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Non-Lipschitz �p-Regularization and Box
Constrained Model for Image Restoration

Xiaojun Chen, Michael K. Ng, and Chao Zhang

Abstract— Nonsmooth nonconvex regularization has remark-
able advantages for the restoration of piecewise constant images.
Constrained optimization can improve the image restoration
using a priori information. In this paper, we study regularized
nonsmooth nonconvex minimization with box constraints for
image restoration. We present a computable positive constant
θ for using nonconvex nonsmooth regularization, and show that
the difference between each pixel and its four adjacent neighbors
is either 0 or larger than θ in the recovered image. Moreover,
we give an explicit form of θ for the box-constrained image
restoration model with the non-Lipschitz nonconvex � p-norm
(0 < p < 1) regularization. Our theoretical results show that any
local minimizer of this imaging restoration problem is composed
of constant regions surrounded by closed contours and edges.
Numerical examples are presented to validate the theoretical
results, and show that the proposed model can recover image
restoration results very well.

Index Terms— Box constraints, image restoration,
non-Lipschitz, nonsmooth and nonconvex, regularization.

I. INTRODUCTION

IN THIS paper, we focus on the most common data produc-
tion model for image restoration or reconstruction where

the observed data g ∈ Rm are related to the underlying
n × n image, rearranged into a vector f ∈ Rm (m = n2),
according to

g = H f + ξ, (1)

where ξ ∈ Rm represents the noise and H = [h1, h2, . . . ,
hm ] ∈ Rm×m represents a system matrix. For instance, when
a blur is modeled by a point spread function, the matrix
H is a block-Toeplitz-Toeplitz-block type matrix, see [1]. It
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is well-known that the matrix H is typically ill-conditioned.
A regularization method should be used in the image restora-
tion and reconstruction process. One usual approach is to
determine the recovered image by minimizing a cost function
z consisting of a data-fitting term and a regularization term:

min z( f ) := ‖H f − g‖2 + λ

r∑

i=1

ϕ(dT
i f ), (2)

where the superscript T stands for transpose, r = 2(n−1)n, ‖·‖
is the �2 norm in Rm , λ is a positive regularization parameter,
ϕ : R → R is a potential function, and dT

i ∈ Rm is the
i th-row of the first-order difference matrix in (7) which is
used to define the difference between each pixel and its four
adjacent neighbors.

Numerous expressions for potential functions ϕ(t) have
been used in the literature:

1) Smooth, convex regularization: e.g. Tikhonov regular-
ization [2], ϕ(t) = t2. It has been shown in [1] that
an efficient image restoration method based on fast
transforms can be developed, and the computational cost
is O(m log m) operations. However, the drawback of the
Tikhonov regularization is that image edges cannot be
preserved in the restoration process.

2) Nonsmooth, convex regularization: e.g. total variation
(TV) regularization [3], ϕ(t) = |t|. The distinctive
feature of TV regularization is that image edges can be
preserved. Thus TV regularization is in general more
suitable than the Tikhonov regularization for image
restoration purpose. We refer readers to [4] for recent
developments of TV image restoration.

3) Nonsmooth nonconvex regularization [5]–[8]: ϕ(t) is a
nonsmooth and nonconvex function, e.g., ϕ(t) = |t|p

(0 < p < 1) which is a non-Lipschitz function, ϕ(t) =
α|t|/(1 + α|t|) (α > 0) which is a Lipschitz function.
Nonsmooth nonconvex regularization offers a restored
image composing of constant regions surrounded by
closed contours and neat edges [8]–[10].

In this paper, we use a class of nonsmooth nonconvex
potential functions ϕ, which satisfy the following assumption
[8], [9].

Assumption I:
1) ϕ is continuous, symmetric on (−∞,∞), C2 on (0,∞)

and ϕ(0) = 0 is a strict minimum;
2) ϕ′(0+) > 0 and ϕ′(t) ≥ 0 for all t > 0;
3) ϕ′′ is increasing on (0,∞) with ϕ′′(t) < 0 and

limt→∞ ϕ′′(t) = 0.
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Various existing nonsmooth nonconvex ϕ satisfy Assump-
tion I, e.g., ϕ(t) = |t|p (0 < p < 1), and ϕ(t) = α|t|/(1+α|t|)
(α > 0).

In [9], Nikolova has proved that there exists constant λ0 ≥ 0
such that if λ > λ0, then any local minimizer f ∗ of the
unconstrained optimization problem (2) with a nonsmooth
nonconvex potential function ϕ satisfying Assumption I offers
recovery of neat edges, since the differences dT

i f ∗ are either
shrunk and form homogeneous regions, or enhanced and form
edges. That is, there exist constants λ0 > 0 and θ > 0, such
that if λ > λ0, then every local minimizer f ∗ satisfies

either |dT
i f ∗| = 0 or |dT

i f ∗| ≥ θ, ∀i ∈ {1, 2, . . . , r}. (3)

In [8], [10], Nikolova et al. studied nonconvex nonsmooth
minimization methods for image restoration and reconstruc-
tion, and developed fast minimization algorithms to solve
the nonconvex nonsmooth minimization problem (2). Their
experimental results showed the effectiveness and efficiency of
their proposed algorithms. However, the constants λ0 and θ in
[9] are minimizers of two constrained optimization problems
which are very difficult to compute. In practice, the values of
λ0 and θ are not known for image restoration problems.

Further adding pertinent constraints to f when minimizing
the cost function z( f ) can help to restore the image from a
priori information. The original image is comprised of nonneg-
ative entries [11], [12]. For example, in image restoration, the
pixels of the original image represent light intensities, and in
PET, the pixels of the original image represent the number of
photon pairs detected by the scanning device. This constraint
and other ways of incorporating a priori information have been
suggested in various applications, and can lead to substantial
improvements in the image restoration and reconstruction
[13]–[17].

This paper has the following two new contributions:

1) We will incorporate with box constraints for image
restoration process, and provide edge-preserving prop-
erties of a local minimizer f ∗ of the general box-
constrained nonsmooth nonconvex optimization problem

min ‖H f − g‖2 + λ
r∑

i=1
ϕ(dT

i f )

s.t. 0 ≤ f ≤ κe,
(4)

where κ is a positive upper bound parameter and e =
(1, . . . , 1)T ∈ Rm . We will present easily computable
positive constants θ and λ0 such that any local minimizer
f ∗ of (4) with λ > λ0 satisfies (3), i.e., the difference
between each pixel and its four adjacent neighbors is
either 0 or larger than θ in the recovered image.

2) We show that the nonsmooth nonconvex and non-
Lipschitz regularization term

ϕ(t) = |t|p, 0 < p < 1,

commonly used in image processing [18]–[20], can
provide valuable edge-preserving properties of local
minimizer f ∗. In particular, we give an explicit form of
θ for the box constrained image restoration model (4)

with the non-Lipschitz nonconvex potential function,

min ‖H f − g‖2 + λ
r∑

i=1
|dT

i f |p

s.t. 0 ≤ f ≤ κe
(5)

for any λ > 0.
3) We propose the smoothing projected gradient (SPG)

method [21] to solve the model (5), which is very easy to
implement and efficient to solve large-scale nonconvex
nonsmooth constrained minimization problem.

These theoretical results show that the solution of imaging
restoration problems using nonconvex nonsmooth regulariza-
tion is composed of constant regions surrounded by closed
contours and neat edges. Moreover, these theoretical results
can be extended to the following general box constrained
problem

min ‖H f − g‖2 + λ
r∑

i=1
ϕ(dT

i f )

s.t. κ1e ≤ f ≤ κ2e,
(6)

where κ1 ∈ R∪{−∞}, κ2 ∈ R∪{∞} and κ1 < κ2. Problem (6)
includes the unconstrained optimization problem considered
by Nikolova [9] as a special case.

The outline of the paper is as follows. In Section II, we
give easily computable constants θ and λ0 such that any local
minimizer of (4) with λ > λ0 satisfies (3). In Section III, we
provide an explicit form of θ such that any local minimizer
of (5) satisfies (3). We propose the SPG method to solve
the proposed nonsmooth nonconvex minimization model in
Section IV. Our numerical experimental results in this section
show the effectiveness of the proposed model as well as the
SPG algorithm for solving the model.

Notation: Throughout this paper, ‖ · ‖ denotes the �2 norm.
For any set S, |S| denotes the cardinality of S. Any vector
u ∈ Rn is considered as a column vector and uS ∈ R|S| denotes
the subvector of u whose entries lie in u indexed by S.

II. GENERAL BOX-CONSTRAINED NONSMOOTH

NONCONVEX REGULARIZATION

In this section, we consider box-constrained nonsmooth
nonconvex minimization problem (4) with a general regular-
ization term which satisfies Assumption I. We show that all
local minimizers f ∗ of (4) have edge-preserving properties,
which are of both theoretical and practical importance.

Note that the vectors dT
1 , . . . , dT

r are the rows of the first-
order difference matrix D ∈ Rr×m defined as follows:

D =
(

D1 ⊗ D0
D0 ⊗ D1

)
, (7)

where D0 ∈ Rn×n is the identity matrix,

D1 =
⎛
⎜⎝

1 −1
. . .

. . .

1 −1

⎞
⎟⎠ ∈ R(n−1)×n,

and ⊗ is the Kronecker product [8]. Each row of D has only
two nonzero entries and each column of D has at most four
nonzero entries. The nonzero entries are either 1 or −1.
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Let F∗ be the set of all local minimizers of problem (4).
It is clear that F∗ is nonempty and bounded, since the
feasible set

F = { f | 0 ≤ f ≤ κe}
is bounded, and the objective function of (4) is continuous by
Assumption I (a).

Theorem 1: There exist constants λ0 ≥ 0 and θ > 0 such
that if λ > λ0, then every local minimizer f ∗ ∈ F∗ of (4)
satisfies

either |dT
i f ∗| = 0 or |dT

i f ∗| ≥ min(θ, κ),

∀i ∈{1, 2, . . . , r}. (8)

The proof of Theorem 1 can be found in Appendix. The
purpose of Theorem 1 is to show the existence of λ0 and
θ such that (8) holds. Theorem 1 extends Theorem 3.3 of
[9] by Nikolova for the unconstrained model (2) to the box
constrained model (4). In general the constants λ0 and θ in
Theorem 1 are difficult to compute. Now we provide easily
computable constants λ0 and θ in the following theorem. The
proof of Theorem 2 can be found in Appendix.

Theorem 2: Let f ∗ ∈ F∗ be a local minimizer of (4), with
λ > λ0 := 2‖H T H‖m

|ϕ′′(0+)| . Let

θ = inf

{
t > 0 | ϕ′′(t) = −2‖H T H‖m

λ

}
. (9)

Then for any i ∈ {1, 2, . . . , r},
either dT

i f ∗ = 0 or |dT
i f ∗| ≥ min(θ, κ). (10)

Remark 1: If the potential function ϕ(t), e.g., ϕ(t) = |t|p ,
(0 < p < 1), satisfying |ϕ′′(0+)| = +∞, then (10) holds for
any λ > 0. Moreover, following the proof of Theorem 2, we
know that for a given local minimizer f ∗ ∈ F∗, Theorem 2
still holds if we replace λ0 and θ by λ̂0 and θ̂ respectively,
where

λ̂0 := 2‖H T H‖ |I |
|ϕ′′(0+)|

and

θ̂ := inf

{
t > 0 | ϕ′′(t) = −2‖H T H‖ |I |

λ

}
.

Here I = {i ∈ {1, 2, . . . ,m} | 0 < fi < κ} denotes the
inactive set of f , whose explanation in detail can be found at
the beginning of Appendix. This enlarges the lower bound for
θ in Theorem 1 in the case |I | << m.

Theorems 1 and 2 provide interesting theoretical justi-
fication that any local minimizer of the box-constrained
nonsmooth nonconvex minimization model offers better possi-
bilities of restoring images with neat edges. Using this result,
we can consider the restoration of piecewise constant images
where the number of the regions and their values are not
fixed in advance from noisy data obtained at the output of a
linear operator. Moreover, the constant θ in Theorem 2 can be
given by solving a single equation if in addition ϕ′′ is strictly
increasing. For example, if ϕ(t) = |t|p, (0 < p < 1), then θ

is the solution of 2m‖H T H‖ + λp(p − 1)|t|p−2 = 0, that is,
θ has an explicit form as

θ =
(
λp(1 − p)

2m‖H T H‖
) 1

2−p

.

Nikolova [9] first proved the existence of lower bounds of
|dT

i f ∗| for unconstrained minimization problem (2). However,
to get the lower bound in [9], one has to solve a difficult
minimization problem. In general, the lower bound in [9] has
no explicit form.

III. �p -REGULARIZATION WITH BOX-CONSTRAINTS

In this section, we will focus on (5) which has a regulariza-
tion term ϕ(t) = |t|p . Using special properties of ϕ(t) = |t|p ,
we give an explicit form of the lower bound θ which is bigger
than the bound given in Theorem 2.

For k = 1, 2, . . . ,m, we set the index sets

Jk = { i ∈ {1, . . . , r} | Dik = 0},
Ck = { j ∈ {1, . . . ,m} | j = k, Dij = 0 for some i ∈ Jk},

where Dij refers the (i, j)th entry of the first-order difference
matrix D. We note that Jk indicates the rows which have
nonzero entries at the kth column of D and Ck indicates the
columns which have nonzero entries in such rows except the
kth column. Both Jk and Ck have at most four index numbers.
Moreover, by the structure of the matrix D, it is easy to find
that

Ck = {k − 1, k + 1, k − n, k + n} ∩ {1, 2, . . . ,m},
which has indexes within the four adjacent neighbors of the
kth pixel.

Let us denote the objective function of (5) by

z( f ) = ‖H f − g‖2 + λ

r∑

i=1

|dT
i f |p.

By the definition of ‖ · ‖p
p, z( f ) can be written as

z( f ) = ‖H f − g‖2 + λ‖D f ‖p
p.

Recall that hk represents the kth column of H . In the
following, we provide lower bounds of |dT

i f ∗| for certain
indices i , which are defined by constants

αk :=
(

λp

2‖hk‖
√

z( f 0)

) 1
1−p

and βk =
(
λp(1 − p)

2hT
k hk

) 1
2−p

,

for all k = 1, . . . ,m.
Theorem 3: Let f 0 ∈ F be an arbitrarily given feasible

point, and f ∗ be a local minimizer of (5) satisfying z( f ∗) ≤
z( f 0). If

f ∗
k ≤ min{ f ∗

i , i ∈ Ck} or f ∗
k ≥ max{ f ∗

i , i ∈ Ck}, (11)

then either there exists i ∈ Ck such that f ∗
i − f ∗

k = 0 or

| f ∗
i − f ∗

k | ≥ αk for all i ∈ Ck .
Remark 2: Assume that f 0 ∈ F is a good estimation of

the original image, which, for example, may be the observed
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image or an acceptable guess after a certain degree of restora-
tion. Most minimization methods start from such f 0 and
reduce the function value z( f ) at each step to find a good
restored image. Although (5) has many local minimizers, one
may be only interested in these local minimizers f ∗ satisfying
z( f ∗) ≤ z( f 0).

Theorem 4: Let f 0 ∈ F be an arbitrarily given feasible
point, and f ∗ be a local minimizer of (5) satisfying z( f ∗) ≤
z( f 0). Then for any entry f ∗

k of f ∗, either there exists i ∈ Ck

such that f ∗
i − f ∗

k = 0, or for all i ∈ Ck, | f ∗
k − f ∗

i | ≥
min{αk, βk}. In particular, we have

| f ∗
k − f ∗

i | ≥ βk, if 0 < f ∗
k < κ

| f ∗
k − f ∗

i | ≥ αk, if f ∗
k = 0, or f ∗

k = κ.
The proofs of Theorem 3 and Theorem 4 can be found
in Appendix.

Remark 3: In [22], Chen et al. presented a lower bound
theory for the unconstrained �2 − �p minimization problem:

min ‖H f − g‖2 + λ‖ f ‖p
p.

In this paper, we derive new lower bounds for the box
constrained �2-�p minimization problem (5) where the regular-
ization term is λ‖D f ‖p

p. Our new results can be considered as
an extension of the lower bound theory in [22]. Such extension
is interesting as the box constrained �2-�p minimization prob-
lem (5) has important applications in image restoration. The
employing of box constraints has been suggested in various
image restoration applications, and it can lead to substantial
improvements in image restoration [13], [16], [17]. Moreover,
deriving new lower bounds for (5) is not trivial, since we have
to consider the constraints and the relation among components
of any local minimizer.

IV. NUMERICAL RESULTS

In this section, we present the numerical results on seven
experiments to validate the theoretical results and show that
the proposed model can recover the original image from its
degraded image well, especially for piecewise constant images.

We first give a simulation experiment on images of only
two pixels to demonstrate the theoretical results in Sections II
and III. We then employ the smoothing projected gradient
(SPG) method [21] to solve the nonsmooth nonconvex con-
strained minimization problems. We perform three numerical
experiments on the restorations of blurred and noisy images,
including both synthetic and true images which are (nearly)
piecewise constant.

While many natural images are not piecewise constant
regions surrounded by edges. Theoretical results of this paper
indicate that the restoration results on gradual changed region
would create piecewise constant image. Hence we also test
our model on two often used images: Cameraman image and
Barbara image, as well as the Books image with gradual
shading caused by illumination.

All testing images are transformed to gray level images
of intensity values ranging from 0 to 1. Each observed
image is then blurred by a two-dimensional Gaussian function,
and then added a Gaussian noise with the zero mean and

the given standard derivation. In the numerical experiments,
the two-dimensional Gaussian function is set to be:

h(i, j) = e−2(i/3)2−2( j/3)2,

which is truncated such that the function has a support of 7×7,
and is normalized to be equal to 1.

In the comparison, we consider minimizing z( f ) in (2)
without constraints, with one-side constraints f ≥ 0 and
two-side constraints 0 ≤ f ≤ e, respectively. For the first
two cases, we further truncate the solutions onto the feasible
region [0, e] to justify the usefulness of the box constraints.

The SPG method deals with nonsmooth nonconvex con-
strained minimization problem, which combines the smooth-
ing strategy and the classic projected gradient method. It is
especially attractive for solving large-scale box-constrained
problems. To implement the SPG method, we need construct
the smoothing function of the nonsmooth objective function.

In numerical experiments, we use the two potential func-
tions ϕ defined by

ϕ(t) = 0.5|t|
1 + 0.5|t| and ϕ(t) = |t|p, 0 < p < 1.

The nonsmooth nonconvex regularization term ϕ(t) involves
|t|. We first provide a smooth approximation sμ(t) for |t| by

sμ(t) =
{ |t| if |t| > μ

t2

2μ + μ
2 if |t| ≤ μ,

with a smoothing parameter μ > 0. It is easy to check that

0 ≤ sμ(t)− |t| ≤ μ

2
,

and hence limμ↓0 sμ(t) = |t|. The smoothing function z̃μ( f )
of z( f ) can then be defined by replacing ϕ(t) by ϕ(sμ(t)).
For instance, when ϕ(t) = |t|p is employed, we set

z̃μ( f ) = ‖H f − g‖2 + λ

r∑

i=1

(sμ(d
T
i f ))p.

It is easy to see that the maximum difference between sμ(t)
and |t| is at t = 0. Hence

0 ≤ z̃μ( f )− z( f ) ≤ λ

r∑

i=1

(μ
2

)p ≤ λr
(μ

2

)p
,

which implies

lim
μ↓0

zμ( f ) = z( f ).

The parameters of the SPG method are chosen to be

σ = 0.5; σ1 = σ2 = 103; ρ2 = 0.25; ρ3 = 103,

and ρ̂ = 103 or 105. We stop the SPG method if it reaches a
maximum iteration kmax or μ < 10−5.
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Fig. 1. Histograms for absolute difference between f ∗
1 and f ∗

2 with different
parameters p and λ. See Table I for the values of p and λ.

TABLE I

PARAMETERS AND RESULTS FOR FIG. 1

Subfigure p λ θ δ

(a) 0.5 0.2 0.0855 0.22

(b) 0.5 0.1 0.0539 0.14

(c) 0.5 0.02 0.0184 0.05

(d) 0.2 0.1 0.0684 0.25

(e) 0.4 0.1 0.0630 0.17

(f) 0.8 0.1 0.0179 0.05

A. Test of Simulated Image

Let f = ( f1, f2) be a nonnegative image of two pixels,
D = (1,−1), H = I and ϕ(t) = |t|p . We generate 1000
samples of f independently, which are uniformly distributed in
[0, 1]×[0, 1]. Then we generate the observed image gi = fi+ε
where the noise ε following the normal distribution with mean
zero and standard deviation 0.5, i.e., ε ∼ Normal(0, 0.5).
We obtain the global optimal solution f ∗ = ( f ∗

1 , f ∗
2 ) of

min z( f1, f2) = ( f1 − g1)
2 + ( f2 − g2)

2 + λ| f1 − f2|p

s.t. 0 ≤ f1, f2 ≤ 1.

The optimal solution is found by exhaustive search over
[0, 1] × [0, 1] with the step size 0.01 in each direction.
By Theorem 4, any local minimizer f ∗ satisfies

either f ∗
1 − f ∗

2 = 0, or | f ∗
1 − f ∗

2 | ≥ θ =
(
λp(1 − p)

2

) 1
2−p

.

In Fig. 1, we show the histograms of | f ∗
1 − f ∗

2 | for
the 1000 generated samples using different p and λ. Their
corresponding parameters p and λ, as well as the predicted
threshold θ by Theorem 4, and the smallest nonzero absolute
difference

δ = min
i=1,2,...,1000

| f ∗
1 (ε

i )− f ∗
2 (ε

i )|

in the 6 cases are displayed in Table I.
Those nonzeros are larger than θ as predicted by Theorem 4.

We observe that when λ decreases or p increases, the number
of zero absolute differences decreases and the smallest nonzero
entry tends nearer to zero at the same time. Since the effect of
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Fig. 2. Circles image of size 64 × 64. (a) Original. (b) Observed (PSNR =
15.50 dB).
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Fig. 3. Image restoration results using ϕ(t) = |t|0.5, and λ = 0.003.
(a) Unconstrained model. (b) Nonnegative constrained model. (c) Box con-
strained model. For reference, the PSNRs with/without projection onto [0, 1]
are (a) 18.45 /18.16 dB, (b) 19.24/19.13 dB, and (c) 19.97 dB.

clear distinction of zero and nonzero differences is weakened
as λ ↓ 0, or p ↑ 1, it might not be a good choice of very
small λ or very big p for recovering the piecewise constant
image with sharp varying regions.

B. Test of Circles Image

The Circles image is of size 64 × 64. The original Circles
image and the observed image are shown in Fig. 2, which are
used in [8]. The standard derivation of a Gaussian noise added
to the blurred image is 0.05 in this experiment.

We use ϕ(t) = |t|0.5, the initial smoothing parameter
μ0 = 1, and the maximum number of iteration kmax = 5000
in SPG for this experiment. Fig. 3 shows that restored images
without constraints ( f ∈ Rm ), with one-sided constraints
( f ≥ 0) and with box constraints (0 ≤ f ≤ e). Here we
apply the projection of the restored image pixel values to
[0, 1]. We display the restored image by selecting a suitable
value of regularization parameter λ such that the corresponding
PSNR is the highest. Visually, we see that the quality of the
restored image with box constraint is better than the other two
restored images. Also the PSNR of the restored image with
box constraints is higher than those of the other two restored
images. We also observe that the PSNRs of the restored images
with the projection onto the box feasible region are slightly
larger than those without the projection, see Fig. 3(a) and (b).
However, the PSNR improvement is more significant when we
employ the box constraints in the proposed model.

By Theorem 2, the threshold θ corresponding to p = 0.5
can be computed by

θ =
( λ

512‖H T H‖
) 2

3
.

In our case, λ = 0.003 and ‖H‖ = 1, therefore the value
of θ is equal to 3.25 × 10−4. We check all the absolute
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Fig. 4. Shepp–Logan image of size 256 × 256. (a) Original. (b) Observed.
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Fig. 5. Image restoration results using ϕ(t) = 0.5|t|/(1 + 0.5|t|), and
λ = 0.05. (a) Unconstrained model solved by SPG. (b) Nonnegative con-
strained model solved by SPG. (c) Nonnegative constrained model solved by
nonsmooth GNC. (d) Box constrained model solved by SPG. For reference,
the PSNRs with/without projection onto [0, 1] are (a) 27.25/27.21 dB,
(b) 27.64/27.63 dB, (c) 26.88 dB, and (d) 28.04 dB.

differences |dT
i f | for i = 1, 2, . . . , 8064, where f is the

computed solution obtained by the SPG method using box
constraints. We find that 6615 entries of |D f |, i.e., 82.03%
of the absolute differences are close to 0, with the average to
be 5.95 × 10−6, as predicted by our theoretical results. The
remaining nonzeros are, in fact, much larger than the threshold
3.25×10−4, where the minimal entry is 0.0023 and the average
is 0.2645.

C. Test of Modified Shepp-Logan Image

We use a modified Shepp-Logan image of size 256 × 256
shown in Fig. 4 to test the performance of the two potential
nonsmooth nonconvex functions ϕ as well as the nonsmooth
convex function ϕ(t) = |t| which is used in TV regularization.
The standard derivation of a Gaussian noise added to the
blurred image is 0.05 in this experiment. We also compare
the SPG method with the graduated nonconvexity (GNC)
algorithm in [8], which is proposed for nonsmooth nonconvex
minimization arising from image restoration.

The initial smoothing parameter μ0 = 10, and the maximum
number of iteration kmax = 5000 for this experiment. The
restored images are shown in Figs. 5 and 6. According to the
figures, we find that the use of box constraints 0 ≤ f ≤ e
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Fig. 6. Image restoration results using SPG with λ = 0.012. (a) Uncon-
strained model using ϕ(t) = |t|0.5. (b) Nonnegative constrained model
using ϕ(t) = |t|0.5. (c) Box constrained model using ϕ(t) = |t|0.5.
(d) Box constrained model using ϕ(t) = |t|. For reference, the PSNRs
with/without projection onto [0, 1] are (a) 26.65/26.60 dB, (b) 27.01/26.96 dB
(c) 27.73 dB, and (d) 27.79 dB.
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Fig. 7. (a) Original, (b) observed, and (c)–(e) restored 126 lines. (c) ϕ(t) =
0.5|t|/(1 + 0.5|t|). (d) ϕ(t) = |t|0.5. (e) ϕ(t) = |t|.

can provide a better image restoration with a higher PSNR.
Similarly as the Circles image, the projection of the solutions
in the cases of without constraints and with only nonnegative
constraints do help to improve the PSNR. However, the use of
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Fig. 8. (a) Original, (b) observed, and (c)–(e) restored 126 lines. (c) ϕ(t) =
0.5|t|/(1 + 0.5|t|). (d) ϕ(t) = |t|0.5. (e) ϕ(t) = |t|.

the box constraints provides the highest PSNR in the image
restoration.

In order to see the edge-preserving property by the two
different nonsmooth nonconvex potential functions and the
nonsmooth convex potential function ϕ(t) = |t|, we display
in Figs. 7 and 8 the 126th and 255th lines of the restored
images in Fig. 5(d) and Fig. 6(c) and (d). For a comparison,
the original and blurred noisy lines are also displayed in Figs. 7
and 8(a) and (b). We observe from the figures that both choices
of nonsmooth nonconvex potential functions ϕ(t) lead to the
restored images with neat edges and correct amplitude. The
restored image by using ϕ(t) = 0.5|t |

1+0.5|t | , which is Lipschitzian
at zero, has a few slightly blurred edges. While the restored
image using ϕ(t) = |t|0.5, which is non-Lipschitzian at zero,
fits the original section quite well. It is easy to see that the
restored image using the nonsmooth convex function ϕ(t) =
|t| has more blurred edges.

D. Test of MRI Images

The experiment in this subsection is based on real data
where they are 15 two-dimensional (2D) slices of 512 × 512
magnetic resonance imaging (MRI) scans for diagnosis of
abdominal aortic aneurysm. In this experiment, we use 0.2
for the standard derivations of the Gaussian noise. The initial
smoothing parameter of the SPG method is μ0 = 10, and
the maximum number of iteration kmax = 1000 for this
experiment.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
20.3

20.4

20.5

20.6

20.7

20.8

20.9

21

21.1

21.2

Slices

P
S

N
R

s

no constraints
nonnegative constraints
box constraints

Fig. 9. PSNRs of the restored 15 MRI slices with σ = 0.2 for the Gaussian
noise.

TABLE II

AVERAGE COMPUTATIONAL RESULTS OF THE 15 SLICES WITH σ = 0.2

Models Aver-PSNR Aver-cpu

f ∈ Rm 19.63/20.63 (without/with projection) 1130 s

f ≥ 0 20.59/20.82 (without/with projection) 1020 s

0 ≤ f ≤ e 20.95 886 s
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Fig. 10. MRI slice of size 512 × 512. (a) Original. (b) Observed
(PSNR = 13.80 dB). (c) Restored image using ϕ(t) = |t|0.5 and λ = 0.035
(PSNR = 21.03 dB).

We show image restoration results for such fifteen MRI
slices. The test was carried out on a Dell PC (3.00 GHz,
2.00 GB of RAM) with the use of Red Flag Linux Desktop
6.0 and Matlab R2009a (Version 7.8.0.347). We draw the
highest PSNRs that can be obtained during the recovery
process of the fifteen MRI slices by different methods in
Fig. 9.

From the figure, we see that the use of box constraints
in the proposed model provides better PSNRs than the other
methods. We also provide in Table II the information for the
average PSNR (aver-PSNR), and the average computational
time (aver-cputime) in seconds in order to obtain the restored
MRI slices. We see in Table II that the proposed method is
faster than the other methods in order to obtain about the same
aver-PSNR of restored slices.

As an example, we show the original, the observed and the
restored image of one MRI slice in Fig. 10. The restored image
using ϕ(t) = |t|0.5 by SPG method.

In subsections A-D, we perform numerical experiments
on images that are (nearly) piecewise constant and obtain
good recovery results using our box constrained nonsmooth
nonconvex model. This validates the theoretical results given
in this paper.
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Fig. 11. Cameraman image of size 256 × 256. (c) and (d) Image restoration
results using SPG. (a) Original. (b) Observed (PSNR = 20.12 dB). (c) ϕ(t) =
0.5|t|/(1 + 0.5|t|) and λ = 0.12 (PSNR = 21.48 dB). (d) ϕ(t) = |t| and
λ = 0.05 (PSNR = 21.46 dB).

While many natural images are not piecewise constant
images surrounded by edges. In the following subsections, we
test our model on two common used images and an image
with gradual change region that are not piecewise constant to
see its performance.

The SPG method is employed to solve the minimization
problem using the two nonsmooth nonconvex potential func-
tions as well as the nonsmooth nonconvex function ϕ(t) = |t|.
The initial smoothing parameter is set to be μ0 = 10 in the
SPG method and the maximum number of iteration is set to
be kmax = 2000.

E. Test of Cameraman Image

The Cameraman image of size 256×256, which has more
edges. In this experiment, we use 0.05 for the standard
deviation of the Gaussian noise.

We employ the potential function ϕ(t) = 0.5|t |
1+0.5|t | , as well as

the potential function ϕ(t) = |t| that used in TV regularization.
We see from Fig. 11(c) and (d) that the piecewise constant
regions appear in the restoration results. The restoration using
the nonsmooth nonconvex potential function ϕ(t) = 0.5|t |

1+0.5|t |
provides higher PSNR than that using ϕ(t) = |t|.
F. Test of Barbara Image

We test our proposed nonsmooth nonconvex regularization
model on the Barbara image of size 512×512. This image
has gradual changed pixel values, and is very different from
piecewise constant image.

The observed image is constructed by adding a Gaussian
noise with standard deviation 0.1 to the blurred image form
the original image. We see from Fig. 12(c) and (d) that the
piecewise constant regions appear in the restoration results. We
find that the restoration result using the nonsmooth nonconvex
potential function ϕ(t) = 0.5|t |

1+0.5|t | provides higher PSNR than
that using ϕ(t) = |t|.
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Fig. 12. Barbara image of size 512 × 512. (c) and (d) Image restora-
tion results using SPG. (a) Original. (b) Observed (PSNR = 18.58 dB).
(c) ϕ(t) = 0.5|t|/(1+0.5|t|) and λ = 0.24 (PSNR = 23.40 dB). (d) ϕ(t) = |t|
and λ = 0.065 (PSNR = 23.37 dB).
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Fig. 13. Books image of size 576 × 704. (c) and (d) Image restora-
tion results using SPG. (a) Original. (b) Observed (PSNR = 18.69 dB).
(c) ϕ(t) = |t|0.8 and λ = 0.044 (PSNR = 23.83 dB). (d) ϕ(t) = |t| and
λ = 0.05 (PSNR = 23.80 dB).

G. Test of Books Image

The original Books image of size 576×704 is obtained from
website http://www.math.cuhk.edu.hk/ rchan/paper/csx, which
looks like piecewise constant, but has some gradual shading
due to illumination.

The standard deviation of a Gaussian noise added to the
blurred image is 0.1 in this experiment. We try p = 0.8 and
p = 1 in the regularization model and obtain the restoration
results in Fig. 13(c) and (d), respectively. Both the restored
images improve the PSNR from the observed image a lot.
And the restored image using p = 0.8 provides higher PSNR
than that using p = 1.
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Fig. 14. Illustration of the first-order difference matrix of 3 × 3 pixels.

It is usually hard to find the global solutions for nonconvex
model. There is no guarantee that the SPG method can find
the global solutions for the proposed nonsmooth nonconvex
regularization model. From numerical experiments in subsec-
tions E-G, by comparing with the restoration results using the
convex TV regularization, we may say that the SPG method
performs stable to avoid being trapped in bad local solutions
for the nonsmooth nonconvex model.

V. CONCLUSION

This paper studies a new box constrained minimization
model with nonsmooth, concave regularization (4) for imaging
restoration. We derive an easily computable constant θ for
characterizing the sparsity of all local minimizers of (4). We
show that every local minimizer f ∗ of (4) satisfies either
dT

i f ∗ = 0 or |dT
i f ∗| ≥ min(κ, θ). Moreover, we give an

explicit form of θ for the box constrained image restoration
model with the non-Lipschitz nonconvex �p-norm (0 < p < 1)
potential function in the regularization. Our numerical exper-
iments validate the important characterization at local min-
imizers of (4) with �p-norm regularization. Moreover, the
smoothing projected gradient method is shown very efficient
to solve our proposed model. Our theoretical results, the
box constrained minimization model with nonsmooth, non-
Lipschitz regularization, and the SPG method contribute to
the study of image processing.

APPENDIX

In order to show Theorems 1 and 2, we will use several
index sets to prove these two theorems. For any f ∈ F , define

1) inactive and active sets of f

I = {i ∈ {1, . . . ,m} | 0 < fi < κ},
Ī = {1, . . . ,m} \ I (12)

2) index sets of zero and nonzero first-order differences

L = {i ∈ {1, . . . , r} | dT
i f = 0},

L̄ = {1, . . . , r} \ L (13)

3) subset of L and subset of L̄ in regard to the inactive set

L0 = {i ∈ L | di I = 0},
L̂0 = {i ∈ L̄ | 0 < |dT

i f | < κ}. (14)

The following simple example is used to explain these
index sets.

Example 1: Let us consider an image of 3 × 3 pixels. The
first-order difference matrix can be illustrated by the directed
graph drawn in Fig. 14, where each vertex represents a pixel
and each directed edge corresponds to a difference operator
between two neighboring pixels.

The first-order difference matrix D ∈ R12×9 corresponding
to the above figure has the following form

D =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 −1 0 0 0 0 0
0 1 0 0 −1 0 0 0 0
0 0 1 0 0 −1 0 0 0
0 0 0 1 0 0 −1 0 0
0 0 0 0 1 0 0 −1 0
0 0 0 0 0 1 0 0 −1
1 −1 0 0 0 0 0 0 0
0 1 −1 0 0 0 0 0 0
0 0 0 1 −1 0 0 0 0
0 0 0 0 1 −1 0 0 0
0 0 0 0 0 0 1 −1 0
0 0 0 0 0 0 0 1 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Let κ = 1 and f = (0.5, 0.5, 0.5, 0.5, 1, 0, 0, 0, 0)T .
By direct computation, we get

D f = (0,−0.5, 0.5, 0.5, 1, 0, 0, 0,−0.5, 1, 0, 0)T.

Then we obtain the index sets with respect to f as

I = {1, 2, 3, 4}, Ī = {5, 6, 7, 8, 9},
L = {1, 6, 7, 8, 11, 12}, L̄ = {2, 3, 4, 5, 9, 10},

L0 = {1, 7, 8}, L̂0 = {2, 3, 4, 9}.
If I = ∅ or L̂0 = ∅, then either dT

i f = 0 or |dT
i f | = κ

for i = 1, . . . , r. Hence in the rest of this section, we assume
I = ∅ and L̂0 = ∅.

Lemma 1: For a given vector f ∈ F , let I, Ī , L, L̄, L0, L̂0
be the index sets defined by (12)–(14). Then the following
statements hold.

1) either di I = 0 or di Ī = 0 for any i ∈ L;
2) di Ī = 0 for any i ∈ L0;
3) di I = 0 for any i ∈ L \ L0;
4) di I = 0 for any i ∈ L̂0.

Proof: Recall the notation introduced at the end of
Section I, di I ∈ R|I |, di Ī ∈ R| Ī | are the subvectors of di

with (di I ) j , j ∈ I and (di Ī ) j , j ∈ Ī , respectively. Note that
each di contains only two nonzero entries, 1 and −1, and

dT
i f = dT

i I f I + dT
i Ī

f Ī ,

where f I = ( fi )i∈I ∈ R|I | and f Ī = ( fi )i∈ Ī ∈ R| Ī |.
1) If on the contrary for some i ∈ L, each of di I and

di Ī contains one nonzero entry, then 0 < |dT
i I f I | < κ ,

and |dT
i Ī

f Ī | ∈ {0, κ}, which implies dT
i f = 0. This

contradicts to i ∈ L.
2) Since di I = 0 for any i ∈ L0 ⊆ L, we immediately get

from 1) that di Ī = 0 for any i ∈ L0.
3) This is directly from the definition of L0.
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4) Suppose on the contrary that di I = 0 for some i ∈ L̂0.
Then |dT

i f | = |dT
i Ī

f Ī | ∈ {0, κ}, which contradicts to

i ∈ L̂0. This completes the proof.

Proof of Theorem 1: Let f ∗ ∈ F∗ be a local minimizer,
and I , Ī , L, L̄ , L0, L̂0 be the index sets with respect to f ∗.
Recall that hk is the kth column of H . Let B = (hk)k∈I and
B̄ = (hk)k∈ Ī be the submatrices of H , whose entries lie in the
columns of H indexed by I and Ī , respectively. Denote

b = g − B̄ f ∗̄
I
, and ai = dT

i Ī
f ∗̄
I

for i = 1, 2, . . . , r.

It is easy to verify that

ai = 0 for all i ∈ L, (15)

since if i ∈ L0, then ai = dT
i Ī

f ∗̄
I

= 0 by 2) of Lemma 1; and
if i ∈ L \ L0, then

ai = dT
i Ī

f ∗̄
I

= dT
i I f ∗

I + dT
i Ī

f ∗̄
I

= dT
i f ∗ = 0,

by employing 3) of Lemma 1.
We then consider the following constrained optimization

problem

min
w∈R|I |

r(w) := ‖Bw − b‖2 + λ
∑

i∈L̄

ϕ(dT
i Iw + ai )

s.t. dT
i Iw = 0, ∀i ∈ L0.

(16)

Let us denote w∗ = f ∗
I and SI = {w | 0 ≤ w ≤ κeI }. Since

f ∗ ∈ F∗, there exists a neighborhood N ( f ∗) := { f | ‖ f −
f ∗‖ ≤ δ} of f ∗ such that N ( f ∗) ∩ F = ∅ and

r(w∗) = z( f ∗) = min{z( f ) | f ∈ N ( f ∗) ∩ F}. (17)

Denote N (w∗) := {w | ‖w−w∗‖ ≤ δ} for a neighborhood
of w∗. We now claim that w∗ is a global minimizer of r(w)
in the region

�1 :=
{
w | dT

i Iw = 0 for all i ∈ L0, w ∈ N (w∗) ∩ SI

}
.

Otherwise there exists ŵ ∈ �1 such that r(ŵ) < r(w∗). Define
f̂ ∈ N ( f ∗) ∩ F by letting f̂ I = ŵ and f̂ Ī = f ∗̄

I
. We have

z( f̂ ) = r(ŵ)+ λ
∑

i∈L

ϕ(dT
i I ŵ + ai )

= r(ŵ)+ λ
∑

i∈L

ϕ(dT
i I ŵ)

= r(ŵ)+ λ
∑

i∈L0

ϕ(dT
i I ŵ)+ λ

∑

i∈L\L0

ϕ(dT
i I ŵ)

= r(ŵ),

where the second equality comes from (15), and the last
equality can be obtained easily by employing ŵ ∈ �1,
3) of Lemma 1, and Assumption I (a). Thus we find
f̂ ∈ N ( f ∗) ∩ F , and

z( f̂ ) = r(ŵ) < r(w∗) = z( f ∗),

which contradicts (17).
Hence w∗ is a local minimizer of the equality constrained

minimization problem (16), where the objective function

r : R|I | → R is twice continuously differentiable at w∗. By the
second-order necessary condition for the local minimizer w∗,

vT ∇2r(w∗)v = 2‖Bv‖2 + λ
∑

i∈L̄

ϕ′′(dT
i f ∗)(dT

i I v)
2 ≥ 0,

for all v ∈ A(w∗) (18)

where

A(w∗) =
{
v | dT

i I v = 0, ∀i ∈ L0

}
.

For any i ∈ L̂0, di I = 0 according to 4) of Lemma 1. More-
over, we can deduce that dT

i Iw
∗ = 0 since 0 < |dT

i f ∗| < κ

for any i ∈ L̂0. Let v∗(i) ∈ R|I | be a solution to the quadratic
programming

min ‖v‖2

s.t. v ∈ A(w∗) dT
i I v = 1, (19)

where i ∈ L̂0. The existence of v∗(i) is guaranteed by the
Frank-Wolfe theorem, by noting that ‖v‖2 ≥ 0 and the feasible
set is a polyhedron which is nonempty since ṽ = w∗

dT
i Iw

∗ belongs

to it. Define
μ( f ∗) = max

i∈L̂0

{‖v∗(i)‖}.

Note that the minimizer of (19) is in fact determined by the
index sets I , L̄, L0, L̂0 with respect to f ∗. Taking all possible
index sets I , L̄ , L0, L̂0 with respect to f ∗ ∈ F∗, which are
finite, we can define

μ = max
f ∗∈F∗μ( f ∗).

Set λ0 = 2μ2‖H T H‖
|ϕ′′(0+)| . Since λ > λ0, we have 2μ2‖H T H‖

λ <

|ϕ′′(0+)|. Then we can define the finite constant θ given by

θ = inf

{
t > 0 | ϕ′′(t) = −2μ2‖H T H‖

λ

}
.

We now prove that for λ0 and θ defined above, statement
(8) holds for the given local minimizer f ∗. Suppose on the
contrary that there is j ∈ L̂0 such that

0 < |dT
j f ∗| < θ.

Consequently, we know that ϕ′′(dT
j f ∗) < ϕ′′(θ) from

Assumption I (c), and

v∗( j)∇2r(w∗)v∗( j)

= 2‖Bv∗( j)‖2 + λ
∑

i∈L̄

ϕ′′(dT
i f ∗)(dT

i I v
∗( j))2

≤ 2μ2‖H T H‖ + λϕ′′(dT
j f ∗)

< 2μ2‖H T H‖ + λϕ′′(θ) = 0,

which contradicts (18). The fact that μ, and consequently
λ0 and θ , do not vary with any f ∗ ∈ F∗ will yield that
(8) holds for any local minimizer f ∗ ∈ F∗. This completes
the proof.

Proof of Theorem 2: The proof of this theorem is based
on Theorem 1 and its proof. The difference between these
two theorems is that instead of using a solution to (19), this
theorem uses a feasible point of A(w∗) to give computable
constants λ0 and θ .
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By Assumption I (c), the constant θ in (9) is well-defined
and finite, since

|ϕ′′(0+)| = 2‖H T H‖m

λ0
>

2‖H T H‖m

λ
.

We only need to show |dT
� f ∗| ≥ θ for any � ∈ L̂0. We will

fulfill this by analyzing two possible cases.
Case 1. L0 = ∅. In this case A(w∗) = R|I |. For a fixed

� ∈ L̂0, d�I = 0 according to 4) of Lemma 1. Assume D�k = 0
for some k ∈ I . Let us define v̂ ∈ R|I | such that v̂k = 1, and
v̂i = 0 for any i = k, i ∈ I . It is easy to check that (dT

�I v)
2 = 1

and ‖v̂‖ = 1. From (18) we have

0 ≤ 2‖B v̂‖2 + λϕ′′(dT
� f ∗)(dT

�I v)
2 ≤ 2‖H T H‖+λϕ′′(dT

� f ∗),

which, combined with Assumption I (c), indicates

|dT
� f ∗| ≥ inf

{
t > 0 | ϕ′′(t) = −2‖H T H‖

λ

}
≥ θ.

Case 2. L0 = ∅. Let us consider the homogeneous system

DL0 I v = 0, (20)

where DL0 I ∈ R|L0|×|I | is the submatrix of D whose rows are
dT

kI , k ∈ L0. It is easy to see that A(w∗) coincides to the null
space of DL0 I , i.e., A(w∗) = null(DL0 I ). Denote ν for the
rank of DL0 I . Since 0 = w∗ ∈ A(w∗), we have

ν = rank(DL0 I ) ≤ min{|L0|, |I | − 1}.
According to 1) and 2) of Lemma 1, each row dT

kI , k ∈ L0,
has exactly two nonzero entries, 1 and −1. By performing
the elementary row operations and rearranging the columns if
necessary, we can get the equivalent system of (20) as follows

vβ − Nvα = 0. (21)

Here vβ ∈ Rν and vα ∈ R|I |−ν are the basic and nonbasic
variables respectively. Entries of the matrix N are either 0 or
1, and each row of N has a single nonzero entry 1.

Let vα(k) be the kth column of the identify matrix in
R(|I |−ν)×(|I |−ν), and vβ(k) = Nvα(k). Then we find |I | − ν
solutions v(k) ∈ R|I | to the linear system (20), which form
the basis of A(w∗). For a fixed � ∈ L̂0, we set

v̂(�) = argmax
{
(dT
�I v(k))

2, k = 1, . . . , |I | − ν
}
.

Note that w∗ ∈span{v(k), k = 1, . . . , |I | − ν} and dT
�Iw

∗ = 0.
We can claim that dT

�I v(k) = 0 for some v(k). Since d�I has
only two nonzero elements, 1 and −1, and elements of v(k)
are either 0 or 1, we find that (dT

�I v̂(�))
2 = 1 and ‖v̂ (�)‖2 ≤

|I | ≤ m. From (18) we have

0 ≤ 2‖B v̂(�)‖2 + λϕ′′(dT
� f ∗)(dT

�I v̂(�))
2

≤ 2|I | ‖H T H‖ + λϕ′′(dT
� f ∗)

≤ 2m‖H T H‖ + λϕ′′(dT
� f ∗),

which, combined with Assumption I (c), implies

|dT
� f ∗| ≥ inf

{
t > 0 | ϕ′′(t) = −2‖H T H‖m

λ

}
= θ.

We complete the proof.

Proof of Theorem 3: First we consider

f ∗
k ≤ min{ f ∗

i , i ∈ Ck}. (22)

If f ∗
k = κ , then from (22) we have f ∗

i − f ∗
k = 0 for all i ∈ Ck .

Suppose 0 ≤ f ∗
k < κ and f ∗

i − f ∗
k > 0 for all i ∈ Ck , which

implies |dT
j f ∗| > 0 for all j ∈ Jk . Let

ψ(t) = z( f ∗+tek) = ‖H ( f ∗+tek)−g‖2+λ‖D( f ∗+tek)‖p
p,

(23)
where ek is the kth column of the m × m identity matrix. We
consider the following constrained minimization problem

min
t≥0

ψ(t). (24)

Since f ∗ is a local minimizer of (5) satisfying 0 ≤ f ∗
k < κ ,

we know that t∗ = 0 is a local minimizer of (24). Moreover,
we deduce that ψ is differentiable at t∗ = 0 from the facts

r∑

j=1

|dT
j ( f ∗ + tek)|p =

∑

j∈Jk

|dT
j ( f ∗ + tek)|p +

∑

j ∈Jk

|dT
j f ∗|p

and
|dT

j f ∗| > 0, for all j ∈ Jk .

Hence the first order optimal condition of (24) holds at t∗ = 0,
that is,

2(H f ∗ − g)T hk + λp
∑

j∈Jk

|dT
j f ∗|p−1sign(dT

j f ∗)D jk ≥ 0.

We have by (22) that

sign(dT
j f ∗)D jk = −1, for all j ∈ Jk .

Therefore,

2(H f ∗ − g)T hk ≥ λp
∑

j∈Jk

|dT
j f ∗|p−1 ≥ λp|dT

j f ∗|p−1,

for all j ∈ Jk .

By the assumption z( f ∗) ≤ z( f 0), we obtain

|(H f ∗ − g)T hk |2 ≤ ‖hk‖2‖H f ∗ − g‖2

≤ ‖hk‖2

⎛

⎝‖H f ∗ − g‖2 + λ

r∑

j=1

|dT
j f ∗|p

⎞

⎠ ≤ ‖hk‖2z( f 0).

This implies

|dT
j f ∗|1−p ≥ λp

2|(H f ∗ − g)T hk | ≥ λp

2‖hk‖
√

z( f 0)
,

for all j ∈ Jk .

From the definition of Ck , for any i ∈ Ck there is j ∈ Jk such
that | f ∗

i − f ∗
k | = |dT

j f ∗|. Hence we obtain

| f ∗
i − f ∗

k | ≥
(

λp

2‖hk‖
√

z( f 0)

) 1
1−p

, for all i ∈ Ck .

The case
f ∗
k ≥ max{ f ∗

i , i ∈ Ck} (25)

can be proved similarly by employing the constrained
minimization problem

min
t≤0

ψ(t), (26)
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and the fact that in this case

sign(dT
j f ∗)D jk = 1, for all j ∈ Jk .

Proof of Theorem 4: Suppose

0 < f ∗
k < κ, and |dT

j f ∗| > 0 for all j ∈ Jk .

Since f ∗ is a local minimizer of (5), we know that t∗ = 0
is a local minimizer of the unconstrained minimization
problem

min ψ(t), (27)

where ψ(t) is given in (23). Moreover, we deduce that ψ is
differentiable at t∗ = 0 by noting

r∑

j=1

|dT
j ( f ∗ + tek)|p =

∑

j∈Jk

|dT
j ( f ∗ + tek)|p +

∑

j ∈Jk

|dT
j f ∗|p

and

|dT
j f ∗| > 0, for all j ∈ Jk .

The second order optimal condition of (27) yields

2hT
k hk + λp(p − 1)

∑

j∈Jk

|dT
j f ∗|p−2 ≥ 0.

Since 0 < p < 1, we find

2hT
k hk ≥ λp(1 − p)

∑

j∈Jk

|dT
j f ∗|p−2 ≥ λp(1 − p)|dT

j f ∗|p−2,

for all j ∈ Jk .

This implies

|dT
j f ∗| ≥

(
λp(1 − p)

2hT
k hk

) 1
2−p

= βk, for all j ∈ Jk . (28)

From the definition of Ck , for any i ∈ Ck there is j ∈ Jk such
that | f ∗

i − f ∗
k | = |dT

j f ∗|. Hence we obtain | f ∗
i − f ∗

k | ≥ βk

for all i ∈ Ck .
Now let us consider the case f ∗

k reaches the boundary, i.e.,
f ∗
k = 0 or f ∗

k = κ . It is clear that

f ∗
k = 0 ⇒ f ∗

k ≤ min{ f ∗
i , i ∈ Ck} and

f ∗
k = κ ⇒ f ∗

k ≥ max{ f ∗
i , i ∈ Ck}.

From Lemma 3, we obtain immediately that

| f ∗
k − f ∗

i | ≥ αk , if f ∗
k = 0, or f ∗

k = κ.

We complete the proof.
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