(n
p
2
−1ϵ)

1
p

,

with C chosen as in Lemma 2.1. Then for any global minimizer xλ of (1.4), the projection
PS(xλ) is an ϵ-minimizer of (1.1).

Proof. We first note from the global optimality of xλ that Fλ(xλ) ≤ Fλ(x̃), from which
we immediately obtain that

(∥Axλ − b∥2 − σ2)+ + ∥(Bxλ − h)+∥1 ≤
1

λ
Fλ(xλ) ≤

1

λ
Fλ(x̃) =

1

λ
Φ(x̃). (3.14)
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Next, for the projection PS(xλ), we have

Φ(PS(xλ))− Φ(xλ) ≤ K
n∑

i=1

|[PS(xλ)]i − [xλ]i|p = nK
1

n

n∑
i=1

(
|[PS(xλ)]i − [xλ]i|2

) p
2

≤ nK

(
1

n

n∑
i=1

|[PS(xλ)]i − [xλ]i|2
) p

2

= Kn1−
p
2 ∥PS(xλ)− xλ∥p

= Kn1−
p
2distp(xλ, S) ≤ KCpn1−

p
2
[
(∥Axλ − b∥2 − σ2)+ + ∥(Bxλ − h)+∥1

]p
≤ Kn1−

p
2

(
CΦ(x̃)

λ

)p

,

(3.15)

where the first inequality follows from the assumption on Hölder continuity, the second one
holds due to the concavity of the function t 7→ t

p
2 for nonnegative t, the third inequality

follows from Lemma 2.1 and the fact that xλ ∈ S1, while the last one follows from (3.14).
On the other hand, for any x ∈ S, we have from the optimality of xλ for (1.4) and the
definition of Fλ that Fλ(xλ) ≤ Fλ(x) = Φ(x). From this we see immediately that

Φ(xλ) ≤ Fλ(xλ) ≤ inf
x∈S

Φ(x).

Combining this with (3.15), we obtain further that

0 ≤ Φ(PS(xλ))− inf
x∈S

Φ(x) ≤ Kn1−
p
2

(
CΦ(x̃)

λ

)p

< ϵ,

from our choice of λ. This shows that PS(xλ) is an ϵ-minimizer of (1.1).
From Lemma 2.4, it is easy to see that t 7→ |t|p, 0 < p < 1, is Hölder continuous with

K = 1. Thus, we have the following immediate corollary when Φ(x) = ∥x∥pp, 0 < p < 1.

Corollary 3.2. Suppose that Φ(x) = ∥x∥pp for some 0 < p < 1. Take any ϵ > 0 and fix
any x̃ ∈ S. Consider any

λ >
C∥x̃∥pp

(n
p
2
−1ϵ)

1
p

,

with C chosen as in Lemma 2.1. Then for any global minimizer xλ of (1.4), the projection
PS(xλ) is an ϵ-minimizer of (1.1).

4 Algorithm

In this section we propose a penalty method for solving problem (1.1). Based on our
discussion in the previous section, a natural penalty method for solving (1.1) would be
to solve the problem (1.4) once with an exact penalty parameter λ. This approach is,
however, not appealing in practice because such λ may be hard to estimate, or it may
be over-estimated and the resulting penalty problem becomes very ill-conditioned. To
circumvent these potential difficulties, we propose a practical penalty method that solves
a sequence of penalty subproblems in the form of (1.4) with a gradually increased penalty
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parameter. In addition, the approximate solution of the current subproblem will be used
as the starting point for solving the next subproblem.

Our algorithm is presented in Section 4.2, where we show that any cluster point of
the sequence generated from our algorithm is a KKT point of problem (1.1), under a
suitable constraint qualification. To prepare for our convergence analysis, we start by
discussing the first-order optimality conditions for problems (1.1) and (1.4) and describing
the constraint qualification in Section 4.1.

4.1 First-order optimality conditions

In this subsection, we discuss the first-order optimality conditions for problems (1.1) and
(1.4).

We first look at model (1.4). Since the objective is a sum of a locally Lipschitz contin-
uous function and the lower semicontinuous function Φ + δS1 , it follows from [27, Theo-
rem 8.15], [27, Theorem 10.1] and [27, Exercise 10.10] that at any locally optimal solution
x̄ of (1.4), we have

0 ∈ ∂(λ(∥A · −b∥2 − σ2)+)(x̄) + ∂(λ∥(B · −h)+∥1)(x̄) + ∂(Φ + δS1)(x̄). (4.1)

This motivates the following definition.

Definition 4.1 (First-order stationary point of (1.4)). We say that x∗ is a first-order
stationary point of (1.4) if x∗ ∈ S1 and (4.1) is satisfied with x∗ in place of x̄.

In the special case where Φ(x) =
∑n

i=1 ϕ(xi) with ϕ(t) = |t|p, it is easy to check that
∂ϕ(t) = {p sign(t) |t|p−1} whenever t ̸= 0 and, from Lemma 2.5 (i), we have ∂ϕ(0) = IR.
Moreover, for the first subdifferential in (4.1), we have the following explicit expression

∂(λ(∥A · −b∥2 − σ2)+)(x̄) =


0 if ∥Ax̄− b∥ < σ,

conv{0, 2λAT (Ax̄− b)} if ∥Ax̄− b∥ = σ,

2λAT (Ax̄− b) otherwise.

(4.2)

Thus, in the case when B is vacuous and S1 = IRn, we have that x∗ is a first-order
stationary point of (1.4) if and only if

0 = 2νλ[AT (Ax∗ − b)]i + p sign(x∗i ) |x∗i |p−1, ∀i ∈ I (4.3)

with I = {i : x∗i ̸= 0} for some ν satisfying

ν


= 0 if ∥Ax∗ − b∥ < σ,

∈ [0, 1] if ∥Ax∗ − b∥ = σ,

= 1 otherwise.

This is because the inclusion (4.1) is trivial for i /∈ I. Using the definition of I, it is not
hard to see that (4.3) is further equivalent to

0 = 2νλDiag(x∗)AT (Ax∗ − b) + p|x∗|p, (4.4)

with the same ν defined above.
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We next turn to the KKT points of (1.1). We recall from [27, Theorem 8.15] that at
any locally optimal solution x̄ of (1.1), we have

0 ∈ NS2(x̄) + ∂(Φ + δS1)(x̄), (4.5)

assuming the following constraint qualification holds:

−∂∞
(Φ + δS1)(x̄) ∩NS2(x̄) = {0}. (4.6)

This motivates the following definition.

Definition 4.2 (KKT point of (1.1)). We say that x∗ is a KKT point of (1.1) if x∗ ∈ S
and (4.5) is satisfied with x∗ in place of x̄.

Since there exists x0 with ∥Ax0− b∥ < σ, in the case when B is vacuous and S1 = IRn,
we have

NS(x̄) =

{
{µAT (Ax̄− b) : µ ≥ 0} ̸= {0} if ∥Ax̄− b∥ = σ,

{0} if ∥Ax̄− b∥ < σ;
(4.7)

see, for example, Theorem 1.3.5 in [15, Section D]. In the special case where Φ(x) =∑n
i=1 ϕ(xi) with ϕ(t) = |t|p and that B is vacuous and S1 = IRn, similarly as above, one

can see that an x∗ satisfying ∥Ax∗ − b∥ = σ is a KKT point of (1.1) if and only if there
exists a µ ≥ 0 so that

0 = µ[AT (Ax∗ − b)]i + p sign(x∗i ) |x∗i |p−1, ∀i ∈ I,

with I = {i : x∗i ̸= 0}. This condition is further equivalent to

0 = µDiag(x∗)AT (Ax∗ − b) + p|x∗|p. (4.8)

On the other hand, we recall from Lemma 2.5 (ii) that

∂
∞
Φ(x∗) = {v : vi = 0 for i ∈ I}.

Since NS(x
∗) = {µAT (Ax∗ − b) : µ ≥ 0}, the constraint qualification (4.6) is equivalent

to [AT (Ax∗ − b)]i being nonzero for some i ∈ I. From the definition of I, this constraint
qualification can be equivalently formulated as

Diag(x∗)AT (Ax∗ − b) ̸= 0. (4.9)

On passing, recall from Proposition 5.3.1 (i) and Remark 5.3.2 in [15, Section A] that
we have

NS2(x) = N∥A·−b∥≤σ(x) +NB·≤h(x)

at any x ∈ S2, thanks to the existence of x0 ∈ S with ∥Ax0 − b∥ < σ by our blanket
assumption. It is then not hard to see from the definitions that any first-order stationary
point of (1.4) that lies in S is a KKT point of (1.1). Conversely, any KKT point of (1.1)
is a first-order stationary point of (1.4) for some λ > 0.

Before ending this subsection, we comment on the magnitude of the nonzero entries of
a first-order stationary point x∗ of (1.4), assuming Φ(x) =

∑n
i=1 ϕ(xi) for some continuous

function ϕ. To facilitate comparison with existing work, we focus on the case where B
is vacuous and S1 = IRn. Note that in this case, the definition of Fλ(x) reduces to
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λ(∥Ax − b∥2 − σ2)+ + Φ(x). Then it follows from the stationarity of x∗ and (4.1) that
there exists 0 ≤ ν ≤ 1 so that at any i with x∗i ̸= 0, we have for some ξi ∈ ∂ϕ(x∗i ),

−ξi = 2νλ[AT (Ax∗ − b)]i.

Let x⋄ be chosen so that Fλ(x
∗) ≤ Fλ(x

⋄). Then for each i with xi ̸= 0,

|ξi| ≤ 2λ∥AT (Ax∗ − b)∥ ≤ 2λ∥A∥∥Ax∗ − b∥

≤ 2
√
λ∥A∥

√
(λ∥Ax∗ − b∥2 − λσ2)+ + λσ2

≤ 2
√
λ∥A∥

√
Fλ(x∗) + λσ2 ≤ 2

√
λ∥A∥

√
Fλ(x⋄) + λσ2,

(4.10)

where the fourth inequality follows from the nonnegativity of Φ, and the last inequality
follows from the choice of x⋄. A concrete lower bound can be derived for some specific ϕ.
For example, consider ϕ(t) = |t|p for p ∈ (0, 1). Then we have from (4.10) that for x∗i ̸= 0,

p|x∗i |p−1 ≤ 2
√
λ∥A∥

√
Fλ(x⋄) + λσ2 =⇒ |x∗i | ≥

(
p

2
√
λ∥A∥

√
Fλ(x⋄) + λσ2

) 1
1−p

> 0.

(4.11)
Since local minimizers of (1.1) are local minimizers of (1.4) for some λ∗ > 0 according to
Theorem 3.2, and local minimizers of (1.4) are first-order stationary points of (1.4), the
above discussion also gives a lower bound on the magnitude of the nonzero entries of the
local minimizers of (1.1) when B is vacuous and S1 = IRn.

Remark 4.1. In the recent paper [7], the authors derived a lower bound on the magnitudes
of the nonzero entries of any first-order stationary point x̂ of (1.3) with Hλ(x) = λ∥Ax−
b∥2 + ∥x∥pp for some 0 < p < 1. Their lower bound is given by

|x̂i| ≥

(
p

2
√
λ∥A∥

√
Hλ(x̃)

) 1
1−p

> 0, for x̂i ̸= 0,

with x̃ chosen so that Hλ(x̂) ≤ Hλ(x̃); see [7, Theorem 2.3]. This lower bound is similar
to (4.11) except that Fλ(x

⋄) + λσ2 is replaced by Hλ(x̃). Notice that when x⋄ = x̃, we
always have Fλ(x

⋄) + λσ2 ≥ Hλ(x
⋄), and these two values are the same if ∥Ax⋄ − b∥ ≥ σ.

In particular, when x⋄ = x̃ = 0 and ∥b∥ ≥ σ, the guaranteed lower bounds for both models

are the same and is given by
( p
2λ∥A∥∥b∥

) 1
1−p .

4.2 Penalty method for solving (1.1)

In this subsection, we present details of our penalty method for solving (1.1). Before pro-
ceeding, we make the following assumption on Φ and S1, which is standard in guaranteeing
the sequence generated by an algorithm is bounded.

Assumption 4.1. The function Φ+ δS1 has bounded level sets.

Based on our previous discussions, an ϵ-minimizer of (1.1) can be obtained by finding
a globally optimal solution of (1.4) with a sufficiently large λ. This approach is, however,
not appealing because such λ may be hard to estimate, or it may be over-estimated and
the resulting penalty problem becomes very ill-conditioned. Instead, it is natural to solve
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a sequence of problems in the form of (1.4) in which λ gradually increases. This scheme
is commonly used in the classical penalty method. Also, notice that the first part of the
objective of (1.4) is convex but nonsmooth. For an efficient implementation, we solve a
sequence of partially smooth counterparts of (1.4) in the form of

min
x∈S1

Fλ,µ(x) := fλ,µ(x) + Φ(x) (4.12)

for some λ, µ > 0, where

fλ,µ(x) := hλ,µ(∥Ax− b∥2 − σ2) +
ℓ∑

i=1

hλ,µ([Bx− h]i) with hλ,µ(s) := λ max
0≤t≤1

{
st− µ

2
t2
}
,

where the function hλ,µ(·) is a µ-smoothing for the function s→ λ · s+; see [26, Eq. 4] and
the discussions therein.

It is not hard to show that for all x ∈ IRn,

0 ≤ fλ,µ(x) ≤ λ[(∥Ax− b∥2 − σ2)+ + ∥(Bx− h)+∥1] ≤ fλ,µ(x) +
ℓ+ 1

2
λµ, (4.13)

and

∇fλ,µ(x) = 2h′λ,µ(∥Ax− b∥2 − σ2)AT (Ax− b) +
ℓ∑

i=1

h′λ,µ([Bx− h]i)bi, (4.14)

where bi is the column vector formed from the ith row of B, and the function h′λ,µ satisfies

h′λ,µ(s) = λmin

{
max

{
s

µ
, 0

}
, 1

}
, (4.15)

|h′λ,µ(s1)− h′λ,µ(s2)| ≤
λ

µ
|s1 − s2| ∀s1, s2 ∈ IR. (4.16)

To solve (4.12), we consider an adaptation of the nonmonotone proximal gradient (NPG)
method proposed in [28]. In [28], the NPG method was proposed to solve a class of
unconstrained problems in the form of

min
x
f(x) + P (x), (4.17)

where f and P are finite-valued functions in IRn, and moreover, f is differentiable in
IRn and its gradient is globally Lipschitz continuous in IRn. The convergence analysis
for the NPG method conducted in [28] relies on the global Lipschitz continuity of ∇f .
Though the objective of (4.12) is in the same form as that of (4.17), we observe from
(4.14) that ∇fλ,µ is locally but not globally Lipschitz continuous in IRn. It thus appears
that the NPG method [28] may not be applicable to our problem (4.12). We are, however,
fortunately able to show in Appendix A that this NPG method is indeed capable of
solving a more general class of problems that satisfies Assumption A.1. We next verify
that Assumption A.1 holds for problem (4.12) with f = fλ,µ and P = Φ + δS1 . As a
consequence, the NPG method is applicable to our problem (4.12).

First, it is easy to see that Assumption A.1 (ii) holds. Let x0 ∈ S1 be arbitrarily
chosen. It follows from (4.13) that fλ,µ(x) ≥ 0, which implies that

Ω(x0) :=
{
x ∈ S1 : Fλ,µ(x) ≤ Fλ,µ(x

0)
}
⊆
{
x ∈ S1 : Φ(x) ≤ Fλ,µ(x

0)
}
. (4.18)
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The set on the right hand side is nonempty and bounded by Assumption 4.1, and hence
Ω(x0) is nonempty and compact. Since fλ,µ + Φ is a continuous function, it is uniformly
continuous and bounded below in Ω(x0). Consequently, Assumption A.1 (iii) holds. One
can also easily verify that Assumption A.1 (iv) holds using the compactness of Ω(x0)
and the nonnegativity of Φ. Finally, it is routine to show that ∇fλ,µ is locally Lipschitz
continuous. This together with the compactness of Ω(x0) shows that Assumption A.1 (i)
also holds. Therefore, the NPG method can be suitably applied to solving problem (4.12).

We now establish a convergence result for the NPG method applied to problem (4.12).

Theorem 4.1. Suppose that Assumption 4.1 holds. Given any x0 ∈ S1, let {xk} be the
sequence generated by the NPG method applied to problem (4.12). There hold:

(i) {xk} is bounded;

(ii) Any accumulation point x∗ of {xk} is a first-order stationary point of problem (4.12),
that is, it satisfies

0 ∈ ∇fλ,µ(x∗) + ∂(Φ + δS1)(x
∗). (4.19)

Proof. (i) It follows from (4.18) and Proposition A.1 (i) with f = fλ,µ and P = Φ+δS1

that
{xk} ⊆ {x ∈ S1 : Fλ,µ(x) ≤ Fλ,µ(x

0)} ⊆ {x ∈ S1 : Φ(x) ≤ Fλ,µ(x
0)}

and hence {xk} is bounded.
(ii) In view of Proposition A.1 (ii), L̄k ≤ L̃ for some L̃ > 0 and all k ≥ 0. It

follows from (A.4) with f = fλ,µ and P = Φ + δS1 , together with [27, Theorem 10.1]
and [27, Exercise 10.10] that

0 ∈ ∇fλ,µ(xk) + L̄k(x
k+1 − xk) + ∂(Φ + δS1)(x

k+1).

Suppose that x∗ is an accumulation point of {xk}. Then there exists a subsequence K
such that {xk}K → x∗. Upon taking limits as k ∈ K → ∞ on both sides of the above
inclusion and using Theorem A.1 and (2.1), we see that (4.19) holds.

We are now ready to present a penalty method for solving problem (1.1).

Penalty method for problem (1.1):

Let xfeas be an arbitrary feasible point of problem (1.1). Choose x0 ∈ S1, λ0 > 0, µ0 > 0,
ϵ0 > 0, ρ > 1 and θ ∈ (0, 1) arbitrarily. Set k = 0 and x0,0 = x0 ∈ S1.

1) If Fλk,µk
(xk,0) > Fλk,µk

(xfeas), set xk,0 = xfeas. Apply the NPG method with xk,0 as
the initial point to find an approximate stationary point xk to problem (4.12) with
λ = λk and µ = µk satisfying

dist(0,∇fλk,µk
(xk) + ∂(Φ + δS1)(x

k)) ≤ ϵk. (4.20)

2) Set λk+1 = ρλk, µk+1 = θµk, ϵk+1 = θϵk and xk+1,0 = xk.

3) Set k ← k + 1 and go to step 1).

end
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Remark 4.2. By virtue of Theorem 4.1, an xk satisfying (4.20) can be found by the NPG
method within a finite number of iterations. Therefore, the sequence {xk} is well defined.

Convergence results for the above penalty method for solving problem (1.1) are pre-
sented in the next theorem. The arguments in the proof are standard and similar to the
standard convergence analysis of the classical penalty methods, except that we make use
of (i) the feasible point xfeas to guarantee that any limit point is feasible for (1.1); (ii) the
constraint qualification (4.6) to guarantee the boundedness of “Lagrange multipliers”. For
completeness, we include the proof in Appendix B.

Theorem 4.2. Suppose that Assumption 4.1 holds. Let {xk} be generated by the above
penalty method for solving problem (1.1). There hold:

(i) {xk} is bounded;

(ii) Any accumulation point x∗ of {xk} is a feasible point of problem (1.1).

(iii) Suppose that {xk}K → x∗ for some subsequence K and that the constraint qualifica-
tion (4.6) holds at x∗. Then x∗ is a KKT point of problem (1.1).

5 Numerical simulations

In this section, we consider the problem of recovering a sparse solution of an underde-
termined linear system from noisy measurements. In the literature, this is typically done
via solving (1.2) or (1.3) with a specific sparsity inducing function Φ, e.g., the ℓ1 norm or
the ℓ1/2 quasi-norm; see, for example, [2, 3, 6, 7] and references therein. Here, we propose
using the model (1.2) (a special case of (1.1) with S1 = IRn and B being vacuous) with
Φ(x) =

∑n
i=1 |xi|p, p = 1/2. We solve this problem using our penalty method proposed in

Subsection 4.2, which involves solving a sequence of subproblems in the form of (1.4). We
benchmark our method against two other approaches:

1. the solver SPGL1 [2] (Version 1.8) that solves (1.2) with Φ(x) = ∥x∥1;

2. the quadratic penalty method that solves (1.3) with Φ(x) =
∑n

i=1 |xi|1/2 and some
suitable λ > 0.

All codes are written in MATLAB, and the experiments were performed in MATLAB
version R2014a on a cluster with 32 processors (2.9 GHz each) and 252G RAM.

For our penalty method, we set x0 = e, the vector of all ones, λ0 = µ0 = ϵ0 = 1, ρ = 2
and θ = 1/ρ. We also set xfeas = A†b, which we take as an input to the algorithm and
does not count this computation in our CPU time below. For the NPG method for solving
the unconstrained subproblem (4.12) at λ = λk and µ = µk, we set Lmin = 1, Lmax = 108,
τ = 2, c = 10−4, M = 4, L0

0 = 1 and, for any l ≥ 1,

L0
l := min

{
max

{
[xk,l − xk,l−1]T [∇fλk,µk

(xk,l)−∇fλk,µk
(xk,l−1)]

∥xk,l − xk,l−1∥2
, Lmin

}
, Lmax

}
.

The NPG method is terminated (at the lth inner iteration) when

∥Diag(xk,l)∇fλk,µk
(xk,l)+p|xk,l|p∥∞ ≤

√
ϵk and

|Fλk,µk
(xk,l)− Fλk,µk

(xk,l−1)|
max{1, |Fλk,µk

(xk,l)|}
≤ min{ϵ2k, 10−4}.
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Note that the first condition above means the first-order optimality condition (4.8) is
approximately satisfied. The penalty method itself is terminated when

max
{
(∥Axk − b∥2 − σ2)+, 0.01ϵk

}
≤ 10−6,

with the ϵk+1 in step 2) of the penalty method updated as max{θϵk, 10−6} (instead of θϵk)
in our implementation.

For the aforementioned SPGL1 [2], we use the default settings. For the quadratic
penalty model (1.3), as discussed in our Example 3.1, there may be no λ > 0 so that
the local minimizers of (1.3) are closely related to those of (1.2). However, one can
observe as λ increases from 0 to ∞, the residual ∥Ax̃(λ) − b∥ changes from ∥b∥ to 0,
where x̃(λ) is an optimal solution of (1.3). Thus, a possibly best approximate solution
to (1.1) offered by model (1.3) appears to be the one corresponding to the least λ such
that ∥Ax̃(λ) − b∥ ≤ σ. However, such a λ is typically unknown. Instead, we solve a
sequence of problem (1.3) along an increasing sequence of λ, and terminate when the
approximate solution is approximately feasible for (1.2). Specifically, we apply the same
scheme described in our penalty method but with Hλ in place of Fλ,µ and λ∥Ax − b∥2
in place of fλ,µ, and we use exactly the same parameter settings as above. For ease of
reference, we call this approach and our proposed penalty method as “Inexact Penalty”
and “Exact Penalty” methods, respectively.

We consider randomly generated instances. First, we generate a matrix Ã ∈ IRK×N

with i.i.d. standard Gaussian entries. The matrix A is then constructed so that its rows
form an orthonormal basis for the row space of Ã. Next, we generate a vector v ∈ IRT

with i.i.d. standard Gaussian entries. We choose an index set I of size T at random and
define a vector x̂ ∈ IRN by setting x̂I = v and x̂Ī = 0. The measurement b is then set to
be Ax̂ + δξ for some δ > 0, with each entry of ξ following again the standard Gaussian
distribution. Finally, we set σ = δ∥ξ∥ so that the resulting feasible set will contain the
sparse vector x̂.2

In our tests below, we set (K,N, T ) = (120i, 512i, 20i) for each i = 12, 14, ..., 30 and
generate 10 random instances for each such (K,N, T ) as described above. The compu-
tational results reported are averaged over the 10 instances, and they are reported in
Tables 1, 2 and 3, which present results for δ = 10−2, 5 × 10−3 and 10−3, respectively.
For all three methods, we report the number of nonzero entries (nnz) in the approximate
solution x obtained, computed using the MATLAB function nnz, the recovery error (err)
∥x− x̂∥, and the CPU time in seconds. We also report the function value Φ(x) at termina-
tion (fval) for the penalty methods. One can observe from these tables that our penalty
method usually produces sparser solutions with smaller recovery errors than the other two
approaches though it is in general slower than SPGL1. Moreover, in contrast with the
method “Inexact Penalty”, our penalty method achieves smaller objective values. These
phenomena indeed reflect the intrinsic advantage of our approach.

6 Concluding remarks

Optimization models in finding sparse solutions to underdetermined systems of linear
equations have stimulated development in signal processing and image sciences. The

2In our simulations, all random instances satisfy ∥b∥ > σ, which implies that the origin is excluded from
the feasible region of the problem.
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Table 1: Comparing the penalty method and SPGL1, δ = 10−2

Data SPGL1 Inexact Penalty Exact Penalty
K N T nnz err CPU fval nnz err CPU fval nnz err CPU

1440 6144 240 719 1.2e+00 0.69 2.89e+02 859 9.2e-01 15.27 1.90e+02 219 5.1e-01 5.08
1680 7168 280 837 1.3e+00 0.80 3.38e+02 998 1.0e+00 17.44 2.23e+02 257 5.5e-01 5.79
1920 8192 320 943 1.4e+00 1.06 3.87e+02 1139 1.1e+00 23.85 2.57e+02 294 5.7e-01 7.37
2160 9216 360 1050 1.5e+00 1.27 4.35e+02 1290 1.1e+00 28.91 2.87e+02 330 6.1e-01 10.37
2400 10240 400 1188 1.6e+00 1.53 4.82e+02 1430 1.2e+00 34.38 3.17e+02 366 6.6e-01 11.80
2640 11264 440 1266 1.6e+00 1.87 5.31e+02 1568 1.3e+00 43.91 3.49e+02 402 6.7e-01 13.98
2880 12288 480 1404 1.7e+00 2.20 5.78e+02 1712 1.3e+00 51.89 3.81e+02 439 7.0e-01 20.21
3120 13312 520 1500 1.7e+00 2.79 6.28e+02 1849 1.4e+00 64.28 4.15e+02 474 7.4e-01 21.67
3360 14336 560 1656 1.8e+00 2.92 6.75e+02 2000 1.4e+00 64.65 4.46e+02 514 7.7e-01 24.77
3600 15360 600 1755 1.9e+00 3.28 7.24e+02 2137 1.5e+00 75.72 4.78e+02 546 7.9e-01 25.12

Table 2: Comparing the penalty method and SPGL1, δ = 5× 10−3

Data SPGL1 Inexact Penalty Exact Penalty
K N T nnz err CPU fval nnz err CPU fval nnz err CPU

1440 6144 240 727 6.1e-01 0.78 2.54e+02 738 4.4e-01 10.40 1.94e+02 228 2.5e-01 4.68
1680 7168 280 827 6.7e-01 0.97 2.94e+02 865 4.9e-01 13.20 2.23e+02 266 2.7e-01 5.67
1920 8192 320 960 7.2e-01 1.31 3.39e+02 988 5.3e-01 18.56 2.57e+02 304 2.9e-01 7.93
2160 9216 360 1068 7.5e-01 1.58 3.83e+02 1104 5.5e-01 23.95 2.92e+02 342 3.0e-01 11.55
2400 10240 400 1195 7.9e-01 1.89 4.28e+02 1230 5.8e-01 29.73 3.26e+02 378 3.2e-01 11.47
2640 11264 440 1320 8.4e-01 2.35 4.66e+02 1352 6.1e-01 35.31 3.54e+02 416 3.5e-01 15.63
2880 12288 480 1422 8.7e-01 2.78 5.10e+02 1472 6.4e-01 40.89 3.88e+02 455 3.6e-01 16.76
3120 13312 520 1580 9.3e-01 3.23 5.54e+02 1600 6.7e-01 46.70 4.22e+02 496 3.7e-01 20.15
3360 14336 560 1668 9.5e-01 3.43 5.94e+02 1715 6.9e-01 52.10 4.53e+02 530 3.8e-01 24.81
3600 15360 600 1794 9.8e-01 3.89 6.40e+02 1841 7.2e-01 54.26 4.87e+02 570 3.9e-01 26.36

Table 3: Comparing the penalty method and SPGL1, δ = 10−3

Data SPGL1 Inexact Penalty Exact Penalty
K N T nnz err CPU fval nnz err CPU fval nnz err CPU

1440 6144 240 743 1.3e-01 1.24 2.02e+02 345 6.1e-02 5.63 1.95e+02 236 4.9e-02 6.49
1680 7168 280 880 1.4e-01 1.47 2.38e+02 396 6.5e-02 6.35 2.30e+02 275 5.5e-02 6.75
1920 8192 320 995 1.4e-01 1.93 2.74e+02 460 7.0e-02 8.21 2.64e+02 315 5.8e-02 8.84
2160 9216 360 1120 1.5e-01 2.08 3.08e+02 511 7.3e-02 9.36 2.97e+02 354 6.1e-02 11.23
2400 10240 400 1232 1.6e-01 2.59 3.41e+02 573 7.9e-02 11.51 3.28e+02 393 6.4e-02 13.60
2640 11264 440 1410 1.7e-01 2.96 3.73e+02 631 8.3e-02 13.78 3.59e+02 431 6.8e-02 17.26
2880 12288 480 1476 1.7e-01 3.71 4.08e+02 687 8.6e-02 15.82 3.93e+02 472 7.0e-02 18.00
3120 13312 520 1613 1.9e-01 4.13 4.42e+02 742 9.0e-02 18.29 4.26e+02 511 7.5e-02 23.66
3360 14336 560 1720 1.9e-01 4.81 4.78e+02 803 9.4e-02 21.97 4.61e+02 551 7.7e-02 28.99
3600 15360 600 1857 2.0e-01 5.17 5.07e+02 863 9.8e-02 24.26 4.87e+02 591 7.9e-02 27.44

constrained optimization model (1.2) and regularization model (1.3) have been widely
used in this context when the data has noise. The existence of a regularization parameter
λ such that problems (1.2) and (1.3) have a common global minimizer is known if the
function Φ is convex. However, when Φ is nonconvex, such a λ does not always exist,
as shown in Example 3.1. In this paper, we proposed a new penalty model (1.4) for the
more general problem (1.1) where Φ can be nonconvex nonsmooth, perhaps even non-
Lipschitz. We studied the existence of exact penalty parameters for (1.1) regarding local
minimizers, stationary points and ϵ-minimizers. Moreover, we proposed a new penalty
method which solves the constrained problem (1.1) by solving a sequence of (1.4) via
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the proximal gradient algorithm, with an update scheme for the penalty parameters. We
also proved the convergence of the penalty method to a KKT point of (1.1). Preliminary
numerical results showed that our penalty method is efficient for finding sparse solutions
to underdetermined systems.

A Convergence of a nonmonotone proximal gradient method

In this appendix, we consider an algorithm for solving the following optimization problem

min
x
F (x) := f(x) + P (x), (A.1)

where f and P satisfy the following assumptions:

Assumption A.1. (i) f is continuously differentiable in U(x0; ∆) for some x0 ∈ domP :=
{x : P (x) <∞} and ∆ > 0, and moreover, there exists some Lf > 0 such that

∥∇f(x)−∇f(y)∥ ≤ Lf∥x− y∥, ∀x, y ∈ U(x0;∆), (A.2)

where

U(x0,∆) :=
{
x : ∥x− z∥ ≤ ∆ for some z ∈ Ω(x0)

}
,

Ω(x0) :=
{
x ∈ IRn : F (x) ≤ F (x0)

}
.

(ii) P is a proper lower semicontinuous function in IRn.

(iii) F is bounded below and uniformly continuous in Ω(x0).

(iv) The quantities A, B and C defined below are finite:

A := sup
x∈Ω(x0)

∥∇f(x)∥, B := sup
x∈Ω(x0)

P (x), C := inf
x∈IRn

P (x). (A.3)

The algorithm we consider is a nonmonotone proximal gradient method, presented as
follows.

Algorithm 1: Nonmonotone proximal gradient (NPG) method for (A.1)

Let x0 be given in Assumption A.1. Choose Lmax ≥ Lmin > 0, τ > 1, c > 0 and an integer
M ≥ 0 arbitrarily. Set k = 0.

1) Choose L0
k ∈ [Lmin, Lmax] arbitrarily. Set Lk = L0

k.

1a) Solve the subproblem

u ∈ Argmin
x

{
⟨∇f(xk), x− xk⟩+ Lk

2
∥x− xk∥2 + P (x)

}
.3 (A.4)

1b) If

F (u) ≤ max
[k−M ]+≤i≤k

F (xi)− c

2
∥u− xk∥2 (A.5)

is satisfied, then go to step 2).

3This problem has at least one optimal solution due to Assumption A.1 (ii) and (iv).
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1c) Set Lk ← τLk and go to step 1a).

2) Set xk+1 ← u, L̄k ← Lk, k ← k + 1 and go to step 1).

end
Although the NPG method has been analyzed in [28], the analysis there relies on the

assumption that ∇f is globally Lipschitz continuous in IRn. In our Assumption A.1, ∇f
is, however, not necessarily globally Lipschitz continuous and thus the analysis in [28]
does not apply directly to problem (A.1). We next show that the NPG method is still
convergent for problem (A.1) under Assumption A.1.

Proposition A.1. Let xk be the approximate solution generated at the end of the kth
iteration, and let

L̄ := max{Lmax, τL, τ(Lf + c)}, L :=
2A∆+ 2(B − C)

∆2
, (A.6)

where A, B, C and ∆ are given in Assumption A.1. Under Assumption A.1, there hold:

(i) xk+1 is well defined and F (xk+1) ≤ F (x0) for all k ≥ 0;

(ii) L̄k is well defined and satisfies L̄k ≤ L̄ for all k ≥ 0.

(iii) For each k ≥ 0, the inner termination criterion (A.5) is satisfied after at most⌊
log(L̄)− log(Lmin)

log τ
+ 1

⌋
inner iterations.

Proof. For convenience, whenever xk is well defined with F (xk) ≤ F (x0), set

xk+1(L) ∈ Argmin
x∈IRn

{
⟨∇f(xk), x− xk⟩+ L

2
∥x− xk∥2 + P (x)

}
∀L > 0. (A.7)

By (A.7), one can then observe that

⟨∇f(xk), xk+1(L)− xk⟩+ P (xk+1(L)) +
L

2
∥xk+1(L)− xk∥2 ≤ P (xk),

which along with (A.3) yields

L

2
∥xk+1(L)− xk∥2 − ∥∇f(xk)∥∥xk+1(L)− xk∥+ C − P (xk) ≤ 0.

Hence, we obtain that

∥xk+1(L)− xk∥ ≤ ∥∇f(x
k)∥+

√
∥∇f(xk)∥2 + 2L(P (xk)− C)

L
. (A.8)

We now prove statements (i) and (ii) by induction. Indeed, for k = 0, we know that
x0 ∈ Ω(x0). Using this relation, (A.3) and (A.8) with k = 0, one can have

∥x1(L)− x0∥ ≤
A+

√
A2 + 2L(B − C)

L
.
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In view of this inequality and (A.6), it is not hard to verify that

∥x1(L)− x0∥ ≤ ∆, ∀L ≥ L.

Using this relation and (A.2), we have

f(x1(L)) ≤ f(x0) + ⟨∇f(x0), x1(L)− x0⟩+
Lf

2
∥x1(L)− x0∥2, ∀L ≥ L.

It follows from this relation and (A.7) that for all L ≥ L,

F (x1(L)) = f(x1(L)) + P (x1(L))

≤ f(x0) + ⟨∇f(x0), x1(L)− x0⟩+ Lf

2 ∥x
1(L)− x0∥2 + P (x1(L))

= f(x0) + ⟨∇f(x0), x1(L)− x0⟩+ L
2 ∥x

1(L)− x0∥2 + P (x1(L)) +
Lf−L

2 ∥x1(L)− x0∥2

≤ f(x0) + P (x0) +
Lf−L

2 ∥x1(L)− x0∥2 = F (x0) +
Lf−L

2 ∥x1(L)− x0∥2,

where the second inequality follows from (A.7). Using this relation, one can immediately
observe that

F (x1(L)) ≤ F (x0)− c

2
∥x1(L)− x0∥2, ∀L ≥ L̂, (A.9)

where
L̂ := max{L,Lf + c}.

This shows that (A.5) must be satisfied after finitely many inner iterations. Moreover,
from the definition of L̄0, we must have either L̄0 = L0

0 or L̄0/τ < L̂. This together with
L0
0 ≤ Lmax implies L̄0 ≤ max{Lmax, τ L̂}, and hence statement (ii) holds for k = 0. We

also see from (A.9) that F (x1) = F (x1(L̄0)) ≤ F (x0). Hence, statement (i) also holds for
k = 0.

We now suppose that statements (i) and (ii) hold for all k ≤ K for some K ≥ 0. It
remains to show that they also hold for k = K+1. Indeed, using the induction hypothesis,
we have xK+1 ∈ Ω(x0). In view of this relation and a similar argument as for k = 0, one
can show that statement (ii) holds for k = K + 1. By the induction hypothesis, we know
that F (xk+1) ≤ F (x0) for all k ≤ K. Using this relation and (A.5) with k = K + 1, one
can conclude that F (xK+2) ≤ F (x0) and hence statement (i) holds for k = K + 1. This
completes the induction.

Finally we prove statement (iii). Let nk denote the total number of inner iterations
executed at the kth outer iteration. One can observe that

Lminτ
nk−1 ≤ L0

kτ
nk−1 = L̄k.

The conclusion then immediately follows from this relation and statement (ii).

We end our discussion with a convergence result for the NPG method, which can be
proved similarly as in [28, Lemma 4].

Theorem A.1. Let xk be the approximate solution generated at the end of the kth itera-
tion. Under Assumption A.1, there holds ∥xk+1 − xk∥ → 0 as k →∞.

25



B Proof of Theorem 4.2

In this section, we present the proof of Theorem 4.2.
Proof. (i) By Proposition A.1, we know that Fλk,µk

(xk) ≤ Fλk,µk
(xk,0). In addition,

from step 1) of the above penalty method, one has Fλk,µk
(xk,0) ≤ Fλk,µk

(xfeas). It then
follows that Fλk,µk

(xk) ≤ Fλk,µk
(xfeas). Using this relation along with (4.13) and the facts

that ∥Axfeas − b∥ ≤ σ and Bxfeas ≤ h, one can have

Φ(xk) ≤ Fλk,µk
(xk) ≤ Fλk,µk

(xfeas) = Φ(xfeas).

Moreover, we also have xk ∈ S1 from the definition. Hence, {xk} is bounded since Φ+ δS1

has bounded level sets.
(ii) Let x∗ be an accumulation point of {xk}. Then there exists a subsequence {xk}K →

x∗. Using Fλk,µk
(xk) ≤ Fλk,µk

(xfeas), (4.13) and the definition of Fλ,µ, we have

λk(∥Axk − b∥2 − σ2)+ + λk∥(Bxk − h)+∥1 ≤ fλk,µk
(xk) + ℓ+1

2 λkµk

≤ Fλk,µk
(xk) + ℓ+1

2 λkµk ≤ Fλk,µk
(xfeas) + ℓ+1

2 λkµk

= Φ(xfeas) + ℓ+1
2 λkµk.

It then follows that

(∥Axk − b∥2 − σ2)+ + ∥(Bxk − h)+∥1 ≤
Φ(xfeas)

λk
+
ℓ+ 1

2
µk.

Taking limits on both sides of this inequality as k ∈ K →∞, one has (∥Ax∗−b∥2−σ2)+ ≤ 0
and ∥(Bx∗ − h)+∥1 ≤ 0. Hence x∗ is a feasible point of problem (1.1).

(iii) Let I∗ := {i : (Bx∗ − h)i = 0}. Then (Bx∗)i < hi for all i /∈ I∗ and we have

NB·≤h(x
∗) =

{∑
i∈I∗

yibi : y ≥ 0

}
,

where bi denotes the column vector formed from the ith row of B. Moreover, for all
sufficiently large k ∈ K, we have (Bxk)i < hi for all i /∈ I∗. Using this and (4.15), we have
wk
i := h′λk,µk

([Bxk−h]i) = 0 for i /∈ I∗ and all sufficiently large k. This together with (4.20)

and (4.14) implies that for all k ∈ K sufficiently large, there exists ξk ∈ ∂(Φ + δS1)(x
k) so

that ∥∥∥∥∥2h′λk,µk
(∥Axk − b∥2 − σ2)AT (Axk − b) + ξk +

∑
i∈I∗

wk
i bi

∥∥∥∥∥ ≤ ϵk. (B.1)

We consider two different cases: ∥Ax∗ − b∥ < σ or ∥Ax∗ − b∥ = σ.
Case 1. Suppose first that x∗ satisfies ∥Ax∗ − b∥ < σ. Then ∥Axk − b∥ < σ for all

sufficiently large k ∈ K. Using this relation and (4.15), we have h′λk,µk
(∥Axk−b∥2−σ2) = 0

for all sufficiently large k ∈ K. Hence, the relation (B.1) reduces to∥∥∥∥∥ξk +∑
i∈I∗

wk
i bi

∥∥∥∥∥ ≤ ϵk. (B.2)

We suppose to the contrary that ∥ξk∥ is unbounded. Without loss of generality, assume

that {∥ξk∥}K →∞ and that lim
k∈K

ξk

∥ξk∥ = ξ∗ for some ξ∗. Divide both sides of (B.2) by ∥ξk∥
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and pass to the limit, making use of ϵk → 0, (2.1) and the closeness of the conical hull of
the finite set {bi : i ∈ I∗}, we see further that ξ∗ ∈ ∂∞

(Φ + δS1)(x
∗) and

−ξ∗ ∈

{∑
i∈I∗

yibi : y ≥ 0

}
= NB·≤h(x

∗) = NS2(x
∗),

where the second equality follows from the fact that ∥Ax∗−b∥ < σ. Since ∥ξ∗∥ = 1, this is
a contradiction to (4.6). This shows that ∥ξk∥ is bounded. By passing to the limit along a
convergent subsequence in (B.2), using (2.1) and the closedness of finitely generated cones,
we obtain

0 ∈ ∂(Φ + δS1)(x
∗) +

{∑
i∈I∗

yibi : y ≥ 0

}
= ∂(Φ + δS1)(x

∗) +NS2(x
∗),

i.e., x∗ is a KKT point of (1.1).
Case 2. Suppose now that x∗ satisfies ∥Ax∗ − b∥ = σ. Observe from (4.15) that

h′λk,µk
(∥Axk − b∥2 − σ2) ≥ 0 for all k. Let tk := 2h′λk,µk

(∥Axk − b∥2 − σ2) for nota-

tional simplicity, and suppose for contradiction that the sequence {∥ξk∥}K is unbounded.
Without loss of generality, assume that {∥ξk∥}K →∞. It follows from (B.1) that∥∥∥∥∥ tk

∥ξk∥
AT (Axk − b) + 1

∥ξk∥
ξk +

∑
i∈I∗

wk
i

∥ξk∥
bi

∥∥∥∥∥ ≤ ϵk
∥ξk∥

. (B.3)

We claim that { tk
∥ξk∥}K is bounded. Suppose to the contrary and without loss of generality

that { tk
∥ξk∥}K → ∞. Dividing both sides of (B.3) by tk

∥ξk∥ , passing to the limit and using

the closedness of finitely generated cones, we see that

0 ∈ AT (Ax∗ − b) +NB·≤h(x
∗). (B.4)

This means that x∗ is an optimal solution of the problem

min
x

1
2∥Ax− b∥

2

s.t. Bx ≤ h.

Since ∥Ax∗−b∥ = σ, this contradicts our assumption that there is x0 ∈ S with ∥Ax0−b∥ <
σ. This contradiction shows that { tk

∥ξk∥}K is bounded. By passing to a further subsequence

if necessary, we may now assume without loss of generality that

lim
k∈K

tk
∥ξk∥

= t∗, and lim
k∈K

ξk

∥ξk∥
= ξ∗.

Note that ξ∗ ∈ ∂∞
(Φ + δS1)(x

∗) due to (2.1). Taking limit on both sides of (B.3) along
this subsequence and making use again of the closedness of finitely generated cones, we
see further that

−ξ∗ ∈ t∗AT (Ax∗ − b) +

{∑
i∈I∗

yibi : y ≥ 0

}
⊆ N∥A·−b∥≤σ(x

∗) +NB·≤h(x
∗) = NS2(x

∗),

(B.5)
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where the set inclusion follows from the fact that ∥Ax∗ − b∥ = σ and the existence of
x0 ∈ S with ∥Ax0−b∥ < σ; this latter condition also gives the last equality in (B.5). Since
∥ξ∗∥ = 1, the relation (B.5) together with ξ∗ ∈ ∂∞

(Φ + δS1)(x
∗) contradicts (4.6). Thus,

the sequence {∥ξk∥}K is bounded.
Next, we claim that {tk}K is bounded. Assume again to the contrary that {tk}K is

unbounded and assume without loss of generality that {tk}K →∞. From (B.1), we have∥∥∥∥∥AT (Axk − b) + 1

tk
ξk +

∑
i∈I∗

wk
i

tk
bi

∥∥∥∥∥ ≤ ϵk
tk
. (B.6)

Passing to the limit in (B.6) and using the boundedness of ξk as well as the closedness of
finitely generated cones, we arrive at (B.4). A contradiction can then be derived similarly
as before. Thus, we conclude that {tk}K is bounded.

Let π∗ be an accumulation point of {tk}K. Without loss of generality, assume that
{tk}K → π∗. Since tk ≥ 0 for all k, one has π∗ ≥ 0. Taking limits on both sides of (B.1)
as k ∈ K → ∞, invoking (2.1), the boundedness of {ξk}k∈K and the closedness of finitely
generated cones, one can see that

0 ∈ π∗AT (Ax∗ − b) + ∂(Φ + δS1)(x
∗) +NB·≤h(x

∗) ⊆ ∂(Φ + δS1)(x
∗) +NS2(x

∗).

This shows that x∗ is a KKT point of (1.1).
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