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Abstract

We consider complementarity problems involving functions which are not Lips-
chitz continuous at the origin. Such problems arise from the numerical solution for
differential equations with non-Lipschitzian continuity, e.g. reaction and diffusion
problems. We propose a regularized projection method to find an approximate solu-
tion with estimation of the error for the non-Lipschitzian complementarity problems.
We prove that the projection method globally and linearly converges to a solution
of a regularized problem with any regularization parameter. Moreover, we give error
bounds for a computed solution of the non-Lipschitzian problem. Numerical exam-
ples are presented to demonstrate the efficiency of the method and error bounds.
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1 Introduction

Let F : Rn → Rn be defined by

F (x) =Mx+ φ(x),

whereM is an n×nmatrix and φ : Rn → Rn is a monotonically increasing and continuous
diagonal function, but not Lipschitz continuous at the origin. A function g : Rn → Rn

is called a monotonically increasing diagonal function if gi(x) = gi(xi), and

(gi(xi)− gi(yi))(xi − yi) ≥ 0, i = 1, 2, . . . , n.

A function g : Rn → Rn is said to be Lipschitz continuous at x if there exist an open set
D ⊂ Rn, x ∈ D and a constant κ such that for all y ∈ D

kg(x)− g(y)k ≤ κkx− yk.

See [5]. In this paper, we consider the nonlinear complementarity problem

x ≥ 0 F (x) ≥ 0 xTF (x) = 0, (1.1)
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and denote it by NCP(F ). Such a non-Lipschitzian NCP arises from various applications.
For instance, reaction and diffusion problems which can be modelled as free boundary
problems.
Example 1.1 [2]. Let Ω be a bounded open set in R2 with Lipschitz boundary ∂Ω.
Given two positive numbers λ and p ∈ (0, 1), consider the free boundary problem

−4u+ λup = 0 in Ω+

u = 0 in Ω0

u = |∇u| = 0 on Γ

u = 1 on ∂Ω

where Ω+ = {z ∈ Ω |u(z) > 0}, Ω0 = {z ∈ Ω |u(z) = 0}, and Γ = ∂Ω0 = ∂Ω+ ∩ Ω
are unknown. Using finite element approximation or finite difference approximation, we
obtain a nonlinear complementarity problem with F (x) =Mx+ φ(x), where

φ(x) = Emax(0, xp) + q.

Here E is an n×n diagonal matrix with positive diagonals and q is a vector in Rn. The
function φ is a monotonically increasing diagonal function. However, since p ∈ (0, 1), φ
is not differentiable at the origin, and φ0i(xi)→∞ as xi ↓ 0.

The NCP(F ) can be reformulated as a system of nonsmooth equations

H(x) := min(x, F (x)) = 0. (1.2)

A number of algorithms for solving NCP have been developed based on the reformulation
(1.2). See [6]. However, most of algorithms require the involved function F to be Lipschitz
continuous. For instance, smoothing Newton-methods, semismooth Newton-methods
and generalized Jacobian methods assume that F is continuously differentiable in order
to use the generalized Jacobian of H. The Rademacher theorem states that a locally
Lipschitzian function in Rn is almost everywhere differentiable. If F is continuously
differentiable in Rn, then H is locally Lipschitz continuous in Rn. By the Rademacher
theorem, the Clarke generalized Jacobian of H can be defined by

∂H(x) = co{ lim
xk→x
xk∈DH

H(xk)},

where DH denotes the set of points at which H is differentiable and co denotes the
convex hull. On the other hand, some numerical methods for nonlinear complementarity
problems have nice global convergence properties for F being a monotone function [6, 11],
that is (F (x)− F (y))T (x− y) ≥ 0, for x, y ∈ Rn.

Without Lipschitzian continuity and monotonicity, it seems hard to find an exist-
ing efficient method for solving the NCP(F ). In this paper, we propose a regularized
splitting method for solving the NCP(F ) without assuming Lipschitzian continuity and
monotonicity. Moreover, we give error bounds to verify accuracy of a computed solution
of the NCP(F ). In Section 2, for a given ² > 0, we define a regularization NCP which has
a unique solution whose every element is not less than ². We prove that the sequence of
the solutions of regularization problems with ²k converges to the solution of the NCP(F )
as ²k → 0. In Section 3, we give error bounds for the non-Lipschtzian NCP(F ) and
its regularization problems with M being a P-matrix. In Section 4, based on the error
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bounds, we present a projection method for solving the regularization problem which
includes the Jacobi-type method, Gauss-Seidel-type method and SOR-type method as
special cases. We prove that the projection method is globally and linearly convergent
if M is an H-matrix with positive diagonals.

We list some definitions and notations used in this paper.
An n× n matrix A = (aij) is called a P-matrix (P0-matrix) if all principal minors of

A are positive (nonnegative).
A is called an R0-matrix, if the linear complementarity problem x ≥ 0, Ax ≥ 0, xT (Ax) =

0 has the zero vector as its unique solution.
A is called an M-matrix, if A−1 ≥ 0 and aij ≤ 0 (i 6= j) for i, j = 1, 2, . . . , n.
A is called an H-matrix, if its comparison matrix Ã = (ãij) is an M-matrix, where

ãij =

(
|aij | i = j
−|aij | i 6= j, i, j = 1, 2, . . . , n.

A function F : Rn → Rn is called a uniformly P-function, if there is a constant γ > 0
such that

max
1≤i≤n

(xi − yi)(Fi(x)− Fi(y)) ≥ γkx− yk22.

A diagonal matrixW whose diagonal elements are defined by a vector w = (w1, . . . , wn)
T

is written asW =diag(wi). Let [a] denote an interval vector (matrix), and a and a denote
the lower bound and upper bound of [a], respectively, that is, [a] = {x | a ≤ x ≤ a}. For
given two vectors u, v(u ≤ v) the mid function is defined by

mid(u, v, y)i =

⎧⎪⎨⎪⎩
vi vi < yi
yi ui ≤ yi ≤ vi
ui ui > yi.

For a given interval vector [a], Π[a](·) := mid (a, a, ·) is the Euclidean projector Π onto
the interval [a]. The nonnegative orthant is denoted by Rn+. The max function max(0,·)
is the Euclidean projector ΠRn+(·) onto Rn+.

2 Regularization method

We consider a system of regularization equations of (1.2),

H²(x) = min(x,Mx+ φ(x))− ²e = 0, (2.1)

where ² is a positive number and e is the n-dimensional vector whose all elements are 1.

Lemma 2.1 Assume that M is a P-matrix and φ is a monotonically increasing diagonal
function. Then for any ² ≥ 0, the system of regularization equations (2.1) has a unique
solution.

Proof: It is easy to see that (2.1) can be rewritten as

H²(x) = min(x− ²e,Mx+ φ(x)− ²e) = 0.

Let y = x− ²e. Then we can write (2.1) as an NCP in the following form

min(y,My + ²(M − I)e+ φ(y + ²e)) = 0.
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Let us define
F²(y) =My + ²(M − I)e+ φ(y + ²e).

Then for any u, v ∈ Rn, we have

F²(u)− F²(v) = M(u− v) + φ(u+ ²e)− φ(v + ²e).

Since M is a P-matrix, we have

c(M) := min
kxk∞=1

{max
1≤i≤n

xi(Mx)i} > 0.

See [4]. Therefore, from φ being monotonically increasing, we obtain, for any u, v ∈ Rn,

max
1≤i≤n

(ui − vi)(F²(u)− F²(v))i
= max
1≤i≤n

{(ui − vi)(M(u− v))i + (ui − vi)(φ(u+ ²e)− φ(v + ²e))i}

≥ max
1≤i≤n

(ui − vi)(M(u− v))i
≥ c(M)ku− vk2∞
≥ c(M)

n
ku− vk22.

This implies that F² is a uniformly P-function. By Proposition 3.5.10 in [6], the NCF(F²)
has a unique solution, and hence the system of regularization equations (2.1) has a unique
solution.

Let {²k} be a sequence of positive numbers, which satisfies

²k ≥ ²k+1, k = 0, 1, . . . , and lim
k→∞

²k = 0.

Let xk be the solution of H²k(x) = 0. In the rest part of this section, we study the
convergence of the solution sequence {xk}.

Let us denote the level set of the function H(x) by

S(µ) = {x ∈ Rn | kH(x)k ≤ µ}

where µ ≥ 0.

Theorem 2.1 Assume that M is a P-matrix and φ is a monotonically increasing and
continuous diagonal function. Then the sequence {xk} converges to the unique solution
of H(x) = 0.

Proof: Following the proof of Lemma 2.1, we can show that Mx+ φ(x) is a uniformly
P-function. Therefore, by Proposition 9.1.27 in [6], the level set S(µ) is bounded for
every µ ≥ 0.

Since H²k(x
k) = 0 implies that

kH(xk)k = ²kkek ≤ ²0kek,

we deduce {xk} ⊂ S(²0kek), and thus {xk} is bounded.
Let x̄ be an accumulation point of {xk}. From the following equality
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H(xk) = H(xk)−H²k(xk) = ²ke,
and by the continuity of H, we find that for a subsequence, which we denote again by
{xk},

kH(x̄)k = lim
k→∞

kH(xk)k = lim
k→∞

²kkek = 0.

Hence x̄ is a solution x∗ of H(x) = 0. Since x∗ is the unique solution of H(x) = 0, we
deduce that the sequence {xk} converges to x∗.

Theorem 2.2 Assume that M is a P0-matrix and φ is a monotonically increasing and
continuous diagonal function. Assume there are positive constants Γ and γ such that for
xi ≥ Γ,

φi(xi)− φi(0)
xi

≥ γ, i = 1, 2, . . . , n. (2.2)

If (2.1) with small ²k > 0 has a solution x
k, then the sequence {xk} is bounded, and any

accumulation point of {xk} is a solution of H(x) = 0.

Proof: First we show that the sequence {xk} is bounded. Note that H²k(xk) = 0 implies
that

xk ≥ ²ke and Mxk + φ(xk) ≥ ²ke.
The sequences {xk} and {Mxk + φ(xk)} are bounded below.

Assume that there is an i such that xki →∞. Let

J = {i | xki →∞}

and

vk =
xk

kxkk .

Since {vk} is bounded, there is a convergent subsequence of {vk}. By working with an
appropriate subsequence of {vk} if necessary, we may assume without loss of generality
that

lim
k→∞

vk = v̄ ≥ 0 and kv̄k = 1.

Now we show that there is a matrix N ∈ Rn×n such that

lim
k→∞

min(
xk

kxkk ,M
xk

kxkk +
φ(xk)

kxkk ) = min(v̄,Mv̄ +Nv̄) = 0. (2.3)

Obviously, we have

lim
k→∞

M
xk

kxkk =Mv̄.

To prove (2.3), we only need to consider the limit of
φ(xk)

kxkk . First we observe that the

limit of
φ(xk)

kxkk exists, since for all i ∈ J

(Mxk + φ(xk))i = ²k, for large k
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which implies

lim
k→∞

φi(x
k
i )

kxkk = lim
k→∞

Ã
²k
kxkk − (M

xk

kxkk)i
!
= −(Mv̄)i. (2.4)

By the assumption (2.2), for large k, we have

φi(x
k
i )− φi(0)
xki

≥ γ, for i ∈ J .

Let
J1 = {i | v̄i > 0}.

It is easy to see that J1 is a nonempty subset of J , since kv̄k = 1. Moreover, for i ∈ J1,
by (2.4) and

lim
k→∞

φi(x
k
i )

kxkk = lim
k→∞

Ã
φi(x

k
i )− φi(0)
xki

· x
k
i

kxkk +
φi(0)

xki
· x

k
i

kxkk

!

= lim
k→∞

φi(x
k
i )− φi(0)
xki

· x
k
i

kxkk

we find

lim
k→∞

φi(x
k
i )− φi(0)
xki

= −(Mv̄)i
v̄i

=: αi ≥ γ.

Therefore, for i ∈ J1, we have

lim
k→∞

φi(x
k
i )

kxkk = αiv̄i.

For i 6∈ J , {xki } is bounded. Since φi(xi) is monotonically increasing and continuous,
{φi(xki )} is also bounded, and hence

lim
k→∞

φi(x
k
i )

kxkk = 0.

Therefore, we can define the i-th row of the matrix N as follows

nTi =

⎧⎪⎨⎪⎩
αie

T
i , i ∈ J1

−mT
i , i ∈ J /J1

0eTi , otherwise,
i = 1, 2, . . . n,

where eTi is the i-th row of the identity matrix and m
T
i is the i-th row of M . Note that

(2.3) implies that v̄ is a solution of the linear complementarity problem

x ≥ 0, (M +N)x ≥ 0, xT (M +N)x = 0. (2.5)

Let (M+N)J1,J1 and NJ1,J1 be the submatrices ofM+N and N with rows and columns
indexed by J1, respectively. Let v̄J1 be the subvector of v̄ with components indexed by
J1. Note that for i 6∈ J1, v̄i = 0. Hence (2.5) implies that v̄J1 is a solution of

xJ1 ≥ 0, (M +N)J1,J1xJ1 ≥ 0, xTJ1(M +N)J1,J1xJ1 = 0. (2.6)
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Since M is a P0-matrix and NJ1,J1 is a positive diagonal matrix, (M + N)J1,J1 is a P-
matrix, and thus (2.6) has the zero vector as its unique solution. This contradicts to
kv̄J1k = 1. Therefore the sequence {xk} is bounded.

Let x̄ be an accumulation point of {xk}. From

H²k(x
k)−H(xk) = −²ke = −H(xk)

and by the continuity of H, we have for a subsequence, which we denote again by {xk},

kH(x̄)k = lim
k→∞

kH(xk)k = lim
k→∞

²kkek = 0.

Hence x̄ is a solution x∗ of H(x) = 0.

Example 2.1 Consider n = 1, M = 0, and φ(x) =
Q
[0,
√
α ](
√
x) +max(β, x), where 0 <

α < β. Assumptions of Theorem 2.2 hold for this example. However, F (x) =Mx+φ(x)
is not a uniformly P-function, since for any x, y ∈ [α,β], (x− y)(F (x)− F (y)) = 0.

From the proof of Theorem 2.2, we can immediately get the following corollary.

Corollary 2.1 Assume that M is an R0-matrix and

lim
xi→∞

φi(xi)− φi(0)
xi

= 0, i = 1, 2, . . . , n. (2.7)

If (2.1) with ²k has a solution x
k, then the sequence {xk} is bounded, and any accumu-

lation point of {xk} is a solution of H(x) = 0.

3 Error bounds

In practical applications, it is very important to know the accuracy of a computed so-
lution. Error bounds and numerical verification methods for complementarity problems
have been studied in [1, 3, 9, 10]. In this section, we give error bounds for the NCP(F )
and its regularization problems. The error bounds are based on the observation [3] that
for every x, y, u, v ∈ Rn,

min(xi, yi)−min(ui, vi) = (1− wi)(xi − ui) + wi(yi − vi), i = 1, 2, . . . , n (3.1)

where

wi =

⎧⎪⎪⎨⎪⎪⎩
0 if yi ≥ xi, vi ≥ ui
1 if yi ≤ xi, vi ≤ ui
min(xi, yi)−min(ui, vi) + ui − xi

yi − vi + ui − xi
otherwise.

Moreover, we have wi ∈ [0, 1]. Hence putting y = Mx + φ(x) and v = Mu + φ(u) in
(3.1), we obtain the following lemma.

Lemma 3.1 For any x, u ∈ Rn, there is a diagonal matrix W=diag(wi) with wi ∈ [0, 1]
such that

H(x)−H(u) = (I −W +WM)(x− u) +W (φ(x)− φ(u)). (3.2)

We say that the NCP(F ) satisfies the strictly complementarity condition at a solution
x∗ of (1.1) if

x∗ + F (x∗) > 0.
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Theorem 3.1 Assume that M is a P-matrix and φ is a monotonically increasing and
continuous diagonal function. Suppose that the strictly complementarity condition holds
at the solution x∗ of (1.1), and for any µ > 0, there is γµ > 0 such that for x ∈ S(²0kek),
xi ≥ µ, xi 6= x∗i it holds

φi(xi)− φi(x∗i )
xi − x∗i

≤ γµ. (3.3)

Let xk again denote the solution of H²k(x) = 0. Then there is a c > 0 such that

kxk − x∗k ≤ ckH(xk)k. (3.4)

Proof: We observe that {xk} ⊂ S(²0kek), since H(xk) = ²ke and ²k ≤ ²0.
Let us denote

J = {i |x∗i > 0} and K = {i |x∗i = 0}.
By the assumption of the strictly complementarity condition, J ∩ K = ∅. Moreover, by
the continuity of H, there are a neighbourhood B of x∗ and a positive constant α such
that for all x ∈ B

xi < α, (Mx+ φ(x))i ≥ α, i ∈ K
and

(Mx+ φ(x))i < α, xi ≥ α, i ∈ J .
By Theorem 2.1, there is a positive integer k0 > 0 such that for all k ≥ k0, we have
²k < α and xk ∈ B. This implies that for k ≥ k0,

xki > (Mx
k + φ(xk))i, i ∈ J

and
xki < (Mx

k + φ(xk))i, i ∈ K.
Therefore, we deduce

Hi(x
k)−Hi(x∗) = xki − x∗i , i ∈ K

Hi(x
k)−Hi(x∗) = (M(xk − x∗))i +

φi(x
k
i )− φi(x∗i )
xki − x∗i

(xki − x∗i ), i ∈ J , xki 6= x∗i

and
Hi(x

k)−Hi(x∗) = (M(xk − x∗))i, i ∈ J , xki = x∗i .
Note that assumption (3.3) implies that for k ≥ k0 and i ∈ J , xki 6= x∗i , there is a γα
such that

0 ≤ φi(x
k
i )− φi(x∗i )
xki − x∗i

≤ γα.

Therefore, for k ≥ k0, we have

H(xk)−H(x∗) = (I −D∗ +D∗(M + T k))(xk − x∗),

where D∗ =diag(d∗i ) and T
k =diag(tki ) with

d∗i =

(
1 i ∈ J
0 i ∈ K
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and

tki =

⎧⎪⎨⎪⎩
φi(x

k
i )− φi(x∗i )
xki − x∗i

i ∈ J , xki 6= x∗i
0 otherwise.

Since M is a P-matrix and T k is a nonnegative diagonal matrix, the matrix M + T k

is a P-matrix. It is known that a matrix A is a P-matrix if and only if I −W +WA is
nonsingular for any diagonal matrix W with 0 ≤ wi ≤ 1 [7]. Hence, for all k ≥ k0, the
matrix I − D∗ + D∗(M + T k) is nonsingular. Moreover by the continuity of the norm
with respect to the elements of the matrix, there is a c1 > 0 such that for k ≥ k0,

kxk − x∗k ≤ max
tk∈[0,γα]n

k(I −D∗ +D∗(M + T k))−1kkH(xk)k ≤ c1kH(xk)k.

Now we consider k ≤ k0. Since ²k ≥ ²k0 for k ≤ k0, we have xk ≥ ²k0e for k ≤ k0.
Let Sk =diag(ski ) with

ski =

⎧⎪⎨⎪⎩
φi(x

k
i )− φi(x∗i )
xki − x∗i

xki 6= x∗i
0 otherwise.

By the assumption of this theorem, we have ski ∈ [0, γ²k0 ]. Using (3.2), for k ≤ k0, we
can write

H(xk)−H(x∗) = (I −W k +W k(M + Sk))(xk − x∗),
where W k =diag(wki ) with w

k
i ∈ [0, 1].

Note that M and M + Sk are P-matrices. We find

kxk − x∗k ≤ max
sk∈[0,γ²k0 ]

n
max

wk∈[0,1]n
k(I −W k +W k(M + Sk))−1kkH(xk)k ≤ c2kH(xk)k,

where sk = (ski ). Let c = max(c1, c2). We obtain the estimate (3.4).

It is known that an H-matrix with positive diagonals is a P-matrix. In the following,
we give a computable error bound of a nonnegative approximate solution of (2.1) for M
being an H-matrix with positive diagonals.

Lemma 3.2 [3] Suppose that A is an H-matrix with positive diagonals. Then for any
diagonal matrix W =diag(wi) with wi ∈ [0, 1] the matrix I −W +WA is an H-matrix
with positive diagonal elements and

|(I −W +WA)−1| ≤ Ã−1max(∆, I),

where Ã is the comparison matrix of A and ∆ is the diagonal part of A.

Theorem 3.2 Suppose that M is an H-matrix with positive diagonals. Then for any
x ≥ 0, and ²k ≥ 0, we have

|x− xk| ≤ M̃−1max(D, I)|H²k(x)|,

where D is the diagonal part of M and M̃ is the comparison matrix of M and we set
H²k(x) = H(x) if ²k = 0.
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Proof: For a fixed x, let V k =diag(vki ) with

vki :=

⎧⎪⎨⎪⎩
φi(xi)− φi(xk)

xi − xki
xi 6= xki

0 otherwise.

By Lemma 3.1 and the definition of V k, there is a diagonal matrix W k=diag(wki ) with
wki ∈ [0, 1] such that

H²k(x) = H²k(x)−H²k(xk) = H(x)−H(xk) = (I −W k +W k(M + V k))(x− xk).

Since φ is monotonically increasing, vki ≥ 0 for i = 1, 2, . . . , n. This implies M + V k is
an H-matrix with positive diagonals. Hence, I −W k +W k(M +V k) is also an H-matrix
with positive diagonals, and

|x− xk| ≤ |(I −W k +W k(M + V k))−1||H²k(x)|.

By Lemma 3.2, we deduce

|x− xk| ≤ (M̃ + V k)−1max(D + V k, I)|H²k(x)|.

Let |B| = D − M̃ . Then we have

(M̃ + V k)−1 = (I − (D + V k)−1|B|)−1(D + V k)−1.

Since 0 ≤ (D+V k)−1|B| ≤ D−1|B|, the spectral radius ρ((D+V k)−1|B|) ≤ ρ(D−1|B|) <
1. See [12]. Hence we can estimate the inverse of I − (D + V k)−1|B| as follows

(I − (D + V k)−1|B|)−1 = I + (D + V k)−1|B|+ ((D + V k)−1|B|)2 + . . .
≤ I +D−1|B|+ (D−1|B|)2 + . . .
= (I −D−1|B|)−1.

Therefore, we have

(M̃ + V k)−1max(D + V k, I) = (I − (D + V k)−1|B|−1)max(I, (D + V k)−1)
≤ (I −D−1|B|)−1max(I,D−1)
= M̃−1max(D, I).

We complete the proof.

Remark 3.1 Let x∗ be the solution of the non-Lipschitzian NCP(F ). Since H0(x) =
H(x), Theorem 3.2 yields a componentwise error bound for any x ≥ 0,

|x− x∗| ≤ M̃−1max(D, I)|H(x)|. (3.5)

Moreover, for any monotone vector norm and the corresponding operator norm, we have

kx− x∗k ≤ kM̃−1max(D, I)kkH(x)k. (3.6)

(We say k · k is a monotone vector norm if for any x, y ∈ Rn, |x| ≤ |y| implies that
kxk ≤ kyk, which is equivalent to kxk = k|x|k. Any p−norm (p ≥ 1) is a monotone
vector norm. See [8].)
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4 Projection methods

In this section we consider a projection method for the solution of (2.1). We use Theorem
3.2 to construct an interval vector, which contains the solution of (2.1). Starting from a
point in the interval, we generate a sequence by the projection method. We prove that
the sequence converges to the solution of (2.1). Using (3.5) or (3.6), we can provide error
bounds of an approximate solution to the exact solution of (1.1).

By rewriting (2.1) as in the proof of Lemma 2.1, we obtain the following NCP

min(y,My + φ(y + ²e) + ²(M − I)e) = 0, (4.1)

where y = x − ²e. By Lemma 2.1, if M is a P-matrix, then (4.1) has a unique solution
y∗ ≥ 0, and thus (2.1) has a unique solution x∗² = y∗ + ²e > 0. Defining a diagonal
function

ψ(y) := φ(y + ²e) + ²(M − I)e,
(4.1) can be written as

min(y,My + ψ(y)) = 0. (4.2)

Here ψ is a monotonically increasing and continuous diagonal function. Furthermore
(4.2) can be rewritten as a fixed point problem

y = max
³
0, y − Λ(My + ψ(y))

´
, (4.3)

where Λ is a diagonal matrix with positive diagonal elements.
For all u, v contained in some interval vector [y] we have

ψ(u)− ψ(v) = δψ(u, v)(u− v),

where the diagonal matrix δψ(u, v) is the slope of ψ for u and v. Assume that for all
u, v,∈ [y], the slope δψ(u, v) can be bounded by some diagonal interval matrix,

δψ(u, v) ∈ [δ, δ], u, v ∈ [y].

Since ψ is a monotonically increasing diagonal function, we can assume that δ ≥ 0. We
assume that the bounds for the slope behave inclusion monotone:

[y] ⊆ [z] ⇒ [δ, δ][y] ⊆ [δ, δ][z],

where the indices [y] and [z] indicate that the bounds for the slope belong to the corre-
sponding intervals [y] and [z]. This inclusion monotonicity is a natural assumption.

Let D be the diagonal part of M and B = D −M . Let δ be a diagonal matrix with
positive diagonals. Set

Λ = ω(D + δ)−1

with ω > 0 in (4.3). We find that y∗ solves (4.2) if and only if y∗ is a fixed point of the
following equations

y = max{0,ω(D + δ)−1
µ
Ry + Sy + δy − ψ(y) + 1− ω

ω
(D + δ)y

¶
}, (4.4)

where matrices R and S satisfy B = R+ S and |B| = |R|+ |S|.

Now we propose a projection method for solving (4.2).
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Projection Method

Initial Step Choose y0 ≥ 0 and compute the nonnegative matrix C := M̃−1max(D, I).
Set a vector

r0 := C|min(y0,My0 + ψ(y0))|
and an interval vector

[y0] = [y0 − r0, y0 + r0] ∩Rn+. (See Remark 4.1)

Iteration For l = 0, 1, 2, ...

Step 1 Compute [δl, δ
l
], such that for all u, v ∈ [yl]

ψ(u)− ψ(v) ∈ [δl, δl](u− v).

Step 2 Compute ŷl+1. (See Remark 4.2)

Step 3 Compute [yl+1] (with the property [yl+1] ⊆ [yl] and y∗ ∈ [yl+1]). (See Remark
4.3).

Step 4 Compute the projection

yl+1 = Π[yl+1](ŷ
l+1).

Remark 4.1 By Remark 3.1, the initial interval vector [y0] contains a solution y∗ of
(4.2), if M is an H-matrix with positive diagonal elements.

Remark 4.2 ŷl+1 in Step 2 is computed by

ŷl+1 = max{0,ω(D + δ
l
)−1

µ
Rŷl+1 + Syl + δ

l
yl − ψ(yl) + 1− ω

ω
(D + δ

l
)yl
¶
} (4.5)

which includes the following two cases:

(i) Relaxed Jacobi-like method: R = 0, S = D −M

(ii) Successive overrelaxation-like method: R = L, S = U , where −L and −U denote
the strictly lower and strictly upper triangular part of M , respectively.

Case (i) contains a Jacobi-like method as a special case (ω = 1). Moreover, case (ii)
contains a Gauss-Seidel-like method as a special case (ω = 1). In general, any splitting
method for which the spectral radius ρ(Llω) < σ1 < 1 can be used for the computation
of ŷl+1 where

Llω = (D + δ
l − ω|R|)−1

³
ω|S|+ ω(δ

l − δl) + (1− ω)(D + δ
l
)
´
.

Remark 4.3 The simplest choice in Step 3 is [yl+1] = [yl], which means [yl] = [y0], for
all l = 1, 2, .... However, one can also spend some work for the calculation of [yl+1] by
two additional steps:

Step 3a rl+1 = C|min(ŷl+1,Mŷl+1 + ψ(ŷl+1))|

12



Step 3b [yl+1] = [ŷl+1 − rl+1, ŷl+1 + rl+1] ∩ [yl]
By Remark 3.1, and y∗ ∈ [y0], we have y∗ ∈ [yl] for all l ≥ 0. Moreover, one can also use
(3.6) with the infinity norm for the calculation of [yl+1]. In particular, we can replace
Step 3a by

rl+1 = kCk∞kmin(ŷl+1,Mŷl+1 + ψ(ŷl+1))k∞e.
If M̃−1 ≥ 0, then C = M̃−1max(D, I) ≥ 0. Since kCk∞ = kCek∞ =: kvk∞, we can
compute kCk∞ by solving a system of linear equations, M̃v = max(D, I)e.

Now we study the convergence of the projection method for M being an H-matrix
with positive diagonals.

The projection method generates a sequence {yl}. We will show that the sequence
yl will converge to y∗.

Note that δ
l ≥ 0 since ψ is monotonically increasing. Moreover,we have y∗ ∈ [yl] for

all l ≥ 0.
By the definition of [y0] combined with Step 3b, we have yl ≥ 0 and thus [yl] =

[yl, yl] ⊆ Rn+ for all l ≥ 0. By the substitution y = x− ²e, the value xi = 0 corresponds
to yi = −² < 0. Hence the slope of ψi is bounded for each interval [yi] = [y

i
, yi] with

lower bound y
i
≥ 0. This means

[δl, δ
l
] ⊆ [δ1, δ2].

where [δ1, δ2] is a fixed interval diagonal matrix. We can assume δ1 ≥ 0 since all ψi are
monotonically increasing.

It is easy to see that for any x, y ∈ Rn, |max(0, x) − max(0, y)| ≤ |x − y|. Hence,
from (4.4) with δ = δ and (4.5), we have

|ŷl+1 − y∗|

≤ ω(D+δ
l
)−1

µ
|R||ŷl+1 − y∗|+ |S||yl − y∗|+ |δl + 1− ω

ω
(D + δ

l
)− δψ(yl, y∗)||yl − y∗|

¶
.

Since δψ(yl, y∗) ∈ [δl, δl], we have for 0 < ω ≤ 1

|δl + 1− ω
ω

(D + δ
l
)− δψ(yl, y∗)| ≤ δ

l − δl + 1− ω
ω

(D + δ).

Therefore, we obtain³
(D + δ

l
)− ω|R|

´
|ŷl+1 − y∗| ≤

³
ω|S|+ ω(δ

l − δl) + (1− ω)(D + δ
l
)
´
|yl − y∗|.

By Step 4 and the property of the projection of ŷl+1 onto the interval [yl+1] which
contains the solution y∗, we have

|yl+1 − y∗| ≤ |ŷl+1 − y∗|.

Therefore, we obtain

|yl+1 − y∗| ≤
³
D + δ

l − ω|R|
´−1 ³

ω|S|+ ω(δ
l − δl) + (1− ω)(D + δ)

´
|yl − y∗|, (4.6)
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provided (D+ δ
l−ω|R|)−1 exists and is nonnegative, which is obviously true for the two

cases in Remark 4.2.
Since the sequence {[δl, δl]} converges to [δ∗, δ∗], it follows that for

Llω :=
³
D + δ

l − ω|R|
´−1 ³

ω|S|+ ω(δ
l − δl) + (1− ω)(D + δ

l
)
´

we have
lim
l→∞

Llω = L∗ω (4.7)

where

L∗ω =
³
D + δ

∗ − ω|R|
´−1 ³

ω|S|+ ω(δ
∗ − δ∗) + (1− ω)(D + δ

∗
)
´
.

Now we show that under certain conditions, which hold especially for the two cases in
Remark 4.2, ρ(L∗ω) < 1. Consider the matrix A = P −Q with

P =
1

ω
(D + δ

∗ − ω|R|)

and

Q =
1

ω
(ω|S|+ ω(δ

∗ − δ∗) + (1− ω)(D + δ
∗
)).

It is easy to verify

A = P−Q = 1

ω

³
ω(D + δ

∗
)− ω|R|− ω|S|− ωδ∗ + ωδ∗

´
= D+δ∗−|R|−|S| = D+δ∗−|B|.

Since δ∗ ≥ 0 and D − |B| is an M-matrix, A is also an M-matrix, and therefore A−1 =
(D + δ∗ − |R|− |S|)−1 ≥ 0. Furthermore, P−1 ≥ 0 and Q ≥ 0. Therefore, A = P −Q is
a regular splitting of A, which implies

ρ(L∗ω) = ρ(P−1Q) < 1.

See [12].
Using (4.6), we have

|yl+1 − y∗| ≤ (
lY
i=1

Liω)|y0 − y∗|. (4.8)

Since the spectral radius ρ(L∗ω) < 1, for any given σ ∈ (0, 1 − ρ(L∗ω)), there exists a
matrix norm such that kL∗ωk ≤ ρ(L∗ω) + σ < 1. By the continuity of the norm, there
exist an L > 0 and σ1 ∈ (ρ(L∗ω) + σ, 1), such that for all l ≥ L,

kLlωk ≤ σ1 < 1.

Therefore for l > L, we have

k
lY
i=1

Liωk ≤ k
L−1Y
i=1

Liωkk
lY

i=L

Liωk ≤ cσl−L+11 ,

where

c = k
L−1Y
i=1

Liωk.
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Therefore, we deduce

lim
l→∞

k
lY
i=1

Liωk = 0,

which is equivalent to

lim
l→∞

lY
i=1

Liω = 0.

From (4.8), we find that liml→∞ yl = y∗. Moreover, we have for l ≥ L,

kyl+1 − y∗k ≤ σ1kyl − y∗k.

This means that the sequence {yl} is convergent to y∗ linearly. We summarize our
analysis as follows.

Theorem 4.1 If M is an H-matrix with positive diagonals, then the projection method
with M = D − B = D − R − S is convergent to the solution y∗ of (4.2) for any initial
point y0 ≥ 0, provided that 0 < ω ≤ 1 and R is chosen such that (D−ω|R|)−1 exists and
is nonnegative. Furthermore, the convergence is at least linear.

Remark 4.4 The spectral radius is continuously dependent on the matrix elements. It
is clear that there is an ω1 > 1 such that for all ω ∈ (1,ω1) Theorem 4.1 also holds.
Remark 4.5 The projection method also generates a sequence of intervals which satisfies

y∗ ∈ [yl+1] ⊆ [yl].

The sequence is therefore convergent to some interval vector [y∗]. From the following
inequalities,

|yl+1 − y∗| ≤ |ŷl+1 − y∗| ≤ |yl − y∗|
the convergence of {yl} to y∗ implies that the radius r∗ of the interval [y∗] is zero if we
use Step 3a-3b in Remark 4.3, which means that [y∗] = y∗.
Remark 4.6 The projection method provides intervals containing the solution x∗ of the
non-Lipschitzian NCP(F ). In particular, if M is an H-matrix with positive diagonals,
from

x∗² − ²e = y∗ ∈ [yl],
H(x∗² ) = H(x

∗
²)−H²(x∗² ) = ²e

and
|x∗² − x∗| ≤ M̃−1max(D, I)|H(x∗² )| = C²e

we can easily find that for all l ≥ 0,

x∗ ∈ [yl] + ²[(I − C)e, (I + C)e]. (4.9)

We can also use Remark 3.1 to get

x∗ ∈ [ŷl − C|H(yl)|, ŷl + C|H(yl)|]. (4.10)
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5 Numerical Experiments

We have done very extensive numerical experiments. Numerical results show that the
regularized projection method is efficient to solve the non-Lipschitzian complementar-
ity problems. Moreover, the error bounds (4.9) and (4.10) provide computable error
estimation for verifying the accuracy of a computed solution.

We report numerical results for a free boundary problem in [2].
Example 5.1 Let Ω = (0, 1)× (0, 1), and let p ∈ (0, 1). We consider

−4u+ 9
(1−p)2u

p = f(z) in Ω+

u = 0 in Ω0

u = |∇u| = 0 on Γ

u = g(z) on ∂Ω

where Ω+ = {z ∈ Ω |u(z) > 0}, Ω0 = {z ∈ Ω |u(z) = 0}, and Γ = ∂Ω0 = ∂Ω+ ∩ Ω are
unknown. Let r2 = z21 + z

2
2 . We choose

f(z) =
9

r(1− p)2
³3r − 1

2

´ 2p
1−p max

³
0, r − 1

3

´
and

g(z) =
³3r − 1

2

´ 2
1−p max

³
0, r − 1

3

´
, z ∈ ∂Ω.

This problem has a unique solution

u(z) =
³3r − 1

2

´ 2
1−p max

³
0, r − 1

3

´
.

Using the five-point finite difference approximation, we obtain a nonlinear comple-
mentarity problem with F (x) =Mx+ φ(x), where M is an M-matrix,

φ(x) = Emax(0, xp) + q,

E is an n× n diagonal matrix with positive diagonals and q is a vector in Rn. Here the
components of x are the approximations to the exact solution u(z) at the grid points of
Ω. Our experiments were performed with 900 interior points of Ω.

In Table 1 and Table 2, we report some numerical results of the projection method
for solving Example 5.1. We used the successive overrelaxation-like method described in
(ii) of Remark 4.2. In all experiments we used the vector y0 = (1, . . . , 1)T for computing
the interval vector [y0] in the initial step of the projection method.

In Table 1, we list iteration numbers with different relaxation parameter ω for solving

H²k(y) = min(y,My + ²k(M − I)e+ φ(y + ²ke)) = 0 (5.1)

with different values of ²k = 2
−k and p. For a given value of ²k, we stopped the projection

method when the following inequality holds

kŷl+1 − ŷlk∞ ≤ 10−13kŷl+1k∞. (5.2)

To save computation time, we set

[yl+1] = [yl]
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Table 1: Number of iterations: K1 for ω = 1, Kopt for ω = ωopt
p ²k ωopt K1 Kopt

1 1.8 1570 142
0.3 2−5 1.8 1578 175

2−10 2.1 2060 169
2−15 4.6 7573 558

1 1.7 822 111
0.5 2−5 1.8 1022 126

2−10 2.0 1251 128
2−15 2.0 2694 847

1 1.6 431 88
0.7 2−5 1.7 517 86

2−10 1.8 603 106
2−15 2.0 842 187

1 1.4 108 42
0.9 2−5 1.5 123 44

2−10 1.6 143 48
2−15 1.8 171 45

in Step 3 of the projection method. The value ωopt, for which the smallest number of
iterations was taken to get (5.2), was determined experimentally.

In Table 2, we show the total iteration number N with a fixed relaxation parameter
ω for solving (5.1) for ²k = 2

−k, k = 0, 2, . . . , 30, and error bounds of an approximation
solution of (5.1) with ²k = 2

−30 to the exact solution of the NCP(F ). In our numerical
test, if ŷl+1 satisfies (5.2), we change ²k = 2

−k to ²k = 2−k−2 and set y0 = ŷl+1 as the
initial vector for solving (5.1) with the new ²k. The error bounds was obtained by (4.10).

Table 2: Error Bounds kx∗ − ylk∞ ≤ errb
p ω N errb ω N errb

0.3 1.0 40030 3.5e-5 1.8 18764 1.9e-5

0.5 1.0 16647 7.4e-6 1.8 6169 4.0e-6

0.7 1.6 2025 2.1e-6 1.8 1643 1.9e-6

0.9 1.6 442 5.4e-5 1.8 774 9.1e-5

The numerical results were obtained by using the programming language PASCAL-
XSC on an HP-9000 workstation in the University of Karlsruhe.
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