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ond order interior point algorithm costs more computational time than that of
the first order algorithm in each iteration, its worst-case iteration complexity
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1 Introduction

In this paper, we consider the following optimization problem:

min f(x) = H(x) + λ
n∑

i=1

φ(xp
i )

s.t. x ∈ Ω = {x : 0 ≤ x ≤ b},
(1)

where H : Rn → R is continuously differentiable, φ : [0,+∞) → [0,+∞)
is continuous and concave, λ > 0, 0 < p < 1, b = (b1, b2, . . . , bn)

T with
bi ∈ (0,+∞) ∪ {+∞}, and 0 ≤ x ≤ b means that if bi < +∞, xi ∈ [0, bi],
otherwise xi ≥ 0, i = 1, 2, . . . , n. Moreover, φ is continuously differentiable in
(0,+∞) and φ(0) = 0. Without loss of generality, we assume that a minimizer
of (1) exists and minΩ f(x) ≥ 0.

Problem (1) is nonsmooth, nonconvex, and non-Lipschitz, which has been
extensively used in image restoration, signal processing and variable selection;
see, e.g., [2,10,14,15,19,20,24,31]. The function H(x) is often used as a data
fitting term, while the function

∑n
i=1 φ(x

p
i ) is used as a regularization term.

The feasible set Ω of (1) includes Rn
+ = {x : x ≥ 0} as a special case.

Moreover, the unconstrained problem

min H(x) + λ
n∑

i=1

φ(|xi|p), (2)

where the non-Lipschitz points are in the interior of the feasible region, can
be equivalently reformulated as the constrained problem

min H(x+ − x−) + λ
n∑

i=1

φ((x+
i )

p) + λ
n∑

i=1

φ((x−
i )

p)

s.t. x+ ≥ 0, x− ≥ 0

(3)

by using variable splitting x = x+ −x−. In Section 3, we show that the scaled
first and second order stationary points of problems (2) and (3) are in one-
one correspondence. The advantage of (3) is that non-smooth points are only
at the boundary of the feasible set which allows us to use the gradient and
Hessian of the objective functions in the interior point methods.

Numerical algorithms for nonconvex optimization problems have been stud-
ied extensively. However, little theoretical complexity or convergence speed
analysis of the algorithms is known, in contrast to the complexity study of
convex optimization in the past thirty years. We now review few results on
complexity analysis of nonconvex optimization problems.
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Smooth, nonconvex. Using an interior point algorithm, Ye [29] proved that
an ϵ KKT or first order stationary point of a general quadratic program

min
1

2
xTQx+ cTx s.t. Ax = q, x ≥ 0 (4)

can be computed in O(ϵ−1 log ϵ−1) iterations, where each iteration would
solve a ball-constrained or trust-region quadratic program that is equiva-
lent to a simple convex minimization problem. Here Q ∈ Rn×n, c ∈ Rn,
A ∈ Rm×n, q ∈ Rm. Ye [29] also proved that, as ϵ → 0, the iterative se-
quence converges to a point satisfying the second order necessary optimality
condition. More precisely, the least eigenvalue of Q in the null space of all
active constraints is greater than −ϵ.

For general unconstrained nonconvex optimization, it was shown in [17,
21] that the standard steepest descent method with line search or trust-region
can find an ϵ first order stationary point in O(ϵ−2) iterations. In [22], Nesterov
and Polyak showed that a Newton-type method based on cubic regularization
requires at most O(ϵ−3/2) iterations to find an ϵ first order stationary point.
Instead of using Hessian and its global Lipschitz constant, Cartis, Gould and
Toint [4–6] further proposed an adaptive regularization with cubics (ARC)
method in which approximations of Hessian and its Lipschitz constant are
updated at each iteration. They have also showed that the ARC takes at most
O(ϵ−3/2) iterations to find an ϵ first order stationary point. Then, an algorithm
with one-dimensional global optimization of the cubic model is given and the
sharpness of the complexity bound O(ϵ−3/2) is derived in [7].

Lipschitz continuous, nonconvex. Cartis, Gould and Toint [3] estimated the
worst-case complexity of a first order trust-region or quadratic regularization
method for solving the following unconstrained nonsmooth, nonconvex mini-
mization problem

min Φh(x) := H(x) + h(c(x)), (5)

where h : Rm → R is convex but may be nonsmooth and c : Rn → Rm is
continuously differentiable. Their method takes at most O(ϵ−2) iterations to
reduce the size of a first order criticality measure below ϵ, which is as the
same order as the worst-case complexity of steepest-descent methods applied
to unconstrained smooth nonconvex optimization.

Garmanjani and Vicente [15] proposed a class of smoothing direct-search
methods for a general unconstrained nonsmooth optimization by applying a
direct-search method to the smoothing function f̃ of the objective function f
[8]. Such approach can be considered as the zero order methods because only
function values are used. When f is locally Lipschitz, the smoothing direct-
search method [15] took at most O(ϵ−3 log ϵ−1) iterations to find an x such
that ∥∇f̃(x, µ)∥ ≤ ϵ and µ ≤ ϵ, where µ is the smoothing parameter. When
µ → 0, f̃(x, µ) → f(x) and ∇f̃(x, µ) → v with v ∈ ∂f(x).
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Non-Lipschitz, nonconvex. Ge, Jiang and Ye [16] extended the complexity
result of [29] to the following concave non-Lipschitz minimization

min

n∑
i=1

xp
i s.t. Ax = q, x ≥ 0 (6)

and showed that finding an ϵ scaled first order stationary point or global
minimizer requires at most O(ϵ−1 log ϵ−1) iterations. Recently, Bian and Chen
[1] proposed a smoothing quadratic regularization (SQR) algorithm for solving
unconstrained non-Lipshchitz minimization problem (2). At each iteration, the
SQR algorithm solves a strongly convex quadratic minimization problem with
a diagonal Hessian matrix, which has a simple closed form solution. The SQR
algorithm is easy to implement and its worst-case complexity of reaching an ϵ
scaled first order stationary point is O(ϵ−2). To overcome the nonsmoothness
of the second term in the objective function of (2), smoothing methods were
used in the SQR algorithm.

In this paper, we propose a first order interior point method and a second
order interior point method for solving the constrained non-Lipschitz noncon-
vex optimization problem (1), using the smoothness of f in {x : 0 < x ≤ b}
and keeping all iterates in it. The former uses the gradient of f to derive a
quadratic overestimation and has the worst-case complexity O(ϵ−2) for finding
an ϵ scaled first order stationary point of (1). The latter uses the gradient and
the Hessian to derive a cubic overestimation and has the worst-case iteration
complexity O(ϵ−3/2) for finding an ϵ scaled second order stationary point of a
special version of (1) as the following

min
x≥0

H(x) + λ
n∑

i=1

xp
i . (7)

To our best knowledge, these two methods are the first methods with the
state of the art iteration complexity bounds for constrained, non-Lipschitz and
nonconvex optimization. Specially, the second order interior point algorithm
is the first method to find an ϵ scaled second order stationary point or an ϵ
global minimizer of non-Lipschitz, nonconvex optimization problem (7) in no
more than O(ϵ−3/2) iterations.

The above results are summarized in Table 1.

Our original goal was to produce the O(ϵ−1 log ϵ−1) worst-case complexity
bound for problem (1), as it was established for problems (4) in [29] and (6) in
[16]. But we failed even when H(x) is quadratic and we leave this as an open
problem. In developing the O(ϵ−1 log ϵ−1) bound, potential reduction tech-
niques were used, where the quadratic objective or the concavity of

∑n
i=1 x

p
i

has played a key role. In either case, a quadratic overestimation of the poten-
tial function can be constructed and it is to be minimized, which makes the
analysis considerably simpler and the convergence rate better. However, when
the two objectives in (4) and (6) are added together, which is a special case
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Smooth Lipschitz continuous Non-Lipschitz
O(ϵ−1 log ϵ−1) [Ye 1998] (4) [Ge et al 2011](6)

O(ϵ−3/2) [Nesterov et al 2006]; this paper for (7)
[Cartis et al 2011]

O(ϵ−2) [Nesterov 2004]; [Cartis et al 2011](5) [Bian et al 2012](2);
[Gratton et al 2008] this paper for (1)

O(ϵ−3 log ϵ−1) [Garmanjani et al 2012]

Table 1: Worst-case complexity results for nonconvex optimization

of (1) namely

min
x≥0

1

2
xTQx+ cTx+ λ

n∑
i=1

xp
i ,

a quadratic overestimation of the potential function is no longer achievable.
Our paper is organized as follows. In Section 2, a first order interior point

algorithm is proposed for solving (1), which only uses ∇f and a Lipschitz
constant of H on Ω and is easy to implement. Any iteration point xk > 0
belongs to Ω and the objective function is monotonically decreasing along the
generated sequence {xk}. Moreover, the algorithm produces an ϵ scaled first
order stationary point of (1) in at mostO(ϵ−2) iterations. In Section 3, a second
order interior point algorithm is given to solve (7), which can generate an ϵ
scaled second order stationary point in at most O(ϵ−3/2) iterations. Since our
problem has constraints, the ϵ scaled first order and second order stationary
points resemble the complementarity condition for all inequality constrained
optimization problems. In Section 4, we present numerical results to illustrate
the efficiency of the algorithms and the complexity bound.

Throughout this paper, K = {0, 1, 2, . . .}, I = {1, 2, . . . , n}, Ib = {i ∈
{1, 2, . . . , n} : bi < +∞} and en = (1, 1, . . . , 1)T ∈ Rn. For x ∈ Rn, A =
(aij)m×n ∈ Rm×n and p > 0, ∥x∥ = ∥x∥2, diag(x) = diag(x1, x2, . . . , xn),
|A|p = (|aij |p)m×n. For two matrices A,B ∈ Rn×n, we denote A ≽ B when
A−B is positive semi-definite.

2 First Order Method

In this section, we propose a first order interior point algorithm for solving (1),
which uses the first order reduction technique and keeps all iterates xk > 0
in the feasible set Ω. We show that the objective function value f(xk) is
monotonically decreasing along the sequence {xk} generated by the algorithm,
and the worst-case complexity of the algorithm for generating an ϵ global
minimizer or ϵ scaled first order stationary point of (1) is O(ϵ−2), which is the
same in the worst-case complexity order of the steepest-descent methods for
smooth nonconvex optimization problems. Moreover, it is worth noting that
the proposed first order interior point algorithm is easy to implement, and the
computation cost at each iteration is little.
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Throughout this section, we need the following assumptions.
Assumption 2.1: ∇H is globally Lipschitz on Ω with a Lipschitz constant

β ≥ 1.
Specially, when Ib ̸= ∅ we choose β such that β ≥ maxi∈Ib

1
bi
.

Assumption 2.2: For any given x0 ∈ Ω, there is R ≥ 1 such that
sup{∥x∥∞ : f(x) ≤ f(x0), x ∈ Ω} ≤ R.

When H(x) = 1
2∥Ax − q∥2, Assumption 2.1 holds with β = ∥ATA∥. As-

sumption 2.2 holds, if Ω is bounded or H(x) ≥ 0 for all x ∈ Ω and φ(s) → ∞
as s → ∞.

2.1 First Order Necessary Condition

Note that for problem (1), when 0 < p < 1, the Clarke generalized gradient
of φ(sp) does not exist at 0. Inspired by the first and second order necessary
conditions for local minimizers of unconstrained non-Lipschitz optimization in
[11,12], we give the scaled first and second order necessary condition for the
local minimizers of constrained non-Lipschitz optimization (1) in this section
and the next section, respectively. Then, for any ϵ ∈ (0, 1], the ϵ scaled first
order and second order stationary point of (1) can be deduced directly.

First, for ϵ > 0, an ϵ global minimizer of (1) is defined as a feasible solution
0 ≤ xϵ ≤ b and

f(xϵ)− min
0≤x≤b

f(x) ≤ ϵ.

It has been proved in [9] that finding a global minimizer of the unconstrained
l2-lp minimization problem is strongly NP hard. For any fixed x ∈ Rn, denote
X = diag(x). Any local minimizer x of the unconstrained l2-lp optimization
modeled by (2) with H(x) = 1

2∥Ax− q∥2 and φ(s) = s satisfies the first order
necessary condition [12]

2XAT (Ax− q) + λp|x|p = 0.

Similarly, using X as a scaling matrix, if x is a local minimizer of (1), then
x ∈ Ω satisfies the first order necessary condition

[X∇f(x)]i = xi[∇H(x)]i + λpφ′(s)s=xp
i
xp
i = 0 if xi < bi; (8a)

[∇f(x)]i = [∇H(x)]i + λpφ′(s)s=xp
i
xp−1
i ≤ 0 if xi = bi. (8b)

For (1), if x at which f is differentiable satisfies the first order necessary
condition given above, then x ∈ Ω satisfies

(i) [∇f(x)]i = 0 if xi < bi;
(ii) [∇f(x)]i ≤ 0 if xi = bi.

Moreover, although [∇f(x)]i does not exist when xi = 0, one can see that, as
xi → 0+, [∇f(x)]i → +∞.

Now we can define an ϵ scaled first order stationary point of (1).
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Definition 1 For a given ϵ ∈ (0, 1], we call x ∈ Ω an ϵ scaled first order
stationary point of (1), if

(i) |[X∇f(x)]i| ≤ ϵ if xi < (1− 1
2ϵ)bi;

(ii) [∇f(x)]i ≤ ϵ if xi ≥ (1− 1
2ϵ)bi.

Definition 1 is consistent with the first order necessary conditions in (8a)-
(8b) with ϵ = 0.

2.2 First Order Interior Point Algorithm

Note that for any x, x+ ∈ (0, b], Assumption 2.1 implies that

H(x+) ≤ H(x) + ⟨∇H(x), x+ − x⟩+ β

2
∥x+ − x∥2.

Since φ is concave on [0,+∞), then for any s, t ∈ (0,+∞),

φ(t) ≤ φ(s) + ⟨∇φ(s), t− s⟩.

Thus, for any x, x+ ∈ (0, b], we obtain

f(x+) ≤ f(x) + ⟨∇f(x), x+ − x⟩+ β

2
∥x+ − x∥2.

Let x+ = x+Xdx. We obtain

f(x+) ≤ f(x) + ⟨X∇f(x), dx⟩+
β

2
∥Xdx∥2. (9)

To achieve a reduction of the objective function at each iteration, we min-
imize a quadratic function subject to a box constraint at each iteration when
x > 0, which is

min ⟨X∇f(x), dx⟩+
β

2
dTxX

2dx

s.t. − 1

2
en ≤ dx ≤ X−1(b− x).

(10)

For any fixed x ∈ (0, b], the objective function in (10) is strongly convex and
separable about every element of x, and thus the unique solution of (10) has
a closed form as

dx = PDx [−
1

β
X−1∇f(x)],

where Dx = [−1
2en, X

−1(b−x)] and PDx is the orthogonal projection operator
on the box Dx.

Denote Xk = diag(xk) and use dk and Dk to denote dxk and Dxk , respec-
tively.



8

First Order Interior Point Algorithm
Give ϵ ∈ (0, 1] and choose x0 ∈ (0, b].
For k ≥ 0, set

dk = PDk
[− 1

β
X−1

k ∇f(xk)], (11a)

xk+1 = xk +Xkdk. (11b)

The first order interior point algorithm presented in the current paper
is significantly different from the classical interior point methods [28]. The
current method is based on a simple gradient projection into the interior of
the nonnegative orthant, while the classical one follows the central path of the
logarithmic barrier function via the Newton method.

Lemma 1 The proposed First Order Interior Point Algorithm is well defined,
which means that 0 < xk ≤ b, ∀k ∈ K.

Proof We only need to prove that if 0 < xk ≤ b, then 0 < xk+1 ≤ b.

On the one hand, by dk ≤ X−1
k (b− xk), we have

xk+1 = xk +Xkdk ≤ xk + (b− xk).

On the other hand, using dk ≥ − 1
2en, we obtain

xk+1 = xk +Xkdk ≥ xk − 1

2
xk =

1

2
xk > 0.

Hence, 0 < xk+1 ≤ b.

Lemma 2 Let {xk} be the sequence generated by the First Order Interior
Point Algorithm, then the sequence {f(xk)} is monotonely decreasing and sat-
isfies

f(xk+1)− f(xk) ≤ −β

2
∥Xkdk∥2 = −β

2
∥xk+1 − xk∥2.

Moreover, we have ∥xk∥∞ ≤ R.

Proof From the KKT condition of (10), the solution dk of quadratic program-
ming (10) satisfies the necessary and sufficient condition as follows

βX2
kdk +Xk∇f(xk)− µk + νk = 0, −1

2
en ≤ dk ≤ X−1

k (b− xk),

Mk(dk +
1

2
en) = 0, Nk(dk −X−1

k (b− xk)) = 0,

(12)

where Mk = diag(µk) and Nk = diag(νk) with Mk, Nk ≽ 0.
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Moreover, from (9), we obtain

f(xk+1)− f(xk) ≤⟨Xk∇f(xk), dk⟩+
β

2
∥Xkdk∥2

=⟨−βX2
kdk + µk − νk, dk⟩+

β

2
∥Xkdk∥2

=− β

2
∥Xkdk∥2 + µT

k dk − νTk dk

=− β

2
∥Xkdk∥2 −

1

2
µT
k en − νTk X

−1
k (b− xk).

(13)

By µk, νk ≥ 0 and 0 < xk ≤ b, we obtain the inequality given in this
lemma, which implies that f(xk) ≤ f(x0), k ∈ K.

From Assumption 2.2, we obtain ∥xk∥∞ ≤ R.

Different from some other potential reduction methods, the objective func-
tion is monotonelly decreasing along the sequence generated by the First Order
Interior Point Algorithm.

Theorem 1 For any ϵ ∈ (0, 1], the First Order Interior Point Algorithm
obtains an ϵ scaled first order stationary point or ϵ global minimizer of (1)
in no more than O(ϵ−2) iterations.

Proof Let {xk} be the sequence generated by the proposed First Order Interior
Point Algorithm. Then xk ∈ (0, b] and ∥xk∥∞ ≤ R, ∀k ∈ K. Without loss of
generality, we suppose that R ≥ 1.

In the following, we will consider four cases.
Case 1: ∥Xkdk∥ ≥ 1

4βR ϵ.
From Lemma 2, we obtain that

f(xk+1)− f(xk) ≤ − 1

2× 42R2β
ϵ2 = − 1

32R2β
ϵ2.

Case 2: µT
k en ≥ 1

4β ϵ
2.

From Lemma 2, we get

f(xk+1)− f(xk) ≤ − 1

8β
ϵ2.

Case 3: νTk X
−1
k (b− xk) ≥ 1

4ϵ
2.

From (13), we get

f(xk+1)− f(xk) ≤ −1

4
ϵ2.

Case 4: ∥Xkdk∥ < 1
4βR ϵ, µT

k en < 1
4β ϵ

2 and νTk X
−1
k (b− xk) ≤ 1

4ϵ
2.

From the first condition in (12), we obtain that

βXkdk +∇f(xk)−X−1
k µk +X−1

k νk = 0, (14)
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which implies that

Xk∇f(xk) = −βX2
kdk + µk − νk. (15)

Then, we obtain

|[Xk∇f(xk)]i| ≤ β∥Xk∥∞∥Xkdk∥+ ∥µk∥∞ + |[νk]i| ≤
1

2
ϵ+ |[νk]i|. (16)

If i ̸∈ Ib, [νk]i = 0 and we have |[Xk∇f(xk)]i| ≤ 1
2ϵ. Fix i ∈ Ib. We consider

two subclasses in this case.
Case 4.1: xk

i < bi − bi
2 ϵ.

Then,
bi−xk

i

xi
k

≥ biϵ
2bi

≥ ϵ
2 , which gives [νk]i ≤ ϵ

2 from νTk X
−1
k (b− xk) ≤ 1

4ϵ
2

Then, (16) gives |[Xk∇f(xk)]i| ≤ ϵ.
Case 4.2: xk

i ≥ bi − bi
2 ϵ.

Then, xk
i ≥ bi

2 . By ∥µk∥∞ ≤ 1
4β ϵ

2, we have |[X−1
k µk]i| ≤ ϵ2

2βbi
≤ ϵ

2 . By

[νk]i ≥ 0, we obtain

[∇f(xk)]i =− [βXkdk −X−1
k µk +X−1

k νk]i

≤β∥Xkdk∥∞ + |[X−1
k µk]i| − [X−1

k νk]i

≤β∥Xkdk∥∞ +
1

2
ϵ− [X−1

k νk]i ≤ ϵ− [X−1
k νk]i ≤ ϵ.

Therefore, from the analysis in Cases 4.1 - 4.2, xk is an ϵ scaled first order
stationary point of (1).

Basing on the above analysis in Cases 1 - 3, at least one of the following
two facts holds at the kth iteration:

(i) f(xk+1)− f(xk) ≤ − 1
32R2β ϵ

2;

(ii) xk is an ϵ scaled first order stationary point of (1).

Therefore, we would produce an ϵ global minimizer or an ϵ scaled first
order stationary point of (1) in at most 32f(x0)R2βϵ−2 iterations.

Remark 1 When λ = 0 or p = 1 in (1), the KKT condition of (1) can be
written as 

[∇f(x)]i ≥ 0 if xi = 0,

[∇f(x)]i = 0 if 0 < xi < bi,

[∇f(x)]i ≤ 0 if xi = bi.

(17)

which are sufficient but not necessary for the conditions in (8).
Denote ϵ̄ = min{1,mini∈Ib

bi
2 }. Similar to the analysis in Theorem 1, from

(14), for ϵ ∈ (0, ϵ̄], if ∥Xkdk∥ < 1
4βR ϵ, µT

k en < 1
4β ϵ

2 and νTk X
−1
k (b−xk) ≤ 1

4ϵ
2,

we can obtain the following estimation
[∇f(xk)]i ≥ −1

2
ϵ if 0 ≤ xk

i ≤ ϵ,

|[∇f(xk)]i| ≤
1

2
ϵ+

1

2bi
ϵ if ϵ < xk

i < (1− ϵ
2 )bi

[∇f(xk)]i ≤ ϵ if xk
i ≥ (1− ϵ

2 )bi.

(18)
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When ϵ = 0, the conditions in (18) are consistent with the KKT condition of
(1) in (17). Thus, we can state that the First Order Interior Point Algorithm
can be extended to (1) with λ = 0 or p = 1 for finding an ϵ KKT point with
the worst-case complexity O(ϵ−2), which recovers the complexity bound of the
steepest descent method for constrained nonconvex optimization.

3 Second Order Interior Point Algorithm

In this section, we consider problem (7), a special case of (1) with Ω = {x :
x ≥ 0}, under Assumption 2.2 and the following assumption on H.

Assumption 3.1: H is twice continuously differentiable and ∇2H is glob-
ally Lipschitz on Ω with Lipschitz constant γ.

By using the cubic overestimation idea [4–6,18,22,23], a second order inte-
rior point algorithm is proposed for solving (7), which uses the Hessian of H.
We show that the worst-case complexity of the second order interior point al-
gorithm for finding an ϵ scaled second order stationary point of (7) is O(ϵ−3/2).
Comparing with the first order interior point algorithm proposed in Section 2,
the worst-case complexity of the second order interior point algorithm is better
and the generated point satisfies stronger optimality conditions. However, a
quadratic program with ball constraint has to be solved at each iteration.

3.1 Second Order Necessary Condition for (7)

Based on the scaled second order necessary condition for unconstrained non-
Lipschitz optimization in [11,12], we know that if x is a local minimizer of (7),
then x ∈ Ω satisfies

X∇2f(x)X = X∇2H(x)X + λp(p− 1)Xp ≽ 0. (19)

If x > 0, then f is differentiable at x and (19) implies that ∇2f(x) ≽ 0.

Now we give the definition of the ϵ scaled second order stationary point of
(7) as follows.

Definition 2 For a given ϵ ∈ (0, 1], we call x ∈ Ω an ϵ scaled second order
stationary point of (7), if

∥X∇f(x)∥∞ ≤ ϵ and X∇2f(x)X ≽ −
√
ϵIn.

Definition 2 is consistent with the scaled first and second order necessary
conditions given above when ϵ = 0.
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3.2 Second Order Interior Point Algorithm

From the cubic overestimation idea, for any x, x+ ∈ Ω, Assumption 3.1 implies
that

H(x+) ≤H(x) + ⟨∇H(x), x+ − x⟩

+
1

2
⟨∇2H(x)(x+ − x), x+ − x⟩+ 1

6
γ∥x+ − x∥3.

Similarly, for any t, s > 0,

tp ≤ sp + ⟨psp−1, t− s⟩

+
p(p− 1)

2
sp−2(t− s)2 +

p(p− 1)(p− 2)

6
sp−3(t− s)3.

Thus, for any x, x+ > 0, we obtain

f(x+)− f(x) ≤⟨∇f(x), x+ − x⟩+ 1

2
⟨∇2f(x)(x+ − x), x+ − x⟩

+
1

6
γ∥x+ − x∥3 + λ

p(p− 1)(p− 2)

6

n∑
i=1

xp−3
i (x+

i − xi)
3,

which can also be expressed by

f(x+)− f(x) ≤⟨X∇f(x), dx⟩+
1

2
⟨X∇2f(x)Xdx, dx⟩

+
1

6
γ∥Xdx∥3 +

λp(p− 1)(p− 2)

6

n∑
i=1

xp
i [dx]

3
i .

(20)

Since p(1 − p) ≤ 1
4 , then p(1 − p)(2 − p) ≤ 1

2 . Combining this estimation
with

∑n
i=1[dx]

3
i ≤ ∥dx∥3, if ∥x∥∞ ≤ R, then (20) implies

f(x+)− f(x) ≤⟨X∇f(x), dx⟩+
1

2
⟨X∇2f(x)Xdx, dx⟩

+
1

6
(γR3 +

1

2
λRp)∥dx∥3.

(21)

At x > 0, we minimize a quadratic function subject to a ball constraint
to achieve a sufficient reduction. For a given ϵ ∈ (0, 1], we solve the following
problem

min q(dx) = ⟨X∇f(x), dx⟩+
1

2
⟨X∇2f(x)Xdx, dx⟩

s.t. ∥dx∥2 ≤ ϑ2ϵ
(22)

where ϑ = 1
2 min{ 1

γR3+ 1
2λR

p , 1} and R is the constant in Assumption 2.2.

To solve (22), we consider two cases.
Case 1: X∇2f(x)X is positive semi-definite.
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From the KKT condition of (22), the solution dx of (22) satisfies the fol-
lowing necessary and sufficient conditions

X∇2f(x)Xdx +X∇f(x) + ρxdx = 0, (23a)

ρx ≥ 0, ∥dx∥2 ≤ ϑ2ϵ, ρx(∥dx∥2 − ϑ2ϵ) = 0. (23b)

In this case, (22) is a convex quadratic program with ball constraint, which
can be solved effectively in polynomial time, see [27] and references therein.

Case 2: X∇2f(x)X has at least one negative eigenvalue.
From [26], the solution dx of (22) satisfies the following necessary and

sufficient conditions

X∇2f(x)Xdx +X∇f(x) + ρxdx = 0, (24a)

∥dx∥2 = ϑ2ϵ, X∇2f(x)X + ρxIn is positive semi-definite. (24b)

In this case, (22) is a nonconvex quadratic programming with ball con-
straint. However, by the results in [29,30], (24) can be solved effectively in
polynomial time with the worst-case complexity O(log(log(ϵ−1))). The double
log is established based on a globally convergent Newton method. In the first
phase the method selects a point from at most − log log(ϵ) many candidate
points using the bisection method. Then it is proved that, starting from the
selected point, the quadratic convergence of the Newton method is guaranteed.

From (23) and (24), if dx solves (22), then

q(dx) =⟨X∇f(x), dx⟩+
1

2
⟨X∇2f(x)Xdx, dx⟩

=⟨−X∇2f(x)Xdx − ρxdx, dx⟩+
1

2
⟨X∇2f(x)Xdx, dx⟩

=− ρx∥dx∥2 −
1

2
dTxX∇2f(x)Xdx.

(25)

Since X∇2f(x)X + ρxIn is always positive semi-definite,

dTxX∇2f(x)Xdx ≥ −ρx∥dx∥2,

and thus

q(dx) ≤ −1

2
ρx∥dx∥2.

Therefore, from (21), we have

f(x+)− f(x) ≤ −1

2
ρx∥dx∥2 +

1

6
(γR3 +

1

2
λRp)∥dx∥3. (26)

Second Order Interior Point Algorithm
Choose x0 ∈ int(Ω) and ϵ ∈ (0, 1].
For k ≥ 0,

solve (22) with x = xk for dk (27a)

xk+1 = xk +Xkdk. (27b)
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The Second Order Interior Point Algorithm is related to the classical inte-
rior point methods [28]. The computational work of each iteration is identical
to the algorithm in [29]. However, in [29] the objective is a quadratic overes-
timation of the Karmarkar-type potential function, and in the current paper
the objective is just the Taylor quadratic expansion of the original objective
function. The main differences are: 1) the current paper deals with more gen-
eral objective function and [29] deals with only quadratic function, which is
why different convergence rates are established. For quadratic functions, there
would be no third-order errors so that the analysis was considerably simpler
and a better convergence rate was achieved in [29]. In fact, it is a surprise to
us that we are able to establish the current convergence rate for such general
objectives. 2) [29] needs a prior known lower bound for the objective function
in order to construct a valid potential function, but the current method does
not need such information.

From the definition of ϑ in (22), ∥dk∥∞ ≤ 1
2 , similar to the analysis in

Lemma 1, the Second Order Interior Point Algorithm is also well defined. Let
{xk} be the sequence generated by it, then xk > 0. In what follows, we will

prove that there is κ > 0 such that either f(xk+1)− f(xk) ≤ −κϵ
3
2 or xk+1 is

an ϵ scaled second order stationary point of (7).

Lemma 3 If ρk > 2
9ϑ∥dk∥ holds for all k ∈ K, then the Second Order Interior

Point Algorithm produces an ϵ global minimizer of (1) in at most O(ϵ−3/2)
iterations. Moreover, ∥xk∥∞ ≤ R, ∀k ∈ K.

Proof If ρk > 2
9ϑ∥dk∥, then ρk > 4

9 (γR
3 + 1

2λR
p)∥dk∥ and we have that

1

6
(γR3 +

1

2
λRp)∥dk∥ <

3

8
ρk, (28)

and from (23b) and (24b), we obtain ∥dk∥2 = ϑ2ϵ.
From (26) and (28), we have

f(xk+1)− f(xk) ≤ −1

2
ρk∥dk∥2 +

1

6
(γR3 +

1

2
λRp)∥dk∥3

<− 1

2
ρk∥dk∥2 +

3

8
ρk∥dk∥2 = −1

8
ρk∥dk∥2,

which means f(xk+1) < f(xk).
If this always holds, then f(xk) is strictly monotone decreasing. By As-

sumption 2.2, ∥xk∥∞ ≤ R, k ∈ K. Moreover,

f(xk)− f(x0) ≤ −k

8
ρk∥dk∥2 ≤ − k

36
ϑ2ϵ3/2,

which follows that we would produce an ϵ global minimizer of (1) in at most
36f(x0)ϑ−2ϵ−3/2 iterations.

In what follows, we prove that xk+1 is an ϵ scaled second order stationary
point of (7) when ρk ≤ 2

9ϑ∥dk∥ for some k.
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Lemma 4 If there is k ∈ K such that ρk ≤ 2
9ϑ∥dk∥, then xk+1 satisfies

∥Xk+1∇f(xk+1)∥∞ ≤ ϵ.

Proof From (23a) and (24a), the following relation always holds

−ρkdk =Xk∇2f(xk)Xkdk +Xk∇f(xk)

=Xk∇2H(xk)Xkdk + λp(p− 1)Xp−2
k X2

kdk +Xk∇H(xk) + λpXk(x
k)p−1

=Xk(∇2H(xk)Xkdk + λp(p− 1)Xp−2
k Xkdk +∇H(xk) + λp(xk)p−1),

which implies

∇2H(xk)Xkdk + λp(p− 1)Xp−2
k Xkdk +∇H(xk) + λp(xk)p−1 + ρkX

−1
k dk = 0.

Thus, there is τ ∈ [0, 1] such that

∇H(xk+1) + λp(xk+1)p−1

=∇H(xk+1) + λp(xk+1)p−1 −∇2H(xk)Xkdk − λp(p− 1)Xp−2
k Xkdk −∇H(xk)

− λp(xk)p−1 − ρkX
−1
k dk

=∇2H(τxk + (1− τ)xk+1)Xkdk −∇2H(xk)Xkdk

+ λp(xk+1)p−1 − λp(p− 1)Xp−2
k Xkdk − λp(xk)p−1 − ρkX

−1
k dk.

Therefore, we have

∥Xk+1(∇H(xk+1) + λp(xk+1)p−1)∥∞
≤∥Xk+1(∇2H(τxk + (1− τ)xk+1)Xkdk −∇2H(xk)Xkdk)∥∞
+ ∥Xk+1(λp(x

k+1)p−1 − λp(p− 1)Xp−2
k Xkdk − λp(xk)p−1)∥∞

+ ρk∥Xk+1X
−1
k dk∥∞.

(29)

From Assumption 3.1, we estimate the first term after the inequality in
(29) as follows

∥Xk+1∥∞∥∇2H(τxk + (1− τ)xk+1)Xkdk −∇2H(xk)Xkdk∥∞
≤γ(1− τ)∥Xk+1∥∞∥Xkdk∥2∞ ≤ γ∥Xk+1∥∞∥Xk∥2∞∥dk∥2∞ ≤ γR3∥dk∥2∞.

(30)

From XkDk = Xk+1 −Xk, we have

X−1
k Xk+1 = Dk + In, (31)

with Dk = diag(dk), which implies

X−1
k xk+1 = dk + en.
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Then, we consider the second term in (29),

Xk+1(λp(x
k+1)p−1 − λp(p− 1)Xp−2

k Xkdk − λp(xk)p−1)

=λpXp
k(X

−p
k (xk+1)p + (1− p)X−1

k Xk+1dk −X−1
k xk+1)

=λpXp
k((dk + en)

p + (1− p)(Dk + In)dk − (dk + en))

=λpXp
k((dk + en)

p + (1− p)d2k − pdk − en).

(32)

Using the Taylor expansion that 1 + pt− p(1−p)
2 t2 ≤ (1 + t)p ≤ 1 + pt, we

obtain

en + pdk − p(1− p)

2
d2k ≤ (dk + en)

p ≤ en + pdk. (33)

Adding (1− p)d2k − pdk − en into (33), we have

0 ≤ (dk + en)
p + (1− p)d2k − pdk − en ≤ (1− p)d2k.

Thus,

∥(dk + en)
p + (1− p)d2k − pdk − en∥∞ ≤ (1− p)∥dk∥2∞. (34)

Then, from (32) and (34), we get

∥Xk+1(λp(x
k+1)p−1 − λp(p− 1)Xp−2

k Xkdk − λp(xk)p−1)∥∞
≤λp∥Xp

k∥∞∥(dk + en)
p + (1− p)d2k − pdk − en∥∞

≤λp(1− p)∥Xp
k∥∞∥dk∥2∞ ≤ 1

2
λRp∥dk∥2∞.

(35)

From ∥dk∥∞ ≤ 1
2 , we have

ρk∥Xk+1X
−1
k dk∥∞ ≤ ρk∥dk∥∞(1 + ∥dk∥∞) ≤ 3

3
ρk∥dk∥∞. (36)

Therefore, from (29), (30), (35) and (36), we obtain

∥Xk+1∇H(xk+1) + λp(xk+1)p∥∞

≤(γR3 +
1

2
λRp)∥dk∥2∞ +

3

2
ρk∥dk∥∞

=
1

2
ϵ+

1

6
ϵ ≤ 2

3
ϵ.

Lemma 5 Under the assumptions in Lemma 4, xk+1 satisfies

Xk+1∇2f(xk+1)Xk+1 ≽ −
√
ϵIn.

Proof From (23b) and (24b), we know

Xk∇2f(xk)Xk + ρkIn is positive semi-definite.

Then,

∇2H(xk) + λp(p− 1)Xp−2
k ≽ −ρkX

−2
k ; (37)
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From Assumption 3.1, we obtain

∥∇2H(xk+1)−∇2H(xk)∥ ≤ γ∥xk − xk+1∥ ≤ γ∥Xk∥∞∥dk∥ ≤ γR∥dk∥. (38)

Note that ∇2H(xk+1) and ∇2H(xk) are symmetric, (38) gives

∇2H(xk+1)−∇2H(xk) ≽ −γR∥dk∥In. (39)

Adding (37) and (39), we get

∇2H(xk+1) ≽ −λp(p− 1)Xp−2
k − ρkX

−2
k − γR∥dk∥In. (40)

Adding λp(p− 1)Xp−2
k+1 into the both sides of (40), we obtain

Xk+1∇2H(xk+1)Xk+1 + λp(p− 1)Xk+1X
p−2
k+1Xk+1

≽− λp(p− 1)Xk+1X
p−2
k Xk+1 − ρkXk+1X

−2
k Xk+1

− γR∥dk∥X2
k+1 + λp(p− 1)Xk+1X

p−2
k+1Xk+1.

(41)

Using (31) again, we get

−ρkXk+1X
−2
k Xk+1 = −ρk(Dk + In)

2 ≽ −9

4
ρkIn. (42)

On the other hand, using (31), we have

Xk+1X
p−2
k+1Xk+1 −Xk+1X

p−2
k Xk+1 = Xp

k+1 −X2
k+1X

p−2
k

=Xp
k+1(In − (X2−p

k+1X
p−2
k )) = Xp

k+1(In − (In +Dk)
2−p).

(43)

From the Taylor expansion that (1 + t)2−p ≤ 1 + (2 − p)t + (2−p)(1−p)
2 t2,

we get

(In +Dk)
2−p ≼ In + (2− p)Dk +

1

2
(2− p)(1− p)D2

k. (44)

Applying (44), Dk ≼ 1
2In and 0 < p < 1 to (43), we derive

λp(1− p)(Xk+1X
p−2
k+1Xk+1 −Xk+1X

p−2
k Xk+1)

=λp(1− p)Xp
k+1(In − (In +Dk)

2−p)

≽− λp(1− p)Xp
k+1((2− p)Dk +

1

2
(2− p)(1− p)D2

k)

≽− λp(1− p)∥xk+1∥p∞((2− p)∥dk∥+
1

2
(2− p)(1− p)∥dk∥2)In

≽− λp(1− p)Rp(2− p+
(2− p)(1− p)

2
)∥dk∥In

≽− λRp p(1− p)(2− p)(3− p)

2
∥dk∥In

≽− λ

2
Rp∥dk∥In.

(45)
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From (41), (42), (43), (45), and ρk ≤ 2
9ϑ∥dk∥, we obtain

Xk+1∇2f(xk+1)Xk+1

=Xk+1∇2H(xk+1)Xk+1 + λp(p− 1)Xk+1X
p−2
k+1Xk+1

≽− (
9

4
ρk + γR3∥dk∥+

1

2
λRp∥dk∥)In

≽− (
1

2ϑ
+ γR3 +

1

2
λRp)∥dk∥In

≽− 1

ϑ
∥dk∥In ≽ −

√
ϵIn.

According to Lemmas 3 - 5, we can obtain the worst-case complexity of
the Second Order Interior Point Algorithm for finding an ϵ scaled second order
stationary point of (7).

Theorem 2 For any ϵ ∈ (0, 1], the proposed Second Order Interior Point Al-
gorithm obtains an ϵ scaled second order stationary point or ϵ global minimizer
of (7) in no more than O(ϵ−3/2) iterations.

Remark 2 When H(x) = 1
2∥Ax − q∥2 in (7), then γ = 0 and ϑ in (22) turns

to be

ϑ =
1

max{2, λRp}
.

The proposed Second Order Interior Point Algorithm obtains an ϵ scaled
second order stationary point or ϵ global minimizer of (7) in no more than
36f(x0)max{4, λ2R2p}ϵ−3/2 iterations.

Remark 3 Through the worst-case complexity result in Theorem 2 can be
extended to (7) with λ = 0 or p = 1, the complexity bound is for finding the
scaled second order stationary point of (7). When λ = 0 or p = 1, the general
second order optimality condition of (7) is defined as

x ≥ 0, ∇f(x) ≥ 0, xT∇f(x) = 0 and ∇2H(x) ≽ 0,

then we call x satisfies the ϵ second order optimality condition of (7) if

x ≥ 0, ∇f(x) ≥ −ϵ, ∥X∇f(x)∥∞ ≤ ϵ and ∇2H(x) ≽ −
√
ϵIn. (46)

Thus, due to the second inequality in (46) and the scaling in the second in-
equality of Definition 2, the conditions given in Definition 2 is necessary but
not sufficient for the ϵ second order optimality conditions in (46).

Moreover, the second order interior point algorithm and the complexity
bound given in section can be extended to

min
x≥0

H(x) + λ

n∑
i=1

φ(xp),

where φ is twice continuously differentiable in (0,+∞) and φ′(t) > 0, for
instance, φ2 and φ3 in Section 5.
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We end this section by showing our interior point algorithms can be ap-
plied to solve the unconstrained problem (2). In particular, we show the scaled
first and second order stationary points of (2) and (3) are in one-one corre-
spondence. Denote

Fn = {x : x is a scaled first order stationary point of (2)},
F2n

+ = {(x+, x−) : (x+, x−) is a scaled first order stationary point of (3)},
Sn = {x : x is a scaled second order stationary point of (2)},
S2n
+ = {(x+, x−) : (x+, x−) is a scaled second order stationary point of (3)}.

Theorem 3 (i) Suppose φ′(s) > 0 for s > 0, then

(x+, x−) ∈ F2n
+ ⇒ x ∈ Fn with x = x+ − x−;

x ∈ Fn ⇒ (x+, x−) ∈ F2n
+ with

x+ = max(0, x) and x− = max(0,−x). (47)

(ii) Suppose φ(s) = s and H is twice continuously differentiable, then

(x+, x−) ∈ S2n
+ ⇒ x ∈ Sn with x = x+ − x−;

x ∈ Sn ⇒ (x+, x−) ∈ S2n
+ with (47).

Proof (i) Suppose (x+, x−) ∈ F2n
+ , then x+, x− ≥ 0 and{

X+∇H(x+ − x−) + λp[φ′(s)s=(x+
i )p(x

+
i )

p]ni=1 = 0

−X−∇H(x+ − x−) + λp[φ′(s)s=(x−
i )p(x

−
i )

p]ni=1 = 0,
(48)

where X+ = diag(x+) and X− = diag(x−). Thus,

X−X+∇H(x+ − x−) + λp[φ′(s)s=(x+
i )p(x

+
i )

p(x−
i )]

n
i=1

−X+X−∇H(x+ − x−) + λp[φ′(s)s=(x−
i )p(x

−
i )

p(x+
i )]

n
i=1 = 0,

which gives

φ′(s)s=(x+
i )px

−
i (x

+
i )

p + φ′(s)s=(x−
i )px

+
i (x

−
i )

p = 0, ∀i ∈ I.

By φ′(s) > 0 for s > 0 and the above equation, we obtain that x+
i x

−
i = 0,

∀i ∈ I. Thus, adding the two equations in (48) gives

(X+ −X−)∇H(x+ − x−) + λp[φ′(s)s=(x+
i −x−

i )p(x
+
i − x−

i )
p]ni=1 = 0,

which means that x = x+ − x− ∈ Fn.
On the other hand, suppose x ∈ Fn, then (x+)Tx− = 0, where x+ and x−

are with the form in (47). Thus, (48) holds, which implies (x+, x−) ∈ F2n
+ .
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(ii) Suppose (x+, x−) ∈ S2n
+ and denote x = x+ − x−, then(

X+

X−

)(
∇2H(x) −∇2H(x)
−∇2H(x) ∇2H(x)

)(
X+

X−

)
+λp(p− 1)

(
(X+)p

(X−)p

)
≽ 0,

(49)

which follows(
In In

)(X+

X−

)(
∇2H(x) −∇2H(x)
−∇2H(x) ∇2H(x)

)(
X+

X−

)(
In
In

)
+λp(p− 1)

(
In In

)( (X+)p

(X−)p

)(
In
In

)
≽ 0.

Thus,

(X+−X−)∇2H(x)(X+−X−)+λp(p−1)(X+)p+λp(p−1)(X−)p ≽ 0. (50)

From (X+)p + (X−)p ≽ |X+ −X−|p and (50), we obtain

(X+ −X−)∇2H(x)(X+ −X−) + λp(p− 1)|X+ −X−|p ≽ 0, (51)

which implies that x ∈ Sn with x = x+ − x−.
On the other hand, suppose x ∈ Sn and (x+, x−) with the form in (47).

Then, (51) holds, which follows(
D+

n

D−
n

)
(X+ −X−)∇2H(x)(X+ −X−)

(
D+

n D−
n

)
+λp(p− 1)

(
D+

n

D−
n

)
|X+ −X−|p

(
D+

n D−
n

)
≽ 0,

(52)

where D+
n = diag(sign(x+)) and D−

n = diag(sign(x−)). By the definitions in
(47), we obtain

D+
n (X

+ −X−) = X+, D−
n (X

+ −X−) = −X−,

D+
n |X+ −X−|pD−

n = D−
n |X+ −X−|pD+

n = 0n×n,

D+
n |X+ −X−|pD+

n = |X+|p, D−
n |X+ −X−|pD−

n = |X−|p.
(53)

From (52) and (53), we obtain (49), which implies that (x+, x−) ∈ S2n
+ .

4 Numerical Experiments

In this section, we present three examples to show the good performance and
worst-case complexity of the First Order Interior Point Algorithm (FOIPA)
proposed in this paper for solving (1). The numerical testing is carried out on
a Lenovo PC (3.00GHz, 2.00GB of RAM) with the use of Matlab 7.4. In the
following three examples, ’Iteration number’ denotes the number of iterations
for obtaining an ϵ scaled first order stationary point.
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FOIPA Lasso Best subset
λ, p 112.7,0.01 13.94,0.1 7.6,0.3 7.74,0.5
x∗
1(lcavol) 0.6497 0.6499 0.6487 0.6433 0.533 0.740

x∗
2(lweight) 0.2941 0.2918 0.2856 0.2767 0.169 0.316

x∗
3(age) 0 0 0 0 0 0

x∗
4(lbph) 0 0 0 0 0.002 0

x∗
5(svi) 0.1498 0.1468 0.14 0.1336 0.094 0

x∗
6(lcp) 0 0 0 0 0 0

x∗
7(pleason) 0 0 0 0 0 0

x∗
8(pgg45) 0 0 0 0 0 0

Number of nonzero 3 3 3 3 4 2
Prediction error 0.4194 0.4205 0.4230 0.4261 0.479 0.492
Iteration number 2001 582 411 610

Table 2: Example 1: Variable selection by FOIPA Lasso and Best subset meth-
ods

Example 1 (Prostate Cancer) The prostate cancer date is downloaded from
the web site http://stat.stanford. edu/tibs/ElemStatLearn/data.html. It con-
sists of the medical records of 97 men who were about to receive a radical
prostatectomy, which is divided into a training set with 67 observations and
a test set with 30 observations. For more detail of the data set, see [8,11,12,
19]. We use the following constrained l2 − lp model to solve this problem

min
x≥0

∥Ax− q∥2 + λ
n∑

i=1

xp
i ,

where A ∈ R67×8 and q ∈ R67 are built by the training set.

Let x0 = 0.1e8 and ϵ = 10−3. The numerical results of the FOIPA with
β = 2∥ATA∥ are given in Table 2, in which two well-known methods (Lasso,
Best subset) from Table 3.3 in [19] are also listed. Table 2 indicates the FOIPA
with 0 < p < 1 can find fewer main factors with smaller prediction error than
the other two methods.

Example 2 (Nonnegative Compressed Sensing) In this example, we test
the FOIPA with a compressive sensing problem, where the goal is to recon-
struct a length-n nonnegative sparse signal fromm observations, wherem < n.
The purpose of this example is to show the worst-case complexity result and
good performance of the FOIPA.

We use the following code in Matlab to generate the original signal xs ∈ Rn,
sensing matrix A ∈ Rm×n and observation signal q ∈ Rm with given positive
integers n and T .

m=n/4; xs=zeros(n,1); P=randperm(n); A=randn(m,n);

xs(P(1:T))=abs(randn(T,1)); A=orth(A’)’; q=A∗xs.
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Fig. 1: Example 1: FOIPA for finding an ϵ scaled first order stationary point
of (54) (a) Iteration number, (b) CPU Time (second), where ϕ1, φ2 and φ3

are given in Section 5

In this example, we consider the following constrained optimization prob-
lem

min
x≥0

∥Ax− q∥2 +
n∑

i=1

φ(xp
i ). (54)

Set n = 4096 and T = 40 in the Matlab code to generate A, q and xs.
Choose x0 = 0.1en. For different choices of φ and p, the ’Iteration number’
and ’CPU time’ for obtaining an ϵ scaled first order stationary point of (54)
are illustrated in Fig. 1. From this figure, we can see that the total iterations
for obtaining an ϵ scaled first order stationary point is much smaller than the
worst-case estimation 32f(x0)R2βϵ−2 given in the proof of Theorem 1.

For the case that φ := φ1 with λ = 0.6 × 10−3 and p = 0.5, the original
signal xs and ϵ scaled first order stationary point xϵ with ϵ = 10−4 are pictured
in Fig. 2(a). Meantime, the convergence of xk, f(xk) and MSE(xk) are also
illustrated in Fig. 2(b)-2(d), where MSE(xk) is the mean squared error of xk

to the original signal xs defined by MSE(x) = ∥x− xs∥2/n.

Example 3 (Unconstrained Compressed Sensing) In order to support
the theoretical analysis in Theorem 3, we test the FOIPA into a typical
compressive sensing problem, where the goal is to reconstruct a length-n
sparse signal (may containing positive and negative signals) from m obser-
vations, where m < n. The original signal xs is generated randomly by the
code xs(P(1:T))=randn(T,1), A and q are generated as in Example 2 with
n = 1024 and T = 10. To solve this problem, we construct the following
unconstrained l2 − lp optimization

min
x+,x−≥0

∥A(x+ − x−)− q∥2 + λ∥x+∥pp + λ∥x−∥pp, (55)

which can be solved by the algorithms proposed in this paper. With initial
point x+0

= x−0

= 0.1en and β = 4∥ATA∥ = 4, the FOIPA can find an ϵ
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Fig. 2: Example 2: (a) original signal xs and ϵ scaled stationary point xϵ with
ϵ = 10−4, (b) convergence of iterate xk, (c) convergence of function value
f(xk), (d) convergence of mean squared error MSE(xk)
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Fig. 3: Example 3: Original and reconstructed signal by the FOIPA with ϵ =
10−3 and x = x+ − x− (a) original signal, (b) reconstructed signal.

(=10−3) scaled first order stationary point in 131 iterations with CPU time
10.075 seconds. The original signal and the ϵ scaled first order stationary point

are described in Fig. 3. The convergence of (x+k

,−x−k

) and (x+k

)Tx−k

are

shown in Fig. 4. From Fig. 3 and Fig. 4, we can see that xk = x+k − x−k

converges to the original signal.
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Fig. 4: Example 3: (a) convergence of (x+k

,−x−k

), (b) convergence of

(x+k

)Tx−k

5 Final Remarks

This paper proposes two interior point methods for solving constrained non-
Lipschitz, nonconvex optimization problems arising in many important appli-
cations. The first order interior point method is easy to implement and its
worst-case complexity is O(ϵ−2) which is the same in order as the worst-case
complexity of steepest-descent methods applied to unconstrained, nonconvex
smooth optimization, and the trust region methods and SQR methods applied
to unconstrained, nonconvex nonsmooth optimization [1,3]. The second order
interior method has a better complexity order O(ϵ−3/2) for finding an ϵ scaled
second order stationary point. It is not answered in this paper that whether
the complexity bounds are sharp for the first and second order methods, which
gives us an interesting topic for further research.

Assumptions in this paper are standard and applicable to many regular-
ization models in practice. For example, H(x) = ∥Ax − q∥2 and φ is one of
the following six penalty functions

i) soft thresholding penalty function [20,25]: φ1(s) = s
ii) logistic penalty function [24]: φ2(s) = log(1 + αs)
iii) fraction penalty function [13,24]: φ3(s) =

αs
1+αs

iv) hard thresholding penalty function[14]: φ4(s) = λ− (λ− s)2+/λ
v) smoothly clipped absolute deviation penalty function[14]:

φ5(s) =

∫ s

0

min{1, (α− t/λ)+
α− 1

}dt

vi) minimax concave penalty function [31]:

φ6(s) =

∫ s

0

(1− t

αλ
)+dt.
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Here α and λ are two positive parameters, especially, α > 2 in φ5(s) and
α > 1 in φ6(s). These six penalty functions are concave in [0,∞) and contin-
uously differentiable in (0,∞), which are often used in statistics and sparse
reconstruction.
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