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1 Introduction

In this paper, we consider the following constrained optimization problem

min
x∈X

f(x) := Θ(x) + c(h(x)), (1)

where Θ : Rn → R and c : Rm → R are continuously differentiable, h : Rn →
Rm is continuous, and X ⊂ Rn is a nonempty closed convex set. Of particular
interest of this paper is when h is not convex, not differentiable, or even not
Lipschitz continuous. Problem (1) includes many problems in practice [5,6,15,
16,21,25,27,38]. For instance, the following minimization problem

min
l≤x≤u,Ax≤b

Θ(x) +

m∑
i=1

φ(∥DT
i x∥pp) (2)

is a special case of (1), where l ∈ {R∪−∞}n, u ∈ {R∪∞}n, A ∈ Rt×n, b ∈ Rt,
Di ∈ Rn×r, p ∈ (0, 1) and φ : R+ → R+ is continuous. Such problem arises
from image restoration [11,15,16,32], signal processing [8], variable selection
[21], etc. Another special case of (1) is the following problem

min
x∈X

Θ(x) +
m∑
i=1

max{αi −mT
i x, 0}p, (3)

where αi ∈ R and mi ∈ Rn, which has attracted much interest in machine
learning, wireless communication [31], information theory, data analysis [22,
26], etc. Moreover, a number of constrained optimization problems can be re-
formulated as problem (1) by using the exact penalty method with nonsmooth
or non-Lipschitz continuous penalty functions [3].

When X = Rn and c(h(x)) = ∥x∥pp (0 < p < 1), the affine scaled first
and second order necessary conditions for local minimizers of (1) are estab-
lished in [17]. By using subspace techniques, Chen, et al [15] extended the first
and second order necessary conditions to c(h(x)) = ∥Dx∥pp with D ∈ Rm×n.
However, the optimality conditions in [15,17] are weaker than the Clarke op-
timality conditions [18] for p = 1, and not applicable to constrained optimiza-
tion problems. In this paper, we will derive a necessary optimality condition
for the non-Lipschitz constrained optimization problem (1), which reduces to
the Clarke optimality condition when the objective function in (1) is locally
Lipschitz continuous.

A point x∗ is called a Clarke stationary point of f if f is locally Lipschitz
at x∗ and there is V ∈ ∂f(x∗) such that

(V, x− x∗) ≥ 0, ∀x ∈ X, (4)

where

∂f(x) = con{v |∇f(y) → v, f is differentiable at y, y → x}
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is the Clarke subdifferential and “con” denotes the convex hull. From Theorem
9.61 and (b) of Corollary 8.47 in the book of Rockafellar and Wets [35], the
subdifferential associated with a smoothing function

Gf̃ (x) = con{v |∇xf̃(x
k, µk) → v, for xk → x, µk ↓ 0 },

is nonempty and bounded, and ∂f(x) ⊆ Gf̃ (x). In [9,10,13,35], it is shown
that many smoothing functions satisfy the gradient consistency

∂f(x) = Gf̃ (x). (5)

The gradient consistency is an important property of the smoothing methods,
which guarantees the convergence of smoothing methods with adaptive up-
dating schemes of smoothing parameters to a stationary point of the original
problem.

Due to the non-Lipschitz continuity of the objective function f , Clarke
optimality condition (4) cannot be applied to (1). In [28], Jahn introduced a
directional derivative for Lipschitz constrained optimization problems

f◦(x̄; v) = lim sup
y → x̄, y ∈ X

t ↓ 0, y + tv ∈ X

f(y + tv)− f(y)

t
,

which is equal to the Clarke generalized directional derivative at the interior
points of X . In this paper, we extend the directional derivative in [28] to the
non-Lipschitz constrained optimization problem (1). Using the extended direc-
tional derivative and the Clarke tangent cone, we derive necessary optimality
conditions. The new optimality conditions are equivalent to the optimality
conditions in [6,15,17] when the objective function is not Lipschitz continu-
ous, and to the Clarke optimality condition (4) when the objective function is
Lipschitz continuous. Moreover, we establish the consistency between the gen-
eralized directional derivative and the limit of the classic directional derivatives
associated with the smoothing function. The directional derivative consistency
guarantees the convergence of smoothing methods to a generalized stationary
point of (1).

Problem (1) includes the regularized minimization problem as a special
case when Θ(x) is a data fitting term and c(h(x)) is a regularization term
(also called a penalty term in some articles). In sparse optimization, noncon-
vex non-Lipschitz regularization provides more efficient models to extract the
essential features of solutions than the convex regularization [5,12,13,16,21,
25,27,32,38]. The SCAD penalty function [21] and the MCP function [38] have
various desirable properties in variable selection. Logistic and fraction penalty
functions yield edge preservation in image restoration [16,32]. The lp norm
penalty function with 0 < p < 1 owns the oracle property in statistics [21,
29]. Moreover, the lower bound theory of the l2-lp regularized minimization
problem [16,17], a special case of (1), states that the absolute value of each
component of any local minimizer of the problem is either zero or greater than
a positive constant. The lower bound theory not only helps us to distinguish
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zero and nonzero entries of coefficients in sparse high-dimensional approxima-
tion [12,25], but also brings the restored image closed contours and neat edges
[16]. In this paper, we extend the lower bound theory of the l2-lp regularization
minimization problem to problems (2) and (3) with 0 < p ≤ 1 which include
the most widely used models in statistics and sparse reconstruction. More-
over, we extend the complexity results of the l2-lp regularization minimization
problem [14] to problem (2) with a concave function φ and 0 < p ≤ 1. Such
extension of the lower bound theory and complexity is not trivial because of
the general constraints and weak conditions on φ.

The rest of the paper is organized as follows. In section 2, we first define a
generalized directional derivative and present its properties. Next, we derive
necessary optimality conditions for a local minimizer of problem (1), and prove
the directional derivative consistency associated with smoothing functions. In
section 3, we present the computational complexity and the lower bound theory
of problem (2).

In our notation, R+ = [0,∞) and R++ = (0,∞). For x ∈ Rn, 0 < p < ∞
and δ > 0, ∥x∥pp =

∑n
i=1 |xi|p, Bδ(x) means the open ball centered at x with

radius δ. For a closed convex subset Ω ⊆ Rn, int(Ω) means the interior of
Ω, cl(Ω) means the closure of Ω and m(Ω) denotes the element in Ω with
the smallest Euclidean norm. PX [x] = argmin{∥z − x∥2 : z ∈ X} denotes the
orthogonal projection from Rn to X . N++ = {1, 2, . . .}.

2 Optimality conditions

Inspired by the generalized directional derivative and the tangent cone, we
present a first order necessary optimality condition for local minimizers of
the constrained optimization problem (1), which is equivalent to the Clarke
necessary condition for locally Lipschitz optimization problems and stronger
than the necessary optimality conditions for the non-Lipschitz optimization
problems in the existing literature. At the end of this section, we prove the
directional directive consistency associated with smoothing functions

We suppose the function h in (1) has the following version

h(x) := (h1(D
T
1 x), h2(D

T
2 x), . . . , hm(DT

mx))
T (6)

whereDi ∈ Rn×r, hi(i = 1, . . . ,m) : Rr → R is continuous, but not necessarily
Lipschitz continuous.

2.1 Generalized directional derivative

Definition 1 A function ϕ : Rn → R is said to be Lipschitz continuous
at(near) x ∈ Rn if there exist positive numbers Lx and δ such that

|ϕ(y)− ϕ(z)| ≤ Lx∥y − z∥2, ∀ y, z ∈ Bδ(x).

Otherwise, ϕ is said to be not Lipschitz continuous at(near) x ∈ Rn.
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For a fixed x̄ ∈ Rn, denote

Ix̄ = {i ∈ {1, 2, . . . ,m} : hi is not Lipschitz continuous at DT
i x̄}, (7)

Vx̄ = {v : DT
i v = 0, i ∈ Ix̄}, (8)

and define

hx̄i (D
T
i x) =

{
hi(D

T
i x) i ̸∈ Ix̄

hi(D
T
i x̄) i ∈ Ix̄,

which is Lipschitz continuous at DT
i x̄, i = 1, 2, . . . ,m. Specially, we let Vx̄ =

Rn when Ix̄ = ∅. And then we let

fx̄(x) = Θ(x) + c(hx̄(x)), (9)

with hx̄(x) := (hx̄1(D
T
1 x), h

x̄
2(D

T
2 x), . . . , h

x̄
m(DT

mx))
T .

The function fx̄(x) is Lipschitz continuous at x̄ and fx̄(x̄) = f(x̄). The
generalized directional derivative [18] of fx̄ at x̄ in the direction v ∈ Rn is
defined as

f◦x̄(x̄; v) = lim sup
y→x̄,t↓0

fx̄(y + tv)− fx̄(y)

t
. (10)

Specially, when f is regular,

f◦x̄(x̄; v) = f ′x̄(x̄; v) = lim
t↓0

fx̄(x̄+ tv)− fx̄(x̄)

t
.

The generalized directional derivative in (10) is generalized in [28] and
used in [2,28] for locally Lipschitz constrained optimization. The generalization
motives us to use the following generalized directional derivative of fx̄ at x̄ ∈ X
in the direction v ∈ Rn

f◦x̄(x̄; v) = lim sup
y → x̄, y ∈ X

t ↓ 0, y + tv ∈ X

fx̄(y + tv)− fx̄(y)

t
. (11)

The definitions in (10) and (11) coincide when x̄ ∈ int(X ).

Proposition 1 For any x̄ ∈ X and v ∈ Vx̄,

f◦(x̄; v) = lim sup
y → x̄, y ∈ X

t ↓ 0, y + tv ∈ X

f(y + tv)− f(y)

t
exists (12)

and equals to f◦x̄(x̄; v) defined in (11).

Proof Fix x̄ ∈ X and v ∈ Vx̄. For y ∈ Rn and t > 0, there exists s ∈ (0, t)
such that

c(h(y + tv))− c(h(y)) =∇c(z)Tz=h(y+sv)(h(y + tv)− h(y))

=∇c(z)Tz=h(y+sv)(hx̄(y + tv)− hx̄(y)).



6 Wei Bian, Xiaojun Chen

Then,

f(y + tv)− f(y)

t
=
Θ(y + tv)−Θ(y) +∇c(z)Tz=h(y+sv)(hx̄(y + tv)− hx̄(y))

t
.

By the Lipschitz continuity of Θ and hx̄i at x̄, there exist δ > 0 and L > 0

such that
∣∣∣ f(y+tv)−f(y)

t

∣∣∣ ≤ L, ∀y ∈ Bδ(x̄), t ∈ (0, δ). Thus, the generalized

directional derivative of f at x̄ ∈ X in the direction v ∈ Vx̄ defined in (12)
exists.

Let {yn} and {tn} be the sequences such that yn ∈ X , tn ↓ 0, yn → x̄,
yn+ tnv ∈ X and the upper limit in (12) holds. Using the Lipschitz continuity
of hx̄i at x̄ again, we can get the subsequences {ynk

} ⊆ {yn} and {tnk
} ⊆ {tn}

such that

lim
k→∞

hx̄(ynk
+ tnk

v)− hx̄(ynk
)

tnk

exists. (13)

By the above analysis, then

f◦(x̄; v) = lim
k→∞

f(ynk
+ tnk

v)− f(ynk
)

tnk

=∇Θ(x̄) +∇c(z)z=h(x̄) lim
k→∞

hx̄(ynk
+ tnk

v)− hx̄(ynk
)

tnk

.

(14)

By virtue of (11), we have

f◦x̄(x̄; v) ≥ lim
k→∞

fx̄(ynk
+ tnk

v)− fx̄(ynk
)

tnk

=∇Θ(x̄) +∇c(z)z=hx̄(x̄) lim
k→∞

hx̄(ynk
+ tnk

v)− hx̄(ynk
)

tnk

.

(15)

Using h(x̄) = hx̄(x̄), (14) and (15) we obtain f◦x̄(x̄; v) ≥ f◦(x̄; v).
On the other hand, by extracting the sequences {ynk

} and {tnk
} such that

the upper limit in (11) holds and the limit in (13) exists with them, similar to
the above analysis, we find that f◦(x̄; v) ≥ f◦x̄(x̄; v).

Therefore, f◦(x̄; v) = f◦x̄(x̄; v).

Notice that the generalized directional derivative of f at x̄ ∈ X in the
direction v ∈ Vx̄ defined in (12) involves only the behavior of f at x̄ in the
hyperplane Vx̄.

2.2 Clarke tangent cone

Since X is a nonempty closed convex subset of Rn, the distance function
related to X is a nonsmooth, Lipschitz continuous function, defined by

dX (x) = min{∥x− y∥2 : y ∈ X}.

The Clarke tangent cone to X at x ∈ X , denoted as TX (x), is defined by

TX (x) = {v ∈ Rn : d◦X (x; v) = 0}.
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Assumption 1 Assume that X = X1 ∩ X2 and int(X1) ∩ X2 ̸= ∅, where
X1 ⊆ Rn is a nonempty closed convex set and X2 = {x | Ax = b} with
A ∈ Rt×n, b ∈ Rt.

Under Assumption 1, we can obtain the following properties of the Clarke
tangent cones to X1, X2 and X .

Lemma 1 The following statements hold.

(1) int(TX1(x)) ̸= ∅, ∀x ∈ X1;
(2) TX2(x) = cl{λ(c− x) : c ∈ X2, λ ≥ 0}, ∀x ∈ X2;
(3) TX1∩X2(x) = TX1(x) ∩ TX2(x), ∀x ∈ X .

Proof (1) Fix x ∈ X1 and denote x̂ ∈ int(X1). Let ϵ > 0 be a constant such
that x̂ + Bϵ(0) ⊆ int(X1). We shall show that x̂ − x + Bϵ(0) ⊆ TX1(x), and
hence x̂− x ∈ int(TX1(x)).

By the convexity of X1, dX1(x) is a convex function and for v ∈ x̂−x+Bϵ(0),
we notice that

x+ tv ∈ (1− t)x+ t(x̂+Bϵ(0)) ⊆ X1, ∀x ∈ X1, 0 ≤ t ≤ 1.

Then,

d◦X1
(x; v) = d′X1

(x; v) = lim
λ↓0

dX1(x+ λv)− dX1(x)

λ
= 0,

which confirms that v ∈ TX1(x).
(2) Since X2 is defined by a class of affine equalities, we have TX2(x) =

cl{λ(c− x) : c ∈ X2, λ ≥ 0}.
(3) By int(X1)∩X2 ̸= ∅, 0 ∈ int(X1−X2), then TX1∩X2(x) = TX1(x)∩TX2(x)

[1, pp.141].

Since int(TX1(x)) ̸= ∅, for a vector v ∈ int(TX1(x)), there exists a scalar
ϵ > 0 such that

y + tw ∈ TX1
(x), for all y ∈ TX1

(x) ∩Bϵ(x), w ∈ Bϵ(v) and 0 ≤ t < ϵ.

We often call int(TX1(x)) the hypertangent cone to X1 at x.
And by Lemma 1 (2), we have x+ tv ∈ X2, ∀x ∈ X2, t ≥ 0, v ∈ TX2(x).

2.3 Necessary optimality condition

Denote
r-int(TX (x)) = int(TX1(x)) ∩ TX2(x).

Since f is not assumed to be locally Lipschitz continuous, the calculus the-
ory developed in [2] cannot be directly applied to f . The next lemma extends
calculus results for the unconstrained case in [18] and the constrained case in
[2].

For any x ∈ X , from 0 ∈ r-int(TX (x))∩Vx, we know r-int(TX (x))∩Vx ̸= ∅.
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Lemma 2 For x̄ ∈ X and v ∈ TX (x̄) ∩ Vx̄,

f◦(x̄; v) = lim
w → v

w ∈ r-int(TX (x̄)) ∩ Vx̄

f◦(x̄;w).

Proof By the locally Lipschitz continuity of hx̄, there are ϵ > 0 and Lx̄ > 0
such that

∥hx̄(x)− hx̄(y)∥2 ≤ Lx̄∥x− y∥2, ∀x, y ∈ Bϵ(x̄). (16)

Let {wk} ⊆ r-int(TX (x̄)) ∩ Vx̄ be a sequence of directions converging to a
vector v ∈ TX (x̄) ∩ Vx̄.

By {wk} ⊆ r-int(TX (x̄)), let ϵk > 0 be such that x + twk ∈ X1 whenever
x ∈ X ∩ Bϵk(x̄) and 0 ≤ t < ϵk. By Lemma 1 (2), we obtain x + tv ∈
X2, x+ twk ∈ X2, ∀t ≥ 0, x ∈ X . Then, for all wk, it gives

f◦(x̄; v) = lim sup
x → x̄, x ∈ X

t ↓ 0, x + tv ∈ X

f(x+ tv)− f(x)

t

= lim sup
x → x̄, x ∈ X

t ↓ 0, x + tv ∈ X
x + twk ∈ X

f(x+ tv)− f(x)

t

= lim sup
x → x̄, x ∈ X

t ↓ 0, x + tv ∈ X
x + twk ∈ X

f(x+ twk)− f(x)

t
+
f(x+ tv)− f(x+ twk)

t
.

(17)

Let δ > 0 be such that x+ twk ∈ Bϵ(x̄) for any x ∈ Bδ(x̄), 0 ≤ t < δ and
k ∈ N++. By the Lipschitz condition in (16), we have

∥hx̄(x+ tv)− hx̄(x+ twk)

t
∥2 ≤ Lx̄∥v−wk∥2, ∀x ∈ Bδ(x̄), 0 < t < δ, k ∈ N++.

From

f(x+ tv)− f(x+ twk)

=Θ(x+ tv)−Θ(x+ twk) +∇c(z)Tz∈[h(x+tv),h(x+twk)]
(h(x+ tv)− h(x+ twk))

=Θ(x+ tv)−Θ(x+ twk) +∇c(z)Tz∈[h(x+tv),h(x+twk)]
(hx̄(x+ tv)− hx̄(x+ twk)),

for any x ∈ Bδ(x̄),0 ≤ t < δ, we have

|f(x+ tv)− f(x+ twk)

t
| ≤ LΘ∥v − wk∥2 + LcLx̄∥v − wk∥2,

where LΘ = sup{∥∇Θ(y)∥2 : y ∈ Bϵ(x̄)} and Lc = sup{∥∇c(z)Tz=h(y)∥2 : y ∈
Bϵ(x̄)}.

Thus, (17) implies

f◦(x̄;wk)−LΘ∥v − wk∥2 − LcLx̄∥v − wk∥2 ≤ f◦(x̄; v)

≤f◦(x̄;wk) + LΘ∥v − wk∥2 + LcLx̄∥v − wk∥2,∀k ∈ N++.

As k goes to infinity, the above inequality follows f◦(x̄; v) = limk→∞ f◦(x̄;wk).
Since {wk} is an arbitrary sequence in r-int(TX (x̄)) ∩ Vx̄ converging to v, we
obtain the result in this lemma.
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Note that the above lemma is not necessarily true when r-int(TX (x)) is
empty. A similar example can be given following the idea in [2, Example 3.10].
That is why we put the assumption int(X1) ∩ X2 ̸= ∅ at the beginning of this
section. Based on Lemmas 1-2, the following theorem gives the main theoretical
result of this section.

Theorem 1 If x∗ is a local minimizer of (1), then f◦(x∗, v) ≥ 0 for every
direction v ∈ TX (x∗) ∩ Vx∗ .

Proof Suppose x∗ is a local minimizer of f over X and let w ∈ r-int(TX (x∗))∩
Vx∗ .

There exist ϵ > 0 and Lx∗ > 0 such that f(x∗) ≤ f(x), and

∥hx∗(x)− hx∗(y)∥2 ≤ Lx∗∥x− y∥2, ∀x, y ∈ X ∩Bϵ(x
∗). (18)

Since w ∈ int(TX1(x
∗)), there exists ϵ̄ ∈ (0, ϵ] such that

x+ tw ∈ X1,∀x ∈ X1 ∩Bϵ̄(x
∗), 0 ≤ t ≤ ϵ̄.

By Lemma 1 (2), x + tw ∈ X , ∀x ∈ X ∩ Bϵ̄(x
∗), 0 ≤ t < ϵ̄. And then we can

choose δ ∈ (0, ϵ̄] such that x, x+ tw, x∗ + tw ∈ Bϵ(x
∗) ∩ X ,∀x ∈ Bt2(x

∗) ∩ X ,
0 ≤ t < δ.

By (18), for all x ∈ Bt2(x
∗) ∩ X , 0 < t < δ, we obtain

∥hx
∗(x+ tw)− hx∗(x∗ + tw)

t
− hx∗(x)− hx∗(x∗)

t
∥2 ≤ 2Lx∗

∥x− x∗∥2
t

≤ 2Lx∗t.

Thus,

lim
x ∈ B

t2
(x∗) ∩ X

x + tw ∈ X , t ↓ 0

hx∗(x+ tw)− hx∗(x∗ + tw)

t
− hx∗(x)− hx∗(x∗)

t
= 0. (19)

From the mean value theorem, there exist z1 = x+ s1w and z2 = x∗+ s2w
with s1, s2 ∈ (0, t) such that

|c(h(x+ tw))− c(h(x))

t
− c(h(x∗ + tw))− c(h(x∗))

t
|

=|∇c(h(z1))
T (h(x+ tw)− h(x))

t
− ∇c(h(z2))T (h(x∗ + tw)− h(x∗))

t
|

=|∇c(h(z1))
T (hx∗(x+ tw)− hx∗(x))

t
− ∇c(h(z2))T (hx∗(x∗ + tw)− hx∗(x∗))

t
|.

(20)
By (19), (20) and the continuous differentiability of Θ, we have

lim
x ∈ B

t2
(x∗) ∩ X

x + tw ∈ X , t ↓ 0

[
f(x+ tw)− f(x)

t
− f(x∗ + tw)− f(x∗)

t
]

=∇c(y)Ty=h(x∗) lim
x ∈ B

t2
(x∗) ∩ X

x + tw ∈ X , t ↓ 0

[
hx∗(x+ tw)− hx∗(x)

t
− hx∗(x∗ + tw)− hx∗(x∗)

t
]

=0.
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Thus,

lim sup
x → x∗, x ∈ X

t ↓ 0, x + tw ∈ X

[
f(x+ tw)− f(x)

t
− f(x∗ + tw)− f(x∗)

t
] ≥ 0. (21)

By f(x∗ + tw)− f(x∗) ≥ 0 for 0 ≤ t < ϵ̄, (21) implies

f◦(x∗;w) = lim sup
x → x∗, x ∈ X

t ↓ 0, x + tw ∈ X

f(x+ tw)− f(x)

t
≥ 0.

By Lemma 2, we can give that f◦(x∗; v) ≥ 0 for any v ∈ TX (x∗) ∩ Vx∗ .

Based on Theorem 1, we give a new definition of generalized stationary
point of problem (1).

Definition 2 x∗ ∈ X is said to be a generalized stationary point of (1), if
f◦(x∗; v) ≥ 0 for every v ∈ TX (x∗) ∩ Vx∗ .

It is worth noting that the generalized stationary point x∗ is a Clarke
stationary point of problem (1) when f is Lipschitz continuous at x∗.

Remark 1 Suppose hi(D
T
i x) is regular in X\Ni, where

Ni = {x ∈ X : hi is not Lipschitz continuous at DT
i x}, i = 1, 2, . . . ,m.

For x̄ ∈ X , the regularity assumption allows us to define Vx̄ by

Vx̄ ={v : for any i ∈ Ix̄, there exists δ > 0 such that

hi(x̄+ tv) = hi(x̄) holds for all 0 ≤ t ≤ δ},

which is a bigger set than Vx̄ given in (8). Hence the generalized stationary
point defined in Definition 2 can be more robust with this Vx̄. For example, if
f is defined as in (3), Ix̄ = {i ∈ {1, 2, . . . ,m} : mT

i x̄ = αi} and we can let

Vx̄ = {v : mT
i v ≥ 0, ∀ i ∈ Ix̄},

which includes {v : mT
i v = 0, ∀i ∈ Ix̄} as a proper subset.

We notice that a generalized stationary point defined in Definition 2 is
a scaled stationary point defined in [5,6,15,24] for the special cases of (2)
with 0 < p < 1. Moreover it is stronger than a scaled stationary point for
the Lipschitz case, since it is a Clarke stationary point but a scaled stationary
point is not necessarily a Clarke stationary point for the Lipschitz optimization
problem.
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2.4 Directional derivative consistency

In this subsection, we show that the generalized directional derivative of f
defined in (12) can be represented by the limit of a sequence of directional
derivatives of a smoothing function of f . This property is important for de-
velopment of numerical algorithms for nonconvex non-Lipschitz constrained
optimization problems.

Definition 3 [13] Let g : Rn → R be a continuous function. We call g̃ : Rn ×
[0,∞) → R a smoothing function of g, if g̃(·, µ) is continuously differentiable
for any fixed µ > 0 and limz→x,µ↓0 g̃(z, µ) = g(x) holds for any x ∈ Rn.

Let h̃(x, µ) = (h̃1(D
T
1 x, µ), h̃2(D

T
2 x, µ), . . . , h̃m(DT

mx, µ))
T , where h̃i is a

smoothing function of hi in (6). Then f̃(x, µ) := Θ(x)+c(h̃(x, µ)) is a smooth-
ing function of f .

Since f̃(x, µ) is continuously differentiable about x for any fixed µ > 0, the
generalized directional derivative of it with respect to x can be given by

f̃◦(x, µ; v) = lim sup
y → x, y ∈ X

t ↓ 0, y + tv ∈ X

f̃(y + tv, µ)− f̃(y)

t
= ⟨∇xf̃(x, µ), v⟩. (22)

Theorem 2 Suppose hi is continuously differentiable in X\Ni, ∀i ∈ {1, 2, . . . ,m},
where Ni = {x : hi is not Lipschitz continuous at DT

i x}, then

lim
xk ∈ X ,

xk → x, µk ↓ 0

⟨∇xf̃(xk, µk), v⟩ = f◦(x; v), ∀v ∈ Vx. (23)

Proof Let xk be a sequence in X converging to x̄ and {µk} be a positive
sequence converging to 0. For w ∈ Vx̄, by the closed form of ∇xf̃(xk, µk), we
have

⟨∇xf̃(xk, µk), w⟩
=⟨∇Θ(xk), w⟩+ ⟨∇xh̃(xk, µk)∇c(z)z=h̃(xk,µk)

, w⟩

=⟨∇Θ(xk), w⟩+ ⟨∇c(z)z=h̃(xk,µk)
,∇xh̃(xk, µk)

Tw⟩,

(24)

where

∇xh̃(xk, µk)
Tw = (∇xh̃1(D

T
1 w, µk)

Tw, . . . ,∇xh̃m(DT
mxk, µk)

Tw)T .

For i ∈ Ix̄, by w ∈ Vx̄, we obtain DT
i w = 0, then ∇xh̃i(D

T
i xk, µk)

Tw =
∇zh̃i(z, µk)

T
z=DT

i xk
DT

i w = 0.

Define

h̃x̄i (D
T
i x, µ) =

{
h̃i(D

T
i x, µ) i ̸∈ Ix̄,

h̃i(D
T
i x̄, µ) i ∈ Ix̄,

i = 1, 2, . . . ,m.

Denote h̃x̄(x, µ) = (h̃x̄1(D
T
1 x, µ), h̃

x̄
2(D

T
2 x, µ), . . . , h̃

x̄
m(DT

mx, µ))
T . Then,

∇xh̃(xk, µk)
Tw = ∇xh̃x̄(xk, µk)

Tw.
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Thus, coming back to (24), we obtain

⟨∇xf̃(x
k, µk), w⟩ =⟨∇Θ(xk), w⟩+ ⟨∇c(z)z=h̃(xk,µk)

,∇xh̃x̄(xk, µk)
Tw⟩

=⟨∇Θ(xk), w⟩+ ⟨∇xh̃x̄(xk, µk)∇c(z)z=h̃(xk,µk)
, w⟩

=⟨∇Θ(xk) +∇xh̃x̄(xk, µk)∇c(z)z=h̃(xk,µk)
, w⟩.

(25)

Since hi is continuously differentiable at DT
i x̄ for i ̸∈ Ix̄ and hx̄(x̄) = h(x̄),

we obtain
lim
k→∞

∇Θ(xk) +∇xh̃x̄(xk, µk)∇c(z)z=h̃(xk,µk)

=∇Θ(x̄) +∇hx̄(x̄)∇c(z)z=h(x̄) = ∇fx̄(x̄),
(26)

where fx̄ is defined in (9).
Thus,

f◦(x̄, w) = f◦x̄(x̄, w) = ⟨∇fx̄(x̄), w⟩
= ⟨ lim

k→∞
∇Θ(xk) +∇xh̃x̄(xk, µk)∇c(z)z=h̃(xk,µk)

, w⟩

= lim
k→∞

⟨∇xf̃(x
k, µk), w⟩, (27)

where the first equation uses Proposition 1, the third uses (26) and the fourth
uses (25).

Now we give another consistency result on subspace Vx.

Lemma 3 Let xk be a sequence in X with a limit point x̄. For w ∈ Vx̄, there
exists a sequence {xkl

} ⊆ {xk} such that w ∈ Vxkl
, ∀l ∈ N++.

Proof If not, there is K ∈ N++ such that

w ̸∈ Vxk
, ∀k ≥ K.

By the definition of Vxk
, there exists ik ∈ Ixk

such that

DT
ik
w ̸= 0, ∀k ≥ K.

By Ixk
⊆ {1, 2, . . . ,m}, there exists j ∈ {1, 2, . . . ,m} and a subsequence

of {xk}, denoted as {xkl
}, such that j ∈ Ixkl

and DT
j w ̸= 0.

Note that j ∈ Ixkl
implies hj is not Lipschitz continuous at DT

j xkl
. Since

the non-Lipschitz points of hj is a closed subset of Rn, hj is also not Lipschitz
continuous at DT

j x̄, which means j ∈ Ix̄. By w ∈ Vx̄, we obtain DT
j w = 0,

which leads a contradiction. Therefore, the statement in this lemma holds.

Based on the consistency results given in Theorem 2 and Lemma 3, the
next corollary shows the generalized stationary point consistency of the smooth
functions.

Corollary 1 Let {ϵk} and {µk} be positive sequences converging to 0. With
the conditions on h in Theorem 2, if xk satisfies ⟨∇xf̃(x

k, µk), v⟩ ≥ −ϵk for
every v ∈ TX (xk) ∩ Vxk ∩B1(0), then any accumulation point of {xk} ⊆ X is
a generalized stationary point of (1).
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Proof Let x̄ be an accumulation point of {xk}. Without loss of generality, we
suppose limk→∞ xk = x̄.

For w ∈ r-int(TX (x̄)) ∩ Vx̄ ∩B1(0), from Lemma 3, we can suppose

w ∈ Vxk
, ∀k ∈ N++.

By w ∈ r-int(TX (x̄)), there exists ϵ > 0 such that

x+ sw ∈ X , ∀x ∈ X ∩Bϵ(x̄), 0 ≤ s ≤ ϵ. (28)

Since xk is converging to x̄, there existsK ∈ N++ such that xk ∈ X∩Bϵ(x̄),
∀k ≥ K. By (28), we have xk+sw ∈ X , ∀k ≥ K, 0 ≤ s ≤ ϵ. From the convexity
of X , we obtain w ∈ TX (xk).

From Theorem 2, we have f◦(x̄, w) ≥ 0. Then, for any ρ > 0, we have

f◦(x̄; ρv) = lim sup
y → x̄, y ∈ X

t ↓ 0, y + tρv ∈ X

f(y + tρv)− f(y)

t

=ρ lim sup
y → x̄, y ∈ X

s ↓ 0, y + sv ∈ X

f(y + sv)− f(y)

s
= ρf◦(x̄; v) ≥ 0.

(29)

Thus, f◦(x̄; v) ≥ 0 for every v ∈ r-int(TX (x̄))∩Vx̄∩B1(0) implies f◦(x̄; v) ≥
0 for every v ∈ r-int(TX (x̄)) ∩ Vx̄. By Lemma 2, it is easy to verify that
f◦(x̄, v) ≥ 0 holds for any v ∈ TX (x̄)∩Vx̄, which means that x̄ is a generalized
stationary point of (1).

Remark 2 Suppose the gradient consistency associated with the smoothing
function h̃i holds at its Lipschitz continuous points, that is

{ lim
z→x,µ↓0

∇xh̃i(D
T
i x, µ)} ⊆ ∂hi(D

T
i x), ∀x ∈ X , i ̸∈ Ix, (30)

then

{ lim
z→x,µ↓0

∇Θ(z) +∇h̃x(x, µ)∇c(z)z=hx(x)} ⊆ ∂fx(x), ∀x ∈ X . (31)

Since fx̄ is Lipschitz continuous at x̄, it gives

f◦x̄(x̄, v) = max{⟨ξ, v⟩ : ξ ∈ ∂fx̄(x̄)}. (32)

Similar to the calculation in (27), by (31) and (32), we obtain

f◦(x̄, w) = f◦x̄(x̄, w) =max{⟨ξ, w⟩ : ξ ∈ ∂fx̄(x̄)}
≥ lim sup

k→∞
⟨∇Θ(xk) +∇xh̃x̄(xk, µk)∇c(z)z=h̃(xk,µk)

, w⟩

= lim sup
k→∞

⟨∇xf̃(x
k, µk), w⟩.
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Thus, the conclusion in Corollary 1 can be true with (30), which is weaker
than the strict differentiability of hi in X\Ni, i ∈ {1, 2, . . . ,m}. Some condi-
tions can be found in [18] to ensure (30). Specially, when the function h in f
is with the form

h(x) := (h1(d
T
1 x), h2(d

T
2 x), . . . , hm(dTmx))

T

with di ∈ Rn, by [18, Theorem 2.3.9 (i)], the regularity of hi(d
T
i x) in X\Ni is

a sufficient condition for the statement in Theorem 2.

Corollary 1 shows that one can find a generalized stationary point of (1)
by using the approximate first order optimality condition of minx∈X f̃(x, µ).
Since f̃(x, µ) is continuously differentiable for any fixed µ > 0, many numerical
algorithms can find a stationary point of minx∈X f̃(x, µ) [7,19,30,34,37]. We
use one example to show the validity of the first order necessary optimality
condition and the consistency result given in this section.

Example 1 Consider the following minimization problem

min f(x) := (x1 + 2x2 − 1)2 + λ1
√

max{x1 + x2 + 1, 0}+ λ2
√
|x2|,

s.t. x ∈ X = {x ∈ R2 : −1 ≤ x1, x2 ≤ 1}. (33)

This problem is an example of (1) with Θ(x) = (x1 + 2x2 − 1)2, c(y) =
λ1y1 + λ2y2, h1(D

T
1 x) =

√
max{x1 + x2 + 1, 0} and h2(D

T
2 x) =

√
|x2|, where

D1 = (1, 1)T , D2 = (0, 1)T .

Define the smoothing function of f as

f̃(x, µ) = (x1 + 2x2 − 1)2 + λ1
√
ψ(x1 + x2 + 1, µ) + λ2

√
θ(x2, µ),

with ψ(s, µ) = 1
2 (s+

√
s2 + 4µ2), θ(s, µ) =


|s| |s| > µ,

s2

2µ
+
µ

2
|s| ≤ µ.

Here, we use the classical projected algorithm with Armijo line search to
find an approximate generalized stationary point of minx∈X f̃(x, µ). There
exists α > 0 such that x̄ − PX [x̄ − α∇xf̃(x̄, µ)] = 0 if and only if x̄ is a
generalized stationary point of minx∈X f̃(x, µ), which is also a Clarke sta-
tionary point of minx∈X f̃(x, µ) for any fixed µ > 0. We call xk an approx-
imate stationary point of minx∈X f̃(x, µk), if there exists αk > 0 such that
∥xk−PX [xk−αk∇xf̃(x

k, µk)]∥2 ≤ αkµk, which can be found in finite number
of iterations by the analysis in [4].

Choose the initial iterate x0 = (0, 0)T . For different values of λ1 and λ2 in
(33), the simulation results are listed in Table 1, where f∗ indicates the optimal
function value of (33), where the iteration is terminated when µk ≤ 10−6.
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λ1 λ2 accumulation point x∗ Ix∗ Vx∗ f(x∗) f∗

8 2 (−1.000, 0.000)T {1} {v = (a,−a)T : a ∈ R} 4.000 4.000
0.1 0.2 (0.982, 0.000)T {2} {v = (a, 0)T : a ∈ R} 0.141 0.141
0.5 0.1 (−1.000, 0.962)T ∅ R2 0.594 0.594

Table 1: Simulation results in Example 1

When λ1 = 8, λ2 = 2, since h2(D
T
2 x) is continuously differentiable at x∗,

for v ∈ Vx∗ , by h1(D
T
1 (x

∗ + tv)) = h1(D
T
1 x

∗), ∀t > 0, we obtain

f◦(x∗; v) = lim sup
y → x∗, y ∈ X

t ↓ 0, y + tv ∈ X

Θ(y + tv)−Θ(y) + λ2h2(D
T
2 (y + tv))− λ2h2(D

T
2 y)

t

=⟨∇Θ(x∗) + λ2h
′
2(D

T
2 x

∗)D2, v⟩ = −4v1 − 550.473v2,

where v1 = −v2 by v ∈ Vx∗ , and v1 ∈ R+ by x∗1 = −1.000 and the condition
x∗ + tv ∈ X in f◦(x∗; v). Then, f◦(x∗; v) ≥ 0, ∀v ∈ Vx∗ , which means that
(−1.000, 0.000)T is a generalized stationary point of (33). Similarly,

– when λ1 = 0.1, λ2 = 0.2:

f◦(x∗; v) = ⟨∇Θ(x∗) + λ1h
′
1(D

T
1 x

∗)D1, v⟩ = −0.036v2,

where v2 = 0 by v ∈ Vx∗ .
– when λ1 = 0.5, λ2 = 0.1:

f◦(x∗; v) = ⟨∇Θ(x∗) + λ1h
′
1(D

T
1 x

∗)D1 + λ2h
′
2(D

T
2 x

∗)D2, v⟩ = 0.102v1,

where v1 ∈ R+ by x∗1 = −1.000,

which gives f◦(x∗; v) ≥ 0, for all v ∈ Vx∗ . Thus, the accumulation points in
Table 1 are generalized stationary points of (33) with different values of λ1
and λ2. Furthermore, the trajectory of xk of the smoothing algorithm for (33)
with λ1 = 8, λ2 = 2 are pictured in Figure 1 with the isolines of f in X .

3 Nonconvex regularization

In this section, we focus on problem (2) with the function φ satisfying the
following assumption.

Assumption 2 Assume that φ : R+ → R+ with φ(0) = 0 is continuously
differentiable, non-decreasing and concave on (0,∞), and φ′ is locally Lipschitz
continuous on R++.

The function φ(t) = t and p ∈ (0, 1) satisfies Assumption 2. It is know that
problem (2) with X = Rn and φ(t) = t is strongly NP hard but enjoys lower
bound theory. However, the complexity and lower bound theory of problem (2)
with a general convex set X and the class of functions φ satisfying Assumption
2 have not been studied. In this section, we show that the key condition for
the complexity and lower bound theory is that the function φ(zp) is strictly
concave in an open interval.
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Fig. 1: Trajectory of xk in Example 1 with λ1 = 8 and λ2 = 2

3.1 Computational complexity

In this subsection, we will show the strong NP-hardness of the following prob-
lem

min ∥Hx− c∥22 +
n∑

i=1

φ(|xi|p), (34)

where H ∈ Rs×n, c ∈ Rs and 0 < p ≤ 1.

Lemma 4 φ(|s|p) + φ(|t|p) ≥ φ(|s+ t|p), ∀s, t ∈ R.

Proof Define ψ(α) = φ(α+ |s|p)− φ(α) on [0,+∞). Then from the concavity
of φ, ψ′(α) = φ′(α + |s|p) − φ′(α) ≤ 0, which implies ψ(|t|p) ≤ ψ(0). Thus,
φ(|t|p + |s|p) ≤ φ(|t|p) + φ(|s|p). Since |t + s|p ≤ |t|p + |s|p and φ is non-
decreasing on [0,+∞), we obtain φ(|t+ s|p) ≤ φ(|t|p) + φ(|s|p).

First, we give two preliminary results for proving the strong NP-hardness
of (34) with 0 < p ≤ 1. The first is for p = 1 and the second is for 0 < p < 1.

Lemma 5 Suppose φ is strictly concave and twice continuously differentiable
on [τ1, τ2] with τ1 > 0 and τ2 > τ1. There exists γ̄ > 0 such that when γ > γ̄
and p = 1, the minimization problem

min
z∈R

g(z) = γ|z − τ1|2 + γ|z − τ2|2 + φ(|z|p), (35)

has a unique solution z∗ ∈ (τ1, τ2).

Proof Since φ is twice continuously differentiable in [τ1, τ2], there exists α >
0 such that 0 ≤ φ′(s) ≤ α and −α ≤ φ′′(s) ≤ 0, ∀s ∈ [τ1, τ2]. Let γ̄ =
max{ α

2(τ2−τ1)
, α4 } and suppose γ > γ̄.
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Note that g(z) > g(0) = γτ21 + γτ22 for all z < 0, and g(z) > g(τ2) =
γ(τ2 − τ1)

2 + φ(τ2) for all z > τ2. Then, the minimum point of g(z) must lie
within [0, τ2].

To minimize g(z) on [0, τ2], we check its first derivative

g′(z) = 2γ(z − τ1) + 2γ(z − τ2) + φ′(z), 0 < z ≤ τ2.

When 0 < z ≤ τ1, g
′(z) = 4γz−2γτ1−2γτ2+φ

′(z) ≤ 2γτ1−2γτ2+α < 0,
which means that g(z) is strictly decreasing on [0, τ1]. Therefore, the minimum
point of g(z) must lie within (τ1, τ2].

Consider solving g′(z) = 2γ(z − τ1) + 2γ(z − τ2) + φ′(z) = 0 on (τ1, τ2].
Calculate g′′(z) = 4γ+φ′′(z) > 0. And we have g′(τ2) = 2γτ2−2γτ1+φ

′(τ2) >
0, g′(τ1) < 0. Therefore, there exists a unique z̄ ∈ (τ1, τ2) such that g′(z̄) = 0,
which is the unique global minimum point of g(z) in R.

For the case that 0 < p < 1, we need a weaker condition on φ to obtain a
similar result as in Lemma 5.

Lemma 6 Suppose φ is twice continuously differentiable on [τp1 , τ
p
2 ] with τ2 >

τ1 > 0. There exists γ̄ > 0 such that when γ > γ̄ and 0 < p < 1, the
minimization problem (35) has a unique solution z∗ ∈ (τ1, τ2).

Proof First, there exists α > 0 such that 0 ≤ φ′(s) ≤ α and −α ≤ φ′′(s) ≤ 0,
∀s ∈ [τp1 , τ

p
2 ]. Let γ > γ̄, where

γ̄ = max{
2φ(( τ1+τ2

2 )p)

(τ2 − τ1)2
,
pατp−1

1

2(τ2 − τ1)
,
ατ2p−2

1 + ατp−2
1

4
}.

Similar to the analysis in Lemma 5, the minimum point of g(z) must lie within

[0, τ2]. When z ∈ [0, τ1], g(z) ≥ γ(τ2 − τ1)
2, then by γ >

2φ((
τ1+τ2

2 )p)

(τ2−τ1)2
, we have

g(z) > g(
τ1 + τ2

2
), ∀z ∈ [0, τ1].

Thus, the minimum point of g(z) must lie with in (τ1, τ2].

To minimize g(z) on (τ1, τ2], we check its first derivative. By γ >
pατp−1

1

2(τ2−τ1)
,

we have g′(τ1) = 2γ(τ1 − τ2) + pφ′(τp1 )τ
p−1
1 < 0, and by φ′ ≥ 0, we get

g′(τ2) = 2γ(τ2 − τ1) + pφ′(τp2 )τ
p−1
2 > 0. Now we consider the solution of the

constrained equation

g′(z) = 2γ(z − τ1) + 2γ(z − τ2) + pφ′(zp)zp−1 = 0, z ∈ (τ1, τ2].

We calculate that g′′(z) = 4γ + p2φ′′(zp)z2p−2 + p(p− 1)φ′(zp)zp−2 > 0 since

γ >
ατ2p−2

1 +ατp−2
1

4 . Combining it with g′(τ1) < 0 and g′(τ2) > 0, there exists a
unique z̄ ∈ (τ1, τ2) such that g′(z̄) = 0, which is the unique global minimizer
of g(z) in R.
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Since φ′ is locally Lipschitz continuous in R++, φ
′ is continuously dif-

ferentiable almost everywhere in R++. If φ is strictly concave in (τ , τ̄) with
τ̄ > τ > 0, there exist τ1 > 0 and τ2 > τ1 with [τp1 , τ

p
2 ] ⊆ (τ , τ̄) such that φ

is strictly concave and twice continuously differentiable on [τp1 , τ
p
2 ]. Thus, the

strict concavity of φ in an open interval of R+ is sufficient for the existence of
[τp1 , τ

p
2 ] with τ2 > τ1 > 0 such that φ is strictly concave and twice continuously

differentiable on it. And there is no other condition needed to guarantee the
supposition of φ in Lemma 6.

Theorem 3 1. Minimization problem (34) is strongly NP-hard for any given
0 < p < 1.

2. If φ is strongly concave in an open interval of R+, then minimization
problem (34) is strongly NP-hard for p = 1.

Proof Now we present a polynomial time reduction from the well-known strongly
NP-hard partition problem [23] to problem (34). The 3-partition problem can
be described as follows: given a multiset S of n = 3m integers {a1, a2, . . . , an}
with summb, is there a way to partition S intom disjoint subsets S1, S2, . . . , Sm,
such that the sum of the numbers in each subset is equal?

Given an instance of the partition problem with a = (a1, a2, . . . , an)
T ∈ Rn.

We consider the following minimization problem in form (34):

min
x

P (x) =
m∑
j=1

|
n∑

i=1

αixij − β|2 + γ
n∑

i=1

|
m∑
j=1

xij − τ1|2

+ γ

n∑
i=1

|
m∑
j=1

xij − τ2|2 +
n∑

i=1

(

m∑
j=1

φ(|xij |p)),
(36)

where the parameters τ1, τ2 and γ satisfy the suppositions in Lemma 5 for
p = 1 and them in Lemma 6 for 0 < p < 1.

From Lemma 4, we have

min
x
P (x)

≥min
xij

γ
n∑

i=1

|
m∑
j=1

xij − τ1|2 + γ
n∑

i=1

|
m∑
j=1

xij − τ2|2 +
n∑

i=1

(
m∑
j=1

φ(|xij |p))

=
n∑

i=1

min
xij

γ|
m∑
j=1

xij − τ1|2 + γ|
m∑
j=1

xij − τ2|2 +
m∑
j=1

φ(|xij |p)


≥

n∑
i=1

min
z
γ|z − τ1|2 + γ|z − τ2|2 + φ(|z|p).

(37)

By Lemmas 5-6 and the strict concavity of φ(zp) on [τ1, τ2], we can always
choose one of xij to be z∗(̸= 0) and the others are 0 for any i = 1, 2, . . . , n
such that the last inequality in (37) becomes to be an equality and

P (x) ≥ ng(z∗).
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φ1 φ4 φ5 φ6

p = 1 τ1 none (0, λ) (λ, aλ) (0, aλ)
τ2 none (τ1, λ) (τ1, aλ) (τ1, aλ)

0 < p < 1 τ1 (0,∞) (0, λ) (λ,∞) (0, λ) (λ, aλ) (aλ,∞) (0, aλ) (aλ,∞)
τ2 (τ1,∞) (τ1, λ) (τ1,∞) (τ1, λ) (τ1, aλ) (τ1,∞) (τ1, aλ) (τ1,∞)

Table 2: Parameters for different potential functions in Remark 3

Now we claim that there exists an equitable partition to the partition
problem if and only if the optimal value of (36) equals to ng(z∗). First, if
S can be evenly partitioned into m sets, then we define xik = z∗, xij = 0
for j ̸= k if ai belongs to Sk. These xij provide an optimal solution to P (x)
with optimal value ng(z∗). On the other hand, if the optimal value of P (x) is
ng(z∗), then in the optimal solution, for each i, there is only one element in
{xij : 1 ≤ j ≤ m} is nonzero. And we must also have

∑n
i=1 αixij−β = 0 holds

for any 1 ≤ j ≤ m, which implies that there exists a partition to set S into
m disjoint subsets such that the sum of the numbers in each subset is equal.
Thus this theorem is proved.

Remark 3 Many penalty functions satisfy the conditions in Lemma 5 and
Lemma 6, such as the logistic penalty function [32], fraction penalty func-
tion [32], hard thresholding penalty function [20], SCAD function [20] and
MCP function [38]. The soft thresholding penalty function [25,33] only satis-
fies the conditions in Lemma 6. Here, we list the formulations of these penalty
functions below. For φ2 and φ3, all choices of τ1 and τ2 in R++ with τ1 < τ2
satisfy the conditions in Lemma 5 and Lemma 6. For the other four penalty
functions, the optional parameters of τ1 and τ2 are given in Table 2.

– soft thresholding penalty function: φ1(s) = λs,
– logistic penalty function : φ2(s) = λ log(1 + as),
– fraction penalty function: φ3(s) = λ as

1+as ,

– hard thresholding penalty function: φ4(s) = λ2 − (λ− s)2+,
– smoothly clipped absolute deviation (SCAD) penalty function:

φ5(s) = λ

∫ s

0

min{1, (a− t/λ)+
a− 1

}dt,

– minimax concave penalty (MCP) function:

φ6(s) = λ

∫ s

0

(1− t

aλ
)+dt,

with λ > 0 and a > 0.
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3.2 Lower bound theory

In this subsection, we will establish the lower bound theory for the local min-
imizers of (2) with a special constraint, that is

min f(x) := Θ(x) +
m∑
i=1

φ(∥DT
i x∥pp)

s.t. x ∈ X = {x : Ax ≤ b},
(38)

where Di = (Di1, . . . , Dir) with Dij ∈ Rn, j = 1, 2, . . . , r, A = (A1, . . . , Aq)
T

∈ Rq×n with Ai ∈ Rn, i = 1, 2, . . . , q, and b = (b1, b2, . . . , bq)
T ∈ Rq.

Denote M the set of all local minimizers of (38). In this subsection, we
suppose that there exists β > 0 such that supx∈M ∥∇2Θ(x)∥2 ≤ β.

For x ∈ X , let Iac(x) = {i ∈ {1, 2, . . . , q} : AT
i x − bi = 0} be the set of

active inequality constraints at x. Then, the Linear Independence Constraint
Qualification (LICQ) is satisfied at x, if the set of active constraint gradients
{Ai : i ∈ Iac(x)} is linearly independent.

Theorem 4 Let p = 1 in (38). There exist constants θ > 0 and ν1 > 0 such
that if |φ′′(0+)| > ν1, then any local minimizer x∗ of (38) meeting the LICQ
condition satisfies

either ∥DT
i x

∗∥1 = 0 or ∥DT
i x

∗∥1 ≥ θ, ∀i ∈ {1, 2, . . . ,m}.

Proof We divide M into the finite disjoint sets M1,M2, . . . ,Ms such that all
element x in each set have the same following values:
(i) sign values of sign(DT

itx) for i = 1, 2, . . . ,m, t = 1, 2, . . . , r;
(ii) index values of Iac(x) and Ix = {i ∈ {1, 2, . . . ,m} : DT

i x = 0}.
First, we will prove that there exists θ1,1 > 0 and κ1,1 such that

either ∥DT
1 x∥1 = 0 or ∥DT

1 x∥1 ≥ θ1,1, ∀x ∈ M1, (39)

when |φ′′(0+)| > βκ1,1.

Specially, if the values of ∥DT
1 x∥1 are same for all x ∈ M1, then the

statement in (39) holds naturally. In what follows, we suppose that there are
at least two elements in M1 with different values of ∥DT

1 x∥1.
Suppose x̄ ∈ M1 is a local minimizer of minimization problem (38) satis-

fying ∥DT
1 x̄∥ ̸= 0 and meeting the LICQ condition. Then, there exists δ > 0

such that

f(x̄) =min{Θ(x) +
m∑
i=1

φ(∥DT
i x∥1) : ∥x− x̄∥2 ≤ δ, Ax ≤ b}

=min{Θ(x) +
∑
i ̸∈Ix̄

φ(∥DT
i x∥1) : ∥x− x̄∥2 ≤ δ, Ax ≤ b, DT

i x = 0 for i ∈ Ix̄},
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which implies that x̄ is a local minimizer of the following constrained mini-
mization problem

min fx̄(x) := Θ(x) +
∑
i ̸∈Ix̄

φ(∥DT
i x∥1)

s.t. Ax ≤ b, DT
i x = 0, i ∈ Ix̄.

(40)

Since φ′ is locally Lipschitz continuous in R++ and the LICQ condition
holds at x̄, by the second order optimality necessary condition, there exists
ξi ∈ ∂(φ′(s))s=∥DT

i x̄∥1
such that

vT∇2Θ(x̄)v +
∑
i ̸∈Ix̄

ξi

 ∑
t∈{1,2,...,r}

sign(DT
itx̄)D

T
itv

2

≥ 0, ∀v ∈ Vx̄, (41)

where

Vx̄ = {v : DT
j v = 0 for j ∈ Ix̄ andAT

k v = 0 for k ∈ Iac(x̄)}. (42)

By ξi ≤ 0, i = 1, 2, . . . ,m, (41) gives

−ξ1

 ∑
t∈{1,2,...,r}

sign(DT
1tx̄)D

T
1tv

2

≤ ∥∇2Θ(x̄)∥2∥v∥22, ∀v ∈ Vx̄. (43)

Fix x ∈ M1. For c ∈ Rr with ci ∈ {−1, 0, 1}, consider the following
constrained convex minimization problem

min ∥v∥22
s.t. v ∈ Vx,c = {v :

∑
t∈{1,...,r}

ctD
T
1tv = 1and v ∈ Vx}. (44)

When Vx,c ̸= ∅, unique existence of the optimal solution of (44) is guaranteed,
denoted by vx,c. Take all possible choices of nonzero vector c ∈ Rr with ci ∈
{−1, 0, 1} such that Vx,c ̸= ∅, which are finite, and we define

κ1,1 = max ∥vx,c∥22,

which is a positive number and same for all elements in M1 from the decom-
position method for M.

Since there is another element in M1, denoted as x̂, such that ∥DT
1 x̄∥1 ̸=

∥DT
1 x̂∥1, then

ṽ =
1

∥DT
1 x̄∥1 − ∥DT

1 x̂∥1
(x̄− x̂) ∈ Vx̄,c.

Thus, the unique solution of (44) exists in this case and (43) holds with it,
which follows

−ξ1 ≤ βκ1,1.
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If |φ′′(0+)| > βκ1,1, let

θ1,1 = inf{t > 0 : φ′′(t) exists and φ′′(t) ≥ βκ1,1}, (45)

by the upper semicontinuity of ∂(φ′(t))) on R++, we obtain that

∥DT
1 x̄∥1 ≥ θ1,1.

By the randomicity of x̄ ∈ M1 satisfying ∥DT
1 x̄∥1 ̸= 0 in the above analysis,

(43) implies

−ξ1

 ∑
t∈{1,2,...,r}

sign(DT
1tx)D

T
1tv

2

≤ ∥∇2Θ(x)∥2∥v∥22, ∀v ∈ Vx,

holds for any x ∈ M1 satisfying ∥DT
1 x∥1 ̸= 0. Since κ1,1 is same for all elements

in M1, the statement in (39) holds.

Similarly, for any i = 1, . . . ,m, j = 1, . . . , s, there exists θi,j > 0 and
κi,j > 0 such that

either ∥DT
i x∥1 = 0 or ∥DT

i x∥1 ≥ θi,j , ∀x ∈ Mj ,

when |φ′′(0+)| > βκi,j .

Therefore, we can complete the proof for this theorem with ν1 = max{βκi,j :
i = 1, . . . ,m, j = 1, . . . , s} and θ = min{θi,j : i = 1, . . . ,m, j = 1, . . . , s}.

If there exists constant ν1 > 0 such that |φ′′(0+)| ≥ ν1, by the concavity
of φ and φ′ ≥ 0, there must exist νp > 0 such that φ′(0+) ≥ νp. However,
the converse does not hold. The following theorem presents the lower bound
theory for the case that 0 < p < 1 using the existence of νp > 0 such that
φ′(0+) ≥ νp.

Theorem 5 Let 0 < p < 1 in (38). If there exists νp > 0 such that φ′(0+) ≥
νp, then there exists a constant θ > 0 such that any local minimizer x∗ of (38)
meeting the LICQ condition satisfies

either ∥DT
i x̄∥p = 0 or ∥DT

i x̄∥p ≥ θ, ∀i ∈ {1, 2, . . . ,m}.

Proof We divide M by the method in Theorem 4 and we will also prove that
there exists θ1,1 > 0 such that

either ∥DT
1 x∥p = 0 or ∥DT

1 x∥p ≥ θ1,1, ∀x ∈ M1. (46)

Specially, if the values of ∥DT
1 x∥p are same for all x ∈ M1, then the

statement in (46) holds naturally. In what follows, we also suppose that there
are at least two elements in M1 with different values of ∥DT

1 x∥p.
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Similar to the analysis in Theorem 4, x̄ is a local minimizer of minimization
problem (38) satisfying ∥DT

1 x̄∥p ̸= 0 implies that x̄ is a local minimizer of the
minimization problem

min fx̄(x) := Θ(x) +
∑
i ̸∈Ix̄

φ(∥DT
i x∥pp)

s.t. Ax ≤ b, DT
i x = 0, i ∈ Ix̄.

(47)

By the second order optimality necessary condition for the minimizers of
(47), there exists ξi ∈ ∂(φ′(s))s=∥DT

i x̄∥p
p
such that

vT∇2Θ(x̄)v +
∑
i ̸∈Ix̄

ξi

(∑
t∈Ti

p|DT
itx̄|p−1sign(DT

itx̄)D
T
itv

)2

+
∑
i ̸∈Ix̄

p(p− 1)φ′(s)s=∥DT
i x̄∥p

p

(∑
t∈Ti

|DT
itx̄|p−2(DT

itv)
2

)
≥ 0, ∀v ∈ Vx̄,

where Vx̄ is same as in (42) and Ti = {t ∈ {1, 2, . . . , r} : DT
itx̄ ̸= 0}, i =

1, 2, . . . ,m. Then, by ξi ≤ 0, ∀i = 1, 2, . . . ,m and ∥DT
1 x̄∥p ̸= 0, we obtain

p(1− p)φ′(s)s=∥DT
1 x̄∥p

p

(∑
t∈Ti

|DT
1tx̄|p−2(DT

1tv)
2

)
≤ vT∇2Θ(x̄)v,∀v ∈ Vx̄.

(48)
Fix x ∈ M1. For t ∈ T1, consider the following constrained convex opti-

mization
min ∥v∥22
s.t. v ∈ Vx,t = {v : DT

1tv = 1and v ∈ Vx}.
(49)

When Vx,t ̸= ∅, unique existence of the optimal solution of (49) is guaranteed,
denoted by vx,t. Take all possible choices of t ∈ T1 such that Vx,c ̸= ∅, which
are finite, and we define

κ1,1 = max ∥vx,t∥22,

which is also a positive number same for all elements in M1.
Since there is another element in M1, denoted as x̂, such that ∥DT

1 x̄∥p ̸=
∥DT

1 x̂∥p. Then, there exists t1 ∈ {1, 2, . . . , r} such that DT
1t1 x̄ ̸= DT

1t1 x̂. Thus,

ṽ =
1

DT
1t1
x̄−DT

1t1
x̂
(x̄− x̂) ∈ Vx̄,t1 ,

which follows the existence of the unique solution of (49) exists with t = t1,
denoted as v∗x̄,t1 .

By the decomposition method for M, we have sign(DT
1tx̄) = sign(DT

1tx̂),
which implies t1 ∈ T1. Let v = v∗x̄,t1 in (48), by φ′ ≥ 0, we have

p(1− p)φ′(s)s=∥DT
1 x̄∥p

p
|DT

1t1 x̄|
p−2 ≤ βκ1,1. (50)
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|DT
1t1 x̄| ≤ ∥DT

1 x̄∥p implies |DT
1t1 x̄|

p−2 ≥ ∥DT
1 x̄∥p−2

p , then (50) gives

p(1− p)φ′(s)s=∥DT
1 x̄∥p

p
∥DT

1 x̄∥p−2
p ≤ βκ1,1. (51)

By the concavity of φ, limt→∞ φ′(s)s=tpt
p−2 ≤ limt→∞ φ′(1)tp−2 = 0.

From φ′(0+) ≥ ν2, limt↓0 φ
′(tp)tp−2 = +∞. Let

θ1,1 = inf{t > 0 : φ′(tp)tp−2 =
βκ1,1
p(1− p)

},

which is an existent number larger than 0. Therefore, (51) implies

∥DT
1 x̄∥p ≥ θ1,1.

Similar to the analysis in Theorem 4, the statement in this theorem holds.

Remark 4 For the other cases, such as the regularization term is given by∑m
i=1 φi(max{dTi x, 0}p) with di ∈ Rn, the lower bound theory in Theorems

4-5 can also be guaranteed under the same conditions. Moreover, the lower
bound theories in Theorems 4-5 can also be extended to the more general case
with the objective function f(x) := Θ(x) +

∑m
i=1 φi(∥DT

i x∥pp).

All the potential functions in Remark 3 satisfy the conditions in Theorem
5, but only φ2, φ3, φ4 and φ6 may meet the conditions in Theorem 4 under
some conditions on the parameters, which shows the superiority of the non-
Lipschitz regularization in sparse reconstruction.

4 Final remarks

In Theorem 1, we derive a first order necessary optimality condition for local
minimizers of problem (1) based on the new generalized directional derivative
(12) and the Clarke tangent cone. The generalized stationary point that satis-
fies the first order necessary optimality condition is a Clarke stationary point
when the objective function f is locally Lipschitz continuous near this point,
and a scaled stationary point if f is non-Lipschitz at the point. Moreover,
in Theorem 2 we establish the directional derivative consistency associated
with smoothing functions and in Corollary 1 we show that the consistency
guarantees the convergence of smoothing algorithms to a stationary point of
problem (1). Computational complexity and lower bound theory of problem
(1) are also studied to illustrate the negative and positive news of the concave
penalty function in applications.
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