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The linear complementarity system (LCS) is defined by a linear ordinary differential equation coupled

with a finite-dimensional linear complementarity problem (LCP), which has many applications in engi-

neering and economics. In this article we reformulate the LCS with the boundary condition as an LCP

in the Hilbert space of square-integrable functions, and propose a new numerical method for the LCS

by using exponential Euler integrator and discontinuous Galerkin approximation. The precision of the

proposed method is better than that of the existing time stepping method in different magnitude of scale.

Convergence analysis and numerical experiments are performed to support the arguments.

Keywords: the linear complementarity system; exponential integrators; discontinuous Galerkin approxi-

mation; boundary value problems.

1. Introduction

Given matrices A ∈ R
n×n, B ∈ R

n×m, Q ∈ R
m×n, M ∈ R

m×m and E0,ET ∈ R
n×n, a vector b ∈ R

n, and

vector-valued functions f : [0,T ]→ R
n and g : [0,T ]→ R

m, the linear complementarity system (LCS)

is to find a state-control pair (x,u) of functions: x : [0,T ]→ R
n, u : [0,T ]→ R

m, such that⎧⎨
⎩

ẋ(t) = Ax(t)+Bu(t)+ f (t) t ∈ [0,T ]
u(t) ∈ SOL(M,Qx(t)+g(t)) t ∈ [0,T ]

b = E0x(0)+ET x(T ),
(1.1)

where for a matrix M ∈ R
m×m and a vector q ∈ R

m, SOL(M,q) denotes the solution set of the linear

complementarity problem (denoted by LCP(M,q)):

SOL(M,q) := {u ∈ R
m| 0 � u ⊥Mu+q � 0} .

The LCS is a powerful mathematical modeling tool and finds various applications in, e.g., electrical

networks with switching structure, contact mechanical systems, dynamical transportation assignment

(Brogliato (2003); Zhong & Sumalee & Friesz & Lam (2011)). For many other applications in engi-

neering and economics refer to Heemels & Schumacher & Weiland (2000); Pang & Stewart (2008).
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The existing numerical methods for LCSs normally utilize the time stepping scheme (Chen & Wang

(2013); Han & Camlibel & Pang & Heemels (2012); Pang & Stewart (2008)). For a given mesh and

step size

0 = t0 < t1 < · · ·< tN = T, h = T/N, (1.2)

the scheme computes the approximate solution (xh,uh), where xh is piecewise linear continuous and uh

piecewise constant in [0,T ] with xh(tk) = xh,k and uh(tk) = uh,k, such that⎧⎨
⎩

xh,k = xh,k−1 +h(Axh,k +Buh,k + f (tk))
uh,k ∈ SOL(M,Qxh,k +g(tk))

b = E0xh,0 +ET xh,N .

It was shown in Chen & Wang (2011) that if M is a P-matrix, E0 = I and ET = 0, then the initial

value problem (IVP) of (1.1) has a classic solution (x,u), where x is continuously differentiable and u

is continuous on [0,T ], and the time stepping method has 1-order convergence1. In general, the LCS

(1.1) does not have a classic solution, and one has to seek a weak solution (x,u), where x is absolutely

continuous and u is integrable. The pair (x,u), besides the boundary/initial condition, satisfies

x(t)− x(s) =
∫ t

s
[Ax(τ)+Bu(τ)+ f (τ)]dτ

and

u(t) ∈ SOL(M,Qx(t)+g(t))

for almost every 0 � s < t � T . Note that the solutions of the LCS usually do not have a good smooth-

ness, and therefore applying an integrator of high order, like the collocation methods (Kunkel & Stöver

(2002)) will not yield fast convergence.

Notice that for the boundary value problem (BVP) of the LCS, the initial state is not prescribed, and

we need to find the one, which leads to the terminal state such that the boundary condition is fulfilled.

The dependence of the terminal state on the initial one is hard to be tracked. The time stepping method

was studied for the BVP of the LCS in Han & Camlibel & Pang & Heemels (2012), but the convergence

rate was not established therein.

In this paper we propose a new numerical method for solving (1.1) by combining the exponen-

tial integrator and the discontinuous Galerkin approximation. Below we summarize the idea and our

contributions.

At first, we reformulate the LCS (1.1) as an LCP(L, ĝ) in the Hilbert space L 2(0,T ;Rm) of the m-

dimensional vector-valued square integrable functions over the interval [0,T ]: finding u∈L 2(0,T ;Rm)
such that the complementarity condition

0 � u(t) ⊥ (Lu)(t)+ ĝ(t) � 0 (1.3)

holds a.e. in [0,T ]. Here L is a bounded linear operator on L 2(0,T ;Rm) w.r.t. ‖ · ‖L 2 . Then we apply

the Galerkin approximation to the equivalent variational inequality (VI) formulation of the LCP(L, ĝ)
posed in the convex closed function family L 2

+(0,T ;Rm):

L
2
+(0,T ;Rm) := {u ∈L

2(0,T ;Rm) | u(t)� 0 a.e. in [0,T ]}. (1.4)

1We call the convergence is of order p> 0 if ‖u−uh‖= O(hp).
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The resulted discretized problem is a finite-dimensional LCP(Mh,qh), and its solution offers an approx-

imate control uh. An approximate state xh is computed by applying the exponential Euler integrator to

the ordinary differential equation (ODE) with the approximation uh instead of u. To our knowledge, the

idea of Galerkin approximation and exponential integrator has not been considered for the LCS. Refer

to Hochbruck & Ostermann (2010) for comprehensive treatment of various exponential integrators. We

establish the error estimate

‖uh−u‖L 2 �C

√
‖Ph

+u−u‖L 2 ,

where Ph
+u denotes the projection of u onto the family U h

+ of piecewise linear functions (normally

discontinuous) that are componentwise nonnegative over the time interval. The choice of the function

family actually yields the discontinuous Galerkin approximation, and gives the pair (xh,uh) with xh

absolutely continuous and uh ∈U h
+ . If u ∈ C 2(0,T ;Rm), the space of functions that have continuous 2-

order derivatives, then the above error estimate indicates 1-order convergence in ‖ · ‖L 2 due to ‖Ph
+u−

u‖L 2 = O(h2). To our surprise, the numerical results may suggest 2-order convergence, both in ‖ · ‖L 2

and in ‖ · ‖2 at the grid points. See Figure 2.

Of course the choice of the family of continuous piecewise linear functions gives the continuous

Galerkin approximation. Note that the family of piecewise constant functions is involved in the time

stepping method. The approximate solutions given by our method is better in different magnitude of

scale than those offered by the continuous Galerkin method and the time stepping method, even for the

meshes not so refined. See Figure 3.

Note that the time stepping method involves the evaluation of (I−hA)−1, while our method needs the

evaluation of ϕk(hA), which is not necessarily time-consuming than that of the former, where ϕk(hA)
is some matrices related to the matrix exponential ehA. Summarizing, the computational cost for our

Galerkin approximation amounts to that for the time-stepping method, while the precision of the pro-

posed method is much better, as illustrated by the numerical results. See Figure 2.

This paper is organized as follows: in Section 2 we study the reformulation of the LCS into an

LCP in the space L 2(0,T ;Rm), we also investigate the solvability of the LCP therein. We present

the Galerkin approximation in Section 3 and the convergence analysis in Section 4. In Section 5 we

present the algorithmic details and report the numerical results for two examples coming from a switched

mechanical system and a generalized Nash equilibrium problem.

2. Reformulation of the LCS as an LCP in the Hilbert Space

For a given LCS (1.1), we suppose throughout this article that the matrix E0 +ET eTA is nonsingular,

where eTA denotes the matrix exponential. Define matrix-valued kernel functions:

K1(t,s) = e(t−s)AB (for t � s)

K2(t,s) = etA(E0 +ET eTA)−1ET e(T−s)AB.
(2.1)

Setting K1(t,s) = 0 for 0 � t � s � T , we then have for any (t,s) ∈ [0,T ]2

‖K1(t,s)‖F � eT‖A‖F · ‖B‖F ,

‖K2(t,s)‖F � e2T‖A‖F ‖(E0 +ET eTA)−1ET‖F‖B‖F ,

where ‖ · ‖F denotes the Frobenius norm. Define the Volterra integral operators

(L ju)(t) =
∫ T

0
Kj(t,s)u(s)ds, ( j = 1,2). (2.2)
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Obviously, L1 and L2 are compact in L 2(0,T ;Rm), and therefore bounded, their norms are still denoted

by ‖ · ‖L 2 . Actually, from the bound ‖Kj(t,s)‖F established above together with the inequality (see

Conway (1985))

‖L j‖L 2 �

(∫∫
[0,T ]2

‖Kj(t,s)‖2
F dsdt

) 1
2

,

it follows the bound ‖L j‖L 2 � κ j, where

κ1 = TeT‖A‖F ‖B‖F/
√

2, κ2 = Te2T‖A‖F ‖(E0 +ET eTA)−1ET‖F‖B‖F . (2.3)

Let b ∈ R
n, f : [0,T ]→ R

n and g : [0,T ]→ R
m be square integrable on [0,T ], and let the LCS (1.1)

have a weak solution (x,u). Then x, the solution of the ODE in (1.1) with u, can be represented by the

constant variation formula Hochbruck & Ostermann (2010):

x(t) = etAx(0)+
∫ t

0
e(t−s)A[Bu(s)+ f (s)]ds,

where the boundary condition E0x(0)+ET x(T ) = b can be written as

b = E0x(0)+ET x(T ) = (E0 +ET eTA)x(0)+ET

∫ T

0
e(T−s)A [Bu(s)ds+ f (s)]ds.

It gives the initial state

x(0) = (E0 +ET eTA)−1

(
b−ET

∫ T

0
e(T−s)A [Bu(s)+ f (s)]ds

)

and the solution of the BVP of the ODE:

x(t) = f̂ (t)+(L1u)(t)− (L2u)(t), (2.4)

where

f̂ (t) = etA(E0 +ET eTA)−1

(
b−ET

∫ T

0
e(T−s)A f (s)ds

)
+
∫ t

0
e(t−s)A f (s)ds. (2.5)

By plugging (2.4) into the LCP in (1.1), we can see that u is a solution of the following linear com-

plementarity problem, denoted by LCP(L, ĝ), which is to find u ∈L 2(0,T ;Rm) such that for almost

t ∈ [0,T ] it holds

0 � u(t) ⊥ (Lu)(t)+ ĝ(t) � 0, (2.6)

where L is the linear bounded operator

(Lu)(t) := Q(L1u)(t)−Q(L2u)(t)+Mu(t) (2.7)

and

ĝ(t) = g(t)+Q f̂ (t). (2.8)

Now we have reformulated the LCS (1.1) into the LCP(L, ĝ), an LCP posed in L 2(0,T ;Rm).
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THEOREM 2.1 If (x,u) is a weak solution of the LCS (1.1), then u is a solution of the LCP(L, ĝ).
Conversely, if u is a solution of the LCP(L, ĝ), then (x,u) is a weak solution of (1.1), where x is given

by (2.4).

Proof. The first part has been shown above. Conversely, if u is a solution of the LCP(L, ĝ), then x is

well defined by (2.4), which is absolutely continuous since its weak derivative Ax+Bu+ f is integrable.

�

REMARK 2.1 A specific case of the LCP(L, ĝ) is the so-called convolution complementarity problem

(CCP), which models some contact mechanical problems Stewart (2006):

0 � u(t) ⊥
∫ t

0
K(t− τ)u(τ)dτ +g(t) � 0,

where K(·) is a given kernel. The operator involved in CCP is compact and some properties of compact

operators can be utilized in the algorithmic construction and convergence analysis, while the operator L

defined in (2.7) is not compact in general.

An obvious advantage of reformulating the LCS as the LCP(L, ĝ) lies in that we can use rich theory

and abundant numerical methods for operator equations (Chen & Nashed & Qi (1997); Pang & Qi

(1993)) to treat the LCS since LCP(L, ĝ) can be equivalently reformulated as

min{u(t),(Lu)(t)+ ĝ(t)} = 0,

where “min” is taken componentwise. In order to develop a Galerkin approximation scheme we need

the variational formulation of the LCP. It is easy to show that u is a solution of the LCP(L, ĝ) if and only

if u ∈L 2
+(0,T ;Rm), and

〈Lu+ ĝ,v−u〉L 2 � 0, ∀v ∈L
2
+(0,T ;Rm) (2.9)

where the set L 2
+(0,T ;Rm), defined as in (1.4), is convex and closed in ‖ · ‖L 2 .

When M is positive semi-definite, L(·) := QL1(·)−QL2(·)+M(·) is pseudo-monotone as L1 and

L2 are linear compact (Figure 27.1 of Zeidler (1990) p.596). As a direct consequence of Theorem 32.C

of Zeidler (1990) (II/B, p.875), we have the following results on the solvability of the LCS (1.1).

THEOREM 2.2 Let f ∈L 2(0,T ;Rn) and g ∈L 2(0,T ;Rm). Suppose that there is a u0 ∈L 2
+(0,T ;Rm)

such that 〈Lu,u−u0〉L 2

‖u‖L 2

→ +∞ as ‖u‖L 2 → ∞. (2.10)

(1) If M is positive semi-definite, then the LCP(L, ĝ) has a solution u ∈L 2(0,T ;Rm).
(2) If L is monotone, then the solution set of the LCP(L, ĝ) is convex and closed in ‖ · ‖L 2 .

It is well known that if the operator L is strongly monotone, then the LCP(L, ĝ) has a unique solution

in L 2(0,T ;Rm) (II/B, Zeidler (1990)). From (2.3) we know the norms of L j can be bounded by a

function of T that is decreasing to 0 when T ↓ 0. This indicates that L is strongly monotone if M is

positive definite and T is small enough. We refine it in the following theorem.

THEOREM 2.3 Let M be positive definite. If T > 0 is small enough, then L defined in (2.7) is strongly

monotone, and then the LCP(L, ĝ) has a unique solution in L 2(0,T ;Rm).
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Proof. Denote by σ the smallest eigenvalue of 1
2
(M +MT ). Obviously, σ > 0 since M is positive

definite. Let κ j be the constants defined in (2.3). It is easy to see ‖QL j‖L 2 � ‖Q‖F ·κ j for j = 1,2.

Then for any u ∈L 2(0,T ;Rm) we have

〈u,Lu〉 = 〈u,Mu〉+ 〈u,QL1u〉−〈u,QL2u〉
�

(
σ −‖Q‖F ∑

j=1,2

‖L j‖L 2

)
· ‖u‖2

L 2 = [σ −‖Q‖F(κ1 +κ2)] · ‖u‖2
L 2 ,

which follows that L is strongly monotone for T > 0 small enough since κ j decreases to 0 as T → 0+.

�

REMARK 2.2 For the case of the initial value problem, namely, E0 = I and ET = 0, we have κ2 = 0.

With the uniform mesh such that the step size h fulfills
√

2σ > heh‖A‖F ‖Q‖F‖B‖F ,

Theorem 2.3 yields the unique existence of the solution of the LCP(L, ĝ) in [0,h]. Repeating the appli-

cation of the theorem, one can establish the solvability of (1.1) for any T > 0.

The LCS is a special case of the so-called differential variational inequality, for which sufficient

conditions for the existence of a solution (Theorem 2, pp.392) was given in Chen & Wang (2014). In

the current setting, this theorem reads as follows.

THEOREM 2.4 Let E0+ET be nonsingular and x̂0 =(E0+ET )
−1b. Denote the solution set of the param-

eterized LCP by S (t,x) := SOL(M,Qx(t)+ g(t)). Suppose that S (0, x̂0) is nonempty and bounded,

and M is positive semi-definite. Denote F (t,x) := {Ax+Bu+ f (t)|u ∈S (t,x)}. If S (t,x) is lower

semi-continuous near (0, x̂0) or F (t,x) is singleton, then there exist T,δ0,ζ > 0 such that the LCS (1.1)

has a solution (x,u), where x ∈N (x̂0,δ0 + ζ T ) is continuously differentiable with x(0) ∈N (x̂0,δ0),
and u is continuous and is the least norm element of S (t,x(t)), namely, u is the least norm solution of

the LCP(M,Qx(t)+g(t)).

3. Galerkin Approximation

3.1 Approximation of L 2
+(0,T ;Rm)

We need an approximation of the function family L 2
+(0,T ;Rm). Let the mesh (1.2) be given, de-

note by U h the space of piecewise linear functions. U h is a (2Nm)-dimensional closed subspace of

L 2(0,T ;Rm). Introduce

ψ̂1(t) = 1− t, ψ̂2(t) = t, (3.1)

where χk(t) is the characteristic function in Ik = (tk−1, tk] and ei denotes the m-dimensional i-th unit

coordinate vector. For i = 1, . . . ,m, j = 1,2 and k = 1, . . . ,N, define

ψi, j,k(t) := ψ̂ j

(
t− tk−1

h

)
·χk(t) · ei. (3.2)

Obviously, the function family {ψi, j,k : 1 � i � m,1 � j � 2,1 � k � N} spans the subspace U h, and

〈ψi, j,k,ψi′, j′,k′ 〉L 2 =

⎧⎨
⎩

h/3 i = i′, k = k′, j = j′
h/6 i = i′, k = k′, j �= j′
0 otherwise.

(3.3)
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Note that uh(t) = ∑i, j,k ci, j,kψi, j,k(t) ∈U h has the following form in the interval Ik

uh(t) = ψ1

(
t− tk−1

h

)⎛⎜⎝
c1,1,k

...

cm,1,k

⎞
⎟⎠+ψ2

(
t− tk−1

h

)⎛⎜⎝
c1,2,k

...

cm,2,k

⎞
⎟⎠ .

The set U h
+ is convex and closed. And since uh(t) � 0 holds almost everywhere in [0,T ] if and only if

ci, j,k � 0 holds for all the coefficients, it has the following representation:

U
h
+ := U

h∩L
2
+(0,T ;Rm) =

{
∑
i, j,k

ci, j,k ·ψi, j,k : ci, j,k � 0

}
.

Denote by C 2
+ the set of functions in L 2(0,T ;Rm) that are componentwise nonnegative on [0,T ] and

have continuous 2-order derivatives. Clearly, C 2
+ is a dense subset of U h

+ . Below we show that U h
+ is

an approximation to L 2
+(0,T ;Rm) in a certain sense.

THEOREM 3.1 Let u ∈L 2
+(0,T ;Rm), and qi, j,k = 〈u,ψi, j,k〉L 2/h, and denote by “mid” the componen-

twise median operation. Then

(1) u has the unique projection P+
h u = ∑i, j,k c∗i, j,kψi, j,k onto the closed and convex set U h

+ with respect

to the norm ‖ · ‖L 2 , where the coefficients c∗i, j,k are given by

c∗i,1,k = mid
{

0,4qi,1,k−2qi,2,k,3qi,1,k

}
c∗i,2,k = mid

{
0,4qi,2,k−2qi,1,k,3qi,2,k

}
.

(3.4)

(2) Moreover if u ∈ C 2
+, then limh→0+ ‖u−P+

h u‖L 2 = 0.

Proof. (1) We mention that the projection is well defined because the subset U h
+ is convex and closed.

Noting 〈u,ψi, j,k〉L 2 = hqi, j,k, and by using the inner product of the basis functions given in (3.3), for

any uh = ∑i, j,k ci, j,kψi, j,k we compute

‖u−uh‖2
L 2 = 〈u,u〉L 2 −2〈u,uh〉L 2 + 〈uh,uh〉L 2

= 〈u,u〉L 2 −2 ∑
i, j,k

ci, j,kui, j,k + ∑
i, j,k

∑
i′, j′,k′

〈ψi, j,k,ψi′, j′,k′ 〉L 2ci, j,kci′, j′,k′

= 〈u,u〉L 2 +
h

3
∑
i,k

(
c2

i,1,k + c2
i,2,k + ci,1,kci,2,k−6qi,1,kci,1,k−6qi,2,kci,2,k

)
.

This objective function is separate in i and k, namely, the minimization of ‖u−uh‖2
L 2 in U h

+ is equivalent

to solve the mN quadratic minimization problems of the form

min
ci,1,k,ci,2,k�0

{
c2

i,1,k + c2
i,2,k + ci,1,kci,2,k−6qi,1,kci,1,k−6qi,2,kci,2,k

}
for i = 1, . . . ,m and k = 1, . . . ,N, which can be equivalently reformulate as an LCP

0 �

(
ci,1,k

ci,2,k

)
⊥
(

2 1

1 2

)(
ci,1,k

ci,2,k

)
−6

(
qi,1,k

qi,2,k

)
� 0. (3.5)

The LCP (3.5) has a unique solution. Noting that u,ψi, j,k ∈ U h
+ , therefore qi, j,k = 〈u,ψi, j,k〉L 2/h � 0.

It is easy to test
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8 of 20 Z. WANG AND X. CHEN

• for the case qi,2,k � 2qi,1,k, the LCP (3.5) has the solution

c∗i,1,k = 0, c∗i,2,k = 3qi,2,k;

• for the case qi,2,k < 2qi,1,k but qi,2,k >
1
2
qi,1,k, the LCP (3.5) has the solution

c∗i,1,k = 4qi,1,k−2qi,2,k, c∗i,2,k = 4qi,2,k−2qi,1,k;

• for the case qi,2,k �
1
2
qi,1,k, the LCP (3.5) has the solution

c∗i,1,k = 3qi,1,k, c∗i,2,k = 0.

These three cases can be included in the form (3.4). The solutions c∗i, j,k give a global minimizer of

‖u−uh‖2
L 2 in U h

+ .

(2) Denote by ũh the piecewise linear interpolant of u:

ũh(t) = ϕ1

(
tk− t

h

)
u(tk−1)+ϕ2

(
t− tk−1

h

)
u(tk)

with the estimate ‖u− ũh‖L 2 �Cuh2, where Cu is a constant independent of h (dependent of u). Obvi-

ously, ũh is also nonnegative on [0,T ] and

‖u−P+
h u‖L 2 � ‖u− ũh‖L 2 � Cuh2.

This completes the proof. �

REMARK 3.1 Let Phu be the orthogonal projection of u ∈ L2
+(0,T ;Rm) onto its subspace U h with

respect to 〈·, ·〉L 2 . We can see that

‖u−max{Phu,0}‖L 2 � ‖u−P+
h u‖L 2 .

Normally the function max{Phu,0} is not an element of U h
+ , but is in a more refined approximation

function family. For example, let u : [0,1]→ R with u(t) = 1 when t ∈ [0, 1
2
] and u(t) = 0 otherwise.

Then one can compute Phu = 5
4
ϕ1(t)− 1

4
ϕ2(t), which takes negative values when t ∈ ( 5

6
,1]. Hence

max{Phu,0} = 5
4
ϕ1(t)− 1

4
ϕ2(t) � 0 in [0, 5

6
] and max{Phu,0} = 0 in [ 5

6
,1]. It is not linear on [0,1]

with the mesh 0 = t0 < t1 = 1 and h = 1, but is piecewise linear on a refined mesh with 5
6

being a mesh

point.

REMARK 3.2 Suppose that u has finitely many discontinuous points (related to mode switches ?), and

suppose that the mesh is so refined that we have just two situations: all the components of u do not

vanish in the interior of any subintervals except for those, where some components vanish constantly.

Then P+
h u is the orthogonal projection of u ∈ L2

+(0,T ;Rm) onto the closed subspace U h with respect

to the inner product 〈·, ·〉L 2 , and limh→0+ ‖u−P+
h u‖L 2 = 0.

3.2 Discretization of the LCP(L, ĝ)

We apply Galerkin approximation to the variational formulation (2.9), which is equivalent to the LCP(L, ĝ).
Namely, we find uh = ∑

d
l=1 zlϕl ∈ U h

+ fulfilling (2.9) in U h, where {ϕ1, · · · ,ϕd} is a basis of U h,
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EXPONENTIAL INTEGRATOR BASED GALERKIN METHOD FOR LCS 9 of 20

ϕl = ψi, j,k for l = i+m( j−1)+2m(k−1), 1 � i � m, j = 1,2, 1 � k � N, d = 2Nm, and where ψi, j,k

is defined by (3.2). That is, for any vh = ∑
d
l=1 z′lϕl ∈U h

+ , it holds true

0 �
1

h
〈Luh + ĝ,vh−uh〉L 2 =

1

h
〈L

d

∑
i=1

ziϕi + ĝ,
d

∑
j=1

(z′j− z j)ϕ j〉L 2

=
1

h

d

∑
i, j=1

zi(z
′
j− z j)〈Lϕi,ϕ j〉L 2 +

1

h

d

∑
j=1

(z′j− z j)〈ĝ,ϕ j〉L 2

= (z′ − z)T (Mhz+qh),

where z = (zi), z′ = (z′i)
T , qh = (qh

j) ∈ R
d , and Mh = (Mh

ji) ∈ R
d×d ,

Mh
ji :=

1

h
〈Lϕi,ϕ j〉L 2 , qh

j :=
1

h
〈ĝ,ϕ j〉L 2 . (3.6)

We mention that uh ∈U h
+ if and only if z ∈ R

d
+. Therefore the above variational formulation yields the

d-dimensional LCP(Mh,qh): find zh ∈ R
d such that

0 � zh ⊥ Mhzh +qh
� 0. (3.7)

Suppose that the LCP(L, ĝ) has a solution u ∈L 2(0,T ;Rm). Denote by Ph
+u the projection of u on

to U h
+ , denote

r(t) = min{u(t),(Lu)(t)+ ĝ(t)}, rh(t) = min{(Ph
+u)(t),(LPh

+u)(t)+ ĝ(t)}.
For fixed t we have a matrix D = diag(di) ∈ R

m×m with 0 � di � 1 such that

r(t)− rh(t) = min{u(t),(Lu)(t)+ ĝ(t)}−min{(Ph
+u)(t),(LPh

+u)(t)+ ĝ(t)}
= (I−D)(u−Ph

+u)(t)+DL(u−Ph
+u)(t).

See Alefeld & Chen & Potra (1999). Noting ‖I−D‖2 � 1 and ‖D‖2 � 1, we have

‖r(t)− rh(t)‖2
2 = ‖(I−D)(u(t)− (Ph

+u)(t))+DL(u−Ph
+u)(t)‖2

2

�
(‖I−D‖2‖u(t)−Ph

+u(t)‖2 +‖D‖2‖L(u−Ph
+u)(t)‖2

)2

� 2‖u(t)−Ph
+u(t)‖2

2 +2‖L(u−Ph
+u)(t)‖2

2.

Since u ∈L 2(0,T ;Rm) solves the LCP(L, ĝ), it holds true r(t) = 0 a.e. over [0,T ]. Therefore

‖rh‖2
L 2 =

∫ T

0
‖r(t)− rh(t)‖2

2dt � 2‖u−Ph
+u‖2

L 2 +2‖L(u−Ph
+u)‖2

L 2 .

Notice that L is bounded and ‖u−Ph
+u‖2

L 2 → 0 as h ↓ 0. Then ‖rh‖L 2 → 0 as h ↓ 0. We know rh = 0

a.e. over [0,T ] when ‖rh‖L 2 = 0. For this reason we can say Ph
+u approximately solves the Galerkin

approximation problem (3.7), and it justifies in a certain sense the Galerkin approximation in the LCS

setting.

Of course, a very small measure ‖rh‖L 2 does not imply the solvability of (3.7). We study it below.

THEOREM 3.2 Let M be positive semi-definite, f ∈L 2(0,T ;Rn) and g ∈L 2(0,T ;Rm). Then under

condition (2.10), the LCP (3.7) has a solution.
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10 of 20 Z. WANG AND X. CHEN

Proof. Fix the mesh and let Ph
+u0 be the projection of u0 onto U h

+ . Let u ∈ U h
+ with ‖u‖L 2 → ∞.

Then from (2.10) it follows that

+∞ ← 〈Lu,u−u0〉L 2

‖u‖L 2

=
〈Lu,u−Ph

+u0〉L 2

‖u‖L 2

+
〈Lu,Ph

+u0−u0〉L 2

‖u‖L 2

�
〈Lu,u−Ph

+u0〉L 2

‖u‖L 2

+‖L‖L 2‖Ph
+u0−u0‖L 2 .

This follows that condition (2.10) holds true in U 2
+ since ‖L‖L 2‖Ph

+u0−u0‖L 2 is finite. The conclu-

sion is drawn again by Theorem 32.C of Zeidler (1990) (II/B, p.875). �

The solution zh = (zh
i ) of the LCP(Mh,qh) gives a piecewise (discontinuous) linear function on the

mesh, which has the following form on the subinterval (tk−1, tk]:

uh(t) =

(
tk− t

h

)
uh

k,1 +

(
t− tk−1

h

)
uh

k,1, (3.8)

where

uh
k,1 =

⎛
⎜⎜⎝

zh
m(2k−2)+1

...

zh
m(2k−2)+m

⎞
⎟⎟⎠ , uh

k,1 =

⎛
⎜⎜⎝

zh
m(2k−1)+1

...

zh
m(2k−1)+m

⎞
⎟⎟⎠ .

In subsequence, uh is just called as the solution of the LCP(Mh,qh) if no ambiguity caused.

4. Convergence Analysis

We study the convergence of the Galerkin approximation (3.7). We know that problem (2.9) and its

Galerkin approximation (3.7) have the unique solution if the operator L is strongly monotone, which is

true if, for example, M is positive definite and T is small enough. For the case of strong monotonicity

we prove the following result of the convergence rate by adapting the technique of Falk (Falk (1974)).

THEOREM 4.1 Let L be strongly monotone: 〈Lv,v〉L 2 � α‖v‖2
L 2 holding with a constant α > 0 for

any v ∈ L 2(0,T ;Rm). Let u and uh be the unique solutions of the LCP(L, ĝ) and the LCP(Mh,qh),
respectively. Then

‖uh−u‖L 2 �C
√

inf
vh∈U h

+

‖vh−u‖L 2 = C

√
‖P+

h u−u‖L 2 . (4.1)

If u∈C 2(0,T ;Rm), the family of functions that have continuous 2-order derivatives, then ‖uh−u‖L 2 =
O(h).

REMARK 4.1 The estimate (4.1) holds for any approximation of L 2
+(0,T ;Rm) that is convex and closed,

for example the space of piecewise constant functions which are nonnegative over [0,T ].

Proof. Since u solves (2.9) and uh solves (3.7), we have 〈Lu+ ĝ,u〉L 2 = 0, 〈Lu+ ĝ,uh〉L 2 � 0, and
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EXPONENTIAL INTEGRATOR BASED GALERKIN METHOD FOR LCS 11 of 20

〈Luh + ĝ,vh〉L 2 � 0 for any vh ∈U h
+ . These yield

〈L(u−uh),u−uh〉L 2 = 〈(Lu+ ĝ)− (Luh + ĝ),u−uh〉L 2

= −〈Lu+ ĝ,uh〉L 2 −〈Luh + ĝ,u〉L 2

� 〈Luh + ĝ,vh〉L 2 −〈Luh + ĝ,u〉L 2

= 〈L(uh−u),vh−u〉L 2 + 〈Lu+ ĝ,vh−u〉L 2

� ‖L‖L 2‖uh−u‖L 2‖vh−u‖L 2 +‖Lu+ ĝ‖L 2‖vh−u‖L 2 .

Using the condition α‖u−uh‖L 2 � 〈L(u−uh),u−uh〉L 2 and the inequality

‖L‖L 2‖uh−u‖L 2‖vh−u‖L 2 �
α

2
‖uh−u‖2

L 2 +
‖L‖2

L 2

2α
‖vh−u‖2

L 2

we obtain

α

2
‖uh−u‖2

L 2 �
‖L‖2

L 2

2α
‖vh−u‖2

L 2 +‖Lu+ ĝ‖L 2‖vh−u‖L 2 .

This follows (4.1) since vh ∈U h
+ is arbitrary.

We take vh as the piecewise linear interpolant of u, which, obviously, is an element of U h
+ with

‖u− ũh‖L 2 �Cuh2 if u ∈ C+, where Cu is a constant independent of h (dependent of u). This completes

the proof. �

THEOREM 4.2 Assume that the operator L is monotone, and let uh be the solution of the LCP(Mh,qh).
If {uh} is uniformly bounded for h small enough, then {uh} has a subsequence, which weakly converges

to a solution of the LCP(L, ĝ).

Proof. If {uh} is uniformly bounded, then {uh} has a subsequence (still denoted by {uh} for avoiding

the cumbersome presentation), converging to u ∈ L 2
+(0,T ;Rm) weakly. Now we prove that u is a

solution of (2.9). Note that C 2
+ is the set of functions that have continuous 2-order derivatives and are

nonnegative in [0,T ]. Since C 2
+ is dense in L 2

+(0,T ;Rm), it is enough to show 〈Lu+ ĝ,v− u〉L 2 � 0

for any v ∈ C 2
+.

Let v ∈ C 2
+ and take vh as its piecewise linear interpolant. Then vh is strongly convergent to v in

‖ · ‖L 2 as h ↓ 0. Since uh is weakly convergent to u, we have

〈Luh,vh〉L 2 → 〈Lu,v〉L 2 , 〈ĝ,vh−uh〉L 2 → 〈ĝ,v−u〉L 2 .

Therefore 〈Luh,vh〉L 2 + 〈ĝ,vh−uh〉L 2 → 〈Lu,v〉L 2 + 〈ĝ,v−u〉L 2 . And we obtain

0 � 〈Luh,uh〉L 2 � 〈Luh,vh〉L 2 + 〈ĝ,vh−uh〉L 2

since 〈Luh + ĝ,vh−uh〉L 2 � 0. This follows 〈Lu+ ĝ,v−u〉L 2 � 0 for any v ∈ C 2
+. �

5. Numerical Experiment

5.1 Implementation details

Let Mh and qh be defined as in (3.6). Below we give the representation of the matrix Mh and the column

vector qh, where the linear interpolants f h and gh of f and g are used as their approximations. Below we
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12 of 20 Z. WANG AND X. CHEN

denote by fk = f (tk) and gk = g(tk) for k = 0, . . . ,N. The representations need the following matrices

Gk = Gk(hA), where h> 0 is the stepsize. Denote G0 = ehA and

Gk =
∞

∑
n=k

1

n!
(hA)n−k =

1

k!
I +

1

(k+1)!
(hA)+

1

(k+2)!
(hA)2 + · · · .

The matrices Gk can be computed efficiently by using, e.g., the Pade, Krylov subspace approximations.

Here we only need Gk for 0 � k � 4, which can be evaluated in high precision by the existing software,

e.g. the matrix function toolbox (Higham, http://www.ma.man.ac.uk/ higham/mftoolbox). Arguments

on other software for computing the matrix functions can be found in Higham & Al-Mohy (2010).

Denote by ⊗ the Kronecker tensor product of two matrices. Then Mh has the forms:

Mh =
1

6
IN ⊗

(
2M M

M 2M

)
−h

N

∑
k′,k=1

ek′e
T
k ⊗

(
(Jk′,k)11 (Jk′,k)12

(Jk′,k)21 (Jk′,k)22

)

+
h

2

N

∑
k′=2

k′−1

∑
k=1

ek′e
T
k ⊗

(
Q(G1−G2)B QG2B

Q(G1−G2)B QG2B

)

+hIN ⊗
(

Q(G3−G4)B QG4B

Q(G2−2G3 +G4)B Q(G3−G4)B

)
,

where ek is the k-th N-dimensional unit coordinate vector, and for k′,k = 1, . . . ,N:

(Jk′,k)11 = QGk′−1
0 G2(E0 +ET eTA)−1ET GN−k

0 (G1−G2)B

(Jk′,k)12 = QGk′−1
0 G2(E0 +ET eTA)−1ET GN−k

0 G2B

(Jk′,k)21 = QGk′−1
0 (G1−G2)(E0 +ET eTA)−1ET GN−k

0 (G1−G2)B

(Jk′,k)22 = QGk′−1
0 (G1−G2)(E0 +ET eTA)−1ET GN−k

0 G2B.

And we compute qh in a naive manner. Given the approximate control uh, we present the following

formula for approximating the state x at the mesh points by xh
k = xh(tk) for k = 0,1, · · ·N:

xh
k = Gk

0x̂0,h +
∫ tk

0
e(tk−s)A f (s)ds+h

(
G1B

k

∑
j=1

uh
j,1 +G2B

k

∑
j=1

(uh
j,2−uh

j,1)

)

−hGk
0(E0 +ET eTA)−1ET

N

∑
k=1

GN−k
0

[
(G1−G2)Buh

k,1 +G2Buh
k,2

]
,

where

x̂0,h = (E0 +ET eTA)−1

(
b−ET

∫ T

0
e(T−s)A f (s)ds

)
.

Here we omit the proof of the form of Mh and the justification of the approximation of the state, which

can be found in the supplement material (Wang & Chen (2016)).

5.2 Numerical results

In this subsection we apply the Galerkin approximation method and the time stepping method to two

LCSs, which generate respectively the numerical solutions (xh
g,u

h
g) and (xh

e ,u
h
e), where the subscript “e”

stands for “Euler” since the time stepping method actually makes the use of implicit Euler method to
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EXPONENTIAL INTEGRATOR BASED GALERKIN METHOD FOR LCS 13 of 20

dicretize the ODEs involved in the LCSs. Here xh
g is recovered in the manner stated above by using a

solution uh
g of the LCP(Mh,qh). The exact solution of the LCS is always denoted by (x,u).

Here we are interested in the errors of state and control, in ‖ · ‖L 2 and in ‖ · ‖2, namely we compute

the values of

‖xh
g− x‖L 2 , ‖uh

g−u‖L 2 , ‖xh
g(T )− x(T )‖2, ‖uh

g(T )−u(T )‖2,

‖xh
e − x‖L 2 , ‖uh

e−u‖L 2 , ‖xh
e(T )− x(T )‖2, ‖uh

e(T )−u(T )‖2.

If, for example, log(‖xh
g − x‖L 2) is affine w.r.t. log(h), then the slope gives the order of the state

convergence in ‖·‖L 2 . Therefore for the two examples we report the logarithms of the errors in different

h.

Here we take the uniform grid, the LCP(Mh,qh) is solved by using the PATH LCP solver Dirkse

& Ferris & Munson (1994), numerical methods are coded and performed in the setting of Octave 4.0.

Below we present the details of the numerical example, and thereafter present the comments on the

numerical results.

EXAMPLE 5.1 The collapse of the Tacoma Narrows suspension bridge can be modeled by an ordinary

differential equations of second order with nonsmooth data. The nonsmooth data is reformulated by

a linear complementarity problem, which leads to an IVP of the LCS. The data of the problem and

the exact solution can be found in Chen & Mahmoud (2008). This problem can be reformulated as an

LCP(L, ĝ) with a strongly monotone L, and therefore has a unique solution (x,u).

Below we present some remarks on the numerical results.

(1) Take h≈ 0.1. The first components of the exact state x and their approximations (xh
g)1 and (xh

e)1

are plotted in the upper part of Figure 1, the counterpart results for the control are plotted in the lower

part. The step size is not restrictive, while the numerical solutions offered by Galerkin approximation

are very close to the exact one, and much more precise than the output of the time stepping method.

(2) The logarithms of the errors for the Galerkin approximation are plotted in Figure 2, w.r.t. the

logarithms of different h. Note that the graphs are approximately 4 straight lines with the slopes all

about of 2. This strongly indicates that the numerical solutions given by the Galerkin approximation

method, have a convergence of order 2, both in norm ‖ · ‖L 2 and in ‖ · ‖2 at the terminal time. Notice

that Theorem 4.1 just gives the 1-order convergence.

(3) The logarithms of the errors ‖xh
e(T )−x(T )‖2 are plotted in the upper part of Figure 3. The graphs

are approximately 2 straight lines with the slopes about of 9.2334e-01. This indicates a convergence of

the time stepping method in ‖ · ‖2 at T of the order close to 1. As illustrated by the numerical results,

the Galerkin approximation has a much better precision than the time-stepping method. For instance,

for h≈ 10−3, we have ‖xh
e(T )− x(T )‖2/‖xh

g(T )− x(T )‖2 ≈ 2.3565×103. The overperformance of the

Galerkin approximation in ‖ · ‖L 2 is more obvious. In the same setting as above, our numerical results

show
‖xh

e − x‖L 2

‖xh
g− x‖L 2

≈ 2.2168×107,
‖uh

e−u‖L 2

‖uh
g−u‖L 2

≈ 2.1610×106.

(4) Theorem 4.1 indicates that the approximation error for the Galerkin approximation is bounded

from above by ‖P+
h u−u‖L 2 , where P+

h u is the projection of the true solution u onto the function fam-

ily U h
+ . Here we plot in the lower part of Figure 3 the logarithms of the errors of the projection onto

three different function families: the family of piecewise constant, continuous and discontinuous piece-

wise linear functions that are nonnegative in [0,T ]. The numerical results explain in another manner the
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FIG. 1. Exact and numerical solutions of the LCS (Example 5.1 with T = 3π)

reason that the Galerkin approximation numerically overperforms the time stepping method (approxi-

mating u by a piecewise constant function), and justifies the application of the discontinuous Galerkin

approximation instead of the continuous one (approximating u by a continuous piecewise linear func-

tion).

Notice that in the current case, the projection error for discontinuous piecewise linear function fam-

ily is very small and not sensitive in h, it means that a high accuracy of our discontinuous Galerkin

approximation can be achieved for an h not restrictive. We mention that the projection error is depen-

dent of the geometry of the true solution u. If u is piecewise linear and its discontinuities are located at

the grid points, then the error is zero.

EXAMPLE 5.2 Consider a dynamic Nash equilibrium problem with 2 players and zero-sum cost func-

tionals. Denote by yi ∈ R and ui the i-th player’s state and control variables, respectively, i = 1,2. An
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FIG. 2. Errors of (xh
g,u

h
g) in ‖ · ‖

L 2 and ‖ · ‖2 at T (Example 5.1 with T = 3π)

equilibrium solution of this problem is a state-control pair (y∗1(t),y
∗
2(t),u

∗
1(t),u

∗
2(t)) satisfying

u∗1(·) ∈ argmin θ(y1,y
∗
2,u1,u

∗
2)

s.t. ẏ1(t) =−2+2y1 +B1u1

y1(0) =−1

u1 � 0, eT (u1 +u∗2)� 1

u∗2(·) ∈ argmax θ(y∗1,y2,u
∗
1,u2)

s.t. ẏ2(t) =−2t− y2 +B2u2

y2(0) = 2

u2 � 0, eT (u∗1 +u2)� 1,

where e= (1,1)T . Denote y= (y1,y2)
T and u= (uT

1 ,u
T
2 )

T . The cost functional θ(y1,y2,u1,u2) = θ(y,u)
reads

y(T )T Ly(T )+ lT y(T )+
∫ T

0
yT [Py+Su+h(t)]+uT [Ru+d(t)]dt.

Here the matrices B1, B2, L, l, P, S and R are taken as in Chen & Wang (2014).
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FIG. 3. Ratios of error for Galerkin and time stepping method (Example 5.1 with T = 3π)

The Pontryagin’s minimum/maximum principle for each optimal control problem yields two coupled

constrained Hamilton equations. By the vector w ∈ R
5 of multipliers, it gives the following coupled

system of ODE and a mixed linear complementarity problem (a little different to that of (1.1)):

ẋ(t) = Ax(t)+Bu(t)+ f (t)
0 = Qx(t)+Mu(t)−CT w(t)+g(t)
0 � w(t)⊥Cu(t)− c � 0

b = E0x(0)+ET x(T ).

Here x = (y1, p1,y2, p2)
T , pi is the costate of yi. The detailed reformulation, and the data of the matrices

A, B, Q, M, C, E0, ET , and the vectors b and c can be found in Chen & Wang (2014). Here we construct

an exact solution (x,u) of the LCS by adapting the functions f and g. We mention that both the matrix

M and the one defining the mixed LCP are positive semi-definite.

For this problem, our numerical method can be established in a very similar manner by using the

variational formulation

〈ĝ+Lu,v−u〉L 2 � 0, ∀v ∈L
2(0,T ;R4)×L

2
+(0,T ;R5).
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FIG. 4. Errors for Galerkin approximation (Example 5.2 with T = 1)

The Galerkin approximation yields a mixed linear complementarity problem of dimension 18N, where

N is the number of the subintervals.

We have the following observation on the numerical results.

(1) The logarithms of the errors for the Galerkin approximation and the time stepping method are

plotted in Figures 4 and 5, respectively. Note that the four graphs in Figure 4 are approximately straight

lines with the slopes all about 1.0076, this indicates the 1-order convergence of the Galerkin approxi-

mation. For this example, the precision of the Galerkin approximation is still much better than the time

stepping method, whose convergence order is close to 0, as illustrated by the figures.

Notice that L is not monotone, Theorem 4.1 can not be applied to provide error estimate and con-

vergence order.

(2) If L is not monotone, then the LCP(Mh,qh) may have no solution or have multiple solutions,

for which the LCP solvers may not perform well, their output could be far away from the true solution.

This leads to the low order of convergence or even divergence.

Even when M is positive definite, L is not necessarily monotone. The monotonicity is also dependent
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FIG. 5. Errors for time stepping method (Example 5.2 with T = 1)

of T . For illustrating this, we consider the regularized matrix M +λ I with λ = 0.1, which is positive

definite. It defines the operator Lλ and then gives the matrix Mh
λ . If Lλ is (strongly) monotone, then

Mh
λ is positive (definite) semidefinite, and so its symmetric part has a nonnegative (positive) smallest

eigenvalue σ(T,h). We plot the values of σ(T,h) in Figure 6 for different T and h. Note that for

T = 1,0.5, Mh
λ is indefinite, while positive definite for a smaller T .

6. Concluding remarks

This article reformulates the LCS into an LCP in an Hilbert space, and proposes a numerical method by

using discontinuous Galerkin approximation. The method solves a finite-dimensional LCP(Mh,qh) and

uses the matrix exponential related matrices ϕk(hA) to recover the state, these matrices are also used to

construct the data of the LCP(Mh,qh), which keeps a quite good fidelity to the LCS.

Numerical results show that the accuracy of the proposed method is much better than the time

stepping method. Our method and the time stepping method need to evaluate ϕk(hA)y and (I−hA)−1y

respectively, for some column vector y. The evaluation of the former is not necessarily time-consuming
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FIG. 6. smallest eigenvalue σ(h) of the symmetric part of Mh (Example 5.2)

than that of the latter. See Higham & Al-Mohy (2010).
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DISCRETIZED FORM OF THE OPERATOR L AND STATE

RECOVERY

ZHENGYU WANG∗ AND XIAOJUN CHEN†

1. Discretized form of the operator L. Given A,E0, ET ∈ R
n×n, B ∈ R

n×m,
Q ∈ R

m×n, and M ∈ R
m×m. We remind us that the operator L, defined in

L 2(0, T ;Rm), has the following form

(Lu)(t) :=Mu(t) +Q(L1u)(t)−Q(L2u)(t),

where

(L1u)(t) =

ˆ T

0

e(t−s)ABu(s)ds

and

(L2u)(t) =

ˆ T

0

etA(E0 + ET e
TA)−1ET e

(T−s)ABu(s)ds.

Below we derive the discretized form of L, represented by the matrix Mh = (Mh
ij)

with Mh
ji := 〈Lϕi, ϕj〉L 2/h, in the finite-dimensional subspace Uh spanned by the

basis functions

ψi,j,k(t) := ψ̂j

(
t− tk−1

h

)
· χk(t) · ei,

where χk(·) is the characteristic function in Ik and ei denotes the m-dimensional i-th

unit coordinate vector, and ψ̂1(t) = 1 − t, ψ̂2(t) = t. We show that Mh has the
following form

Mh =
1

6
IN ⊗

(
2M M
M 2M

)
− h

N∑
k′,k=1

ek′eTk ⊗
(

(Jk′,k)11 (Jk′,k)12
(Jk′,k)21 (Jk′,k)22

)

+
h

2

N∑
k′=2

k′−1∑
k=1

ek′eTk ⊗
(
Q(G1 −G2)B QG2B
Q(G1 −G2)B QG2B

)

+hIN ⊗
(

Q(G3 −G4)B QG4B
Q(G2 − 2G3 +G4)B Q(G3 −G4)B

)
,

where ek is the k-th N -dimensional unit coordinate vector, and for k′, k = 1, . . . , N :

(Jk′,k)11 = QGk′−1
0 G2(E0 + ET e

TA)−1ETG
N−k
0 (G1 −G2)B

(Jk′,k)12 = QGk′−1
0 G2(E0 + ET e

TA)−1ETG
N−k
0 G2B

(Jk′,k)21 = QGk′−1
0 (G1 −G2)(E0 + ET e

TA)−1ETG
N−k
0 (G1 −G2)B

(Jk′,k)22 = QGk′−1
0 (G1 −G2)(E0 + ET e

TA)−1ETG
N−k
0 G2B.

∗Department of Mathematics, Nanjing University, China. email: zywang@nju.edu.cn
†Department of Applied Mathematics, The Hong Kong Polytechnic University, Hong Kong. email:

maxjchen@polyu.edu.hk. The author’s work was supported in part by Hong Kong Research Grants
Council PolyU153001/14P.

1

Page 21 of 27

IMA Journal of Numerical Analysis

IMAJNA - For peer review only - http://mc.manuscriptcentral/imajna

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Proof For t ≤ tk−1, we have for j = 1, 2:

L1ψi,j,k(t) =

ˆ t

0

e(t−s)ABψj

(
s− tk−1

h

)
· χIk(s)eids = 0.

For t ∈ (tk−1, tk), we have

L1ψi,1,k(t) =

ˆ t

0

e(t−s)ABψ1

(
s− tk−1

h

)
χIk(s)eids =

ˆ t

tk−1

e(t−s)AB

(
1− s− tk−1

h

)
eids

=

(ˆ t−tk−1

0

e(t−tk−1−τ)A
(
1− τ

h

)
dτ

)
Bei

=

[
(t− tk−1)ϕ1((t− tk−1)A)− 1

h
(t− tk−1)

2ϕ2((t− tk−1)A)

]
Bei

= h

[(
t− tk−1

h

)
ϕ1((t− tk−1)A)−

(
t− tk−1

h

)2

ϕ2((t− tk−1)A)

]
Bei,

L1ψi,2,k(t) =

ˆ t

0

e(t−s)ABψ2

(
s− tk−1

h

)
χIk(s)eids =

ˆ t

tk−1

e(t−s)AB
s− tk−1

h
eids

=

(ˆ t−tk−1

0

e(t−tk−1−τ)A τ

h
dτ

)
Bei =

1

h
(t− tk−1)

2ϕ2((t− tk−1)A)Bei

= h

(
t− tk−1

h

)2

ϕ2((t− tk−1)A)Bei.

For t ≥ tk, we have

L1ψi,1,k(t) =

ˆ t

0

e(t−s)ABψ1

(
s− tk−1

h

)
χIk(s)eids

=

ˆ tk

tk−1

e(t−s)AB

(
1− s− tk−1

h

)
eids = hβ1(hA)Bei,

L1ψi,2,k(t) =

ˆ t

0

e(t−s)ABψ2

(
s− tk−1

h

)
χIk(s)eids

=

ˆ tk

tk−1

e(t−s)AB

(
s− tk−1

h

)
teids = hβ2(hA)Bei.

Now for i = 1, . . . ,m, j = 1, 2, and k = 1, . . . , N , we compute

〈QL1ψi,j,k, ψi′,j′,k′〉L 2 =

ˆ T

0

χI
k′
(t)eTi′ψj′

(
t− tk′−1

h

)
QL1ψi,j,k(t)dt

= eTi′

ˆ t
k′

t
k′

−1

ψj′

(
t− tk′−1

h

)
QL1ψi,j,k(t)dt.

For k > k′, when t ∈ [tk′−1, tk′ ], we have t ≤ tk−1, and QL1ψi,j,k(t) = 0, and therefore

〈QL1ψi,j,k, ψi′,j′,k′〉L 2 = 0.

2
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For k = k′, we obtain

〈QL1ψi,1,k, ψi′,1,k〉L 2 = eTi′

ˆ tk

tk−1

ψ1

(
t− tk−1

h

)
QL1ψi,1,k(t)dt

= heTi′Q

ˆ tk

tk−1

ψ1

(
t− tk−1

h

)[(
t− tk−1

h

)
ϕ1((t− tk−1)A)−

(
t− tk−1

h

)2

ϕ2((t− tk−1)A)

]
Beidt

= h2eTi′Q

(ˆ 1

0

(1− τ) [τϕ1(τhA)− τ2ϕ2(τhA)
]
dτ

)
Bei

= h2eTi′Q

(ˆ 1

0

(1− τ)
[
∞∑

n=1

τn

n!
(hA)n−1 −

∞∑
n=2

τn

n!
(hA)n−2

]
dτ

)
Bei

= h2eTi′Q

(
∞∑

n=1

ˆ 1

0

(1− τ)τ
n

n!
(hkA)

n−1dτ −
∞∑

n=2

ˆ 1

0

(1− τ)τ
n

n!
(hkA)

n−2dτ

)
Bei

= h2eTi′Q

(
∞∑

n=1

1

(n+ 2)!
(hA)n−1 −

∞∑
n=2

1

(n+ 2)!
(hA)n−2

)
Bei = h2eTi′Q (ϕ3(hA)− ϕ4(hA))Bei,

〈QL1ψi,1,k, ψi′,2,k〉L 2 = eTi′

ˆ tk

tk−1

ψ2

(
t− tk−1

h

)
QL1ψi,1,k(t)dt

= heTi′Q

ˆ tk

tk−1

ψ2

(
t− tk−1

h

)[(
t− tk−1

h

)
ϕ1((t− tk−1)A)−

(
t− tk−1

h

)2

ϕ2((t− tk−1)A)

]
Beidt

= h2eTi′Q

(ˆ 1

0

τ
[
τϕ1(τhA)− τ2ϕ2(τhA)

]
dτ

)
Bei = h2eTi′Q

(ˆ 1

0

τ

[
∞∑

n=1

τn

n!
(hA)n−1 −

∞∑
n=2

τn

n!
(hA)n−2

]
dτ

)
Bei

= h2eTi′Q

(
∞∑

n=1

1

n!(n+ 2)
(hA)n−1 −

∞∑
n=2

1

n!(n+ 2)
(hA)n−2

)
Bei = h2eTi′Q (ϕ2(hA)− 2ϕ3(hA) + ϕ4(hA))Bei,

〈QL1ψi,2,k, ψi′,1,k〉L 2 = eTi′

ˆ tk

tk−1

ψ1

(
t− tk−1

h

)
QL1ψi,1,k(t)dt

= heTi′Q

ˆ tk

tk−1

ψ1

(
t− tk−1

h

)(
t− tk−1

h

)2

ϕ2((t− tk−1)A)Beidt = h2eTi′Q

(ˆ 1

0

(1− τ)τ2ϕ2(τhA)dτ

)
Bei

= h2eTi′Q

(ˆ 1

0

(1− τ)
∞∑

n=2

τn

n!
(hA)n−2dτ

)
Bei = h2eTi′Q

(
∞∑

n=2

1

(n+ 2)!
(hA)n−2

)
Bei = h2eTi′Qϕ4(hA)Bei,

and

〈QL1ψi,2,k, ψi′,2,k〉L 2 = eTi′

ˆ tk

tk−1

ψ2

(
t− tk−1

h

)
QL1ψi,1,k(t)dt

= heTi′Q

ˆ tk

tk−1

ψ2

(
t− tk−1

h

)(
t− tk−1

h

)2

ϕ2((t− tk−1)A)Beidt = h2eTi′Q

(ˆ 1

0

τ3ϕ2(τhA)dτ

)
Bei

= h2eTi′Q

(ˆ 1

0

∞∑
n=2

τn+1

n!
(hA)n−2dτ

)
Bei = h2eTi′Q

∞∑
n=2

1

n!(n+ 2)
(hA)n−2Bei

= h2eTi′Q

(
∞∑

n=2

(
1

(n+ 1)!
− 1

(n+ 2)!

)
(hA)n−2

)
Bei = h2eTi′Q(ϕ3(hA)− ϕ4(hA))Bei.
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For k < k′, when t ∈ [tk′−1, tk′ ], we have t ≥ tk, and therefore L1ψi,j,k(t) =
hβj(hA)Bei is constant therein. We obtain

〈QL1ψi,j,k, ψi′,j′,k′〉L 2 =

ˆ t
k′

t
k′

−1

eTi′ψj′

(
t− tk′−1

h

)
QL1ψi,j,k(t)dt

= heTi′Qβj(hA)Bei

ˆ t
k′

t
k′

−1

ψj′

(
t− tk′−1

h

)
dt =

1

2
h2eTi′Qβj(hA)Bei,

namely,

〈QL1ψi,1,k, ψi′,1,k′〉L 2 =
1

2
h2eTi′Q [ϕ1(hA)− ϕ2(hA)]Bei

〈QL1ψi,1,k, ψi′,2,k′〉L 2 =
1

2
h2eTi′Q [ϕ1(hA)− ϕ2(hA)]Bei

〈QL1ψi,2,k, ψi′,1,k′〉L 2 =
1

2
h2eTi′Qϕ2(hA)Bei

〈QL1ψi,2,k, ψi′,2,k′〉L 2 =
1

2
h2eTi′Qϕ2(hA)Bei.

Summarizing, we have

〈QL1ψi,j,k, ψi′,j′,k′〉L 2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 when k > k′

h2 [Q (ϕ3(hA)− ϕ4(hA))B]i′i when k = k′, j = 1, j′ = 1

h2 [Q (ϕ2(hA)− 2ϕ3(hA) + ϕ4(hA))B]i′i when k = k′, j = 1, j′ = 2

h2 [Qϕ4(hA)B]i′i when k = k′, j = 2, j′ = 1

h2 [Q(ϕ3(hA)− ϕ4(hA))B]i′i when k = k′, j = 2, j′ = 2

1

2
h2 [Q (ϕ1(hA)− ϕ2(hA))B]i′i when k < k′, j = 1, j′ = 1

1

2
h2 [Q [ϕ1(hA)− ϕ2(hA)]B]i′i when k < k′, j = 1, j′ = 2

1

2
h2 [Qϕ2(hA)B]i′i when k < k′, j = 2, j′ = 1

1

2
h2 [Qϕ2(hA)B]i′i when k < k′, j = 2, j′ = 2

Collecting the entries 〈QLh
1ψi,j,k, ψi′,j′,k′〉L 2 in the matrix Mh

1 by rearranging the
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basis functions, and replacing ϕk(hA) by Gk, we get

Mh
1 := h2IN ⊗

(
Q(G3 −G4)B QG4B

Q(G2 − 2G3 +G4)B Q(G3 −G4)B

)

+
h2

2

⎛
⎜⎜⎜⎜⎝

0

1
. . .

...
. . .

. . .

1 · · · 1 0

⎞
⎟⎟⎟⎟⎠

N

⊗
(
Q(G1 −G2)B QG2B
Q(G1 −G2)B QG2B

)
.

For the operator Lh
2 , we can compute for i = 1, . . . ,m, j = 1, 2 and k = 1, . . . , N :

(L2ψi,j,k)(t) = etA(E0 + ET e
TA)−1ET

ˆ T

0

e(T−s)ABψi,j,k(s)ds

= etA(E0 + ET e
TA)−1ET

ˆ tk

tk−1

e(T−s)ABψj

(
s− tk−1

h

)
eids

= hetA(E0 + ET e
TA)−1ET

ˆ 1

0

e(T−tk−1−τh)ABψj(τ)eidτ

= hetA(E0 + ET e
TA)−1ET e

(T−tk)A

(ˆ 1

0

e(1−τ)hkAψj(τ)dτ

)
Bei

= hetA(E0 + ET e
TA)−1ET e

(T−tk)Aβj(hA)right)Bei

and therefore

〈QL2ψi,j,k, ψi′,1,k′〉L 2 = heTi′

ˆ t
k′

t
k′

−1

QetA(E0 + ET e
TA)−1ET e

(T−tk)Aβj(hA)Beiψ1

(
t− tk′−1

h

)
dt

= heTi′Q

(ˆ t
k′

t
k′

−1

etAψ1

(
t− tk′−1

h

)
dt

)
(E0 + ET e

TA)−1ET e
(T−tk)Aβj(hA)Bei

= h2eTi′Q

(ˆ 1

0

e(tk′
−1

+τh)Aψ1(τ)dt

)
(E0 + ET e

TA)−1ET e
(T−tk)Aβj(hA)Bei

= h2eTi′Qe
t
k′A

(ˆ 1

0

e−(1−τ)hAψ1(τ)dt

)
(E0 + ET e

TA)−1ET e
(T−tk)Aβj(hA)Bei

= h2eTi′Qe
t
k′Aβ1(−hA)(E0 + ET e

TA)−1ET e
(T−tk)Aβj(hA)Bei

= h2
[
Qetk′

−1
Aβ2(hA)(E0 + ET e

TA)−1ET e
(T−tk)Aβj(hA)B

]
i′i
,

and

〈QL2ψi,j,k, ψi′,2,k′〉L 2 = heTi′

ˆ t
k′

t
k′

−1

QetA(E0 + ET e
TA)−1ET e

(T−tk)Aβj(hA)Beiψ2

(
t− tk′−1

h

)
dt

= heTi′Q

(ˆ t
k′

t
k′

−1

etAψ2

(
t− tk′−1

h

)
dt

)
(E0 + ET e

TA)−1ET e
(T−tk)Aβj(hA)Bei

= h2eTi′Q

(ˆ 1

0

e(tk′
−1

+τh)Aψ2(τ)dt

)
(E0 + ET e

TA)−1ET e
(T−tk)Aβj(hA)Bei

= h2eTi′Qe
t
k′A

(ˆ 1

0

e−(1−τ)hAψ2(τ)dt

)
(E0 + ET e

TA)−1ET e
(T−tk)Aβj(hA)Bei

= h2eTi′Qe
t
k′Aβ2(−hA)(E0 + ET e

TA)−1ET e
(T−tk)Aβj(hA)Bei

= h2
[
Qetk′

−1
A(ϕ1(hA)− ϕ2(hA))(E0 + ET e

TA)−1ET e
(T−tk)Aβj(hA)B

]
i′i

= h2
[
Qetk′

−1
Aβ1(hA)(E0 + ET e

TA)−1ET e
(T−tk)Aβj(hA)B

]
i′i
.

5

Page 25 of 27

IMA Journal of Numerical Analysis

IMAJNA - For peer review only - http://mc.manuscriptcentral/imajna

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Collecting the entries 〈QLh
2ψi,j,k, ψi′,j′,k′〉L 2 in a matrix by rearranging the basis

functions, we get

Mh
2 := h2

N∑
k′,k=1

ek′eTk ⊗
(

(Jk′,k)11 (Jk′,k)12
(Jk′,k)21 (Jk′,k)22

)
,

where from β1(z) = ϕ1(z)− ϕ2(z) and β2(z) = ϕ2(z), we have

(Jk′,k)11 = Qetk′
−1

Aβ2(hA)(E0 + ET e
TA)−1ET e

(T−tk)Aβ1(hA)B

= QGk′−1
0 G2(E0 + ET e

TA)−1ETG
N−k
0 (G1 −G2)B

(Jk′,k)12 = Qetk′
−1

Aβ2(hA)(E0 + ET e
TA)−1ET e

(T−tk)Aβ2(hA)B

= QGk′−1
0 G2(hA)(E0 + ET e

TA)−1ETG
N−k
0 G2B

(Jk′,k)21 = Qetk′
−1

Aβ1(hA)(E0 + ET e
TA)−1ET e

(T−tk)Aβ1(hA)B

= QGk′−1
0 (G1 −G2)(E0 + ET e

TA)−1ETG
N−k
0 (G1 −G2)B

(Jk′,k)22 = Qetk′
−1

Aβ1(hA)(E0 + ET e
TA)−1ET e

(T−tk)Aβ2(hA)B

= QGk′−1
0 (G1 −G2)(E0 + ET e

TA)−1ETG
N−k
0 G2B.

Moreover, from

〈Mψi,j,k, ψi′,j′,k′〉L 2

= eTi′Mei

ˆ T

0

ψj

(
t− tk−1

tk − tk−1

)
· χIk(t)ψj′

(
t− tk′−1

tk′ − tk′−1

)
· χI

k′
(t)dt

it follows that 〈Mψi,j,k, ψi′,j′,k′〉L 2 = 0 when k �= k′, and

〈Mψi,j,k, ψi′,j′,k〉L 2 = eTi′Mei

ˆ tk

tk−1

ψj

(
t− tk−1

tk − tk−1

)
ψj′

(
t− tk−1

tk − tk−1

)
dt

= heTi′Mei

ˆ 1

0

ψj(s)ψj′(s)ds,

and therefore

〈Mψi,j,k, ψi′,j′,k′〉L 2 =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 when k �= k′

1

3
h(M)i′i when k = k′, j = j′

1

6
h(M)i′i when k = k′, j �= j′

Collecting the entries 〈M)ψi,j,k, ψi′,j′,k′〉L 2 in a matrix by rearrangement, we get

Mh
3 :=

h

6
IN ⊗

(
2M M
M 2M

)
. (1.1)

Finally, let Mh = (Mh
1 −Mh

2 +Mh
3 )/h. This completes the proof for the form of the

matrix Mh.

2. Justification of the state recovery. Denote

x̂0,h = (E0 + ET e
TA)−1

(
b− ET

ˆ T

0

e(T−s)Af(s)ds

)
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and

f̂(t) = etAx̂0,h +

ˆ t

0

e(t−s)Af(s)ds.

Let the approximate control uh be given by the solution of the LCP(L, ĝ). It is natural
to approximate the state x by

xh(t) = f̂(t) + (L1u
h)(t)− (L2u

h)(t). (2.1)

Note (L1ϕi,j,k)(tk) = 0 when k < k. We compute for k = 1, . . . , N :

(L1u
h)(tk) =

∑
i,j,k

ci,j,k(L1ψi,j,k)(tk) = h
∑

i,j,k≤k

ci,j,kβj(hA)Bei

= h

⎛
⎝β1(hA)B k∑

j=1

uhj,1 + β2(hA)B

k∑
j=1

uhj,2

⎞
⎠

(L2u
h)(tj) =

∑
i,j,k

ci,j,k(L2ψi,j,k)(tν)

= hetνA(E0 + ET e
TA)−1ET

∑
i,j,k

ci,j,ke
(T−tk)Aβj(hA)Bei

= hetνA(E0 + ET e
TA)−1ET

N∑
k=1

e(T−tk)A
(
β1(hA)Bu

h
k,1 + β2(hA)Bu

h
k,2

)
.

The above computation enables us to approximate the state x at the mesh points by
xhk = xh(tk) , where ν = 0, 1, · · ·N and

xhk = Gk
0 x̂

0,h +

ˆ tk

0

e(tk−s)Af(s)ds+ h

⎛
⎝G1B

k∑
j=1

uhj,1 +G2B

k∑
j=1

(uhj,2 − uhj,1)
⎞
⎠

−hGk
0(E0 + ET e

TA)−1ET

N∑
k=1

GN−k
0

[
(G1 −G2)Bu

h
k,1 +G2Bu

h
k,2

]
.
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