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1. Introduction. Let G : Rn+m → R be a locally Lipschitz continuous function, F : Rn → Rm be a14

continuously differentiable function and f : Rn → R be a composite nonsmooth function of the form15

(1.1) f(x) = G(x, F (x)).16

In this paper, we consider the nonsmooth minimization problem17

(1.2)
min f(x)
s.t. x ∈ X := {x ∈ Rn | ` ≤ x ≤ u},18

where `, u ∈ Rn, −∞ < `i < ui < ∞, i = 1, . . . , n and the function value F (x) is not computed exactly,19

but rather approximated by a Monte Carlo simulation FN , where N is the sample size of the Monte Carlo20

simulation.21

We assume that the function G admits a smoothing approximation in the sense of [10]. By this we22

mean that there is a family of differentiable functions Ĝ(·, µ) which converges to G as µ → 0. We make23

this precise in Definition 2.3. In this paper we use the smoothing parameter µ to design an algorithm which24

takes gradients of Ĝ to determine descent directions and then decreases µ as the iteration progresses.25

Our use of the term nonsmooth in this context is standard [14] and refers to functions which, while not26

differentiable (smooth), are locally Lipschitz continuous and the generalized derivatives are well-defined in27

the sense of [14].28

In [11] we considered a similar problem in the more general situation where the objective function was29

not everywhere defined and capturing the domain of f was part of the problem. In this paper the objective30

function is everywhere defined and can be approximated by a smoothing approach. The results in this paper31

exploit the structure of that special case to simplify the analysis and improve the efficiency of the method32

via smoothing.33

A large class of nonsmooth functions have the form (1.1). The box constraint does not restrict appli-34

cations where the objective functions have minimizers in a compact set. In other words, if the level set35
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{x : f(x) ≤ f(x0)} of f with a point x0 ∈ Rn is bounded, then minimizing f over Rn can be equivalently36

written as a box constrained optimization problem (1.2). One example (for which m = n) is the expected37

value version of the stochastic variational inequality problem [12, 49]: Given the induced probability space38

(Ξ ⊂ R`,A,P) and a convex set Ω ⊆ Rn, find x∗ ∈ Ω such that39

(1.3) (x− x∗)TF (x∗) ≥ 0, ∀x ∈ Ω,40

where F (x) := E[φ(ξ, x)], and φ : Ξ × Rn → Rn is continuously differentiable with respect to x for almost41

all ξ ∈ Ξ and A-measurable with respect to ξ. The stochastic variational inequality problem (1.3) reduces42

to the stochastic complementarity problem:43

(1.4) x ≥ 0, F (x) ≥ 0, xTF (x) = 0,44

when Ω = Rn+ = {x ∈ Rn |x ≥ 0}, and the system of stochastic nonsmooth equations:

F (x) = 0

when Ω = Rn. In this case, the approximation is via Monte Carlo simulation45

F (x) = E[φ(ξ, x)] ≈ FN (x) :=
1

N

N∑
i=1

φ(ξi, x),46

where N is the sample size and ξi, i = 1, . . . , N are observations of ξ ∈ Ξ.47

We can express problem (1.3) as a minimization problem [20]48

(1.5) min
x∈Rn

‖x− ProjΩ(x− F (x))‖2249

where ProjΩ is the projection onto the set Ω. In this formulation the optimal function value is zero.50

Another example of problem (1.2) is the `1-norm regularized minimization problem51

(1.6) min
x∈Rn

‖F (x)‖1 + λ‖x‖1,52

where F (x) is approximated by a Monte Carlo simulation.53

If problems (1.5) and (1.6) have minimizers in a compact set, then there is a box constraint set X, which54

might be difficult to determine a priori, such that problems (1.5) and (1.6) can be equivalently written as55

problem (1.2) with f(x) = ‖x− ProjΩ(x− F (x))‖22 and f(x) = ‖F (x)‖1 + λ‖x‖1, respectively.56

We will exploit the composition structure by using a smoothing function for f . We will show that if f57

is replaced by the outcome of Monte Carlo simulation and one has full knowledge of the nonsmoothness, we58

can develop a smoothing direct search method with Monte Carlo simulation, which has global convergence59

to a Clarke stationary point of problem (1.2) with probability one (w.p.1.).60

For example, if f has the form (1.1), we can define the smoothing function for f as61

(1.7) f̂(x, µ) = Ĝ(x, F (x), µ)62

and, when F (x) is replaced by the Monte Carlo outcome FN (x), we set the smoothing Monte Carlo simulation63

as64

(1.8) f̃(x, µ,N) = Ĝ(x, FN (x), µ).65

We consider stencil-based direct search methods in this paper. By this we mean that at each step in the66

optimization the function is evaluated at a set of points of the form67

{x± hvi}ni=1 ∪ {x}68

where x is the current point and h is the stencil size. The directions v can be quite general [3,28,31,32]. In69

this paper we will use the positive and negative coordinate directions, which is sufficient for our application.70
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For any fixed smoothing parameter µ > 0, the function f̂ is continuously differentiable with respect to71

x. The main contribution of this paper is to propose a smoothing direct search algorithm with Monte Carlo72

simulation for solving problem (1.2) and prove the convergence of the algorithm when the stencil size h and73

smoothing parameter µ go to zero with the rate h/µ → 0, and the sample size N goes to infinity with the74

rate (h
√
N)−1 → 0.75

Convergence analysis of direct search algorithms for smooth optimization problems where function values76

can be computed exactly have been well studied in [15, 16, 23, 28, 47]. Nonsmooth problems have been77

considered in [2–4, 11, 28]. Theory and algorithms for problems where the function evaluations require78

embedded Monte Carlo simulations have been carefully considered for optimization problems [11, 29, 33, 45,79

46, 49] and for nonlinear equations [55, 58]. The new algorithm in this paper exploits the structure of the80

problem and properties of smoothing methods to allow for using coordinate basis as fixed stencil search81

directions, simplifying the approaches of [3,11,28] for nonsmooth problems while preserving the convergence82

results.83

Direct search methods have been coupled with randomized methods in [52] where the randomization was84

in the sampling and the optimization problem itself was deterministic. In [48] a generalized pattern search85

algorithm was applied to a problem where the objective function f was an expectation. The objective was a86

function of continuous and categorical variables and was assumed to be a smooth function of the continuous87

variables. Neither of these papers consider nonsmooth problems.88

This paper is organized as follows. In section 2, we present a smoothing direct search algorithm for89

problem (1.2) where the function values f(x) can be computed directly, and prove the convergence of the90

algorithm. In section 3, we extend the algorithm and convergence analysis to a smoothing direct search91

algorithm for (1.2) where the function values f(x) cannot be computed directly, but are approximated92

by Monte Carlo simulation. In section 4, we present numerical experiments which include examples from93

statistical learning, and portfolio selection using test problems from the OR-Library [5] and real data from94

the Shanghai-Shenzhen stock market.95

2. A smoothing direct search method. We begin by reviewing sampling direct search methods in96

the context of the smooth optimization problem. Let the set of search directions be an orthonormal basis97

V = {v1, v2, . . . , vn}. Let h be the stencil size along those search directions. A stencil centered at x with h98

is the set of points {x ± hvi}ni=1 ∪ {x}. More general stencils can be used [3, 28, 31, 32] but are not needed99

for the applications in this paper.100

The concept of stencil failure is important in both the algorithms and the analysis.101

Definition 2.1. We say that stencil failure has occurred if102

(2.1) f(x) ≤ f(x± hvi) for i = 1, . . . , n.103

For simplicity, in this paper we will use104

(2.2) V = {e1, e2, . . . , en} ,105

for each iteration. Here ei is the i-th coordinate vector. The algorithms and convergence analysis can be106

extended to an orthonormal basis.107

It is easy to show [16, 27, 28] that if f is Lipschitz continuously differentiable in X, then (2.1) implies108

that109

(2.3) ‖∇f(x)‖ = O(h)110

uniformly for x ∈ X. To see this note that Lipschitz continuous differentiability of f in X and (2.1) imply111

that112
∂f(x)

∂xi
h+O(h2) = f(x+ hei)− f(x) ≥ 0, i = 1, . . . , n113

and114

−∂f(x)

∂xi
h+O(h2) = f(x− hei)− f(x) ≥ 0, i = 1, . . . , n115

uniformly in X. Hence ‖∇f(x)‖ = O(h), uniformly in X.116
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Sampling methods evaluate the objective function at the points of the stencil. If the current point is the117

best (stencil failure at the current point), then the stencil size is reduced. If the current point is not the best118

on the stencil, then the new best point becomes the current point. Algorithm direct search is a version of119

the method for minimizing a continuously differentiable objective function f within a convex set X.120

Algorithm direct search (x, f, h)

for forever do
fbase = f(x)
fmin = min{f(y) | y = x± hv, v ∈ V and y ∈ X}
ŷ ∈ {y | f(y) = fmin, y = x± hv, v ∈ V and y ∈ X}
if fmin ≥ fbase then
h← h/2

else
x← ŷ

end if
end for

Algorithm direct search generates two sequences {xk} and {hk}. The convergence analysis is based121

on their subsequences {x̃t} and {h̃t}, whose generation is described in the following box with initial points122

x0 and h0, and t = 0.123

Sequences generated by Algorithm direct search

for k ≥ 0
ŷ ∈ argmin{f(y) | y = xk ± hkv, v ∈ V and y ∈ X}
if f(ŷ) ≥ f(xk) (stencil failure)

set xk+1 = xk, hk+1 = hk/2, t = t+ 1, x̃t = xk+1, h̃t = hk+1

else
xk+1 = ŷ, hk+1 = hk

end if
end for

124

In Algorithm direct search, we must choose an initial point x ∈ X. This requirement for a feasible125

starting point in a box constraint set X is easy to satisfy. The worst case cost of a sweep through the stencils126

for a fixed h > 0 is sampling every point on the finite set127

Ωh(x) = {x0 +mhv | m = 1, 2, . . . and v ∈ V } ∪X,128

where x0 is either the initial point or the first point after h has been reduced. This worst case is, in our129

experience, very unlikely.130

In our formulation the search is non-opportunistic. By this we mean that the minimization is done over131

the entire stencil. The analysis is the same for the opportunistic version, where the first point with a smaller132

function value than fbase is used. The reason is that the stencil size is only reduced when the stencil fails.133

Stencil failure can only take place if the entire stencil is sampled. Before then, it does not matter if the134

search is opportunistic or not.135

The convergence proof of Algorithm direct search is based on the stencil directions such that if stencil136

failure happens at the current point, then some type of approximate necessary condition holds. This idea can137

be made very general with different stencils and different smoothness requirements on the objective function138

f [2–4,11,28].139

We consider the following first-order stationarity measure140

(2.4) χ(x) = max
x+d∈X,‖d‖≤1

[−dT∇f(x)].141

It is easy to check that, if x ∈ X is a local minimizer of (1.2), then χ(x) = 0.142
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Proposition 2.2. Assume that f is Lipschitz continuously differentiable. Let {xk} with x0 ∈ X be the143

sequence generated by Algorithm direct search. Then144

(2.5) lim inf
k→∞

χ(xk) = 0.145

Moreover, stencil failure happens at infinitely many iterates, and for each limit point x of the stencil failure146

iterates, it holds that147

(2.6) χ(x) = 0.148

Proof. Let h0 be the initial stencil size and149

(2.7) Xt = X ∩

{
x0 +

n∑
i=1

jih0

2t
ei | ji = 0,±1,±2, · · ·

}
, t = 0, 1, 2, . . . .150

Since X is bounded, Xt is a finite set, and it contains at least one iterate. Stencil failure occurs at x̃t, the151

last iterate contained in Xt and the size of the stencil at that iteration is h̃t = h0/2
t. For each t ≥ 1, define152

I+
t = {i | x̃t + h̃tei ∈ X, 1 ≤ i ≤ n},(2.8)153

I−t = {i | x̃t − h̃tei ∈ X, 1 ≤ i ≤ n},(2.9)154155

and denote gt = ∇f(x̃t). Let L be the Lipschitz constant of ∇f . Then by the definition of stencil failure156

and Taylor’s theorem,157

0 ≤ f(x̃t + h̃tei)− f(x̃t) ≤ h̃te
T
i gt +

L

2
h̃2
t for all i ∈ I+

t ,(2.10)158

0 ≤ f(x̃t − h̃tei)− f(x̃t) ≤ −h̃teTi gt +
L

2
h̃2
t for all i ∈ I−t ,(2.11)159

160

and consequently,161

eTi gt ≥ −
Lh̃t
2

for all i ∈ I+
t ,(2.12)162

eTi gt ≤
Lh̃t
2

for all i ∈ I−t .(2.13)163
164

By the assumption, there exists a positive constant Υ such that165

(2.14) ‖∇f(x)‖ ≤ Υ for all x ∈ X.166

Specifically, ‖gt‖ ≤ Υ. Therefore, for each d such that x̃t + d ∈ X and ‖d‖ ≤ 1, it holds that167

−dT gt = −
n∑
i=1

di(gt)i

= −
∑

i∈I+t \I
−
t

di(gt)i −
∑

i∈I−t \I
+
t

di(gt)i −
∑

i∈I+t ∩I
−
t

di(gt)i −
∑

i/∈I+t ∪I
−
t

di(gt)i

≤ nmax

{
Lh̃t
2
,Υh̃t

}
+ n

Lh̃t
2

+ nΥh̃t

≤ 3nmax

{
Lh̃t
2
,Υh̃t

}
,

(2.15)168

where the first inequality uses the fact that for each d with x̃t + d ∈ X, i /∈ I−t implies di > h̃t and i /∈ I+
t169

implies di < h̃t, since X is a bounded box.170
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Hence, we obtain171

(2.16) χ(x̃t) ≤ 3nmax

{
Lh̃t
2
,Υh̃t

}
→ 0 when t→∞.172

Since {x̃t} is a subsequence of {xk} and X is bounded, we conclude that173

(2.17) lim inf
k→∞

χ(xk) = 0.174

If x is an accumulation point of the stencil failure iterates {x̃t}, then continuity of χ implies that χ(x) = 0.175

2.1. Nonsmooth f . In this subsection, we consider problem (1.1) where F can be computed exactly.176

We will use smoothing methods which approximate f by a parameterized family of smoothing functions177

f̂(·, µ) given by (1.7), where µ > 0 is the smoothing parameter.178

We formally give a definition of smoothing functions used in this paper.179

Definition 2.3. [10] Let f : Rn → R be a locally Lipschitz continuous function. We call f̂ : Rn ×180

(0,∞) → R a smoothing function of f , if f̂(·, µ) is continuously differentiable and ∇f̂(·, µ) is Lipschitz181

continuous in Rn for any fixed µ ∈ (0,∞), and182

(2.18) lim
x→x̂,µ↓0

f̂(x, µ) = f(x̂).183

The limit in (2.18) is simultaneous in x and µ for all sequences xk → x̂ and µk → 0 (µk ≥ 0).184

Throughout this subsection we let ∇f̂ denote the gradient f̂ with respect to x.185

Assumption 2.1. (i) There are constants c1, c2 ≥ 0 such that for any x ∈ Rn, µ ∈ (0, 1],186

(2.19) |f(x)− f̂(x, µ)| ≤ µ(c1 + c2|f(x)|).187

(ii) f̂ satisfies the gradient consistency condition,188

(2.20) ∂f(x) = con{v | ∇f̂(xk, µk)→ v, for xk → x, µk ↓ 0 },189

where “con” denotes the convex hull and ∂f(x) is the Clarke subgradient at x.190

(iii) There are Υ > 0, Γ > 0 and µ− > 0 such that ‖∇f̂(x, µ)‖ ≤ Υ and191

(2.21) ‖∇f̂(x, µ)−∇f̂(y, µ)‖ ≤ Γ

µ
‖x− y‖192

uniformly in x, y ∈ X, and µ ∈ (0, µ−).193

In Assumption 2.1, c1, c2, Υ, Γ and µ− are fixed constants which are independent of x. Since X is
bounded and f is continuous, Assumption 2.1 (i) implies that there is a constant C such that

|f(x)− f̂(x, µ)| ≤ µC, for x ∈ X, µ ∈ (0, 1]

which means that f̂ converges to f uniformly as µ→ 0.194

In section 4, we use examples to illustrate the definition of smoothing functions and Assumption 2.1.195

Note that X is bounded and hence there are only finitely many points in the stencil for each h. Therefore196

the stencil will fail infinitely often.197

In the case where f is known exactly and there is no embedded Monte Carlo simulation, we propose198

a smoothing direct search algorithm, Algorithm smoothing search that decreases µ and h simultaneously,199

but in a way that ensures h/µ→ 0 as µ→ 0, which will be important in the convergence analysis.200

Algorithm smoothing search generates three sequences {xk}, {hk} and {µk}. The convergence analysis201

is based on their subsequences {x̃t}, {h̃t} and and {µ̃t}, whose generation is described in the following box202

with initial points x0, h0, and µ0, and t = 0.203
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Algorithm smoothing search (x, f̂ , h, µ, τ)

for forever do
f̂base = f̂(x, µ)

f̂min = min{f̂(y, µ) | y = x± hv, v ∈ V and y ∈ X}
ŷ ∈ {y | f̂(y, µ) = f̂min, y = x± hv, v ∈ V and y ∈ X}
if f̂min ≥ f̂base then
h← h/2; µ← µ/2τ

else
x← ŷ

end if
end for

Sequences generated by Algorithm smoothing search

for k ≥ 0

ŷ ∈ argmin{f̂(y, µ) | y = xk ± hkv, v ∈ V and y ∈ X}
if f̂(ŷ, µk) ≥ f̂(xk, µk) (Stencil failure)

set xk+1 = xk, hk+1 = hk/2, µk+1 = µk/2
τ , t = t+ 1, x̃t = xk+1, h̃t = hk+1, µ̃t = µk+1

else
xk+1 = ŷ, hk+1 = hk, µk+1 = µk, k = k + 1

end if
end for

204

In Algorithm smoothing search, τ ∈ (0, 1) is an input parameter. We must choose an initial point205

x ∈ X, the initial stencil size h > 0 and the initial smoothing parameter µ > 0.206

As an extension of (2.4), we use207

(2.22) χ̃(x) = min
v∈∂f(x)

( max
x+d∈X,‖d‖≤1

−dT v)208

to measure the first-order sationarity of x with respect to problem (1.2) when f is locally Lipschitz continuous209

but not necessarily differentiable, where ∂f(x) is the Clarke subdifferential of f at x [14,41]. If f is smooth,210

then χ̃(·) is the same as χ(·). Moreover, if x is a local minimizer of problem (1.2), then there exists a211

v ∈ ∂f(x) such that212

max
x+d∈X,‖d‖≤1

[−dT v] = 0,213

that is, χ̃(x) = 0.214

The convergence result follows the same argument as in the proof of Proposition 2.2 and Assumption215

2.1 on the smoothing function of f .216

Theorem 2.4. Assume that Assumption 2.1 holds. Let {xk, µk} with x0 ∈ X and µ0 > 0 be the iterates217

generated by Algorithm smoothing search, and218

(2.23) χk(x) = max
x+d∈X,‖d‖≤1

[−dT∇f̂(x, µk)].219

Then220

(2.24) lim inf
k→∞

χk(xk) = 0.221

Moreover, stencil failure happens at infinitely many iterates, and for each limit point x of the stencil failure222

iterates, it holds that223

(2.25) χ̃(x) = 0.224
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Proof. Define Xt by (2.7). As in the proof of Proposition 2.2, we denote the last iterate in Xt, where225

stencil failur occurs by x̃t, the corresponding stencil size by h̃t = h0/2
t, and the corresponding smoothing226

parameter by µ̃t = h̃τt . For each t ≥ 1, define I+
t and I−t in the same way as in the proof of Proposition 2.2,227

and denote ĝt = ∇f̂(x̃t, µ̃t). According to the definition of stencil failure and Taylor expansion, noticing228

part (iii) of Assumption 2.1, we have229

0 ≤ f̂(x̃t + h̃tei, µ̃t)− f̂(x̃t, µ̃t) ≤ h̃te
T
i ĝt +

Γ

2µ̃t
h̃2
t for all i ∈ I+

t ,(2.26)230

0 ≤ f̂(x̃t − h̃tei, µ̃t)− f̂(x̃t, µ̃t) ≤ −h̃teTi ĝt +
Γ

2µ̃t
h̃2
t for all i ∈ I−t ,(2.27)231

232

and consequently,233

eTi ĝt ≥ −
Γh̃t
2µ̃t

for all i ∈ I+
t ,(2.28)234

eTi ĝt ≤
Γh̃t
2µ̃t

for all i ∈ I−t .(2.29)235
236

By Assumption 2.1, there exists a positive constant Υ such that ‖ĝt‖ ≤ Υ. Using similar argument to237

those for (2.15) and (2.16), we have238

(2.30) max
x̃t+d∈X,‖d‖≤1

−dT ĝt ≤ 3nmax

{
Γh̃t
2µ̃t

, Υh̃t

}
.239

Noticing the fact that h̃t/µ̃t → 0, we have240

(2.31) max
x̃t+d∈X,‖d‖≤1

−dT ĝt → 0 when t→∞,241

which implies (2.24).242

Let x be a limit point of {x̃t}, and {x̃ti} be a subsequence that converges to x. Since {ĝt} is bounded, we243

may suppose that {ĝti} converges to a point v (if not, replace {ti} by an appropriately chosen subsequence).244

Let245

(2.32) d∗(v) ∈ argmax
x+d∈X,‖d‖≤1

[−dT v],246

and247

(2.33) yi =
x− x̃ti + d∗(v)

max{‖x− x̃ti + d∗(v)‖, 1}
.248

Then ‖yi‖ ≤ 1, and x̃ti + yi ∈ X due to the convexity of X (x̃ti + yi lies on the line segment between x̃ti249

and x+ d∗). Hence250

0 ≤ max
x+d∈X,‖d‖≤1

−dT v = − (d∗(v))T v

= lim
i→∞

−yTi ĝti

≤ lim
i→∞

max
x̃ti

+d∈X,‖d‖≤1
−dT ĝti

= 0.

(2.34)251

Notice that v ∈ ∂f(x) according to the gradient consistency of f̂ . By the definition (2.22) of χ̃(·), we have252

(2.35) 0 ≤ χ̃(x) ≤ max
x+d∈X,‖d‖≤1

−dT v = 0,253

which completes the proof.254
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3. Smoothing direct search method with Monte Carlo simulations. In this section we extend255

the algorithms and analysis from § 2 to the case where f is nonsmooth and approximated by a Monte Carlo256

simulation. Deterministic direct search methods for nonsmooth optimization problems have been studied257

in [2–4,11,23,28,42].258

In this section, we assume that for any x ∈ X, µ > 0, we can estimate the value of f̂(x, µ) by Monte259

Carlo simulation f̃(x, µ,N) with N realizations. The value of f̃(x, µ,N) is random and the sample of N260

realizations is independently identically distributed (iid). We can view f̃(x, µ,N) as defined on a common261

probability space (see [49, pp. 156] for details).262

The following is an assumption on the effectiveness of f̃(·, ·, N) as an approximation of f̂(·, ·).263

Assumption 3.1. For each p ∈ (0, 1/2), there exist constants δ ∈ (0, 1), cF > 0, N̄ > 0, and µ̄ > 0 such264

that265

(3.1) Prob

(
sup
x∈X
|f̂(x, µ)− f̃(x, µ,N)| ≥ cf

Np

)
≤ δ266

for each N ≥ N̄ and µ ∈ (0, µ̄].267

Consider the composite nonsmooth function in the form (1.1) with268

(3.2) F (x) = E[φ(ξ, x)], x ∈ X,269

where ξ is a random vector. Let270

(3.3) F̃N (x) =
1

N

N∑
i=1

φ(ξi, x),271

ξ1, ξ2, . . . , ξN being iid samples of ξ. Assume that φ(ξ, x) is sub-exponential for each x ∈ X (see Appendix B272

for the definition of sub-exponential random variables/vectors), and that φ(ξ, ·) is L-Lipschitz continuous273

with respect to x ∈ X for a constant L independent of ξ. Then, as we show in Appendix B, for any274

p ∈ (0, 1/2), there exist constants δ ∈ (0, 1), cF > 0 and N̄ > 0 such that275

(3.4) Prob

(
sup
x∈X
‖F (x)− F̃N (x)‖ ≥ cF

Np

)
≤ δ276

for each N ≥ N̄ . If G is Lipschitz continuous with respect to F (x) and Ĝ satisfies Assumption 2.1, then
there exists a constant LF independent of N and µ such that

|Ĝ(x, F (x), µ)− Ĝ(x, F̃N (x), µ)| ≤ LF ‖F (x)− F̃N (x)‖.

This, together with (3.4), implies that function

f̃(x, µ,N) ≡ Ĝ(x, F̃N (x), µ)

fulfills Assumption 3.1 with cf = LF cF .277

Algorithm mc smoothing search for the embedded Monte Carlo case is a simple extension of Algorithm278

smoothing search.279

In Algorithm mc smoothing search, τ ∈ (0, 1) and γ > 1 are input parameters. The objective function280

f is evaluated through f̃(x, µ,N), the Monte Carlo simulation of f̂(x, µ) with sample size N , where f̂(x, µ)281

is a smoothing function of f that is defined in Definition 2.3 and satisfies Assumption 2.1.282

Algorithm mc smoothing search generates four sequences {xk}, {hk}, {µk} and {Nk}. The convergence283

analysis is based on their subsequences {x̃t}, {h̃t}, {µ̃t} and {Ñt}, whose generation is described in the284

following box with initial points x0, h0, µ0 and N0, and t = 0.285
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Algorithm mc smoothing search (x, f̃ , h, µ,N, τ, γ)

for forever do
f̃base = f̃(x, µ,N)
f̃min = min{f̃(y, µ,N) | y = x± hv, v ∈ V and y ∈ X}
ŷ ∈ {y | f̃(y, µ,N) = f̃min, y = x± hv, v ∈ V and y ∈ X}
if f̃min ≥ f̃base then
h← h/2; µ← µ/2τ ; N ← 4γN

else
x← ŷ

end if
end for

Sequences generated by Algorithm mc smoothing search

for k ≥ 0

ŷ ∈ argmin{f̃(y, µ,N) | y = xk ± hkv, v ∈ V and y ∈ X}
if f̃(ŷ, µk, Nk) ≥ f̃(xk, µk, Nk) (Stencil failure)

set xk+1 = xk, hk+1 = hk/2, µk+1 = µk/2
τ , Nk+1 = 4γNk,

t = t+ 1, x̃t = xk+1, h̃t = hk+1, µ̃t = µk+1, Ñt = Nk+1

else
xk+1 = ŷ, hk+1 = hk, µk+1 = µk, Nk+1 = Nk, k = k + 1

end if
end for

286

As in Proposition 2.2 and Theorem 2.4, the boundedness of X ensures the convergence of the algorithm.287

Let x0 ∈ X denote the initial point of Algorithm mc smoothing search, h0 > 0 the initial stencil size, µ0 > 0288

the initial smoothing parameter, and N0 > 0 the initial sample size.289

The main result of the paper is Theorem 3.1, which states that w.p.1. the iteration has an accumulation290

point which is a Clarke stationary point.291

Theorem 3.1. Suppose that the Monte Carlo simulations in Algorithm mc smoothing search are mu-292

tually independent for different N . Assume that Assumptions 2.1 and 3.1 hold. Let {xk, µk, Nk} be the293

sequence generated by Algorithm mc smoothing search. Then294

(3.5) Prob

(
lim inf
k→∞

χk(xk) = 0

)
= 1,295

where χk is defined in (2.23), and296

(3.6) Prob({xk} has an accumulation point x such that χ̃(x) = 0) = 1.297

Proof. Define Xt by (2.7). As before we denote the last iterate in Xt, where stencil failure occurs by x̃t,298

the corresponding stencil size by h̃t = h0/2
t, and the corresponding smoothing parameter by µ̃t = µ0/2

tτ .299

The sample size at this point in the algorithm is Ñt = 4tγN0. Define index sets I+
t and I−t in the same way300

as in the proof of Proposition 2.2. Since stencil failure happens at x̃t, we have301

0 ≤ f̃(x̃t + h̃tei, µ̃t, Ñt)− f̃(x̃t, µ̃t, Ñt) for all i ∈ I+
t ,(3.7)302

0 ≤ f̃(x̃t − h̃tei, µ̃t, Ñt)− f̃(x̃t, µ̃t, Ñt) for all i ∈ I−t .(3.8)303304

305

Let p be a constant such that306

(3.9)
1

2γ
< p <

1

2
.307
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Then h̃tÑ
p
t → ∞ as t → ∞. Set δ ∈ (0, 1) and cf > 0 to be the constants that fulfill Assumption 3.1, and308

consider the event309

(3.10) Et =

{
sup
x∈X
|f̂(x, µ̃t)− f̃(x, µ̃t, Ñt)| ≤

cf

Ñp
t

}
.310

By assumption, {Et}∞t=1 are mutually independent, and311

Prob(Et) ≥ 1− δ > 0312

for each t sufficiently large so that Ñt ≥ N̄ and µ̃t ≤ µ̄. Therefore,313

(3.11) Prob(Et happens for infinitely many t) = 1.314

When Et happens, according to (3.7) and (3.8), we have315

−2cf

Ñp
t

≤ f̂(x̃t + h̃tei, µ̃t)− f̂(x̃t, µ̃t) ≤ h̃te
T
i ĝt +

Γ

2µ̃t
h̃2
t for all i ∈ I+

t ,(3.12)316

−2cf

Ñp
t

≤ f̂(x̃t − h̃tei, µ̃t)− f̂(x̃t, µ̃t) ≤ −h̃teTi ĝt +
Γ

2µ̃t
h̃2
t for all i ∈ I−t ,(3.13)317

318

where ĝt = ∇f̂(x̃t, µ̃t) and Γ is the constant in item (iii) of Assumption 2.1. Subsequently, it holds that319

eTi ĝt ≥ −
Γh̃t
2µ̃t
− 2cf

h̃tÑ
p
t

for all i ∈ I+
t ,(3.14)320

eTi ĝt ≤
Γh̃t
2µ̃t

+
2cf

h̃tÑ
p
t

for all i ∈ I−t .(3.15)321

322

By Assumption 2.1, there exists a positive constant Υ such that ‖ĝk‖ ≤ Υ. Using similar argument as (2.15)323

and (2.16), we obtain from (3.14) and (3.15) that324

(3.16) max
x̃t+d∈X,‖d‖≤1

−dT ĝt ≤ 3nmax

{
Γh̃t
2µ̃t

+
2cf

h̃tÑ
p
t

, Υh̃t

}
.325

Hence, by (3.11) and the fact that h̃t → 0, h̃t/µ̃t → 0, and h̃tÑ
p
t →∞, we have326

(3.17) Prob({χk(xk)} has a subsequence that converges to zero) = 1,327

which implies (3.5).328

When lim infk→∞ χk(xk) = 0, let {ki} be the index sequence such that χki(xki) → 0. Since {xki} is329

bounded (guaranteed the boundedness of X), it has an accumulation point x. By the same argument that330

leads to the second part of Theorem 2.4, we have that χ̃(x) = 0. Thus (3.6) holds.331

4. Numerical experiments. In this section, we test Algorithm mc smoothing search on two prob-332

lems: a stochastic optimization problem arising from censored regression and a two-stage optimization333

problem arising from portfolio management. The problems in § 4.1 and 4.2.1 are derived from applications,334

but use synthetic data to enable us to control the sample size.335

4.1. Censored regression. We consider the following regularized censored regression problem [1, 6,336

34,35,51,53]337

min
x∈Rn

f(x)

s.t. − e ≤ x ≤ e,
(4.1)338
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where e ∈ Rn is the vector with all its entries being one and339

(4.2) f(x) = Ec,y[(max(cTx, 0)− y)2] + λ

n∑
i=1

log(1 + |(x)i|).340

Here the random variable pair (c, y) represents a data set of interest (c ∈ Rn, y ∈ R), and λ > 0 is a341

regularization parameter.342

The regularization term343

λ

n∑
i=1

log(1 + |(x)i|)344

in the objective function is used to enforce sparsity.345

We assume that c ∼ N(0, I), and y = max(cTx∗+ ε, 0) for some underlying ground truth feature x∗ and346

unobservable noise ε ∼ N(0, σ2). Moreover, we assume x∗ is sparse, that is, x∗ has few nonzero entries. Using347

the concave regularized model (4.1), we want to recover a sparse feature x to approximate x∗ as accurate as348

possible given that x∗ ∈ {x | ‖x‖∞ ≤ 1} = [−e, e].349

The functions (max(cTx, 0) − y)2 and log(1 + |(x)i|) are not differentiable but do admit smoothing

functions (see Appendix A). Using the smoothing functions, we can define a smoothing function f̂c,y(x, µ)
for (max(cTx, 0)− y)2 which satisfies Assumption 2.1. From the convexity of (max(cTx, 0)− y)2, the Clarke
subdifferential and the expectation can be exchanged, that is,

∂Ec,y[(max(cTx, 0)− y)2] = Ec,y[∂(max(cTx, 0)− y)2]

(see [14]). Moreover, Ec,y[f̂c,y(x, µ)] is a smoothing function for Ec,y[(max(cTx, 0) − y)2], and satisfies350

Assumption 2.1 (see [8]). Problem (4.1) is a constrained nonsmooth nonconvex optimization problem where351

the objective function values cannot be computed directly.352

In practice the data in these problems are limited. To mimic the finite size of the data we will pose353

an approximation to problem (4.1) that replaces the expectation with the sample average of a finite, but354

large, data set. We will manage the sampling in the algorithm by randomly sampling from that data set.355

To this end, we consider X = {x | ‖x‖∞ ≤ 1} = [−e, e], and we randomly generate a true feature x∗ ∈ R20356

whose 5 nonzero entries are from uniform distribution on [−1, 1]. Independently, we generate samples ci357

from c ∼ N(0, I) and εi from ε ∼ N(0, 0.01) with a sample size 107. Let yi = max(cTi x
∗ + εi, 0). The new358

problem is an approximation to (4.1) with a finite data set. We have359

(4.3) f̄(x, 107) =
1

107

107∑
i=1

[(max(cTi x, 0)− yi)2] + λ

n∑
i=1

log(1 + |(x)i|).360

We used the regularization parameter λ = 10−2. This is large enough to capture the sparsity exactly and361

small enough to allow us to observe several iterations before the iteration stagnates.362

We configure the optimization as follows:363

• The algorithmic parameters are c = 2, γ = 1.5, and τ = 0.5.364

• We begin with h = 0.5 and terminate when h ≤ 10−3.365

• N = 100 and µ = 0.1 at the beginning of the iteration.366

Given N , for each evaluation of f , we independently and randomly sample vectors (ci, yi), i = 1, . . . , N367

from the data set (ci, yi), i = 1, . . . , 107 generated above. Note that we sample with replacement, following368

the bootstrapping technique in statistics [19]. This allows the sample size to be larger than 107. Then we369

compute smoothing approximation f̃(x, µ,N) of the following function370

(4.4) f̄(x,N) =
1

N

N∑
i=1

[(max(cTi x, 0)− yi)2] + λ

n∑
i=1

log(1 + |(x)i|)371

by using smoothing functions for max(., 0) and | · |.372

For the initial point x0 = (0, . . . , 0)T we performed 20 runs of Algorithm mc smoothing search. In373

Figure 4.1, we show histories of the distance ‖xk − x∗‖ and the value f(xk).374
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Fig. 4.1. Histories of the distance ‖xk − x∗‖ and the value f(xk)
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Figure 4.1 illustrates several properties of the algorithm and the problem. At the end of the iteration,375

all of the iteration histories are very similar. The theory would lead one to expect similar histories if N376

is large. On the other hand, the initial value of N is large enough to cause considerable variation in f377

early in the iteration. This variation accounts for the differences in the histories. Finally, the iteration378

stagnates in the terminal phase when the differences from the iterates and x∗ are roughly at the level of the379

regularization parameter. The reason for this is that the regularization term would dominate the error term380

when x is near x∗. While a smaller regularization would defer the stagnation, it would make it harder to381

capture the sparsity. Our choice of λ = 10−2 captures the sparsity exactly. At each final iterate xk, we have382

(xk)i = (x∗)i = 0 for all i ∈ Sc, where S = {i | (x∗)i 6= 0, i = 1, . . . , n}, the support set of x∗.383

Figure 4.2 plots ‖xk − x∗‖ and f(xk) against the number of Effective Data Passes performed until the384

k-th iteration (EDPk), which is defined as the number of samples made during the first k iterations divided385

by the data size 107. Note that EDPk increases with respect to k, but not strictly. The number of Effective386

Data Passes may stay unchanged during several successive iterations because the former changes only after387

a stencil failure, which happens only once in a few iterations. Consequently, a single number of Effective388

Data Passes can correspond to several values of ‖xk −x∗‖ or f(xk). That is why we observe vertical lines in389

Figure 4.2.390

Figure 4.2 shows that the algorithm is capable of achieving considerable progress using very few Effective391

Data Passes. Both ‖xk − x∗‖ and f(xk) are reduced significantly even before one single Effective Data Pass392

is made. This shows the effectiveness of our sampling strategy, which increases the sample size steadily in393

course of the iterations. The stagnations in the final stage of the plots are seemingly more visible than in394

Figure 4.1. This is because the sample size increases rapidly, and hence the variations in ‖xk − x∗‖ or f(x∗)395

are less visible when plotted against EDPk than plotted against k.396

Note that we begin with h = 0.5 and terminate when h ≤ 10−3. By the structure of Algorithm397

mc smoothing search, the algorithmic parameters τ = 0.5, γ = 1.5 and the initial values N0 = 100,398

µ0 = 0.1, we know that after t = 9 iterations, h̃9 ≤ 10−3, and hence µ̃9 = µ0/2
tτ = 0.1/29×0.5 = 0.044 and399

Ñ9 = 4tγN0 = 49×1.5100 ≈ 1.34E10.400

4.2. Portfolio management. Consider ν assets. Let u ∈ Rν denote the random returns of them, and401

(4.5) r = E[u], C = E[(u− r)(u− r)T ].402

Here r is the vector of expected returns of the different assets, and C is the covariance matrix of the return403

on the assets in the portfolio. When r and C are known, as discussed in [44], the Markowitz mean-variance404
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Fig. 4.2. ‖xk − x∗‖ and f(xk) plotted against the number of Effective Data Passes EDPk
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model [36,37] for portfolio selection can be formulated as405

min
w

1

2
wTCw − ηrTw

s.t. eTw = 1

a ≤ w ≤ b,

(4.6)406

where w denotes the weights of the assets in the portfolio, a ∈ Rν and b ∈ Rν (a ≤ b) are lower and upper407

bounds enforced on w, and η is a nonnegative parameter (called the risk aversion factor) to balance the408

conflicting aspects of minimizing the risk measured by wTCw and maximizing the expected return measured409

by rTw. The Markowitz mean-variance model [36, 37] was first proposed and solved when the total return410

is known. The model captures the essence of two conflicting aspects in portfolio management; namely, the411

risk and the return.412

The use of mean variance analysis in portfolio selection normally requires the knowledge of means,413

variances, and covariances of returns of all securities under consideration. However, in general, these data414

are not known exactly. Treating their estimates as if they were the exact parameters can lead to suboptimal415

portfolio choices.416

The experiments reported in [22, 25, 30] show that, influenced by the sampling error, portfolios selected417

with the mean-variance model by Markowitz are not as efficient as an equally weighted portfolio. Other418

results [13,39] show that the mean-variance model tends to magnify the errors associated with the estimates.419

In this section, we consider an optimal parameter selection model based on the Markowitz mean-variance420

model to find optimal parameters for portfolio selection.421

For simplicity, here we only consider the case where C is positive definite and the feasible set {w | eTw =
1, a ≤ w ≤ b} is nonempty. Given a, b, and η, problem (4.6) has a unique solution w. In other words, w is
uniquely defined by a, b, and η, the values of which will determine the quality of the portfolio selected by
solving problem (4.6). A common measure for the quality is the Sharpe ratio [50]

SR =
rTw√
wTCw

.

The Sharpe ratio characterizes how well the return of an asset compensates the investor for the risk taken.422

In general, a strategy is better than others if its Sharpe ratio is higher.423
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In practice, a, b, and η are usually set by investors empirically according to their preferences. We424

consider selecting them by solving the two-stage optimization problem425

max
(a,b,η)∈Ω

rTw(a, b, η)√
w(a, b, η)TCw(a, b, η)

where w(a, b, η) = argmin
w

1

2
wTCw − ηrTw

s.t. eTw = 1

a ≤ w ≤ b,

(4.7)426

where the feasible set
Ω = [a, a]× [b, b]× [η, η] with η < η

is given. The number of variables of the first level problem is

#{i|ai < ai, i = 1, . . . , ν}+ #{i|bi < bi, i = 1, . . . , ν}+ 1.

For example, if we choose427

(4.8) ai = ai = 0, for i 6= 1, a1 = 0, a1 = 1 and bi = bi = 1, for i 6= 2, b2 = 0, b2 = 1,428

then the number of variables of the first level problem is 3.429

Finding optimal parameters a, b, η is a challenging problem. Since C is positive definite, the second level430

optimization problem has a unique solution. Hence w(a, b, η) is well defined, and it is Lipschitz continuous431

with respect to (a, b, η). However, w(a, b, η) is not differentiable, and the covariance matrix C and the vector432

of expected return r cannot be computed directly in general. We will use the barrier method [43, Chapter433

19] to solve the second stage problem of (4.7) and define a smoothing function wµ(a, b, η) [43]. In particular,434

we use Algorithm mc smoothing search to solve435

max
(a,b,η)∈Ω

rTwµ(a, b, η)√
wµ(a, b, η)TCwµ(a, b, η)

where wµ(a, b, η) = argmin
1

2
wTCw − ηrTw − µ

ν∑
i=1

log(si)− µ
ν∑
i=1

log(ti)

s.t. eTw = 1

w − a− s = 0

b− w − t = 0.

(4.9)436

In this section, we report numerical results that we obtained with Algorithm mc smoothing search for437

five standard data sets from the OR-Library [5], the SSE50 index, the CSI 100 index, and the CSI 300 index438

from Shanghai-Shenzhen stock market. The data are the weekly or daily prices of the component stocks for439

the eight stock market indices drawn from different countries. See Table 4.1 for the description of the data440

sets. The ν and T columns are the number of the component assets included in the index and the number441

of the observations for the assets, respectively.442

We report on two experiments: randomly generated problems in §4.2.1, which use the mean and the443

covariance matrix generated from the real data in Table 4.1 and rolling window procedures for out-of-sample444

comparison in §4.2.2, which use the stock prices to generate the returns of assets and the covariance matrix445

by Monte Carlo simulation.446

4.2.1. Randomly generated problems. We choose the following parameters as input data of Algo-
rithm mc smoothing search:

h = 0.5, µ = 0.1, N = 100, τ = 0.5, γ = 1.5.

We choose the feasible set X as in (4.8).447
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Table 4.1
Description of the eight real data sets

Data set ν Location Index T Description

data 1 31 Hong Kong Hang Seng 291 weekly prices from 1992 to 1997

data 2 85 Germany DAX 100 291 weekly prices from 1992 to 1997

data 3 89 UK FTSE 100 291 weekly prices from 1992 to 1997

data 4 98 USA S&P 100 291 weekly prices from 1992 to 1997

data 5 225 Japan Nikkei 225 291 weekly prices from 1992 to 1997

SSE50 50 China SSE50 501 daily prices from 2013 to 2015

CSI100 100 China CSI 100 501 daily prices from 2013 to 2015

CSI300 300 China CSI 300 401 daily prices from 2011 to 2013

For all tests, we terminated the algorithm if the stencil size is less than 10−2.448

For each data set in Table 4.1, we first calculate the average r̂ ∈ Rν and the covariance matrix Ĉ ∈ Rν×ν
for the returns of the assets. Given a sample size N , we generate i.i.d. random vectors ui ∈ Rν , i = 1, . . . , N
normally distributed with mean r̂ and covariance matrix Ĉ, that is

ui = r̂ + Ĉ
1
2 randn(ν, 1), i = 1, 2, ..., N,

and then take rN to be the sample average of ui, i = 1, 2, ..., N , and CN to be the sample covariance matrix

rN =
1

N

N∑
i=1

ui and CN =
1

N

N∑
i=1

(ui − rN )(ui − rN )T .

Then we compute the smoothing approximation for the problem of minimizing the negative Sharpe ratio449

which is given by (4.9) with r = rN , C = CN , and x = (a1, b2, η).450

For each data set in Table 4.1, we use Algorithm mc smoothing search to solve problem (4.7) with the451

starting point (a1, b2, η) = (0, 1, 0.5). Table 4.2 presents the results. From Table 4.2, we can see the optimal452

value of objective function (Opt. sharpe ratio) at the final iteration is bigger than the value of objective453

function at the point w = e/ν, which is a feasible point of problem (4.6) with a = 0 and b = e.454

Table 4.2
Numerical results for the portfolio management problem with randomly generated data

data set data1 data2 data3 data4 data5 SSE50 CSI100 CSI300

lower bound a1 4.69E-1 4.22E-1 6.56E-1 1.25E-1 1.00E00 2.00E-2 1.00E-2 7.50E-1

upper bound b2 8.13E-1 8.75E-1 9.69E-1 9.69E-1 7.12E-1 1.14E-1 3.85E-1 7.50E-1

risk aversion η 9.69E-1 5.31E-1 3.43E-1 4.38E-1 8.59E-1 1.25E-1 6.25E-1 6.41E-1

opt. sharpe ratio 1.57E-1 2.85E-1 2.51E-1 2.47E-1 9.76E-2 3.92E-1 2.74E-1 7.98E-2

sharpe ratio e/ν 1.04E-1 9.15E-2 1.53E-1 1.99E-1 -4.90E-2 2.36E-1 2.65E-1 -9.05E-2

4.2.2. Problems with rolling window procedures. For a given data set, assuming that the obser-
vations of the stock prices are {Pi,t : 1 ≤ i ≤ ν, 1 ≤ t ≤ T}, we can compute the (logarithmic) returns of
the stocks:

ri,t = log
Pi,t+1

Pi,t
, i = 1, . . . , ν, t = 1, . . . , T − 1.

For the purpose of numerical comparisons, we partition the data set into two subsets: a training set and a455

testing set. The training set, called in-sample set, consists of the first half of the data set and is used to456

compute an optimal parameter x∗ and the corresponding optimal portfolio selection w(x∗). The testing set,457
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called out-of-sample, consists of the second half of the data set and is used to test how well the optimal458

parameter x∗ and the corresponding optimal portfolio selection w(x∗).459

More exactly, for stock i with i = 1, . . . , ν, we can use the training set to compute the in-sample
expectation and the standard deviation by

µ̄i =
1

M

M∑
t=1

ri,t and σ̄i =

√√√√ 1

M

M∑
t=1

(ri,t − µ̄i)2,

respectively, where M = (T − 1)/2. As is standard in finance [24], we simulate the out-of-sample prices as
follows. Let N be the sample size. Then at the j-th simulation (1 ≤ j ≤ N), for M + 1 ≤ t ≤ T − 1, if

the price S
(j)
i−1,t of stock i at an out-of-sample time t − 1 is known, the price S

(j)
i,t of this stock at time t is

generated by

S
(j)
i,t = S

(j)
i,t−1 exp(µ̄i + σ̄iZ),

where S
(j)
i,M = Pi,M for all 1 ≤ j ≤ N and Z is randomly produced by the standard normal distribution

N(0, 1). In a similar way, we can calculate the (logarithmic) returns by this simulation

r
(j)
i,t = log

S
(j)
i,t+1

S
(j)
i,t

, t = M + 1, . . . , T − 1.

For t = M + 1, . . . , T − 1, denote the column vector r
(j)
t with its i-th component being r

(j)
i,t and its average

vector r̄t = 1
N

∑N
j=1 r

(j)
t , the sample mean rN and the sample variance CN of the out-of-sample can be

computed by

rN =
1

M

T−1∑
t=M+1

r̄t and CN =
1

M

T−1∑
t=M+1

(r̄t − rN )(r̄t − rN )T .

Then we solve problem (4.9) with the sample mean rN and the sample variance CN to obtain the optimal460

parameter x∗ and the corresponding optimal portfolio selection w(x∗) by Algorithm mc smoothing search.461

We choose the following parameters as input data of Algorithm mc smoothing search:

h = 0.5, µ = 0.1, N = 10, τ = 0.5, γ = 1.5.

We choose the feasible set X as in (4.8). For all tests, we choose the starting point (a1, b2, η) = (0, 1, 0.5)462

and terminated the algorithm when the sample size N gets larger than 105.463

To evaluate the quality of the optimal portfolio selection w(x∗), we shall make use of the real out-of-
sample data. We denote by rout and Cout the mean and variance of the real returns of the out-of-sample
set; namely,

rout =
1

M

T−1∑
t=M+1

rt and Cout =
1

M

T−1∑
t=M+1

(rt − rout)(rt − rout)T ,

where rt is the vector formed by the stock prices ri,t(i = 1, . . . , n) for t = M + 1, . . . , T − 1. Then we can
calculate the Sharpe ratio of the optimal solution w(x∗) by using rout and Cout as

SR∗ =
(rout)Tw(x∗)√
w(x∗)TCoutw(x∗)

.

In Table 4.3, for all the eight data sets, we list the optimal values of a1, b2, η achieved by Algorithm464

mc smoothing search, and the corresponding SR∗. For comparison, we also list the Sharpe ratio of the465

average strategy (namely, taking 1/ν portion of each portfolio) using rout and Cout. From Table 4.3, we can466

see that using Algorithm mc smoothing search to solve problem (4.7) can provide a portfolio strategy with467

higher Sharpe ratio than the average strategy for all data sets.468
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Table 4.3
Numerical results for the portfolio management problem with rolling window procedures

data set data1 data2 data3 data4 data5 SSE50 CSI100 CSI300

lower bound a1 1.00E-3 1.18E-2 1.12E-2 1.02E-1 4.40E-2 2.00E-2 1.00E-2 3.33E-3

upper bound b2 3.14E-1 2.31E-1 6.36E-1 4.15E-2 1.29E-2 5.83E-1 2.60E-1 2.53E-1

risk aversion η 2.81E-1 9.38E-1 6.25E-1 6.25E-2 1.00E00 7.19E-1 2.50E-1 7.50E-1

sharpe ratio SR∗ 3.35E-1 2.36E-1 3.72E-1 5.12E-1 2.19E-1 2.71E-1 4.33E-1 2.19E-1

sharpe ratio e/ν 1.57E-1 2.10E-1 2.79E-1 3.44E-1 -3.85E-2 2.36E-1 2.65E-1 3.18E-3

5. Conclusions. In this paper we propose a smoothing direct search algorithm with Monte Carlo sim-469

ulation Algorithm mc smoothing search for the constrained nonsmooth nonconvex optimization problem470

(1.2), where the objective function value f(x) cannot be computed directly, but are approximated by Monte471

Carlo simulation. This algorithm updates the stencil size h, smoothing parameter µ and the sample size N472

simultaneously with the rate h/µ → 0, and (h
√
N)−1 → 0. We prove that any accumulation point of the473

sequence generated by the algorithm satisfies the first order optimality condition χ̃(x) = 0 with probability474

one, where χ̃(x) is defined by (2.22). We report on a set of numerical experiments which illustrate the analysis475

and show that Algorithm mc smoothing search is an effective method for minimizing nonsmooth functions476

whose function values cannot be computed directly but are approximated by Monte Carlo simulation.477

Appendix A. Smoothing functions.478

We give an example of smoothing functions to explain Assumption 2.1. Let f(x) = 2 max(0, p(x)), where479

p : Rn → R is twice continuously differentiable with480

‖∇p(x)∇p(x)T ‖ ≤ Γ.481

We use the smoothing function482

(A.1) f̂(x, µ) = p(x) +
√
p(x)2 + 4µ2,483

and V = {e1, . . . , en}, the unit coordinate directions in Rn.484

Clearly part (i) of Assumption 2.1 holds with c1 = 2 and c2 = 0, since

|f(x)− f̂(x, µ)| ≤ 2µ.

Now we consider part (ii) of Assumption 2.1. The Clarke subgradient has the form485

(A.2) ∂f(x) = 2

 ∇p(x) if p(x) > 0
0 if p(x) < 0
[0, 1]∇p(x) if p(x) = 0

486

and the gradient of the smoothing function is487

∇f̂(x, µ) =

(
1 +

p(x)√
p(x)2 + 4µ2

)
∇p(x).488

Hence, we have
‖∇f̂(x, µ)‖ ≤ 2‖∇p(x)‖.

If p is Lipschitz continuously differentiable on a convex and compact set Ω, then there is an Υ such that489

‖∇f̂(x, µ)‖ ≤ Υ on Ω.490

It is easy to see that for p(x) 6= 0, f is differentiable at x and

∂f(x) = ∇f(x) = con{v | ∇f̂(xk, µk)→ v, for xk → x, µk ↓ 0 }.
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For p(x) = 0, since 0 ≤ 1 + p(x)√
p(x)2+4µ2

≤ 2, we have

con{v | ∇f̂(xk, µk)→ v, for xk → x, µk ↓ 0 } ⊆ ∂f(x).

Now, let µ2
k = (1− h2)p(xk)2/(4h2) for some h ∈ (0, 1]. Then for xk → x with p(xk) ↓ 0, we have µk ↓ 0 and

∇f̂(xk, µk) = (1 + h)∇p(xk)→ (1 + h)∇p(x),

and for xk → x with p(xk) ↑ 0, we have µk ↓ 0 and

∇f̂(xk, µk) = (1− h)∇p(xk)→ (1− h)∇p(x).

Moreover, if we take µk =
√
|p(xk)|, then for xk → x, we have p(xk)→ 0, µk ↓ 0 and

∇f̂(xk, µk) =

(
1 +

p(xk)√
p(xk)2 + 4|p(xk)|

)
∇p(xk)→ ∇p(x).

Hence we find that for p(x) = 0,

∂f(x) = [0, 2]∇p(x) = con{v | ∇f̂(xk, µk)→ v, for xk → x, µk ↓ 0 }.

Finally, we consider part (iii) of Assumption 2.1. Since491

∇2f̂(x, µ) =

(
1 +

p(x)√
p(x)2 + 4µ2

)
∇2p(x) +

4µ2

(p(x)2 + 4µ2)
3
2

∇p(x)∇p(x)T ,492

we have493

‖∇2f̂(x, µ)‖ ≤ 1

2µ
‖∇p(x)∇p(x)T ‖+ 2‖∇2p(x)‖ ≤ Γ

2µ
+ 2‖∇2p(x)‖,494

which implies that part (iii) of Assumption 2.1 holds.495

496

A smoothing function of |p(x)| can be defined by using the relation |p(x)| = max(0, p(x))+max(0,−p(x))497

and a smoothing function of max(0, p(x)). For example, using (A.1), we can have a smoothing function498 √
(p(x)2 + 4µ2) for |p(x)|.499

There is a detailed discussion of smoothing functions in [10].500

Appendix B. The proof of (3.4).501

In this appendix, we will show the existence of δ ∈ (0, 1), cF > 0, and N̄ > 0 that fulfill (3.4). To this502

end, we have to study the uniform convergence rate of the empirical mean (3.3), which has been investigated503

in [26, 59] under certain conditions. In particular, if φ(ξ, x) = 1(ξ ≤ x), where ξ, x ∈ R, and 1(E) is504

the indicator function of an event E, then inequality (3.4) is indeed satisfiable with p = 1/2 (see [18, 38]).505

However, in general, one can only achieve (3.4) for p < 1/2. Our argument here is essentially an extension506

of the discussions in [59, Section 3].507

Before the proof, we recall that φ(ξ, x) is sub-exponential for each x ∈ X. As defined in [56, Definition508

5.13], a real-value random variable ζ is called a sub-exponential 1 random variable if509

(B.1) sup
p≥1

p−1E(|ζ|p)1/p <∞.510

The quantity on the left-hand side of (B.1), often denoted by ‖ζ‖ψ1
, is called the sub-exponential norm511

of ζ. According to [17, Theorem 3.14], ζ is sub-exponential as per (B.1) if and only if its moment generating512

1 Note that there is another widely used but completely different concept of sub-exponentiality in probability theory, which
refers to a certain heavy-tail behavior of distributions as detailed in [21,54]. The sub-exponentiality defined by (B.1) is commonly
found in areas like machine learning and data analysis (see [17, Section 3.1.2] and [57, Chapter 2]), and is a slight generalization
of the pre-Gaussianity defined in [7, Chapter 1].
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function G(t) ≡ E(eζt) is finite in a neighbourhood of zero (see also [56, inequality (5.16)] and [57, Theorem513

2.2]). As elaborated in [56, inequality (5.14)] and [57, Theorem 2.2], assuming sub-exponentiality is also514

equivalent to requiring that the tail probability P (|ζ| > t) decays exponentially or faster, which is certainly515

not a trivial condition. However, it encompasses a large class of distributions that are interesting in practice,516

including all the distributions with bounded support sets, the normal distribution, Gamma distribution,517

Weibull distribution, Poisson distribution, geometric distribution, and any Lipschitz continuous functions of518

random variables following such distributions (see standard statistics textbooks like [40] for the definitions519

and moment generating functions of the named distributions).520

An important property of sub-exponential random variables is a Bernstein-type inequality presented521

in [56, Proposition 5.16]: if ζ1, ζ2, . . . , ζN are independent sub-exponential random variables with zero522

mean, and σ = max1≤i≤N ‖ζi‖ψ1
, then523

(B.2) Prob

(
1

N

∣∣∣∣∣
N∑
i=1

ζi

∣∣∣∣∣ ≥ t
)
≤ 2 exp

(
−cN min

{
t2

σ2
,
t

σ

})
for each t ≥ 0,524

where c is an absolute constant. Therefore,525

(B.3) Prob

(
1

N

∣∣∣∣∣
N∑
i=1

ζi

∣∣∣∣∣ ≥ t
)
≤ 2 exp

(
−cNt

2

σ2

)
when 0 ≤ t ≤ σ.526

More general forms of inequalities (B.2) and (B.3) can be found in [9, Theorem 1.2.7] and [17, Corollary527

3.17]. Note that (B.2) still holds if we replace σ with any number larger than max1≤i≤N ‖ζi‖ψ1 , for the528

right-hand side of (B.2) is decreasing with respect to σ. Consequently, inequality (B.3) is valid as long as529

σ ≥ max
1≤i≤N

‖ζi‖ψ1
.530

In Section 3, by saying that the m-dimensional random vector φ(ξ, x) is sub-exponential, we mean that531

each entry of φ(ξ, x) is a sub-exponential random variable (not necessarily independent of each other). Then,532

according to [56, Remark 5.18], each entry of F (x)− φ(ξ, x) is a sub-exponential random variable with zero533

mean, since F (x) = E[φ(ξ, x)] as stated in (3.2).534

Now we give the proof of (3.4).535

Proof. Consider an arbitrary point y ∈ X. Let
(
F (y)−φ(ξ, y)

)
i

be the i-th entry of the random vector536

F (y)− φ(ξ, y), and537

σ(y) = 1 + max
1≤i≤m

∥∥∥(F (y)− φ(ξ, y)
)
i

∥∥∥
ψ1

.538

For each i ∈ {1, 2, . . . ,m}, since σ(y) ≥
∥∥∥(F (y)−φ(ξ, y)

)
i

∥∥∥
ψ1

, we can invoke the Bernstein-type bound (B.3)539

to obtain540

(B.4) Prob
( ∣∣∣(F (y)− F̃N (y)

)
i

∣∣∣ ≥ t) = Prob

(
1

N

∣∣∣∣∣
N∑
`=1

(
F (y)− φ(ξ`, y)

)
i

∣∣∣∣∣ ≥ t
)
≤ 2 exp

[
− cNt

2

σ2(y)

]
541

whenever t ∈ [0, 1] ⊂ [0, σ(y)]. Hence542

(B.5) Prob
(
‖F (y)− F̃N (y)‖ ≥ ε

)
≤ Prob

(
max

1≤i≤m

∣∣∣(F (y)− F̃N (y)
)
i

∣∣∣ ≥ ε√
m

)
≤ 2m exp

[
− cNε2

mσ2(y)

]
543

for each ε ∈ [0, 1]. This gives us the point-wise convergence rate of F̃N . In the following, we will extend this544

to obtain an estimation for the uniform convergence rate. The key is to exploit the Lipschitz continuity of545

φ and the boundedness of X.546
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Since φ(ξ, x) is L-Lipschitz with respect to x for a constant L independent of ξ, both F and F̃N are547

L-Lipschitz continuous. Let D be the diameter of X, which is finite since X is bounded. Then there exits a548

set {yj}Kj=1 ⊆ X such that549

(B.6) K ≤
⌈ √

nD

ε/(4L)

⌉n
and X ⊆

K⋃
j=1

B
(
yj ,

ε

4L

)
.550

For each x ∈ X, let jx be an integer in {1, 2, . . . ,K} such that x ∈ B(yjx , ε/(4L)). Then551

‖F (x)− F̃N (x)‖ ≤ ‖F (x)− F (yjx)‖+ ‖F̃N (x)− F̃N (yjx)‖+ ‖F (yjx)− F̃N (yjx)‖
≤ L‖x− yjx‖+ L‖x− yjx‖+ max

1≤j≤K
‖F (yj)− F̃N (yj)‖

≤ ε

2
+ max

1≤j≤K
‖F (yj)− F̃N (yj)‖.

552

This, together with (B.5) and (B.6), tells us that553

Prob

(
sup
x∈X
‖F (x)− F̃N (x)‖ ≥ ε

)
≤ Prob

(
max

1≤j≤K
‖F (yj)− F̃N (yj)‖ ≥

ε

2

)
≤

K∑
j=1

{
2m exp

[
− cNε2

4mσ2(yj)

]}

≤ 2m

⌈ √
nD

ε/(2L)

⌉n
exp

(
−c′Nε2

)
554

for each ε ∈ [0, 1], where

c′ ≡ min
1≤j≤K

c

4mσ2(yj)
> 0.

Setting ε = 1/Np, we obtain555

(B.7) Prob

(
sup
x∈X
‖F (x)− F̃N (x)‖ ≥ 1

Np

)
≤ 2m

⌈
2
√
nLDNp

⌉n
exp

(
−c′N1−2p

)
.556

Given p ∈ (0, 1/2), we can choose N̄ large enough (depending on m, n, L, D, c′, and p) such that the557

right-hand side of (B.7) is at most 1/2 for each N ≥ N̄ . Consequently,558

(B.8) Prob

(
sup
x∈X
‖F (x)− F̃N (x)‖ ≥ 1

Np

)
≤ 1

2
559

for each N ≥ N̄ . In other words, this N̄ fulfills (3.4) together with δ = 1/2 and cF = 1.560
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