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We use three examples to illustrate the perturbation bounds given in

[CX] X. Chen and S. Xiang, Perturbation bounds of P-matrix linear complementarity
problems, Technical Report, Department of Mathematical Sciences, Hirosaki University,
February 2006, Revised January 2007.

We use the semi-smooth Newton method [13] to solve (1.8) in [CX] with stop criteria
kr(x)k ≤ 10−14 and computer precisionmacheps = 10−16. We report numerical results in
Table 1 and Table 2 where the fourth column and the fifth column represent the measure
β(M)kMk for the LCP and the upper bounds (4.5), (4.6) of K(M) for the system of
(1.8) in [CX], respectively. An exact error k4xk is computed as follows. First, we find
approximation solutions x̂ ≥ 0 and x̂+4x ≥ 0 of LCP(M, q) and LCP(M+4M, q+4q),
respectively. Next, we define q̂ and q̂ +4q̂ such that x̂ and x̂+4x are exact solutions
of LCP(M, q̂) and LCP(M +4M, q̂ +4q̂), respectively. The perturbation bounds

bound = kM̃−1k∞(k4Mk∞kx(M +4M, q̂ +4q̂)k∞ + k4q̂k∞)

are based on (2.4) and Theorem 2.5 in [CX].
Example 1 We consider a problem which arises from finite difference approximation
of free boundary problems for infinite journal bearings [4]. Here M is a tridiagonal
M-matrix whose elements mij are defined

mij =
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i, j = 1, 2, · · · , n

and the elements of vector q are defined

qi = δ(hi+ 1
2
− hi− 1

2
), i = 1, 2, · · · , n.

In a common model for the infinitely long cylindrical bearing,

δ =
2

n+ 1
and hi− 1

2
=
1 + ² cos(π(i− 1

2
)δ)

√
π

, i = 1, 2, · · · , n+ 1.

Following Cryer[4], we chose ² = 0.8. Reformulating the journal bearing problem to the
LCP(M, q) causes truncation error and rounding error. One is interested in perturbation
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error in the solution of the LCP(M, q) caused by small changes in M and q. In this
problem, M is ill-conditioned for large n. Let

4M = ²M

⎛⎜⎜⎜⎜⎜⎜⎝
2 1
1 2 1
. . .

. . .
. . .

1 2 1
1 2

⎞⎟⎟⎟⎟⎟⎟⎠ , 4q = ²qe. (0.1)

Table 1. Perturbation bounds of Example 1
β(M) = kM−1k∞, ν = κ∞(M)kmax(Λ, I)k∞

n ²M ²q β(M)kMk∞ ν k4xk∞ bound

10 0.0 -1.0e-3 498.0448 1.3085e3 0.1740 0.2201

1.0e-3 1.0e-3 498.0448 1.3085e3 0.7768 2.1288

-1.0e-3 -1.0e-3 498.0448 1.3085e3 1.2196 3.8864

100 0.0 -1.0e-3 1.0216e5 3.1546e5 23.4828 24.6533

1.0e-5 1.0e-3 1.0216e5 3.1546e5 2.5249 24.6533

-1.0e-5 -1.0e-3 1.0216e5 3.1546e5 51.4563 76.8289

1000 0.0 -1.0e-5 1.0168e7 3.1465e7 23.0367 24.2724

1.0e-7 1.0e-5 1.0168e7 3.1465e7 2.5224 24.2724

-1.0e-7 -1.0e-5 1.0168e7 3.1465e7 49.7432 73.9102

Example 2 [1]. We consider a tridiagonal H-matrix

M =

⎛⎜⎜⎜⎜⎜⎜⎝
4 −2
1 4 −2
. . .

. . .
. . .

1 4 −2
1 4

⎞⎟⎟⎟⎟⎟⎟⎠ , and q = −4e.

Notice that M is well-conditioned for any n. From Theorem 2.8 in [CX], LCP(M, q) is
not sensitive to small changes in data. Let 4M and 4q be defined by (0.1).

Table 2 Perturbation bounds of Example 2
β(M̃) = kM̃−1k∞, ν = max(1, kMk∞)kM̃−1max(Λ, I)k∞

n ²M ²q β(M̃)kMk∞ ν k4xk∞ bound

10 0.0 -1.0e-3 6.7828 27.1216 4.0812e-4 9.6899e-4

1.0e-3 1.0e-3 6.7828 27.1216 2.4000e-3 7.3000e-3

-1.0e-3 -1.0e-3 6.7828 27.1216 2.4000e-3 7.3000e-3

100 0.0 -1.0e-3 7.0000 28.0000 4.0825e-4 1.0000e-3

1.0e-5 1.0e-3 7.0000 28.0000 4.2838e-4 1.1000e-3

-1.0e-5 -1.0e-3 7.0000 28.0000 4.2838e-4 1.1000e-3

1000 0.0 -1.0e-5 7.0000 28.0000 4.0825e-6 1.0000e-5

1.0e-7 1.0e-5 7.0000 28.0000 4.2839e-6 1.0653e-5

-1.0e-7 -1.0e-5 7.0000 28.0000 4.2839e-6 1.0653e-5

10000 0.0 -1.0e-5 7.0000 28.0000 4.0825e-6 1.0000e-5

1.0e-7 1.0e-5 7.0000 28.0000 4.2839e-6 1.0653e-5

-1.0e-7 -1.0e-5 7.0000 28.0000 4.2839e-6 1.0653e-5
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Example 3 Linear variational inequalities and complementarity problems have often
been used to discuss formulation and solution of traffic equilibrium problems [5, 8]. Here,
we use a simple traffic network in [5] to illustrate applications of perturbation bounds
of the LCP with a positive definite matrix. This network consists of two nodes: w1, w2,
and five paths: p1, p2, p3, p4, p5. The two nodes are connected by two two-way streets
and one one-way street. The paths p1, p2, p3 are directed from w1 to w2, and p4, p5 are
the returns of p1 and p2, respectively. (See Figure 1 in [5].) The travel demands are

d1 = 210 (from w1 to w2), d2 = 120 (from w2 to w1).

Let xi denote the flow on path pi, i = 1, 2, 3, 4, 5, and let Xd denote the set of x satisfying
the travel demands d = (d1, d2), that is,

Xd = {x ∈ R5 |x ≥ 0, x1 + x2 + x3 = d1, x4 + x5 = d2}.

Furthermore, the personal travel cost function is given by

c(x) :=Mx+ b

where

M =

⎛⎜⎜⎜⎜⎜⎝
10 0 0 5 0
0 15 0 0 5
0 0 20 0 0
2 0 0 20 0
0 1 0 0 25

⎞⎟⎟⎟⎟⎟⎠ , b =

⎛⎜⎜⎜⎜⎜⎝
1000
950
3000
1000
1300

⎞⎟⎟⎟⎟⎟⎠ .
By the Wardrop principle, a load pattern x∗ ∈ Xd is user-optimized if and only if

(Mx∗ + b)T (x− x∗) ≥ 0, for allx ∈ Xd. (0.2)

This linear variational inequality problem is equivalent to the following constrained com-
plementarity problem

x ∈ Xd, τ ≥ 0, Mx+ b− τ ≥ 0, xT (Mx+ b− τ) = 0, (0.3)

where τ = (τ1, τ1, τ1, τ2, τ2). Here τ1 and τ2 depict the minimum transportation cost on
w1 and w2, respectively. The optimal solution of this example is

x∗ = (120, 90, 0, 70, 50)

associated with τ1 = 2550 and τ2 = 2640.
In practical applications, the travel cost often contain errors, due to inaccurate data,

uncertain weather, etc. Such errors affect travel demand and flow. In order for the
optimal solution x∗ to be of practical use, it is very important to have some sensitivity
information of solution on the cost. Now we show that such information can be obtained
by using perturbation bounds in Theorem 2.11 in [CX].

It is easy to verify that M is a positive definite matrix, and x∗ is a solution of
LCP(M, q) with q = b− τ. Moreover, if x̃ is a solution of LCP(M +4M, q +4b), then
x̃ satisfies

((M +4M)x̃+ q +4b)T (x− x̃) ≥ 0, for allx ∈ Xd̃, (0.4)

where d̃ = (d̃1, d̃2) with d̃1 = x̃1 + x̃2 + x̃3 and d̃2 = x̃4 + x̃5.
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Suppose that the matrix and vector in the cost function c(x) have perturbations

4M = ²M

⎛⎜⎜⎜⎜⎜⎝
1 0 0 1 0
0 1 0 0 1
0 0 1 0 0
1 0 0 1 0
0 1 0 0 1

⎞⎟⎟⎟⎟⎟⎠ and 4b = ²b

⎛⎜⎜⎜⎜⎜⎝
1
1
1
1
1

⎞⎟⎟⎟⎟⎟⎠ .

Since

k(M +MT

2
)−1k2 ≤ 0.1124 and k4Mk2 ≤

√
5k4Mk∞|²M | ≤ 2

√
5|²M |,

by Theorem 2.11 in [CX], we obtain that for perturbation travel cost M + 4M and
b+4b with

|²M | <
1

0.1124× 2
√
5

the corresponding perturbation traffic flow x̃ satisfies

kx̃− x∗k2 ≤ α2(M)
2k(−q)+k2k4Mk2 + α2(M)k4bk2

≤ 2
√
5α2(M)

2k(−q)+k2|²M |+
√
5α2(M)|²b|

=: 4xbd,

where

α2(M) =
0.1124

1− 0.1124× 2
√
5|²M |

and k(−q)+k2 = kτ − bk2 ≤ 3073.7.

Moreover, the corresponding perturbation demand satisfies

kd̃− dk∞ ≤ 3kx̃− x∗k∞ ≤ 3kx̃− x∗k2 =: 4dbd.

Table 3. Perturbation bounds of Example 3

²M ²q kx̃− x∗k2 4xbd 4dbd

0.0 1.0e-3 1.1117e-4 2.5134e-4 7.5401e-4

1.0e-3 0.0 0.0193 0.1738 0.5215

1.0e-3 1.0e-3 0.0195 0.1741 0.5223

-1.0e-2 -1.0e-2 0.1948 1.7568 5.2704

Note that travel cost functions in many traffic equilibrium problems have the form:
c(x) = Mx + b, where M is a positive definite matrix. Analysis in this example can be
extended to general cases. Moreover, the perturbation bounds are easy to compute.

Remark Theoretical analysis and numerical results show that the new perturbation
bounds for the P-matrix LCP are rigorous, which improve previous perturbation bounds
significantly. Moreover, β(M)kMk is the first measure closely related to the condition
number κ(M) for the sensitivity of the solution of the P-matrix LCP.
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