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Abstract. The EDIIS (Energy Direct Iteration on the Iterative Subspace) algorithm was designed to globalize Anderson3
acceleration, a method for improving the performance of fixed point iteration. The motivating application is electronic structure4
computations. In this paper we prove a convergence result for that algorithm and illustrate the theory with a computational5
example.6
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1. Introduction. The purpose of this paper is to analyze the convergence of the EDIIS (Energy Direct9

Inversion on the Iterative Subspace) algorithm [21]. EDIIS is a modification of Anderson acceleration [1] or10

the DIIS (Direct Inversion on the Iterative Subspace) method [21, 22, 34, 37]. EDIIS relaxes the need for a11

sufficiently accurate initial iterate. EDIIS is the default solver for the SCF (self consistent field) iteration in12

the widely-used Gaussian [12] quantum chemistry code. We prove convergence from any starting point in13

a convex set in which the fixed point map is a contraction and then analyze local convergence. Our local14

convergence is an improvement of the result in [41] and applies to both EDIIS and Anderson acceleration.15

We will begin this introductory section with a review of Anderson acceleration and some of the recent16

convergence results. We will then describe the EDIIS algorithm. In § 2 we prove our convergence results.17

Finally, in § 3 we will report on a computation which both illustrates the theory and, as is also done in [21],18

shows how the convergence speeds for EDIIS and Anderson acceleration, while identical in theory, can differ19

significantly in practice.20

Our notational convention is that vectors and vector-valued functions in RN are in bold. Scalars and21

elements of infinite dimensional spaces (eg integral operators and the functions acted upon by those operators)22

are in the usual italic math font.23

Anderson acceleration [1] is an iterative method for fixed point problems of the form24

(1.1) u = G(u),25

where u ∈ RN and G : RN → RN . The method was designed to accelerate Picard or fixed point iteration i.26

e.27

(1.2) uk+1 = G(uk).28

Anderson acceleration was originally designed for integral equations and has been widely used in electronic29

structure computations (see [9] and many references since then) and is now very common in that field.30

Anderson acceleration is essentially the same as Pulay mixing [32,33], DIIS [21,22,34,37], nonlinear GMRES31

[4, 25, 30, 45]. Other applications include nuclear reactor design [16, 42], stiff dynamics [13], hydrology [24],32

and fluid-structure interaction [10,15,23] where the method is called interface quasi-Newton.33

The analysis of Anderson acceleration is far from complete. In this paper we assume, as do all theoretical34

results about this algorithm, that the map G is a contraction. In practice, however, Anderson acceleration35

does very well for problems in which G is either definitely not a contraction [41] or not provably a contraction.36

The results here do not explain those cases.37

Anderson acceleration was designed for a problem where Newton’s method is not practical because38

obtaining approximate Jacobians or Jacobian-vector products is too costly. One should expect that Newton’s39
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2 Chen et al

method would perform better when derivative information can be had at reasonable cost and we have40

certainly found that to be the case in our own recent work [16]. Anderson iteration maintains a history of41

residuals42

F(u) = G(u)− u43

of size at most m+ 1, where the depth m is an algorithmic parameter. When m is important, we will call44

the iteration Anderson(m). Anderson(0) is Picard iteration by definition.45

The formal description in Algorithm 1 is most convenient for analysis and exposition, but not for46

implementation. We refer to [7, 38,39,41,43,44] for examples of efficient implementations.47

Algorithm 1 Anderson Acceleration

anderson(u0,G,m)

u1 = G(u0); F0 = G(u0)− u0

for k = 1, . . . do
Choose mk ≤ min(m, k)
Fk = G(uk)− uk
Minimize ‖

∑mk
j=0 α

k
jFk−mk+j‖ subject to

∑mk
j=0 α

k
j = 1

uk+1 =
∑mk
j=0 α

k
jG(uk−mk+j)

end for

The iteration uses the most recent m + 1 residuals F(uj) for k −mk ≤ j ≤ k where mk ≤ min(k,m).48

The key step in the iteration is solving the optimization problem49

(1.3) Minimize

∥∥∥∥mk∑
j=0

αkjF(uk−mk+j)

∥∥∥∥ subject to

mk∑
j=0

αkj = 1,50

for the coefficients {αkj }.51

Any vector norm can be used in the optimization problem with no change in the convergence theory [41].52

In particular the optimization problem for the coefficients in either the `1 or `∞ norms can be formulated as53

a linear programming problem [8]. The optimization problem is easier to solve if one uses the `2 norm and54

that is standard practice. In this case optimization problem for the coefficients can be expressed as a linear55

least squares problem and solved very inexpensively. One way to do this is to solve the linear least squares56

problem57

(1.4) Minimize‖F(uk) +

mk−1∑
j=0

αkj (F(uk−mk+j)− F(uk))‖22,58

for {αkj }
mk−1
j=0 . Then one recovers αkmk by59

αkmk = 1−
mk−1∑
j=0

αkj .60

The choice of mk is, in the original form, simply min(m, k). One can adapt mk as the iteration progresses61

to, for example, enforce well-conditioning of the linear least squares problem (1.4) [39,44].62

One can also [11, 31, 34, 35, 44] show that Anderson acceleration is related to multisecant quasi-Newton63

methods or, in the case of linear problems, GMRES. None of these results lead to a convergence proof, even in64

the linear case, unless the available storage is large enough to allow GMRES to take a number of iterations65

equal to the dimension of the problem. The recent work of one of the authors and his students [39–41]66

contains the first convergence theory for Anderson acceleration as it is applied in practice.67

1.1. Convergence Theory. Theorem 1.1 is one of the convergence results from [41]. That paper also68

has results for several special cases. We assume that G is a contraction with contractivity constant c ∈ (0, 1)69

in a closed set D ⊂ RN ,70

(1.5) ‖G(u)−G(v)‖ ≤ c‖u− v‖71
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EDIIS 3

for all u,v ∈ D. The contraction mapping theorem implies that G has a unique fixed point u∗ ∈ D. As is72

standard, we let e = u− u∗ and make the assumption from [41] on the smoothness of G and the Anderson73

iteration coefficients.74

The convergence of the Picard iteration for a contraction map is q-linear [19] with q-factor c i. e.75

‖ek‖ ≤ c‖ek−1‖.76

We will show in this paper that Anderson acceleration is r-linear with r-factor c, which means77

‖ek‖ = O(ck).78

Assumption 1.1. G is a Lipschitz continuously differentiable in the ball79

B(r̂) = {u | ‖e‖ ≤ r̂} ⊂ D,80

for some r̂ > 0.81

There is Mα such that for all k ≥ 082
mk∑
j=0

|αkj | ≤Mα.83

The differentiabilty assumption is needed in the analysis, but not in the formulation or implementation84

of the algorithm. Our convergence result in § 2.2 relaxes the assumption to continuous differentiability.85

Theorem 1.1. [41] Let Assumption 1.1 hold and let c < r̂ < 1. Then if u0 is sufficiently close to u∗,86

the Anderson iteration converges to u∗. In fact, for all k ≥ 0,87

(1.6) ‖F(uk)‖ ≤ r̂k‖F(u0)‖ and ‖ek‖ ≤
(

1 + c

1− c

)
r̂k‖e0‖.88

The interpretation of this result is that if the initial data are sufficiently good, then the r-factor for Anderson89

iteration is no worse than the q-factor of Picard iteration as predicted by the contractivity constant c. While90

r-linear convergence is weaker than q-linear, Anderson acceleration is often faster than Picard iteration in91

practice. The requirement that the initial iterate be near the solution is also meaningful in practice [36,46,47]92

and motivated the EDIIS algorithm [21] which is the subject of this paper.93

Both Picard iteration and Anderson acceleration can perform better than the prediction (see § 3). In94

practice, Anderson acceleration is often significantly better than Picard iteration, but there is no theory that95

explains this under practical (i. e. very limited storage) operating conditions.96

1.2. The EDIIS Algorithm. Anderson acceleration performs poorly for some applications. One97

example is electronic structure computations for metallic systems where the HOMO-LUMO gap is small98

and a good initial iterate is difficult to obtain. In this case both Picard iteration and Anderson acceleration99

perform poorly [21]. In such cases one can sometimes use a small mixing parameter to ensure convergence,100

especially when the initial iterate is poor. However, a small mixing parameter may degrade the performance101

of the iteration especially when near the solution. The role of the damping parameter β in Picard iteration102

is simple damping103

uk+1 = (1− β)uk + βG(uk).104

If one applies EDIIS or Anderson acceleration to105

Gβ(u) = (1− β)u + βG(u).106

then [40] one obtains107

uk+1 = (1− β)

mk∑
j=0

αkjuk−mk+j + β

mk∑
j=0

αkjG(uk−mk+j),108

which is how damping is done in Anderson acceleration [1].109
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4 Chen et al

One attempt to solve these problems for small systems is the EDIIS algorithm from [21]. In [21] the110

authors also formulated the fixed point problem to directly minimize energy, hence the name of the method,111

but that does not affect the convergence analysis in this paper.112

EDIIS differs from Anderson acceleration by imposing a nonnegativity constraint on the coefficients. So,113

the optimization problem becomes114

(1.7) Minimize ‖
mk∑
j=0

αkjFk−mk+j‖ subject to

mk∑
j=0

αkj = 1, αkj ≥ 0.115

In [21] the authors present an example where EDIIS does well and both Picard and Anderson acceleration116

fail and another example where Anderson acceleration is successful and EDIIS, while converging, does not117

perform as well. We present another such example in § 3. One reason why EDIIS might perform worse than118

Anderson acceleration could be that the optimization problem (1.7) for EDIIS has a more restricted feasible119

set and therefore a larger optimal value.120

2. Convergence Results. Our global convergence is Theorem 2.1. The proof does not require differ-121

entiability, but the convergence speed estimate is very pessimistic with an r-factor of c1/(m+1). We follow122

the global theorem with a local theorem that shows how the convergence behavior becomes locally r-linear123

with r-factor c, improving on the local results in [41].124

2.1. Global Convergence.125

Theorem 2.1. Let G be a contraction on a convex set D ⊂ RN with contractivity constant c. Let u∗ be126

the unique fixed point of G in D. Then for any u0 ∈ D, EDIIS(m) converges to u∗ r-linearly with r-factor127

ĉ = c1/(m+1).128

In fact,129

(2.1) ‖ek‖ ≤ ĉk‖e0‖.130

Proof. The proof does not use the optimality properties of the coefficients and only requires that the131

iteration {uk} have the form132

(2.2) uk+1 =

mk∑
j=0

αkjG(uk−mk+j),133

where mk ≤ m, αkj ≥ 0, and
∑mk
j=0 α

k
j = 1.134

We induct on k. Clearly (2.1) holds for both mk = 0, by definition, and k = 1,mk = 0 because the135

iteration in that case is a single Picard iteration (i. e. one step of Anderson(0)). Assume that the result136

holds for k ≤ K. Then (2.2) and
∑mK
j=0 α

K
j = 1 imply that137

eK+1 =

mK∑
j=0

αKj (G(uK−mK+j)− u∗).138

Note that since αKj ≥ 0,
∑mK
j=0 α

K
j = 1, ĉ < 1, and mK ≤ m, we have139

mK∑
j=0

αKj ĉ
K−mK+j ≤ ĉK−m.140

Hence141

‖eK+1‖ ≤
∑mK
j=0 α

K
j ‖G(uK−mK+j)− u∗‖

≤
∑mK
j=0 α

K
j c‖uK−mK+j − u∗‖

≤ c
∑mK
j=0 α

K
j ĉ

K−mK+j‖e0‖ ≤ cĉK−m‖e0‖ ≤ ĉK+1(cĉ−m−1)‖e0‖ = ĉK+1‖e0‖.142
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Theorem 2.1 implies that for any δ > 0 there is K such that all iterations {uk}k≥K are in the set143

B(δ) = {u | ‖u− u∗‖ ≤ δ}.144

Hence, starting an Anderson acceleration iteration after sufficiently many EDIIS iterations will result in145

local convergence at the rate predicted by Theorem 1.1, which is better than (2.1) since r̂ can be arbitriarly146

near c and does not depend on m. However, it is not clear how to decide when to restart. The main result147

in § 2.2, Theorem 2.2, applies to both EDIIS and Anderson acceleration, generalizes the local convergence148

result from [41] (Theorem 1.1), and says that one can simply continue with the EDIIS iteration and the local149

convergence estimate for Anderson acceleration will hold.150

2.2. Local Convergence. Theorem 2.2 is the local convergence result. The theorem generalizes the151

result in [41] by both weakening the assumptions and improving the r-factor.152

We will assume that an iteration begins with a history that lies in B(δ) for δ sufficiently small. This153

history could be either from the EDIIS iteration or from the Anderson acceleration iteration itself. Hence154

the assumption covers not only EDIIS but also allows us to improve the convergence theory from [41]. We155

will show that the residuals converge r-linearly to zero with an r-factor of c. Formally our assumption is156

Assumption 2.1. G is a continuously differentiable contraction on D ⊂ RN with contractivity constant157

c and u∗ is the unique fixed point of G in D.158

The iteration begins with {ul}ml=0 ⊂ B(δ) ⊂ D. There are real {αkj }
mk
j=0 with 0 ≤ mk ≤ min(m, k) such159

that160
mk∑
j=0

αkj = 1,161

162

(2.3) uk+1 =

mk∑
j=0

αkjG(uk−mk+j),163

and164

(2.4) ‖
mk∑
j=0

αkjF(uk−mk+j)‖ ≤ ‖F(uk)‖.165

Finally, there is ĉ ∈ (c, 1) so that166

(2.5) ‖F(ul)‖ ≤ ĉl‖F(u0)‖, for 0 ≤ l ≤ m.167

Theorem 2.1 implies that Assumption 2.1 will hold after sufficiently many EDIIS iterations. In the168

theorem there is no history if m = 0 and in that case the iteration is Picard iteration. While we are169

motivated by a local iteration from the EDIIS algorithm, the local theory does not require that the coefficients170

be nonnegative.171

Assumption 2.1 weakens the ones in [41] in two ways. The first is that we no longer assume that G is172

Lipschitz continuously differentiable. The second is that we do not assume that the coefficients {αkj } come173

from any particular optimization problem, only that the linear combination of residuals has norm no larger174

than that of the most recent residual.175

The idea of the analysis is that as the iteration converges, the upper bound for the r-factor will approach176

c and therefore the r-factor is no larger than c. In the case where there is no history, this fact was implicit in177

the results from [41]. Adding the history makes the bookkeeping more difficult and the proof of Theorem 2.2178

must account for that.179

Theorem 2.2. Let Assumption 2.1 hold. Assume that there is Mα such that180

(2.6)

mk∑
j=0

|αkj | ≤Mα,181
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for all k ≥ 0. Then if δ is sufficiently small, the iteration given by (2.3) and (2.4) converges to u∗ and182

(2.7) lim sup
k→∞

(
‖F(uk)‖
‖F(u0)‖

)1/k

≤ c.183

Proof. Let 0 < ε < ĉ− c. We will show that for ‖e0‖ sufficiently small,184

(2.8) lim sup
k→∞

(
‖F(uk)‖
‖F(u0)‖

)1/k

≤ c+ ε.185

This will complete the proof since ε is arbitrary and we can restart the proof once we have m vectors in the186

history which are near enough to u∗ to reduce ε further.187

We induct on k. Define L = (c/ĉ)m. We will show that188

(2.9) ‖F(uk)‖ ≤ L(c+ ε)k‖F(u0)‖,189

for all k. Our assumption on the history that ‖F(ul)‖ ≤ ĉl‖F(u0)‖ implies that (2.9) holds for 0 ≤ k ≤ m.190

Now suppose that (2.9) holds for all 0 ≤ l ≤ k with k ≥ m.191

We will establish the bound for k + 1. The analysis has three steps. We first set δ small enough for the192

iteration to remain in D. We then derive an estimate for F(uk+1) and finally use that estimate to continue193

the induction.194

Step 1, initialization of δ: Since G′ is continuous in D, there is a nondecreasing function ρ ∈ C[0,∞)195

with ρ(0) = 0 so that196

(2.10) ‖G′(u)−G′(u∗)‖ ≤ ρ(‖e‖)197

for all u ∈ D. This implies that for all u ∈ D,198

(2.11) G(u) = G(u∗) +

∫ 1

0

G′(u∗ + te)e dt = u∗ + G′(u∗)e + ∆(e),199

where200

‖∆(e)‖ ≤ ρ(‖e‖)‖e‖.201

Contractivity of G implies that202

‖F(u)‖/(1 + c) ≤ ‖e‖ ≤ ‖F(u)‖/(1− c).203

Assumption 2.1 implies that204

B(δ) ∩ {u | ‖F(u)‖ ≤ ‖F(u0)‖} ⊂ D.205

Reduce δ if necessary so that206

(2.12) ρ

(
MαL(c+ ε)k−mδ

1 + c

1− c

)
≤ cm+1(1− c)

2Mα

(
1− c

c+ ε

)
.207

This implies that208

(2.13) wk =

mk∑
j=0

αkjuk−mk+j ∈ D209

for sufficiently small δ because210

(2.14)
‖wk − u∗‖ ≤

∑mk
j=0 |αkj |‖ek−mk+j‖

≤MαL(c+ ε)k−m‖F(u0)‖/(1− c) ≤MαL(c+ ε)k−mδ(1 + c)/(1− c).
211
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Step 2, estimation of F(uk+1): We may write for k ≥ m− 1,212

F(uk+1) = G(uk+1)− uk+1

= G(uk+1)−G(
∑mk
j=0 α

k
juk−mk+j) + G(

∑mk
j=0 α

k
juk−mk+j)− uk+1.

213

We will estimate the two parts of the sum214

Ak = G(uk+1)−G(

mk∑
j=0

αkjuk−mk+j)215

and216

Bk = G(

mk∑
j=0

αkjuk−mk+j)− uk+1217

separately.218

Using only contractivity of G and (2.4) we have219

(2.15)

‖Ak‖ = ‖G(uk+1)−G(
∑mk
j=0 α

k
juk−mk+j)‖

≤ c‖uk+1 −
∑mk
j=0 α

k
juk−mk+j‖

= c‖
∑mk
j=0 α

k
j (G(uk−mk+j)− uk−mk+j)‖

= c‖
∑mk
j=0 α

k
jF(uk−mk+j)‖ ≤ c‖F(uk)‖.

220

We now estimate Bk. Using (2.12) we have for all u ∈ D with221

‖e‖ ≤MαL(c+ ε)k−mδ(1 + c)/(1− c)222

223

(2.16)

‖∆(e)‖ ≤ ρ(‖e‖)‖F(u)‖/(1− c)

≤ ρ(MαL(c+ ε)k−mδ(1 + c)/(1− c))‖F(u)‖/(1− c)

≤ cm+1

2Mα

(
1− c

c+ε

)
‖F(u)‖.

224

The final stage in the proof is to show that, reducing δ if needed,225

(2.17) ‖Bk‖ ≤ L(c+ ε)k+1
(
1− c

c+ ε

)
‖F(u0)‖.226

Recall that227

Bk = G(
∑mk
j=0 α

k
juk−mk+j)− uk+1

= G(
∑mk
j=0 α

k
juk−mk+j)−

∑mk
j=0 α

k
jG(uk−mk+j).

228

We use (2.11) to obtain229

G(
∑mk
j=0 α

k
juk−mk+j) = G(wk) = u∗ + G′(u∗)

∑mk
j=0 α

k
j ek−mk+j + ∆(wk − u∗)

=
∑mk
j=0 α

k
j (u∗ + G′(u∗)ek−mk+j) + ∆(wk − u∗)

=
∑mk
j=0 α

k
jG(uk−mk+j) +

∑mk
j=0 α

k
j∆(ek−mk+j) + ∆(wk − u∗).

230
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Hence231

‖Bk‖ ≤
mk∑
j=0

|αkj |‖∆(ek−m+1)‖+ ‖∆(wk − u∗)‖.232

We will estimate terms separately. First233

(2.18)

∑mk
j=0 |αkj |‖∆(ek−m+1)‖ ≤ cm+1

2Mα

(
1− c

c+ε

)∑mk
j=0 |αkj |‖F(uk−mk+j)‖

≤ cm+1

2Mα

(
1− c

c+ε

)∑mk
j=0 |αkj |L(c+ ε)k−mk+j‖F(u0)‖

≤ cm+1

2

(
1− c

c+ε

)
L(c+ ε)k−mk‖F(u0)‖

≤ (L/2)(c+ ε)k+1
(
1− c

c+ε

)
‖F(u0)‖.

234

Finally, using (2.14) and (2.16),235

(2.19)

‖∆(wk − u∗)‖ ≤ ρ(‖wk − u∗‖)‖F(wk)‖/(1− c)

≤ ρ(MαL(c+ ε)k−mδ(1 + c)/(1− c))MαL(c+ ε)k−m‖F(u0)‖/(1− c)

≤ (L/2)(c+ ε)k+1
(
1− c

c+ε

)
‖F(u0)‖.

236

Adding the two estimates (2.18) and (2.19) leads to (2.17).237

Step 3, continuation of the induction: Combining (2.15), (2.17), (2.9), and the induction hypothe-238

ses, we have239

(2.20)

‖F(uk+1)‖ ≤ c‖F(uk)‖+ L(c+ ε)k+1
(
1− c

c+ε

)
‖F(u0)‖

≤
(
Lc(c+ ε)k + L(c+ ε)k+1

(
1− c

c+ε

))
‖F(u0)‖

≤ L(c+ ε)k+1‖F(u0)‖.

240

This implies (2.8), which in turn implies (2.7) because ε is arbitrary.241

Theorem 2.2 and nonsingularity of F′(u∗) also imply r-linear convergence of the errors with r-factor c.242

This extends and sharpens (1.6).243

Corollary 2.3. Let the assumptions of Theorem 2.2 hold. If F′(u∗) is nonsingular then244

(2.21) lim sup
k→∞

(
‖ek‖
‖e0‖

)1/k

≤ c.245

Proof. We will use Lemma 5.2.1 from [19], which states that if u is sufficiently near u∗ and F′(u∗) is246

nonsingular, then247

‖e‖
‖e0‖

≤ 4‖F′(u∗)‖‖F′(u∗)−1‖ ‖F(u)‖
‖F(u0)‖

.248

Hence249

lim sup
k→∞

(
‖ek‖
‖e0‖

)1/k

≤ lim
k→∞

(
4‖F′(u∗)‖‖F′(u∗)−1‖|

)1/k
lim sup
k→∞

(
‖F(uk)‖
‖F(u0)‖|

)1/k

≤ c,250

which is (2.21).251
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3. Numerical Example. We will use an example [41] to show how the actual performance of EDIIS252

and Anderson acceleration can differ, even though the theoretical limiting convergence estimates are identical.253

Another point of this section is that the solver for the optimization problem can significantly affect the results.254

The results in [21] also illustrate this point. Our example is simple enough to directly compare the255

iteration histories for Picard iteration, EDIIS, and Anderson with the worst-case prediction given by the256

contractivity constant. We find that when Anderson acceleration performs well, as it does in this exam-257

ple, EDIIS offers no advantage. Moreover, the additional constraint on the optimization problem for the258

coefficients leads to slower convergence, exactly matching Picard iteration in this case.259

The optimization problem for EDIIS requires more care than the linear least squares problem one must260

solve for Anderson acceleration. The reason for this is that one cannot simply use a QR factorization261

to solve (1.4). Instead one must apply a more sophisticated iterative solver. The approach of [21] is a262

direct examination of the boundary of the feasible simplex, which is not practical for a depth much greater263

than m = 3. Since m is small in practice, expressing the optimization problem as a bound-constrained264

quadratic program is an efficient alternative. [26, 27] survey the literature on this topic. For example a265

bound-constrained quadratic programming code such as the MINQ [29] code is a reasonable choice. However266

this approach squares the condition number and can (and did in our testing) result in a singular or nearly267

singular KKT system and failure of the optimization code’s internal linear solvers. The method of [6], while268

still squaring the condition number, is more robust and terminated without error for this example. The269

classic method from [14] uses an active set method and the QR factorization to avoid using the normal270

equations. The approach in [14] performed better in the example here, where the least squares coefficient271

matrix for the optimization problem is ill-conditioned [41].272

The example is the midpoint rule discretization of the Chandrasekhar H-equation [3, 5].273

(3.1) F(H)(µ) = H(µ)−
(

1− ω

2

∫ 1

0

µH(ν) dν

µ+ ν

)−1
= 0.274

We seek a solution H∗ ∈ C[0, 1]. When the parameter ω is important we will write H∗ as a function H∗(µ, ω)275

of both µ and ω.276

The integral equation and its midpoint discretization share the properties that the fixed point map277

G(H)(µ) =

(
1− ω

2

∫ 1

0

µH(ν) dν

µ+ ν

)−1
278

is a contraction for 0 ≤ ω < 1, but not for ω = 1. The Fréchet derivative (and the Jacobian for the discrete279

case) is singular at the solution for ω = 1, which is a simple fold singularity [17,28].280

In this section we will compare the performance of Picard iteration, Anderson acceleration, and EDIIS281

for the case ω = .5 on an N = 100 point mesh. We terminated the iteration when the residual had decreased282

by a factor of 10−12.283

One interesting result from [41] is that Anderson(m) is more efficient than Newton’s method for this284

example, even in the singular case. In the context of this paper it is important to note that Picard iteration285

converges faster than one would expect from estimating the contractivity parameter by the spectral radius286

of the Fréchet derivative of G at the solution, which is a lower bound for the operator norm of G. From [41]287

ρ(G′(H∗)) = 1−
√

1− ω ≈ .293.288

However [2,18,20], the solution is analytic in ω and Picard iteration exploits that property to obtain q-linear289

convergence with q-factor ≤ ρ(G′(H∗)) and much less for small ω. In fact, if290

H∗(µ, ω) =

∞∑
m=0

ωmam(µ)291

is the Taylor expansion of H∗ in ω then the coefficient functions {am(µ)} are nonnegative for 0 ≤ µ ≤ 1.292

Moreover the series converges for ω = 1. Hence, if Hk is the kth Picard iteration and H0 ≡ 0, then for all293

k ≥ 0 and ω, µ ∈ [0, 1],294

Hk(µ, ω) ≤ Hk+1(µ, ω) ≤ H∗(µ, ω).295
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All of the above statements about the singularity at ω = 1, the spectral radius of the Fréchet derivative,296

and the performance of Picard iteration apply to the discrete problem297

(3.2) G(h)i =

1− ω

2N

N∑
j=1

hjµi
µi + µj

−1 , 1 ≤ i ≤ N.298

In (3.2) µi = (i − 1/2)/N is the ith quadrature node for the N point composite midpoint rule, the vector299

h∗ is the solution of the discrete problem h = G(h), G(h∗)i is the ith component of G(h∗), and the ith300

component of h∗ is h∗i ≈ H∗(µi).301

As noted above, the optimization problem (1.7) for EDIIS is harder than the one for Anderson accelera-302

tion and the choice of solver can be important. We compare the method of [14], as implemented in the Matlab303

lsqlin code with the ‘active-set’ option, with the method from [6], as implemented with ‘interior-point’ op-304

tion in lsqlin. The method of [6] uses the normal equations and did exhibit problems with ill-conditioning.305

The computations were done on an Apple Macintosh running MAC OS 10.13.6 with Matlab 2017a. The306

‘active-set’ option was removed with Matlab 2017b. The codes that generated Table 3.1 and Figure 3.1 are307

supplementary materials for this paper.308

In the left plot of Figure 3.1 we compare Picard iteration, Anderson acceleration, and EDIIS with the309

active-set option (EDIIS-A) and the interior-point option (EDIIS-I). The depth was m = 3 for the Anderson310

and EDIIS computations. Picard iteration and EDIIS-A are identical. The optimization problem for EDIIS311

cannot match the results from Anderson acceleration, which has fairly large negative coefficients. Rather,312

EDIIS-A finds that the coefficients for Picard iteration are optimal.313

Table 3.1 compares ρ(G′(H∗)) to the r-factors of the residuals for Anderson acceleration, Picard iteration,314

and EDIIS. We estimate the r-factors by315 (
‖F(hk)‖
‖F(h0)‖

)1/k

316

where the final iteration upon termination is hk. Note that, as discussed above, the q-factor for Picard317

iteration is smaller than the spectral radius. Anderson acceleration also does better than the theory predicts318

and, in fact, is more efficient than Newton-GMRES [41].319

EDIIS-I is the only one of the methods which is sensitive to the ill-conditioning of the optimization320

problem. We examined this sensitivity by solving the problem twice, once with no limit on the condition321

number and again by reducing mk if necessary to limit the condition number to 105. This has no effect322

on EDIIS-A and slightly slows Anderson acceleration down. We show the residual histories in Figure 3.1,323

where one can clearly see the effect of limiting the condition number. As reported in [41], the optimization324

problem becomes more ill-conditioned as the iteration progresses. The figures show that the convergence of325

EDIIS-I degrades at the 6th iteration, but to a lesser degree when the condition number is limited. Note326

that the estimated r-factor seems to stabilize near the end and is, in the condition number limited case, back327

to Picard iteration for the final three iterations, albeit from a worse starting point.328

Table 3.1
Convergence r-Factors

Anderson Picard EDIIS-A EDIIS-I ρ(G′(H∗))
No condition limit

1.06e-02 1.72e-01 1.72e-01 2.62e-01 2.93e-01
Condition limit 105

2.59e-02 1.72e-01 1.72e-01 2.62e-01 2.93e-01

4. Conclusions. The EDIIS algorithm was designed to improve the global convergence properties of329

the DIIS algorithm, which is also known as Anderson acceleration. We prove global convergence of the330

iteration and prove a local convergence result that applies to both EDIIS and Anderson acceleration and331

improves the results in [41]. We observe, as did the inventors of the method [21], that the unmodified version332

of Anderson acceleration can have better local convergence in practice.333
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Fig. 3.1. Residual histories for ω = .5
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