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Abstract. The condition number of a Gram matrix defined by a polynomial ba-
sis and a set of points is often used to measure the sensitivity of the least squares
polynomial approximation. Given a polynomial basis, we consider the problem of
finding a set of points and/or weights which minimizes the condition number of the
Gram matrix. The objective function f in the minimization problem is nonconvex
and nonsmooth. We present an expression of the Clarke generalized gradient of f
and show that f is Clarke regular and strongly semismooth. Moreover, we develop
a globally convergent smoothing method to solve the minimization problem by us-
ing the exponential smoothing function. To illustrate applications of minimizing the
condition number, we report numerical results for the Gram matrix defined by the
weighted Vandermonde-like matrix for least squares approximation on an interval,
and the Gram matrix defined by an orthonormal set of real spherical harmonics for
least squares approximation on the sphere.

Key words: Condition number, Gram matrix, least squares, interpolation, smooth-
ing method, generalized gradient, semi-smooth, spherical harmonics.

1. Introduction. We denote by Sn the space of symmetric n×n matrices with
the standard inner products

〈A,B〉 =
n∑

i,j=1

aijbij , ∀A = (aij), B = (bij) ∈ Sn.

We denote by S+
n and S++

n , the cone of symmetric positive semidefinite n×n matrices
and the cone of symmetric positive definite n× n matrices, respectively.

For A ∈ Sn, we denote by λ(A) ∈ Rn the vector of its eigenvalues ordered in a
decreasing order:

λ1(A) ≥ · · · ≥ λn(A).

The Euclidean condition number of a nonzero matrix A ∈ S+
n is defined by [16]

κ(A) =





λ1(A)
λn(A)

if A is nonsingular

∞ if A is singular.
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Optimizing eigenvalue functions have been studied for decades [17, 21, 24, 25, 26, 27].
In a recent paper [18], Maréchal and Ye studied the following optimization problem

minimize κ(A)
subject to A ∈ Ω,

(1.1)

where Ω is a compact convex subset of S+
n . From the definition, it is clear that if

Ω ∩ S++
n is not empty, then a minimizer for (1.1) must belong to S++

n . However, if
Ω∩S++

n is empty, then (1.1) has no optimal solution. The optimization problem (1.1)
has several applications. See [18], for an example arising from the Markovitz portfolio
selection.

In this paper, we are interested in the minimal condition number for matrices
in the form A = V T V , where V ∈ R`×n with ` ≥ n, and rank(V ) = n. Obviously
A ∈ S++

n .

Let ‖ · ‖ denote the Euclidean vector norm and matrix norm. The Euclidean
condition number of V is defined by [14]

κ(V ) = max
y 6=0

‖y‖
‖V y‖ max

z 6=0

‖V z‖
‖z‖ = ‖V ‖‖V †‖ =

√
κ(A) =

√
λ1(A)√
λn(A)

,

where V † = (V T V )−1V T is the Moore-Penrose generalized inverse of V .

The quantity κ(V ) has been widely used in the sensitivity analysis of interpolation
and approximation, for example [2, 3], the least squares polynomial approximation on
an interval. In many least squares problems, V is a weighted Vandermonde-like matrix
with rank(V ) = n. Each element of V is defined by the weights and a set of node
points. Estimation of upper bounds and lower bounds for κ(V ) with respect to the
matrix size n have been studied extensively. However, there is little work on efficient
optimization methods to find optimal weights and nodes which minimize κ(V ) with
a fixed n.

Suppose each entry of V (x) is a continuously differentiable function of x ∈ Rm.
Then each entry of A(x) = V (x)T V (x) is also a continuously differentiable function
of x. We consider the following minimization problem

minimize κ(A(x))
subject to x ∈ X ,

(1.2)

where X is a convex set in Rm.

The objective function κ(A(x)) in (1.2) is neither convex nor smooth. Problem
(1.2) can be considered as a special case of fractional programming [11, 12]. Applying
the Dinkelbach method for fractional programming to (1.2), at each iteration, we need
to solve a minimization problem

minimize λ1(A(x))− κkλn(A(x))
subject to x ∈ X ,

(1.3)

where κk > 0 is an approximation of the optimal value of (1.2). If λ1 and λn are linear
functions of x, then (1.3) is relatively easy to solve. However, in general, λ1(A(x)) and
−λn(A(x)) are nonconvex and nonsmooth functions of x. The Dinkelbach method for
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(1.2) needs to solve a nonconvex and nonsmooth minimization problem (1.3) at each
iteration.

Most optimization methods and softwares are only efficient for convex and smooth
problems. To develop efficient algorithms to solve (1.2), we adopt the Clarke gener-
alized gradient [10] and the exponential smoothing function [4, 20, 21]. At each
iteration, we use the function value of the smoothing approximation of the objective
function in (1.2) and update the smoothing parameter.

In section 2, we present an expression of the Clarke generalized gradient of
κ(A(x)). We show that κ(A(x)) is Clarke regular and strongly semismooth.

In section 3, we propose a smoothing function for κ(A(x)) and show various
properties of the smoothing function which ensure that a class of smoothing algorithms
for solving (1.2) converge to a Clarke stationary point globally.

In section 4, we numerically investigate the condition number κ(A(x)) of a Gram
matrix arising from the least squares polynomial approximation on an interval and on
the sphere with x corresponding to a set of node points or weights. We compare the
optimal solutions of (1.2) defined by the Vandermonde-like matrix with equally spaced
points, Gauss points, Gauss-Lobatto points, Chebyshev points and Clenshaw-Curtis
points on the interval [−1, 1]. Moreover, we compare the optimal solutions of (1.2)
defined by the spherical harmonics with the extremal points, the minimum energy
points and the points of spherical t-designs on the unit sphere.

Throughout this paper, we let ei ∈ Rn (i = 1, . . . , n) denote the ith column of the
identity matrix in Rn×n and In denote the identity matrix in Rn×n. We denote by
D+

n (D++
n ) the set of all n×n diagonal matrices with nonnegative (positive) diagonal

entries. Let

Rn
++ := {y ∈ Rn : yi > 0, i = 1, . . . , n} and Rn

+ := {y ∈ Rn : yi ≥ 0, i = 1, . . . , n}.

2. Generalized gradient of κ(A(x)). In this section, we present an expression
of the Clarke generalized gradient of κ(A(x)). In order to explain the expression
clearly, we divide this section into three subsections. In subsection 2.1, we recall
existing expressions for the generalized gradient ∂κ(A) and give a new expression
for ∂κ(A). In subsection 2.2, we present an expression of the generalized gradient for
κ(A(V )) with A(V ) = V T V. In subsection 2.3, we give an expression of the generalized
gradient for κ(A(x)) with A(x) = V (x)T V (x).

2.1. κ(A). For A ∈ Sn, the notation diag(λ(A)) ∈ Sn is used for the diagonal
matrix with the vector λ(A) ∈ Rn on the main diagonal.

It is known that any A ∈ S+
n admits an eigenvalue decomposition:

A = U(A)diag(λ(A))U(A)T

with a square orthogonal matrix U(A), U(A)T U(A) = In, whose columns are eigen-
vectors of A. Let ui(A) be the ith column of matrix U(A).

Proposition 2.1 (The Clarke generalized gradient). ([17, 25, 20]) Let A ∈ Sn.
The Clarke generalized gradient of λ1(A) is given by

∂λ1(A) =



G =

d(A)∑

i=1

τiui(A)ui(A)T : τi ≥ 0, i = 1, . . . , d(A),
d(A)∑

i=1

τi = 1




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where d(A) is the multiplicity of the largest eigenvalue of the matrix A.

The Clarke generalized gradient of λn(A) is given by

∂λn(A) =



H =

b(A)∑

i=1

γiun−i+1(A)un−i+1(A)T : γi ≥ 0, i = 1, . . . , b(A),
b(A)∑

i=1

γi = 1





where b(A) is the multiplicity of the smallest eigenvalue of the matrix A.

Using [10, Proposition 2.3.14] for the Clarke generalized gradient of quotients, we
have the following proposition for κ(A).

Proposition 2.2. ([18, Proposition 4.2]) Assume that A ∈ S++
n . Then κ is

Clarke regular at A and its Clarke generalized gradient at A is given by

∂κ(A) = λn(A)−1(∂λ1(A)− κ(A)∂λn(A)).

The following two submatrices of U(A)

Uα(A) = {u1(A), . . . , ud(A)(A)}, and Uβ(A) = {un−b(A)+1(A), . . . , un(A)}

are formed by the orthonormal bases for the eigenspaces corresponding to the largest
eigenvalue and the smallest eigenvalue of A.

Applying Propositions 2.1 and 2.2, we have the following formula for ∂κ(A).

Proposition 2.3. For A ∈ S++
n , let d(A) be the multiplicity of the largest

eigenvalue of matrix A, and b(A) be the multiplicity of the smallest eigenvalue of
matrix A. Then

∂κ(A) = λn(A)−1(∂λ1(A)− κ(A)∂λn(A))

=
{

Y ∈ Rn×n : Ypq =
1

λn(A)
〈UT

α (A)epe
T
q Uα(A), Pα〉 − κ(A)

λn(A)
〈UT

β (A)epe
T
q Uβ(A), Pβ〉,

p = 1, . . . , n, q = 1, . . . , n,where Pα ∈ D+
d(A), tr(Pα) = 1, Pβ ∈ D+

b(A), tr(Pβ) = 1}.

Proof. By Proposition 2.1, for any G ∈ ∂λ1(A), there is a Pα ∈ D+
d(A), with

tr(Pα) = 1 such that each element Gpq of G can be written as

Gpq = 〈(eT
p Uα(A))T eT

q Uα(A), Pα〉 = 〈UT
α (A)epe

T
q Uα(A), Pα〉.

Similarly, for any H ∈ ∂λn(A), there is Pβ ∈ D+
b(A), with tr(Pβ) = 1 such that each

element Hpq of H can be written as

Hpq = 〈UT
β (A)epe

T
q Uβ(A), Pβ〉.

The desired formula follows from Proposition 2.2.
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Remark 2.1 In the case where λ1(A) = λn(A), we have U = Uα = Uβ , and

∂κ(A) =
{

Y ∈ Rn×n : Ypq =
1

λn(A)
〈U(A)epe

T
q U(A), Pα〉 − 1

λn(A)
〈U(A)epe

T
q U(A), Pβ〉,

p = 1, . . . , n, q = 1, . . . , n,where Pα ∈ D+
n , tr(Pα) = 1, Pβ ∈ D+

n , tr(Pβ) = 1
}

=
{

Y ∈ Rn×n : Ypq ∈ 1
λn(A)

max
1≤i≤n

|U(A)epe
T
q U(A)|ii[−1, 1],

p = 1, . . . , n, q = 1, . . . , n} .

Such a matrix A would have the global minimal condition number 1 and it is clear
that 0 ∈ ∂κ(A).

2.2. κ(A(V )) with A(V ) = V T V . We denote by M`,n the space of `×n matrices
with the standard inner products

〈V, U〉 =
∑̀

i=1

n∑

j=1

VijUij , ∀ V, U ∈ M`,n.

For V ∈ M`,n, let vT
i ∈ Rn denote the i-th row of V , i = 1 . . . , `, that is,

V T = (v1, . . . , v`) ∈ Rn×`.

Now we consider V ∈ M`,n with ` ≥ n and rank(V ) = n. Let A(V ) = V T V .
Denote

(Apq(V )) =
∂A(V )
∂Vpq

∈ Rn×n, p = 1, . . . , `, q = 1, . . . , n.

By the definition of V and A, we have

∂A(V )
∂Vpq

=
∂(

∑`
j=1 vjv

T
j )

∂Vpq
=

∂vpv
T
p

∂Vpq
= eqv

T
p + vpe

T
q .

Let d(V ) be the multiplicity of the largest eigenvalues of A(V ), and b(V ) be
the multiplicity of the smallest eigenvalue of A(V ). Let A(V ) admit an eigenvalue
decomposition

A(V ) = U(V )diag(λ(A(V )))U(V )T

with U(V )T U(V ) = In. Let

Uα = (u1(V ), . . . , ud(V )(V )), and Uβ = (un−b(V )+1(V ), . . . , un(V )).

Proposition 2.4. Suppose that rank(V ) = n. Then κ(A(V )) is Clarke regular
and the Clarke generalized gradient of κ(A(V )) is

∂κ(A(V )) = {Y ∈ R`×n : Ypq =
1

λn(A(V ))
〈UT

αApqUα, Pα〉 − κ(A(V ))
λn(A(V ))

〈UT
β ApqUβ , Pβ〉,

p = 1, . . . , `, q = 1, . . . , n,where Pα ∈ D+
d(V ), tr(Pα) = 1, Pβ ∈ D+

b(V ), tr(Pβ) = 1}.
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Proof. Since κ(A(V )) is the composition of a Clarke regular function with a
strictly differentiable function, by the chain rule, κ(A(V )) is Clarke regular and

∂κ(A(V )) = {Y ∈ R`×n : Ypq = 〈G,Apq(V )〉 for some G ∈ ∂κ(A)}.

The desired result follows immediately from applying Proposition 2.3.

2.3. κ(A(x)) with A(x) = V (x)T V (x). Let V (x) be an `× n matrix with each
entry being a continuously differentiable function of x ∈ Rm. The differentiability of V
implies that each entry of A(x) = V (x)T V (x) ∈ Rn×n is a continuously differentiable
function of x.

Let X ⊂ Rm be a nonempty, compact and convex set. It is convenient to define
a function f : X → R by

f(x) = κ(A(x)). (2.1)

We assume that for any x ∈ X , rank(V (x)) = n. We consider (1.2) in the following
version

minimize f(x)
subject to x ∈ X .

(2.2)

Since λ1(A) is a convex function of A and λn(A) is a concave function of A, λ1(A)
and λn(A) are Lipschitz continuous functions of A. By the continuous differentiability
of A(x), λ1(A(x)) and λn(A(x)) are Lipschitz continuous functions on X . Moreover,
there are positive constants λn and λ1, such that

λn ≤ λn(A(x)) and λ1(A(x)) ≤ λ1 ∀ x ∈ X .

Hence f is Lipschitz continuous and satisfies

1 ≤ f(x) ≤ λ1

λn

, ∀ x ∈ X . (2.3)

This, together with the continuity of f on X , ensures the existence of a solution of
(2.2).

Denote

Ak(x) =
∂A(x)
∂xk

∈ Sn, k = 1, . . . , m.

By the definition of Apq, V and A, we have

Ak(x) =
∑̀
p=1

n∑
q=1

∂A(V )
∂Vpq

∂Vpq

∂xk
=

∑̀
p=1

n∑
q=1

Apq(V )
∂Vpq

∂xk

=
∑̀
p=1

n∑
q=1

(eqv
T
p + vpe

T
q )

∂Vpq

∂xk
∈ Sn.
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Let d(x) be the multiplicity of the largest eigenvalues of A(x), and b(x) be the
multiplicity of the smallest eigenvalue of A(x). Let A(x) admit an eigenvalue decom-
position

A(x) = U(x)diag(λ(A(x)))U(x)T

with U(x)T U(x) = In. Let

Uα = (u1(x), . . . , ud(x)(x)), and Uβ = (un−b(x)+1(x), . . . , un(x)).

Proposition 2.5. Suppose that rank(V (x)) = n. Then f is Clarke regular at x
and the Clarke generalized gradient of f is

∂f(x) = {g ∈ Rm : gk =
1

λn(A(x))
〈UT

α Ak(x)Uα, Pα〉 − κ(A(x))
λn(A(x))

〈UT
β Ak(x)Uβ , Pβ〉

k = 1, . . . , m,where Pα ∈ D+
d(x), tr(Pα) = 1, Pβ ∈ D+

b(x), tr(Pβ) = 1}.

The proof is similar to the proof of Proposition 2.4.

Definition 2.6. [19, 24] Suppose that φ : X ⊆ Rm → R is a locally Lipschitz
continuous function. φ is said to be semismooth at x ∈ intX if φ is directionally
differentiable at x and for any g ∈ ∂φ(x +4x),

φ(x +4x)− φ(x)− gT4x = o(‖4x‖),

where intX denotes the interior of X . φ is said to be strongly semismooth at x if φ is
semismooth at x and

φ(x +4x)− φ(x)− gT4x = O(‖4x‖2).

A function φ is said to be a (strongly) semismooth function on X if it is (strongly)
semismooth everywhere in intX .

Proposition 2.7. The function f is semismooth on X . Moreover if A(x) is
strongly semismooth then f is strongly semismooth on X

Proof. It is shown in [24] that the eigenvalues of a symmetric matrix are strongly
semismooth everywhere. It is known that the composition of (strongly) semismooth
functions is still a (strongly) semismooth function [13, 19]. Since A(x) is assumed
to be continuous differentiable and hence semismooth, so is f . Moreover if A(x) is
strongly semismooth then as a composition of two strongly semismooth functions, f
is then strongly semismooth on X .

Definition 2.8. ([22]) A(x) is said to be positive semidefinite convex on X if
it is convex with respect to the order relation imposed by the cone Sn

+. That is the
inequality

tA(x) + (1− t)A(y) º A(tx + (1− t)y)

holds for any x, y ∈ Rm and all t ∈ [0, 1].

Proposition 2.9. Suppose that A(x) is positive semidefinite convex on X . Then
λ1(A(x)) is convex on X .
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Proof. By [22, Proposition 1], the mapping A(x) is positive semidefinite con-
vex if and only if for any w ∈ Rn, ϕ(x) = wT A(x)w is convex. Since λ1(A(x)) =
max‖w‖=1 wT A(x)w, it follows that λ1(A(x)) is convex.

Theorem 2.10. Suppose that V (x) is a linear mapping of x on X . Then λ1(A(x))
with A(x) = V (x)T V (x) is a convex function on X .

Proof. According to Proposition 2.9 and its proof, it suffices to prove that for any
w ∈ Rn, the function ϕ(x) = wT V (x)T V (x)w is convex on X . Observe that

ϕ(x) = wT V (x)T V (x)w = ‖V (x)w‖2.

The convexity of ϕ(x) follows from the fact that it is a composition of a linear mapping
and a convex function.

Proposition 2.9 and Theorem 2.10 imply that the function f is convex in some
domain X1 ⊆ X when λn(A(x)) is identical to a constant in X1; see Example 4.1.
However, in general, f is not convex. Now we consider some special cases where (2.2)
can be solved by using a quasi-convex and (strongly) pseudoconvex function.

Definition 2.11. Let A be a finite dimensional space. A function φ : A → R is
said to be quasi-convex if

φ(τx + (1− τ)y) ≤ max{φ(x), φ(y)}, ∀x, y ∈ A,∀τ ∈ (0, 1).

Let φ : A → R be lower semicontinuous and Lipschitz near a point x ∈ A. We say
that φ is pseudo-convex at x on A if for every y ∈ A,

max{〈ξ, y − x〉 : ξ ∈ ∂φ(x)} ≥ 0 =⇒ φ(y) ≥ φ(x).

We say that φ is strongly pseudo-convex at x on A if for every y ∈ A,

〈ξ, y − x〉 ≥ 0 for some ξ ∈ ∂φ(x) =⇒ φ(y) ≥ φ(x).

We say that φ is (strongly) pseudo-convex on A if φ is (strongly) pseudo-convex at
every x on A.

It is easy to see that a strongly pseudo-convex function must be a pseudo-convex
function.

Proposition 2.12. Let B be a fixed m×n matrix with m ≥ n and rank(B) = n.
Define

h(W ) := κ(BT WB), W ∈ S++
m .

Then h is quasi-convex and strongly pseudo-convex.

Proof. The quasi-convexity is equivalent to the condition that the level sets of the
function are convex. For any γ ≥ 1, the level set of h can be written as

Lγ = {W ∈ S++
m : λ1(BT WB)− γλn(BT WB) ≤ 0}.

Since for any W ∈ S++
m , we have

λ1(BT WB) = max
‖y‖=1

yT (BT WB)y and λn(BT WB) = min
‖y‖=1

yT (BT WB)y.
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From the linearity, we can easily find that λ1(BT WB) − γλn(BT WB) is a convex
function with respect to W . Hence Lγ is a convex set and thus h is a quasi-convex
function.

Moreover, from the convexity of λ1(BT WB) and −γλn(BT WB), for any g1 ∈
∂λ1(BT W̄B) and gn ∈ ∂λn(BT W̄B), we have

λ1(BT WB)− λ1(BT W̄B) ≥ 〈g1,W − W̄ 〉

and

−λn(BT WB) + λn(BT W̄B) ≥ 〈−gn,W − W̄ 〉.

By the quotient rule, for any g ∈ ∂h(W̄ ), there are g1 ∈ ∂λ1(BT W̄B) and gn ∈
∂λn(BT W̄B) such that

g = λ1(BT W̄B)−1h(W̄ )
(
g1 − h(W̄ )gn

)
.

It follows that

λ1(BT WB)− h(W̄ )λn(BT WB)
= λ1(BT WB)− λ1(BT W̄B) + h(W̄ )

(−λn(BT WB) + λn(BT W̄B)
)

≥ 〈g1 − h(W̄ )gn,W − W̄ 〉
= λ1(BT W̄B)h(W̄ )−1〈g, W − W̄ 〉.

Therefore, if 〈g, W − W̄ 〉 ≥ 0, then h(W ) ≥ h(W̄ ).

Suppose m = ` and V (x) = XB, where X ∈ D++
m with diagonal elements xi, i =

1, . . . , n, and B is a fixed m × n matrix. Such a matrix arises from the weighted
Vandermonde-like matrix [2, 3]. See Section 4. In this case, we can write A(V (x)) =
BT XT XB = BT WB, where W = XT X ∈ D++

m . Let w ∈ Rm with wi = x2
i ,

i = 1, . . . , m being the diagonal elements of W . By Proposition 2.12, we can find
an optimal solution w∗ by using a quasi-convex and strongly pseudo-convex function
h(W ), and then obtain a solution x∗ of (2.2) as x∗i =

√
w∗i , i = 1, . . . , m.

3. Smoothing approximation. The exponential smoothing function has been
used for continuous min-max problem [4] and for minimizing the largest eigenvalue
of a symmetric matrix [20, 21]. Applying the exponential smoothing function for the
largest and the smallest eigenvalue functions, we introduce the smoothing function of
the condition number as follows:

f̃(x, µ) = − ln(
∑n

i=1 eλi(A(x))/µ)
ln(

∑n
i=1 e−λi(A(x))/µ)

. (3.1)

In numerical computations, we use an equivalent formula

f̃(x, µ) =
λ1(A(x)) + µ ln(

∑n
i=1 e(λi(A(x))−λ1(A(x)))/µ)

λn(A(x))− µ ln(
∑n

i=1 e(λn(A(x))−λi(A(x)))/µ)
,

which is more numerically stable than (3.1).

In this section we will show that this smoothing function has various nice prop-
erties including the gradient consistent property. These properties ensure that any
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accumulation point of the sequence generated by some smoothing methods is a Clarke
stationary point. For example, the smoothing projected gradient (SPG) method [29]
and the smoothing conjugate gradient method [9] can be used to solve (2.2).

Definition 3.1. [29] Let f : X ⊂ Rm → R be a locally Lipschitz continuous
function. We call f̃ : X×R+ → R a smoothing function of f , if f̃(·, µ) is continuously
differentiable in intX for any µ ∈ R++, and for any x̄ ∈ X ,

lim
x→x̄, µ↓0

f̃(x, µ) = f(x̄) (3.2)

and the set { lim
x→x̄, µ↓0

∇xf̃(x, µ)} is nonempty and bounded.

For a vector y ∈ Rn
++, let

ϕ1(y) = max
1≤i≤n

{yi}, ϕn(y) = min
1≤i≤n

{yi}

be the functions defined by the largest element and the smallest element respectively.
Denote their quotient by

ϕ(y) :=
ϕ1(y)
ϕn(y)

. (3.3)

We define the smoothing functions of ϕ1, ϕn and ϕ respectively as follows: for µ > 0,

φ1(y, µ) = µ ln

(
n∑

i=1

eyi/µ

)
, φn(y, µ) = −µ ln

(
n∑

i=1

e−yi/µ

)

and

φ(y, µ) =
φ1(y, µ)
φn(y, µ)

. (3.4)

These functions are Lipschitz continuous and by using the pointwise maxima formula
in [10, Proposition 2.3.12], we have

∂ϕ1(y) = conv



g ∈ Rn : gj =





1, if yj = ϕ1(y) > maxi 6=j{yi}
0, if yj < ϕ1(y)
θ, otherwise, θ ∈ [0, 1]





∂ϕn(y) = conv



g ∈ Rn : gj =





1, if yj = ϕn(y) < mini 6=j{yi}
0, if yj > ϕn(y)
θ, otherwise, θ ∈ [0, 1]





where “conv” denotes the convex hull. Since the functions ϕ1(y) and ϕn(y) are convex
and concave respectively, ϕ1(y) and −ϕn(y) are Clarke regular. By the quotient rule
in [10, Proposition 2.3.14], the function ϕ(y) defined in (3.3) is Clarke regular in any
nonempty and bounded subset Y of Rn

++ and its Clarke generalized gradient is

∂ϕ(y) =
1

ϕn(y)
(∂ϕ1(y)− ϕ(y)∂ϕn(y)) .

We now show that the function (3.4) is indeed a smoothing function for (3.3).

Proposition 3.2. Let ϕ and φ(·, µ) be defined by (3.3) and (3.4) respectively.
Then

10



(i) φ(·, µ) is a C∞ function for any fixed µ > 0 with the partial derivative

∂φ(y, µ)
∂yj

= − 1
µ ln(

∑n
i=1 e−yi/µ)

[
1∑n

i=1 eyi/µ
eyj/µ − φ(y, µ)∑n

i=1 e−yi/µ
e−yj/µ

]

=
1

φn(y, µ)
(∇yφ1(y, µ)− φ(y, µ)∇yφn(y, µ))j . (3.5)

(ii) For the given numbers λn > 0 and λ̄1 > 0, let Y = {y ∈ Rn : λn ≤ yi ≤ λ̄1, i =

1, . . . , n}. Then for any y ∈ Y and µ ≤ λn

2 ln n

0 ≤ φ(y, µ)− ϕ(y) ≤ cµ (3.6)

with c = 8λ̄1
λ2

n
lnn. Moreover we have for any y ∈ Y,

lim
y→ȳ, µ↓0

φ(y, µ) = ϕ(ȳ). (3.7)

(iii) For any ȳ ∈ Y, { lim
y→ȳ, µ↓0

∇yφ(y, µ)} is nonempty and bounded. Moreover,

φ(·, µ) satisfies the gradient consistent property, that is,

{ lim
y→ȳ,µ↓0,

∇yφ(y, µ)} ⊂ ∂ϕ(ȳ).

Proof. (i) The calculation of partial derivatives is routine and we omit it.

(ii) It is easy to find

0 ≤ φ1(y, µ)− ϕ1(y) = µ ln

(
n∑

i=1

e
yi−ϕ1(y)

µ

)
≤ µ lnn

and

0 ≥ φn(y, µ)− ϕn(y) = −µ ln

(
n∑

i=1

e
ϕn(y)−yi

µ

)
≥ −µ lnn.

Hence for any y ∈ Y and µ <
λn

2 ln n , we have

1 ≤ ϕ(y) =
ϕ1(y)
ϕn(y)

≤ φ1(y, µ)
φn(y, µ)

= φ(y, µ) ≤ ϕ1(y) + µ lnn

ϕn(y)− µ lnn
≤ 2λ̄1 + λn

λn

. (3.8)

This implies that for any ȳ ∈ Y,

0 ≤ lim
y→ȳ,µ↓0

(φ(y, µ)− ϕ(y)) ≤ lim
y→ȳ,µ↓0

(
ϕ1(y) + µ lnn

ϕn(y)− µ lnn
− ϕ(y)

)
= 0. (3.9)

Moreover, for any fixed y ∈ Y, let

ψy(µ) =
µ lnn + ϕ1(y)
−µ lnn + ϕn(y)

.

Then we find

0 ≤ φ(y, µ)− ϕ(y) ≤ ψy(µ)− ψy(0) = ψ′y(µ̂)µ for some µ̂ ∈ [0, µ] (3.10)
11



and

ψ′y(µ) =
lnn(ϕn(y) + ϕ1(y))
(−µ lnn + ϕn(y))2

≤ 8λ̄1

λ2
n

lnn, ∀µ ≤ λn

2 ln n
. (3.11)

By (3.10) and (3.11), we obtain (3.6). By (3.9) we find (3.7).

(iii) From the proof of (ii), we observe that

1
2
λn ≤ λn − µ lnn ≤ φn(y, µ)

and all components of the vectors ∇yφ1(y, µ) and ∇yφn(y, µ) satisfy

0 ≤ 1∑n
i=1 e(yi−ϕn(y))/µ

≤ (∇yφ1(y, µ))j ≤ 1∑n
i=1 e(yi−ϕ1(y))/µ

≤ 1
d(y)

≤ 1 (3.12)

and

0 ≤ 1∑n
i=1 e(ϕ1(y)−yi)/µ

≤ (∇yφn(y, µ))j ≤ 1∑n
i=1 e(ϕn(y)−yi)/µ

≤ 1
b(y)

≤ 1, (3.13)

where d(y) and b(y) are the multiplicity of the largest and smallest elements of y,
respectively. Hence, by (3.5), for any ȳ ∈ Y, { lim

y→ȳ, µ↓0
∇yφ(y, µ)} is nonempty and

bounded. Moreover, since

∂φ1

∂yj
(y, µ) =

1∑n
i=1 e(yi−yj)/µ

∂φn

∂yj
(y, µ) =

1∑n
i=1 e(yj−yi)/µ

for any convergent subsequence of ∇yφ1(yk, µk) and ∇yφn(yk, µk) with yk → ȳ and
µk → 0, as k →∞, we have

( lim
k→∞

∇yφ1(yk, µk))j =





1, if ȳj = ϕ1(ȳ) > maxi 6=j{ȳi}
0, if ȳj < ϕ1(ȳ)
θ1, otherwise,

( lim
k→∞

∇yφn(yk, µk))j =





1, if ȳj = ϕn(ȳ) < mini 6=j{ȳi}
0, if ȳj > ϕn(ȳ)
θn, otherwise,

where θ1, θn ∈ [0, 1]. Hence

{ lim
y→ȳ,µ↓0,

∇yφ(y, µ)} ⊂ ∂ϕ(ȳ).

Therefore φ satisfies the gradient consistent property.

Remark 3.1 If we fix ȳ ∈ Y and take µ ↓ 0, we have that

(lim
µ↓0

∇yφ(ȳ, µ))j =
1

ϕn(ȳ)





(1− ϕ(ȳ))/n, if ȳj = ϕ1(ȳ) = ϕn(ȳ)
1/d(ȳ), if ȳj = ϕ1(ȳ) > ϕn(ȳ)
−ϕ(ȳ)/b(ȳ), if ȳj = ϕn(ȳ) < ϕ1(ȳ)
0, otherwise.

12



Definition 3.3. ([17, Definition 1]) Let ϕ : Rn → [−∞,+∞] be a function that
is invariant under coordinate permutations. Then the composition function

ϕ ◦ λ : Sn → [−∞,+∞]

is called an eigenvalue function.

Proposition 3.4. Let ϕ : Y → R be a locally Lipschitz function and let φ :
Y×R+ → R be a smoothing function of ϕ. Suppose that the function A → φ(λ(A), µ)
is an eigenvalue function and A(x) is continuously differentiable. Then f̃(x, µ) :=
φ(λ(A(x)), µ) is a smoothing function of f(x) := ϕ(λ(A(x)) and its partial derivative
with respect to xk is given by

∂f̃(x, µ)
∂xk

= 〈diag(∇yφ(λ(A(x)), µ)), U(x)T Ak(x)U〉

where U(x)T U(x) = I, U(x)diag(λ(A(x)))U(x)T = A(x).

Moreover if the function φ(·, µ) satisfies the gradient consistent property, then the
function f̃(·, µ) also satisfies the gradient consistent property.

Proof. By [17, Corollary 3], since φ(·, µ) is a smooth function for each µ > 0, the
eigenvalue function φ(λ(A), µ) is also a smooth function in A. By [17, Theorem 6] its
Fréchet differential at a matrix A ∈ Sn is a linear mapping from Sn to R given by the
formula

∇Aφ(λ(A), µ) = Udiag(∇yφ(λ(A), µ))UT

where UT U = I, Udiag(λ(A))UT = A. By the chain rule,

∂f̃(x, µ)
∂xk

= 〈∇Aφ(λ(A(x)), µ), Ak(x)〉

= 〈diag(∇yφ(λ(A(x)), µ)), U(x)T Ak(x)U(x)〉.

The rest of the results follow by the continuity of the function x → λ(A(x)) and the
definition of a smoothing function and the gradient consistent property.

Theorem 3.5. Let f and f̃(·, µ) be defined by (2.1) and (3.1) respectively. Then

(i) f̃(·, µ) is continuously differentiable for any fixed µ > 0 with gradient

∂f̃(x, µ)
∂xk

=
−1

µ ln(
∑n

i=1 e−λi(A(x))/µ)

[
1∑n

i=1 eλi(A(x))/µ

n∑

i=1

eλi(A(x))/µui(x)T Ak(x)ui(x)

− f̃(x, µ)∑n
i=1 e−λi(A(x))/µ

n∑

i=1

e−λi(A(x))/µui(x)T Ak(x)ui(x)

]
.

(ii) There exists a constant c > 0 such that for any x ∈ X and µ ≤ λn

2 ln n

0 ≤ f̃(x, µ)− f(x) ≤ cµ. (3.14)

Moreover (3.2) holds.
13



(iii) For any x̄ ∈ X , { lim
x→x̄, µ↓0

∇xf̃(x, µ)} is nonempty and bounded. Moreover,

f̃(·, µ) satisfies the gradient consistent property, that is,

{ lim
x→x̄,µ↓0,

∇xf̃(x, µ)} ⊂ ∂f(x̄).

(iv) For any fixed µ > 0, the gradient of f̃(x, µ) is Lipschitz continuous, that is, for
any x, y ∈ X , there exists a constant Lµ such that

‖∇f̃(x, µ)−∇f̃(y, µ)‖ ≤ Lµ‖x− y‖. (3.15)

Proof. Note that f̃(x, µ) = φ(λ(A(x)), µ) with φ defined by (3.4). It is easy to see
that the function φ(·, µ) is a permutation-invariant function and hence (i)-(iii) follows
from Proposition 3.2 (i)-(iii) and Proposition 3.4.

(iv) Since for any fixed µ > 0, φ(·, µ) is a C∞ function. There is a constant `µ

such that ‖∇2
yφ(y, µ)‖ ≤ `µ for y ∈ Y. Hence, we can find a Lµ such that (3.15) holds.

According to Theorem 3.5, we can construct globally convergent smoothing meth-
ods for solving (2.2). In the smoothing methods, we can update the iterates xk and
smoothing parameter µk in an appropriate way which depends on the method used
for the smoothing problems. For instance, we can use the smoothing projected gradi-
ent method (SPG) proposed in [29] to solve (2.2), which uses the projected gradient
method in [6] for the smoothing problem. We have the following global convergence
theorem.

Theorem 3.6. From any starting point x0 ∈ X , the sequence {xk} generated by
the SPG method [29] is contained in X and any accumulation point x̄ of {xk} is a
Clarke stationary point, that is, there is g ∈ ∂f(x̄) such that

〈g, x− x̄〉 ≥ 0, ∀x ∈ X .

Proof. From Theorem 3.5, we know that Assumption 2.1 in [29] holds, and

{ lim
xk→x̄,µk↓0,

∇xf̃(xk, µ)} ⊂ ∂f(x̄).

By Theorem 2.1 in [29], we have the conclusion of this theorem.

By virtue of [18, Proposition 5.1], Theorem 3.6 has the following immediate con-
sequences.

Corollary 3.7. Under the assumptions of Theorem 3.6 if the function f is
pseudoconvex in a neighborhood B(x̄) ⊂ X , then the accumulation point is a local
optimal solution and if the function f is pseudoconvex on X , then the accumulation
point is a global optimal solution.

Remark 3.1 Following the discussion above, we can easily see that the smoothing
functions φ1(λ(A(x)), µ) and φn(λ(A(x)), µ) for λ1(A(x)) and λn(A(x)) have the same
properties in Theorem 3.5 as φ(λ(A(x)), µ) for f(x). Hence we can similarly construct
globally convergent smoothing methods for minimizing the largest eigenvalues and
maximizing the smallest eigenvalues. In particular in the case where V (x) is a linear
mapping of x on X , since λ1(A(x)) is a convex function by virtue of Theorem 2.10,
the smoothing algorithm we proposed will converge to a global optimal solution.
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4. Numerical examples. In this section, we first use a small example to il-
lustrate some properties of the condition number function f(x) = κ(A(x)). Next
we report numerical results for the least squares polynomial approximation using the
Vandermonde-like matrix with the optimal solution of (1.2), equally spaced points,
Gauss points, Gauss-Lobatto points, Chebyshev points and Clenshaw-Curtis points
on the interval [−1, 1]. Finally, we present numerical results to compare the optimal
solution of (1.2) defined by the spherical harmonics with the extremal points, the
minimum energy points and the points of spherical t-designs on the unit sphere.

Example 4.1. Consider the following weighted Vandermonde-like matrix with
` = 3, n = 2,m = 1, and a point set {−x, 0, x}. Let X = [0.5, 1.5] and

V (x) =




1 −x
1 0
1 x


 .

Then we have

A(x) = V (x)T V (x) =

(
3 0

0 2x2

)

and

f(x) =
λ1(A(x))
λn(A(x))

=





3
2x2

, 0.5 ≤ x ≤ √
1.5

2x2

3
,

√
1.5 ≤ x ≤ 1.5.

(4.1)

We consider the problem

minimize f(x)
subject to x ∈ [0.5, 1.5].

We find x∗ =
√

1.5 is the minimizer with the function value f(x∗) = 1. Moreover,
f is convex and strongly semismooth in X . However, f is not differentiable at x∗.
Since λ1(A(x∗)) = λ2(A(x∗)) = 3, we have d(x∗) = b(x∗) = 2 and we can take
Uα(x∗) = Uβ(x∗) = I. Let

A′(x∗) = 2
√

6
(

0 0
0 1

)
.

Using Proposition 2.5, we can write the Clarke generalized gradient as

∂f(x∗) =
{
g ∈ R : g = 1

3 〈A′(x∗), Pα〉 − 1
3 〈A′(x∗), Pβ〉,

Pα = diag(α, (1− α)), α ∈ [0, 1],
Pβ = diag(β, (1− β)), β ∈ [0, 1]

}

= 2
√

2
3 [−1, 1].

Using (4.1), we also find

∂f(x∗) = conv

{
−2

√
2
3
, 2

√
2
3

}
= 2

√
2
3
[−1, 1].

Note that if X = (0, 1] then the optimal solution is x∗ = 1 with f(x∗) = 3
2 . In

this case, f is differentiable at x∗, but x∗ is on the boundary of X .
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4.1. Least squares approximation on the interval [−1, 1]. Let {pj , j =
0, . . . , n − 1} be a basis for Pn−1[−1, 1], the linear space of polynomials of degree
≤ n− 1 on [−1, 1]. For a given vector w ∈ R`

++, given ` distinct real numbers

−1 ≤ a1 < a2 < . . . < a` ≤ 1, aT = (a1, . . . , a`)

and given ` function values at these points

F1, F2, . . . , F`,

the weighted least squares approximation on the interval [−1, 1] is to find a vector
c = (c1, . . . , cn)T which minimizes

∑̀

i=1

w2
i

∣∣∣∣∣∣
Fi −

n∑

j=1

cjpj−1(ai)

∣∣∣∣∣∣

2

.

The unique solution [14] is given by

c∗ = V (w, a)†(w1F1, . . . , w`F`)T

where V (w, a) ∈ R`×n is the weighted Vandermonde-like matrix

V (w, a) =




w1p0(a1) w1p1(a1) w1p2(a1) . . . w1pn−1(a1)
w2p0(a2) w2p1(a2) w2p2(a2) . . . w2pn−1(a2)

...
...

...
...

w`p0(a`) w`p1(a`) w`p2(a`) . . . w`pn−1(a`)


 .

When the data Fi is perturbed slightly, the maximal factor of magnification of
relative errors is given by κ(V (w, a)T V (w, a)) [5, 14]. We define the condition number
function f(x) by setting x = (w, a), or x = a (x = w) with fixed weights (points).

For fixed weights wi = 1, i = 1, . . . , `, and pi(τ) = τ i, i = 0, . . . , n− 1, we choose
the following six sets of points on the interval [−1, 1]:

equally spaced points ai = −1 +
2(i− 1)
`− 1

, i = 1, . . . , `.

Gauss points ai = ith zero of the Legendre polynomial P`(τ).
Gauss-Lobatto points ai = ith zero of (τ2 − 1)P ′`−1(τ).
Clenshaw-Curtis points ai = ith extrema of the Chebyshev polynomial T`−1(τ).
Chebyshev points ai = ith zero of the Chebyshev polynomial T`(τ).
minimum cond points a = optimal solution of (1.2) .

The Gauss points and Gauss-Lobatto points can be efficiently calculated by a tridiag-
onal eigenvalue problem [15]. These points are frequently used as quadrature points.
It is known that the Gauss points satisfy

∫ 1

−1

p(τ)dτ =
∑̀

i=1

αip(ai), ∀p ∈ P2`−1

while the Gauss-Lobatto points include the end-points ±1 and satisfy
∫ 1

−1

p(τ)dτ =
∑̀

i=1

αip(ai), ∀p ∈ P2`−3,
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where αi, i = 1, . . . , ` are the values of the integrals of Lagrange interpolation polyno-
mials on [−1, 1]. It is remarkable that in 1932, Fejér showed that the Gauss-Lobatto
points are also the Fekete points for which the determinant of the square Vandermonde
matrix V (e, x) with e = (1, . . . , 1)T ∈ R`, ` = n, x = a, and pi(τ) = τ i, i = 0, . . . , n−1
is maximal [5].

The Chebyshev points can be calculated explicitly

ai = − cos
π(2i− 1)

2`
, i = 1, . . . , `,

while the Clenshaw-Curtis points, which include −1 and 1, are given by the formula

ai = − cos
π(i− 1)
`− 1

, i = 1, . . . , `.

Figure 4.1 shows the distribution of these six sets of points for ` = n = 11.
Table 4.1 shows the values of the condition number and determinant at those points
for n = 11 and ` = 11, 21.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

Min cond       

Clenshaw−Curtis

Lobatto        

Chebyshev      

Gauss          

Equally spaced 

11 points in [−1, 1]

Fig. 4.1: Equally spaced points, Gauss Points, Chebyshev points, Gauss Lobatto
points, Clenshaw-Curtis point and minimum condition number points in [−1, 1] for
interpolation using the monomial basis of degree 10.

For the least squares problem on [−1, 1] with ` > n, for example the degree 10
case with 21 points in Table 4.1, minimizing the condition number tended to make
the nodes coalesce, so there were only ` = 11 distinct nodes at the solution. It
was also possible to converge to different local minima of the condition number by
starting with different point sets. For example starting with ` = 21 Chebyshev points
gave f(x̄) = 6.235 × 106, while starting with ` = 21 equally spaced points gave
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sets of points condition number determinant
` = 11 ` = 21 ` = 11 ` = 21

equally spaced points 1.946479e+8 1.093275e+7 5.755e-22 1.604e-16
Gauss points 1.767123e+7 1.271482e+7 4.616e-20 1.916e-16
Chebyshev points 1.287418e+7 1.287418e+7 2.251e-19 2.763e-16
Gauss-Lobatto points 9.606328e+6 1.325361e+7 7.968e-19 3.723e-16
Clenshaw-Curtis points 8.307060e+6 1.403922e+7 6.311e-19 3.756e-16
min cond points 8.176691e+6 5.246086e+6 5.826e-19 3.042e-16

Table 4.1: Values of the condition number and determinant of the Gram matrix using
the monomial basis at different point sets for degree 10 and ` = 11 and ` = 21 points

f(x∗) = 5.246 × 106. It should also be noted that the eigenvalues at the solution
appeared to be distinct (in which case f is smooth), with some uncertainty in the
smallest eigenvalue, for example λ11(x∗) = 6.048× 10−6 and λ10(x∗) = 1.485× 10−5.

Choosing good points does not overcome the well-known bad conditioning of the
monomial basis. Table 4.2 gives the same data as Table 4.1, but using the Chebyshev
basis T0 = 1/

√
2, Tj(x) = cos(j arccos(x)), j = 1, . . . , n− 1. For this basis the Cheby-

shev points give the optimal condition number of 1 as V (x)T V (x) = n
2 I. Minimizing

the condition number of the Gram matrix obtained using the Chebyshev basis starting
from one of the other point sets, except possibly the equally spaced points, converged
to a point set which gives the optimal condition number of 1.

sets of points condition number determinant
` = 11 ` = 21 ` = 11 ` = 21

equally spaced points 5.179192e+2 4.629276 3.562e+5 9.926e+10
Gauss points 3.237343 1.404429 2.858e+7 1.186e+11
Chebyshev points 1.000000 1.000000 1.393e+8 1.710e+11
Gauss-Lobatto points 2.523277 1.384010 4.932e+8 2.304e+11
Clenshaw-Curtis points 2.500000 1.550000 3.906e+8 2.325e+11

Table 4.2: Values of the condition number and determinant of the Gram matrix using
the Chebyshev basis at different point sets for degree 10 and ` = 11 and ` = 21 points

Figure 4.2 shows the growth of the condition number as the degrees of the poly-
nomial increases and the number of additional points also increases. For a good basis
and a good point set the Gram matrix A(w, a) can be well conditioned. Moreover we
notice that with the same basis and the same choice of points, the condition number
of A(w, a) tends to be smaller as we add more points.

4.2. Least squares approximation on the sphere. Let S2 = {z ∈ R3 :
‖z‖ = 1} be the unit sphere in the Euclidean space R3. Let Pt be the linear space of
restrictions of polynomial of degree ≤ t in 3 variables to S2. Let ZN = {z1, . . . , zN} ⊂
S2 be a set of N -points on the sphere. The dimension of the linear space Pt is
dim(Pt) = (t + 1)2, and Pt can be spanned by the orthonormal set of real spherical
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Fig. 4.2: Growth of condition numbers of the Gram matrix for Chebyshev and Mono-
mial bases with degree n and m points.

harmonics with degree r and order k [23],

{Yrk | k = 1, . . . , 2r + 1, r = 0, 1, . . . , t}.
The Gram matrix Gt(ZN ) is

Gt(ZN ) = Y (ZN )T Y (ZN ),

where Y (ZN ) ∈ R(t+1)2×N and the j-th column of Y (ZN ) is given by

Yrk(zj), k = 1, . . . , 2r + 1, r = 0, 1, . . . , t.

Given a function F defined on S2, let

F = (F1(z1), . . . , FN (zN ))T .

Consider the problem of finding a polynomial p ∈ Pt which best approximates F in
the Euclidean norm, which is to find a minimizer c = (c1, . . . , c(t+1)2)T ∈ R(t+1)2 of
the following least squares problem

minimize ‖Y (ZN )T c− F‖22. (4.2)

An optimal solution of this problem can be given as

c∗ = (Y (ZN )T )†F.
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Let A(ZN ) = Y (ZN )Y (ZN )T and N ≥ (t + 1)2. The Euclidean condition number of
A(ZN ) is

κ(A(ZN )) = ‖Y (ZN )T ‖2‖(Y (ZN )T )†‖2.

The condition number κ(A(ZN )) measures the sensitivity of the least squares
polynomial approximation. To have the best polynomial approximation, we choose
a set ZN of N -points on the sphere S2 which minimizes the condition number. By
using the spherical parametrization [8], we can present the N points by using a vector
x ∈ Rm, with m = 2(t+1)2−3, and set A(ZN ) = A(x). Hence we have an optimization
problem in the form of (1.2). Note that A(ZN ) and G(ZN ) are polar similar and have
same nonzero eigenvalues [16].

Let N = (t + 1)2. In this case, the number of points equals to the size of the
Gram matrix. We consider the following four sets of points.

Definition 4.1. Let ZN = {z1, . . . , zN} ⊂ S2 be a set of N -points on the sphere.

minimum energy system argmin
N∑

i 6=j

1
‖zi − zj‖ .

extremal system argmaxdet(Y (ZN )Y (ZN )T ).

spherical t-design
∫

S2
p(z)dz =

4π

N

N∑

i=1

p(zi), ∀p ∈ Pt.

minimum cond points optimal solution of minκ(Gt(ZN )) .

These optimization problems on the sphere typically have many local solutions,
so one has to settle for a good local solution, which is not necessarily a global solution.
Also for a given t, a spherical t-design is not unique. Our numerical results use the
one near the extremal system [1, 7, 8]. Let t = 5 and N = (t + 1)2 = 36. Consider
the N ×N Gram matrix Gt(ZN ). The left plot in Figure 4.3 shows the values of the
36 eigenvalues of Gt(ZN ) with the 36 extremal system points (initial point) and min
cond points (final point found by the smoothing gradient method) on the sphere. It
is clear to see that the multiplicity of the largest eigenvalue and smallest eigenvalue
are four and five at the optimal solution x∗ ∈ R2N−3 of (1.2), respectively. Hence f is
not differentiable at the solution x∗. The right plot in Figure 4.3 shows the function
values of f(x) and its smoothing function f̃(x, µ) with different values of µ for the
same Gram matrix Gt(ZN ) with x = x∗ − α∇xf̃(x∗, 0.0766) for α ∈ [−0.05, 0.1]. It
shows that the minimizers of smoothing functions approach x∗ as µ → 0. Note that
at x∗, the largest eigenvalue λ1(A(x∗)) is 4.1949, the smallest eigenvalue λn(A(x∗))
is 1.3397 and the condition number f(x∗) is 3.1312. By Theorem 3.5, the smoothing
parameter µ should be chosen less than 0.3739.

In Figure 4.4, we show the log of the function values of the condition number
function f(x) with the degree t = 9 and N = 100 points over the sphere. We choose
the extremal system

ẐN = {ẑ1, . . . , ẑN} = argmax det(Gt(ZN )).

The first point of the set is the north pole ẑ1 = (1, 0, 0)T . We consider Gt(ZN ) with

ZN = {z1, ẑ2, . . . , ẑN}, z1 ∈ S2,
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Fig. 4.3: Left: The 36 eigenvalues of the Gram matrix Gt(ZN ) with degree t = 5 and
N = 36 points on the sphere. Right: For the same Gram matrix, function values of
f(x∗ − α∇xf̃(x∗, 0.0766)) and f̃(x∗ − α∇xf̃(x∗, 0.0766), µ) for α ∈ [−0.05, 0.1].

that is, we fix the N − 1 points ẑ2, . . . , ẑN and move z1 over the sphere. We find that
the function f(x) = κ(A(z)) has many local minimal points.

Fig. 4.4: The log of the condition number of the Gram matrix Gt(XN ) for degree
t = 9, N = 100 points. The first point is varied over the whole sphere, while the
remaining 99 extremal points excluding the north pole are fixed.

Figure 4.5 shows the function values at those four sets of points in Definition
4.1 for different values of N and t with N = (t + 1)2. It is worth noting that the
Gram matrix Gt(ZN ) is nearly singular at the minimum energy system for t = 12.
The most striking feature of the plot of the condition numbers against degree of the
interpolating polynomial in Figure 4.5 is that the minimum energy points obtained by
minimizing the Coulomb energy can have very large condition numbers. In contrast,
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Fig. 4.5: Condition number on the minimum energy system, extremal system, spher-
ical t−design, minimum cond points

for the extremal (maximum determinant) and new points obtained by minimizing
the condition number, the condition number grows slowly. Indeed, for the points
obtained by minimizing the condition number, the growth is less than linear in the
degree t. Optimization problems on the sphere typically have many local minima, but
the smallest possible condition number cannot be larger than those found so far.
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[6] P. H. Calamai and J. J. Moré, Projected gradient method for linearly constrained problems,

Math. Program., 39(1987), pp. 93-116.
[7] X. Chen, A. Frommer and B. Lang, Computational existence proofs for spherical t-designs, to

appear in Numer. Math.
[8] X. Chen and R. S. Womersley, Existence of solutions to systems of undetermined equations

and spherical designs, SIAM J. Numer. Anal., 44(2006), pp. 2326-2341.
[9] X. Chen and W. Zhou, Smoothing nonlinear conjugate gradient method for image restoration

using nonsmooth nonconvex minimization, SIAM J. Imaging Sci. 3(2010), pp. 765-790.
[10] F. H. Clarke, Optimization and Nonsmooth Analysis, John Wiley, New York, 1983.
[11] J.P. Crouzeix and J.A. Ferland, Algorithms for generalized fractional programming, Math.

Program. 52(1991), pp. 191-207.

22



[12] W. Dinkelbach, On non-linear fractional programming, Manag. Sci., 13(1967), pp. 492-498.
[13] A. Fischer, Solution of monotone complementarity problems with locally Lipschitz functions,

Math. Program. 76(1997), pp. 513-532.
[14] G. H. Golub and C. F. Van Loan, Matrix Computations, 2nd ed., Johns Hopkins University

Press, Baltimore, 1993.
[15] G. H. Golub and J. H. Welsch, Calculation of Gauss quadrature rules, Math. Comp., 23(1969),

pp. 221-230.
[16] R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, New York, 1985.
[17] A. S. Lewis, Nonsmooth analysis of eigenvalues, Math. Program., 84(1999), pp. 1-24.
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