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Abstract. Using the least element solution of the P0 and Z matrix linear complemen-
tarity problem (LCP), we define an implicit solution function for linear complementarity
constraints (LCC). We show that the sequence of solution functions defined by the unique
solution of the regularized LCP is monotonically increasing and converges to the implicit
solution function as the regularization parameter goes down to zero. Moreover, each com-
ponent of the implicit solution function is convex. We find that the solution set of the
irreducible P0 and Z matrix LCP can be represented by the least element solution and a
Perron-Frobenius eigenvector. These results are applied to convex reformulation of math-
ematical programs with P0 and Z matrix LCC. Preliminary numerical results show the
effectiveness and the efficiency of the reformulation.
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1 Introduction

Many applied problems in engineering and economics [8, 15, 17, 18] involve linear comple-
mentarity constraints(LCC): for a given x ∈ D, find a vector y ∈ Rm such that

0 ≤ y ⊥ q(x) + My ≥ 0 (1.1)

or show that no such vector exists, where D is a subset of Rn, q : Rn → Rm is a continuous
function and M is an m×m matrix. Here a ≥ b means ai ≥ bi for all components of a and
b, and a⊥b means aT b = 0. For instance, the linear program with linear complementarity
constraints (LPCC) [7, 10]

minimize cT x + dT y
subject to Ax ≤ b

0 ≤ y ⊥ p + Nx + My ≥ 0
(1.2)

and differential linear complementarity problems (DLCP)

ẋ = g(t, x, y)
0 ≤ y ⊥ p + Nx + My ≥ 0,

(1.3)
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where p, d ∈ Rm, c ∈ Rn, b ∈ Rl, A ∈ Rl×n, N ∈ Rm×n, and g : Rn+m+1 → Rn. See
[5, 8, 15, 17, 18].

The linear complementarity constraints make the problems hard to solve. For instance,
because of the LCC, the linear program with linear complementarity constraints (1.2)
is not a convex optimization problem and there is no feasible solution satisfying all in-
equalities strictly. The usual mathematical programming constraint qualification such as
Mangasarian-Fromovitz constraint qualification does not hold at any feasible solution [25].

For a fixed x ∈ Rn, the LCC is a linear complementarity problem (LCP), denoted by
LCP(q(x),M). The LCC can be considered as the multivariate parametric linear comple-
mentarity problem which has been studied for sensitivity analysis of the LCP with perturbed
data [5]. In this paper, we present new results for solutions of LCC, which are not only
contributions to the sensitivity analysis of LCP with perturbed data, but also to the study
of problems involving LCC.

We assume that M is a P0 and Z matrix. This implies that for any µ > 0, M + µI is
a P-matrix, and thus an M-matrix [5]. A square matrix is called a P0-matrix (P-matrix)
if all its principal minors are nonnegative (positive). A square matrix is called a Z-matrix
if its off-diagonal entries are non-positive. A square matrix is called an M-matrix if it is a
nonsingular Z-matrix and the entries of its inverse are nonnegative. The P0 and Z matrix
LCP has many applications in engineering and physics sciences [5, 6, 21].

It is known that for the Z-matrix LCP(q(x),M), the solution set

Y(x) := { y | 0 ≤ y ⊥ q(x) + My ≥ 0}
is nonempty if the feasible set

F(x) := { y | 0 ≤ y, q(x) + My ≥ 0}
is nonempty. Moreover, if the feasible set F(x) is nonempty, then F(x) contains a least
element ŷ, i.e., ŷ ≤ y, for all y ∈ F(x), which is a solution of LCP(q(x),M) [5]. Obviously,
if F(x) is nonempty, then the least element uniquely exists [5]. Let

X = {x | ∃ y ∈ Rm
+ , s.t. q(x) ≥ −My}.

The set X depends on q and M in general. If M is an S-matrix then X = Rn [5]. (M is
called an S-matrix if there exists y ∈ Rn

+ such that My > 0.)
In this paper, we first define an implicit solution function y(·) of LCC from X to Rn

+ as
follows: for a vector x ∈ X , y(x) is the least element solution of the linear complementarity
problem, LCP(q(x),M). By the uniqueness of the least element solution, y(·) is a single-
valued function.

Assuming that each component of q is a concave function, we show that X is a convex
set and each component of y(·) is a convex function on X , that is, for any u, v ∈ X , we have
λu + (1− λ)v ∈ X and

y(λu + (1− λ)v) ≤ λy(u) + (1− λ)y(v)

for any λ ∈ (0, 1). This interesting result is proved by using the regularization technique.
Let yµ(x) be the unique solution of the regularized LCP(q(x),M + µI) for µ > 0. We show
that for any x ∈ X , µ1 > µ2 > 0,

yµ1(x) ≤ yµ2(x) ≤ y(x) and lim
µ↓0

yµ(x) = y(x).
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This implies that for a nonnegative vector d ∈ Rm, we have

dT yµ1(x) ≤ dT yµ2(x) ≤ dT y(x) and lim
µ↓0

dT yµ(x) = dT y(x).

Moreover, dT yµ(·) is convex and continuous for any µ > 0. By Theorem 2.5 in [4]

‖yµ(u)− yµ(v)‖ ≤ ‖(M + µI)−1‖‖q(u)− q(v)‖.

The regularization technique enables us to extend the definition of the implicit solution
function on Rn as

y(x) = lim
µ↓0

yµ(x).

We show that y(·) is finite-valued on X , but yi(x) = +∞ for some components of y(x) if
x 6∈ X . This implies that for any positive vector h ∈ Rm,

hT y(x) =

{
min{hT y | y ∈ F(x)} if x ∈ X
+∞ otherwise.

Application of the implicit solution function y(·) leads to new results for feasibility
analysis of LCC and development of efficient algorithms to solve problems involving linear
complementarity constraints. For example, we can reformulate the linear program with
linear complementarity constraints (1.2) with d ≥ 0 and M being a P0 and Z matrix as a
convex program

minimize cT x + dT y(x)
subject to Ax ≤ b, x ∈ X

y(x) = argmin{hT y | p + Nx + My ≥ 0, y ≥ 0},
(1.4)

where h ∈ Rm is a positive vector. Note that y(x) in (1.4) is independent of h. If d > 0 and
M is an M matrix, then X = Rn and (1.4) is equivalent to the following linear programming
problem

minimize cT x + dT y
subject to Ax ≤ b

p + Nx + My ≥ 0, y ≥ 0.
(1.5)

We will discuss the equivalence relation with numerical examples in Section 4.
The convex program reformulation gives a new look at LPCC which is useful for the

study of LPCC, both from a theoretical and a numerical point of view. It is noteworthy that
many optimization softwares and algorithms [9, 11, 22] are efficient for convex programs
but have difficulties to find global solutions of nonconvex programs.

At the end of Section 3, we show that the least element solution y(x) is the unique vector
having zero entries in the solution set Y(x) of LCP(q(x),M), if M is a singular irreducible
P0 and Z matrix. Moreover, the solution set has the form Y(x) = {y(x) + λr} where λ ≥ 0
and r is a Perron-Frobenius positive eigenvector of the nonnegative matrix I − 1

αM with
α > maxi Mii.
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2 M is an M-matrix

In this section, we consider that M is an M-matrix. It is known that an M-matrix is a
P-matrix and the LCP(q(x),M) has a unique solution for every x ∈ Rn [5], which implies
that X = Rn and the implicit function y(·) is finite-valued everywhere on Rn. Now we give
a new property of the function y(·).

Theorem 2.1 Assume that M is an M-matrix and each component of q is a concave func-
tion. Then each component of the solution function y(·) is a convex function.

Proof: For u, v ∈ Rn, let y(u) and y(v) be solutions of LCP(q(u),M) and LCP(q(v),M)
respectively. Let w = λu + (1− λ)v, and let y(w) be the solution of LCP(q(w),M), where
λ ∈ [0, 1]. In the following, we show that

y(w) = y(λu + (1− λ)v) ≤ λy(u) + (1− λ)y(v). (2.1)

Set J = {i | y(w)i > 0}. Obviously, (2.1) holds for the case J = ∅ by the nonneg-
ative property of the solution function. We assume, without loss of generality, J =
{1, 2, . . . , k}(k ≤ n). Otherwise, there is a permutation matrix U such that Uy(w) =
(y(w)i1 , . . . , y(w)ik , 0, . . . , 0)T and

min(Uy(w), (UMUT )Uy(w) + Uq(w))
= min(Uy(w), UMy(w) + Uq(w))
= min(y(w),My(w) + q(w)) = 0.

Note that UMUT is also an M-matrix. Hence, by the assumption, we have

(My(w) + q(w))i = 0, i = 1, . . . , k (2.2)

and
yi(w) = 0 ≤ λyi(u) + (1− λ)yi(v), i = k + 1, . . . , n. (2.3)

Since y(u) and y(v) are solutions of LCP(q(u),M) and LCP(q(v),M), respectively, we know
that

My(u) + q(u) ≥ 0, My(v) + q(v) ≥ 0.

This, together with the concavity of q, implies that for i = 1, 2, . . . , k

0 = (My(w) + q(w))i

≥ (My(w) + λq(u) + (1− λ)q(v))i

≥ (My(w))i − (λMy(u) + (1− λ)My(v))i

= (M(y(w)− λy(u)− (1− λ)y(v)))i. (2.4)

Define M11 = (mij)1≤i,j≤k, M12 = (mij)1≤i≤k,k+1≤j≤n and let I be the (n − k) × (n − k)
identity matrix. Then M11 is an M-matrix, and M12 ≤ 0. Moreover, (2.3) and (2.4) imply

(
M11 M12

0 I

)
(y(w)− λy(u)− (1− λ)y(v)) ≤ 0.
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It is easy to find that the inverse is a nonnegative matrix,
(

M11 M12

0 I

)−1

=

(
M−1

11 −M−1
11 M12

0 I

)
≥ 0.

Hence we obtain
y(w)− λy(u)− (1− λ)y(v) ≤ 0

that is,
y(λu + (1− λ)v) ≤ λy(u) + (1− λ)y(v).

The proof is completed.

Theorem 2.2 Let M be an M-matrix. Then (1.4) is a convex program and its objective
function is piecewise linear and satisfies

‖y(u)− y(v)‖ ≤ ‖M−1‖‖N‖‖u− v‖, for u, v ∈ Rn. (2.5)

Proof: It is known that the solution function y(·) is piecewise linear [15, p.171]. By
Theorem 2.1 and the assumption d ≥ 0, we can easily verify that the objective function
cT x + dT y(x) is convex, and thus (1.4) is a convex program. Moreover from Theorem 2.5
in [4], we obtain that for any u, v ∈ Rn

‖y(u)− y(v)‖ ≤ ‖M−1‖‖N(u− v)‖ ≤ ‖M−1‖‖N‖‖u− v‖.

The following example shows that in the case M is an M-matrix, the feasible set of (1.2)
is not necessarily convex, but (1.4) is a convex optimization problem.

Example 2.1 Let n = m = 2, N be the identity matrix and p be the zero vector. Choose

A =

(
1 1
−1 −1

)
, b =

(
0
0

)
and M =

(
2 −1
−1 2

)
.

Then q(x) = Nx + p = x. Let

u =

(
−2
2

)
and v =

(
2
−2

)
.

Then s =

(
1
0

)
is the solution of LCP(u,M) and t =

(
0
1

)
is the solution of LCP(v, M).

Hence

(
u
s

)
and

(
v
t

)
are feasible solutions of (1.2). However,

1
2

(
u
s

)
+

1
2

(
v
t

)
=

1
2




0
0
1
1



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is not a feasible solution of (1.2), since 1
2(s + t) is not a solution of LCP(1

2(u + v),M).
On the other hand, for any x ∈ {x |x1 + x2 = 0 } = {x |Ax ≤ b}, components of the

solution function y(x) of LCP(x,M) have the following form

y1(x) =

{
0 if x1 ≥ 0, x2 ≤ 0

−1
2x1 if x1 ≤ 0, x2 ≥ 0

and

y2(x) =

{
−1

2x2 if x1 ≥ 0, x2 ≤ 0
0 if x1 ≤ 0, x2 ≥ 0.

Both components are piecewise linear and convex on the convex set {x |Ax ≤ b}. Moreover,
the solution function y(·) is globally Lipschitz, and satisfies

‖y(u)− y(v)‖ ≤ ‖M−1‖‖u− v‖.

From the definition of y(x), finding an optimal solution of (1.4) is relatively easy. For
example, consider d = (1, 1) and c = (c1, c2). If c1 = c2, then x∗ = (0, 0) is the unique
solution of (1.4). If c1 > 1/2, c2 = 0, then (1.4) has no solution. If c1 = 1/2, c2 = 0, then
(1.4) has an unbounded solution set {x |x1 + x2 = 0, x1 ≤ 0}.

3 M is a P0 and Z matrix

In this section, we consider that M is a P0 and Z matrix. It is known that if the feasible set
F(x) of LCP(q(x),M) is nonempty, then the solution set Y(x) of LCP(q(x),M) contains a
unique least element [5, p.201]. Hence the implicit solution function is finite-valued on the
set X = {x | ∃ y ∈ Rm

+ , s.t. q(x) ≥ −My}.
It is easy to show that X is a convex set if each component of q is a concave function as

q(λu + (1− λ)v) ≥ λq(u) + (1− λ)q(v) ≥ −M(λy(u) + (1− λ)y(v)),

for λ ∈ [0, 1] and u, v ∈ X . The aim of this section is to show that the solution function y(·)
is convex if each component of q is concave. To achieve the goal, we use the regularization
technique and consider the linear complementarity problem LCP(q(x),M+µI), where µ is a
positive number. For any µ > 0, we know that M+µI is an M-matrix and LCP(q(x),M+µI)
has a unique solution [5]. We denote the solution by yµ(x). The following theorem shows
that yµ is monotonically increasing and converges to the least element solution y(x) of
LCP(q(x),M) as µ ↓ 0, for x ∈ X .

Theorem 3.1 Let M be a P0 and Z matrix. Then for any x ∈ X , µ1 > µ2 > 0,

yµ1(x) ≤ yµ2(x) ≤ y(x) and lim
µ↓0

yµ(x) = y(x). (3.1)

Proof: It was observed in [3] that for any vectors u, v, s, t ∈ Rm, there is a diagonal matrix
D whose diagonal elements are in [0, 1] such that

min(u, v)−min(s, t) = (I −D)(u− s) + D(v − t).

6



Precisely, each diagonal element of D has the form

Dii =





1 if ui ≥ vi, si ≥ ti
0 if ui ≤ vi, si ≤ ti
min(ui, vi)− ui + si −min(si, ti)

vi − ui + si − ti
otherwise.

Hence, for any x ∈ X , ŷ ∈ Y(x) and µ > 0, there is a diagonal matrix D whose diagonal
elements belong to [0, 1] such that

0 = min(ŷ, Mŷ + q(x))−min(yµ(x), (M + µI)yµ(x) + q(x))
= (I −D)(ŷ − yµ(x)) + D(Mŷ − (M + µI)yµ(x)), (3.2)

which implies that
(I −D + D(M + µI))(ŷ − yµ(x)) = µDŷ.

Since M + µI is an M-matrix, we have that (I −D + D(M + µI)) is an M-matrix [5] and

ŷ − yµ(x) = µ(I −D + D(M + µI))−1Dŷ ≥ 0. (3.3)

Hence {yµ(x)} is bounded for µ > 0. Similarly, for µ1 > µ2, we can show that

yµ2(x)− yµ1(x) = (µ1 − µ2)(I −D + D(M + µ1I))−1Dyµ2(x) ≥ 0.

Therefore {yµ(x)} is a bounded and monotonically increasing sequence as µ ↓ 0. This
implies that {yµ(x)} has a limit as µ ↓ 0. Let z∗ = limµ↓0 yµ(x). Then

min(yµ(x), (M + µI)yµ(x) + q(x)) = 0

yields
min(z∗,Mz∗ + q(x)) = 0

and thus z∗ is a solution of LCP(q(x),M). Moreover, from (3.3), we have

z∗ ≤ ŷ, for ŷ ∈ Y(x).

Since Y(x) contains a unique least element, z∗ must be the least element solution y(x) of
LCP(q(x),M).

Remark 3.1 According to Theorem 5.6.2 in [5], if M is positive semi-definite and LCP(q(x),M)
is solvable, then the sequence {yµ(x)} converges to the least l2-norm solution of LCP(q(x),M).
It is clear that a least element solution is a least l2-norm solution, but the reverse is not
true. Theorem 3.1 establishes new convergence properties of the regularization algorithms
for linear complementarity problems.

Corollary 3.1 Let M be a P0 and Z matrix. For any x ∈ Rn, the LCP(q(x),M) has a
solution if and only if {yµ(x)}µ↓0 is bounded.

Proof: The ”only if” part follows from Theorem 3.1. We only need to show the ”if” part.
If {yµ(x)}µ↓0 is bounded, then there is a convergent subsequence {yµk

(x)}. Let the limit be
ȳ. Then

min(yµk
(x), (M + µkI)yµk

(x) + q(x)) = 0
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yields
min(ȳ, Mȳ + q(x)) = 0

and hence ȳ is a solution of LCP(q(x),M).

Theorem 3.2 Let M be a P0 and Z matrix, and let each component of q be a concave
function. Then each component of the solution function y(·) is a convex function on Rn

and finite-valued on X .

Proof: By Theorem 2.1, for any positive number µ, each component of yµ(·) is a convex
function, that is,

yµ(λu + (1− λ)v) ≤ λyµ(u) + (1− λ)yµ(v) (3.4)

for λ ∈ [0, 1], u, v ∈ Rn. Suppose u, v ∈ X . Let µ ↓ 0 in (3.4), we get the boundness of
{yµ(λu + (1− λ)v)}µ↓0 and convexity of y(·) by Theorem 3.1. Hence, by Corollary 3.1, y(·)
is a finite-valued convex function on X .

In the general case, since y(·) ≥ 0 on Rn, the convexity of y(·) follows (3.4).

The following theorem shows that for any given x ∈ X , the convergence rate of {yµ(x)} to
y(x) as µ ↓ 0 is at least linear. This result is useful for convergence analysis of regularization
methods for problems involving P0 and Z matrix linear complementarity constraints.

Theorem 3.3 Let M be a P0 and Z matrix. Then for any x ∈ X , there is a positive
constant Γ such that

‖y(x)− yµ(x)‖ ≤ µΓ‖y(x)‖, (3.5)

where

Γ = max{ ‖M−1
JJ ‖ | MJJ is a nonsingular principal submatrix of M},

which is independent of x.

Proof: For a fixed x ∈ X , let J = {i | yi(x) > 0}. If J = ∅, then from Theorem 3.1,
yµ(x) = y(x) = 0 for all µ > 0, and hence (3.5) holds.

Suppose J 6= ∅. From (3.1) of Theorem 3.1, we can claim that there is µ̄ > 0 such that
for any µ ∈ (0, µ̄],

yµ(x)i > 0 for i ∈ J and yµ(x)i = 0 for i 6∈ J .

Hence from (3.2)-(3.3), we can easily verify

(I −D + D(M + µI))(y(x)− yµ(x)) = µDy(x),

where D =diag(α1, . . . , αn) and

αi = 1 for i ∈ J and αi = 0 for i 6∈ J .

This, together with (yµ(x)− y(x))i = 0, i 6∈ J , we find

(y(x)− yµ(x))J = µ(MJJ + µI)−1y(x)J > 0. (3.6)
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Letting µ ↓ 0 in (3.6), from y(x) = limµ↓0 yµ(x), y(x)J > 0 and (MJJ + µI)−1 ≥ 0, we
obtain

lim
µ↓0

µ(MJJ + µI)−1 = 0. (3.7)

Now we show MJJ is an M-matrix. Obviously, MJJ is a Z-matrix. If MJJ is singular,
then it has a zero eigenvalue and the spectral radius satisfies

ρ((MJJ + µI)−1) ≥ 1
µ

.

This implies that

‖µ(MJJ + µI)−1‖ ≥ ρ(µ(MJJ + µI)−1) = µρ((MJJ + µI)−1) ≥ 1,

which is a contradiction to (3.7). Hence, MJJ is nonsingular and thus an M-matrix.
Similarly, from (3.1)-(3.3) of Theorem 3.1, for all µ > 0 we have

yµ(x)i ≥ 0 for i ∈ J , yµ(x)i = 0 for i 6∈ J

and
(I −Dµ + Dµ(M + µI))(y(x)− yµ(x)) = µDµy(x),

where Dµ =diag(α1, . . . , αn) with αi ∈ [0, 1] and αi = 0 for i 6∈ J . Therefore, we get

(y(x)− yµ(x))J = µ(I −DµJ + DµJ (MJJ + µI))−1DµJ y(x)J . (3.8)

Since MJJ is an M-matrix, MJJ + µI is also an M-matrix. By Theorem 2.5 in [4] we
obtain

‖(I −DµJ + DµJ (MJJ + µI))−1DµJ ‖
≤ max

DJ
‖(I −DJ + DJ (MJJ + µI))−1DJ ‖

≤ ‖(MJJ + µI)−1‖,
where DJ is a |J | × |J | diagonal matrix whose diagonal entries are in [0, 1]. Here |J | is
the cardinality of the set J . Hence, we obtain

‖y(x)− yµ(x)‖ = ‖(y(x)− yµ(x))J ‖ ≤ µ‖(MJJ + µI)−1‖‖y(x)J ‖. (3.9)

Since MJJ is an M-matrix and µ > 0, by Theorem 2.4.11 in [16], MJJ +µI is an M-matrix
and

‖(MJJ + µI)−1‖ ≤ ‖M−1
JJ ‖.

This, together with (3.9), deduces (3.5).

Remark 3.2 From the proof of Theorem 3.3, we can see that if there is a least element
solution y(x) > 0, then M must be an M-matrix. In other words, if M is a singular P0 and
Z matrix, then there is no positive least element solution for any x ∈ X .

The following theorem shows that if M is an irreducible P0 and Z matrix, then for any
x ∈ X , the solution set of LCP(q(x),M) can be represented by the least element solution
and a Perron-Frobenius positive eigenvector which is independent of x. In other words, if a
solution of LCC(q(x),M) has zero entries, then it must be the least element solution.
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Theorem 3.4 Let M be an irreducible P0 and Z matrix. Then for any x ∈ X

Y(x) =

{
{y(x)}, if My(x) + q(x) 6= 0,
{y(x) + λr, λ ≥ 0}, if My(x) + q(x) = 0,

where r is a Perron-Frobenius positive eigenvector of B = I − 1
αM , with α > maxi Mii.

Proof: According to Proposition 3.11.12 in [5], the solution set has the following property

Y(x) = y(x) + S(x)

where S(x) is the solution set of the following LCP with constant column q(x) + My(x),

0 ≤ y ⊥ q(x) + My(x) + My ≥ 0.

It is clear that the solution set S(x) coincides with the solution set of the following LCP

0 ≤ y ⊥ 1
α

(q(x) + My(x) + My) ≥ 0,

where α > maxi(Mii). Then we have a regular splitting

1
α

M = I −B,

where B ≥ 0, with Bij = 1
αMij , i 6= j and Bii = 1− 1

αMii.
Since q(x) + My(x) ≥ 0, the zero vector 0 is in S(x). Suppose that S has a vector

y ≥ 0, y 6= 0. From (3.2), we can easily verify that there is diagonal matrix D whose
diagonal elements are in [0, 1] such that

0 = (I −D + D
1
α

M)(y − 0) = (I −D + D(I −B))y = (I −DB)y = 0. (3.10)

Since 1
αM = I − B is a P0 and Z matrix and a regular splitting, we have (1 + µ)I − B is

nonsingular for µ > 0 and the Perron-Frobenius Theorem [1] yields

ρ(
1

1 + µ
B) ≤ ρ((µI + 1

αM)−1B)
1 + ρ((µI + 1

αM)−1B)
< 1.

Let µ ↓ 0, we obtain ρ(B) ≤ 1. Since D ≤ I, we have DB ≤ B, and thus ρ(DB) ≤
ρ(B) ≤ 1. From (3.10) and y 6= 0, we find that I − DB is singular, which implies that
ρ(DB) = ρ(B) = 1.

From the Perron-Frobenius Theorem, we know that ρ(B) is a simple eigenvalue of B,
that is, the eigenspace associated to ρ(B) is 1-dimensional, and there is a positive eigenvector
r > 0 associated to ρ(B). Let E=diag(r). Then

E−1BEe = E−1Br = E−1ρ(B)r = E−1r = e,

where e = (1, . . . , 1)T .
Now we show that D = I. Assume to the contrary that D has a diagonal element, which

is strictly less than one, that is 0 ≤ D ≤ I and D 6= I.
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From ρ(DB) = ρ(B), we find that D has at least one element which is equal to one.
Moreover, from

DE−1BEe = De ≤ e, and De 6= e,

we find that the minimum row sum of DE−1BE is strictly less than 1, and the maximum
row sum is equal to 1. Since E−1BE is nonnegative and irreducible, 0 ≤ DE−1E ≤ E−1BE
and DE−1E 6= E−1BE, then by Corollary 2.2 in Chapter 2 [14] we have

ρ(DB) = ρ(E−1DEE−1BE) = ρ(DE−1BE) < 1,

where we use E−1D = DE−1. This is a contradiction.
Hence, we deduce that D = I. Moreover, from (3.10), we deduce that y is an eigenvector

corresponding to ρ(B) = 1. By the Perron-Frobenius Theorem [1] there is λ > 0 such that
y = λr. Hence if S(x) 6= {0}, then we can present the solution set of LCP(q(x),M) as

Y(x) = y(x) + λr, λ ≥ 0.

Now we show that S(x) 6= {0} if and only if

My(x) + q(x) = 0.

If S(x) 6= {0}, then from the proof above, 0 6= y ∈ S(x) implies that y is an eigenvector of
B and y > 0. Hence, the complementarity condition yields

0 =
1
α

(My + My(x) + q(x))

= (I −B)y +
1
α

(My(x) + q(x))

=
1
α

(My(x) + q(x)) = 0.

Conversely, if My(x)+q(x) = 0, then for any eigenvector y of B corresponding to ρ(B) = 1,
we have y > 0 and My + My(x) + q(x) = 0. Hence y ∈ S(x). The proof is completed.

Corollary 3.2 If M is a singular irreducible P0 and Z matrix, then for any x ∈ X , y(x)
is the unique element having zero entries in the solution set Y(x) of LCP(q(x),M).

Proof: From the proof of Theorem 3.3, the singularity of M implies that the set Y(x)
contains the least element solution y(x) which has zero entries. The uniqueness follows
from Theorem 3.4.

We use the following example to illustrate Theorem 3.3 and Theorem 3.4.

Example 3.1 Let q(x) = x,

D = {x |x1 + x2 = 0, x1 ≥ 0} and M =

(
1 −1
−1 1

)
.

For any x ∈ D, we find that y = (0, x1)T is a solution of LCP(x,M). Since M is an
irreducible P0 and Z matrix and y has a zero entry, by Theorem 3.4, we can deduce that y
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is the least element solution of LCP(x,M). Let y(x) := y. From My(x) + x = 0, we know
that the solution set Y(x) of LCP(x,M) is unbounded. Let

B =

(
0 1
1 0

)
and r =

(
1
1

)
.

It is easy to see that r is a Perron-Frobenius eigenvector corresponding to ρ(B) = 1. Then
the solution set of LCP(x,M) can be represented by

Y(x) =

{
y(x) + λr =

(
λ

x1 + λ

)
, λ ≥ 0

}
.

It is easy to verify that yµ(x) = (0,
x1

1 + µ
)T is the unique solution of LCP(x,M +µI). yµ(x)

is monotonically increasing and converges to the least element solution y(x) = (0, x1)T .

Moreover, ‖yµ(x)− y(x)‖ ≤ µ

1 + µ
‖y(x)‖ ≤ µΓ‖y(x)‖ with Γ = 1.

4 Applications

In this section, we apply the implicit solution function defined by the least element solution
to the linear program with linear complementarity constraints (1.2). We assume that M is
a P0 and Z matrix and d is a nonnegative vector. Let

X = {x | ∃ y ∈ Rm
+ , s.t. p + Nx + My ≥ 0}.

It is easy to show that the set X is convex. Suppose that x̂, x̃ ∈ X . Then there are ŷ, ỹ ∈ Rm
+

such that
p + Nx̂ + Mŷ ≥ 0 and p + Nx̃ + Mỹ ≥ 0.

This yields that
p + N(λx̂ + (1− λ)x̃) + M(λŷ + (1− λ)ỹ) ≥ 0

for all λ ∈ (0, 1). From λŷ + (1− λ)ỹ ∈ Rm
+ , we deduce λx̂ + (1− λ)x̃ ∈ X .

Lemma 4.1 [5] Let M be a Z-matrix and q an arbitrary vector. If the LCP(q, M) is
feasible, then the feasible set { y |y ≥ 0, My +q ≥ 0} contains a least element y∗. Moreover,
y∗ solves the LCP(q, M).

Proposition 4.1 Let M be a Z-matrix. Problem (1.2) is equivalent to the convex optimiza-
tion problem (1.4). Furthermore, if M is an M-matrix, and d > 0, then (1.2) is equivalent
to the linear program (1.5).

Proof: We first show the equivalence relation in the feasibility and solvability. Let

D = {x | Ax ≤ b } and f(x, y) = cT x + dT y.

Let
F(x) = { y | y ≥ 0, p + Nx + My ≥ 0}.

12



Suppose (1.2) has a feasible point (x̂, ŷ). Then x̂ ∈ D∩X . From h > 0 and Lemma 4.1,
F(x̂) contains a least element ȳ, such that y(x̂) = ȳ. Hence (1.4) is feasible. Conversely, if
(1.4) has a feasible point x̂, then (x̂, y(x̂)) is a feasible point of (1.2). Therefore, we claim
that (1.2) is feasible if and only if (1.4) is feasible.

If there is a sequence {xk} in the feasible set of (1.4) such that f(xk, y(xk)) → −∞,
then from that {(xk, y(xk))} is in the feasible set of (1.2), we find that (1.2) has no solution.
Conversely, if there is a sequence (xk, yk) in the feasible set of (1.2) such that f(xk, yk) →
−∞, then from yk ∈ F(xk) and Lemma 4.1, F(xk) contains a least element which is
the minimum point y(xk) of hT y for y ∈ F(xk). The nonnegativity of d makes f(xk, yk) ≥
f(xk, y(xk)) → −∞. Therefore, we claim that (1.2) is solvable if and only if (1.4) is solvable.

Now, we show that if (x∗, y∗) is a solution of (1.2) then x∗ is a solution of (1.4); if x∗ is
a solution of (1.4), then (x∗, y(x∗)) is a solution of (1.2).

Suppose that (x∗, y∗) is a solution of (1.2). Then from Lemma 4.1, h > 0 and d ≥ 0, we
have y(x∗) ≤ y∗, and f(x∗, y(x∗)) ≤ f(x∗, y∗). Hence (x∗, y(x∗)) is a solution of (1.2) and
x∗ is a solution of (1.4).

Suppose that x∗ is a solution of (1.4). From Lemma 4.1, and h > 0, y(x∗) is a solution
of the LCP(p + Nx∗,M). Moreover, from d ≥ 0, we have f(x∗, y(x∗)) ≤ f(x∗, y∗), for all
y∗ in the solution set of the LCP(p + Nx∗,M). Hence, (x∗, y(x∗)) is a solution of (1.2).

The convexity of (1.4) follows from Theorem 3.2.
In addition, if M is an M-matrix, then X = Rn. If d > 0, we can set h = d in (1.4). In

such case, (1.4) reduces to (1.5).

Example 4.1 We consider a linear program with linear complementarity constraints (1.2).
We set n = 2, l = 1, b = 0. Let k > 0 be an integer, m = 2k, p be a zero vector in Rm, N be an
m× n matrix with all entries being 0 except Nk,1 = Nk+1,2 = 1, d = (1, . . . , 1)T ∈ Rm. Let
A = (−1,−1), and M be an m×m tridiagonal matrix with -1, 2, -1 along its superdiagonal,
main diagonal and subdiagonal, respectively, except M11 = 1,Mm,m = 1.

It is easy to find that D = {x |Ax ≤ b} = {x |x1 + x2 ≥ 0}, and M is a singular
irreducible P0 and Z matrix with rank(M) = m− 1. For x ∈ D, we can show that

y(x) =





(0eT , −x2e
T )T if x1 ≥ 0, x2 ≤ 0

(−x1e
T , 0eT )T if x1 ≤ 0, x2 ≥ 0

(0eT , 0eT )T if x1 ≥ 0, x2 ≥ 0

is the least element solution of LCP(p + Nx,M), where e = (1, . . . , 1)T ∈ Rk. Obviously,
y(x) ≥ 0, and for x1 ≥ 0, x2 ≤ 0

(My(x) + Nx + p)i =

{
x1 + x2 if i = k

0 otherwise,

for x1 ≤ 0, x2 ≥ 0

(My(x) + Nx + p)i =

{
x1 + x2 if i = k + 1

0 otherwise,

for x1 ≥ 0, x2 ≥ 0,My(x) + Nx + p = Nx.
Hence, y(x) is a solution of LCP(p + Nx, M). Moreover, by Corollary 3.2, y(x) is the

least element solution, since y(x) has zero entries. Therefore, the problem (1.2) with these
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data of Example 4.1 is equivalent to the convex program

minimize cT x + dT y(x)
subject to x1 + x2 ≥ 0.

(4.1)

If 0 < c = (c1, c2)T and max(c1, c2) < k, x∗ = (0, 0) is the unique solution of (4.1).
If c1 > k, c2 = 0, (4.1) has no solution.
If c1 = k, c2 = 0, (4.1) has an unbounded solution set {x |x1 + x2 ≥ 0, x1 ≤ 0}.
Now we consider other approach to find a solution of (1.2) by using the regularization

problem of (1.2)

minimize cT x + dT y
subject to Ax ≤ b

0 ≤ y ⊥ p + Nx + (M + µI)y ≥ 0,
(4.2)

where µ > 0. Since M +µI is an M-matrix, and d > 0, by Proposition 4.1, (4.2) is equivalent
to the linear program

minimize cT x + dT y
subject to Ax ≤ b

p + Nx + (M + µI)y ≥ 0, y ≥ 0.
(4.3)

We choose c1 = k/2, c2 = k/4. Then (4.1) has a unique solution (x∗, y∗) = (0, 0). Let
(x∗µ, y∗µ) be a solution of (4.2). We expect (x∗µ, y∗µ) → (0, 0) as µ → 0. We test the regu-
larization approach for m = 20 : 10 : 1000 with the same starting regularization parameter
µ = 0.005 and the reducing step size ∆µ = 10−5. We terminate the program when µ < 10−6

or ‖(xµ, yµ)‖∞ ≤ 10−6. Figure 1 presents numerical results of µ and ‖(xµ, yµ)‖∞ when the
program is terminated for different m. The total cpu time for generating and solving these
problems for m = 20 : 10 : 1000 is 244.8 seconds. Preliminary numerical results show that
the regularization method is efficient for solving the linear program with linear comple-
mentarity constraints. Numerical tests were carried out by using Matlab 7.4 with linprog,
a linear programming code, on an IBM PC( 2.39GHz, 2GB of RAM) with Windows XP
operating system.
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Figure 1: Values of µ and ‖(xµ, yµ)‖∞ terminated the algorithm for m = 20 : 10 : 1000 in
Example 4.1.
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Discussion in this section can be extended to the mathematical program with linear
complementarity constraints

minimize f(x, y)
subject to x ∈ D

0 ≤ y ⊥ p + Nx + My ≥ 0,
(4.4)

where D ⊆ Rn is a convex set and f : Rn×Rm → R is a convex function and nondecreasing
in y, that is,

f(λ(x1, y1) + (1− λ)(x2, y2)) ≤ λf(x1, y1) + (1− λ)f(x2, y2), for λ ∈ [0, 1]

and
f(x, y1) ≤ f(x, y2), for y1 ≤ y2. (4.5)

5 Final remark

Using a solution function of complementarity problems in the constraints of mathematical
programs has been studied in [2, 12, 19, 23] under the assumption on the uniqueness of
the solution of the complementarity problem. In this paper, we first use the least element
solution to define a solution function of complementarity problems whose solution is not
unique. We show that each component of the solution function defined by the least element
in the solution set is convex if the involved matrix is a P0 and Z matrix. Moreover, we
present uniqueness of the least element solution for the irreducible P0 and Z matrix LCP.
These results can be applied to problems involving complementarity constraints. Numerical
examples in Section 4 illustrate possible applications to the mathematical program with
equilibrium constraints.
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