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Abstract The dynamic Nash equilibrium problem with shared constraints
(NEPSC) involves a dynamic decision process with multiple players, where not
only the players’ cost functionals but also their admissible control sets depend
on the rivals’ decision variables through shared constraints. For a class of the
dynamic NEPSC, we propose a differential variational inequality formulation.
Using this formulation, we show the existence of solutions of the dynamic
NEPSC, and develop a regularized smoothing method to find a solution of it.
We prove that the regularized smoothing method converges to the least norm
solution of the differential variational inequality, which is a solution of the
dynamic NEPSC as the regularization parameter λ and smoothing parameter
µ go to zero with the order µ = o(λ). Numerical examples are given to illustrate
the existence and convergence results.

Keywords generalized Nash game · dynamic game · monotone variational
inequality · smoothing · regularization

1 Introduction

The dynamic Nash equilibrium problem involves a decision process with mul-
tiple players, where each player solves an optimal control problem with his
own cost function and strategy set. Each player’s cost function is dependent
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on all players’ variables but the strategy set is only dependent on the player’s
own variables described by the state dynamic and admissible control set. How-
ever, in many real world problems, each player’s cost function and strategy
set are both dependent on his rivals’s variables, which yield a new model: the
dynamic Nash equilibrium problem with shared constraints (NEPSC). Pang
and Stewart [29] use the differential quasi variational inequality to study a
class of dynamic NEPSC in which only control sets are coupled and the state
dynamics are uncoupled across players. Motivated by the work of Pang and
Stewart in [29], in this paper, we study such class of dynamic NEPSC that
have a common constraint function for all players’ control sets. To find cer-
tain solutions of the dynamic NEPSC, we consider the following differential
variational inequality (DVI)

ẋ(t) = F (t, x(t), u(t))
u(t) ∈ SOL(U, Ψ(t, x(t), ·))

0 = Γ (x(0), x(T )),
(1)

where F : R × R2n × Rm → R2n, U ⊆ Rm, Ψ : R × R2n × U → Rm,
Γ : R2n ×R2n → R2n, and

SOL(U, Ψ(t, x(t), ·)) := {u ∈ U | (v − u)TΨ(t, x, u) ≥ 0, ∀v ∈ U},

is the solution set of the VI associated with the set U and the parameterized
mapping Ψ(t, x(t), ·) : U → Rm and fixed t ∈ [0, T ] and x ∈ R2n.

The DVI is a new modeling paradigm for many important applications in
engineering and economics which presents dynamics, variational inequalities,
equilibrium conditions in a systematic way [3,19,21,25,29,35]. To the best of
our knowledge, the DVI formulation for the dynamic NEPSC has not yet been
studied. Comparing with the differential quasi variational inequality formula-
tion in [29], the DVI formulation is advantageous since it can be treated as a
differential inclusion, or a system of differential algebraic equations, or more
specifically as a system of ordinary differential equations (ODE), for which
there are abundant theory and algorithms available.

The static NEPSC can be regarded as a special case of the dynamic NEPSC
when the state variables are constant. Recently the static NEPSC has been in-
tensively studied due to many important applications arising from engineering
and economics, for instance, liberalized energy markets, global environment,
traffic assignment with side constraints and oligopoly analysis [13,14,20,22,
23,26,28,32]. It is known that a static NEPSC can have (possibly infinitely)
many solutions, and some solutions can be found via a static variational in-
equality (VI) when the cost functions and the strategy sets are convex [13,14,
22,23,26,34]. The VI approach for finding a solution of a static NEPSC has
attracted growing attention because there are rich theory and efficient algo-
rithms for solving VIs [16,31]. For instance, Wei and Smeers formulated an
oligopolistic electricity model as a static NEPSC and found a solution via its
VI formulation [34], Facchinei et al. proposed a semismooth Newton method
for a static NEPSC via its VI formulation [14], and Nabetani et al. proposed
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two parameterized VI approaches to solve a class of static NEPSC [26]. Re-
cently, Schiro et al. [33] presented a modified Lemake’s method to solve a class
of static affine NEPSC arising from a breadth of applications including en-
vironmental pollution games, rate allocation in communication networks and
strategic behavior in power markets.

The dynamic NEPSC provides a fundamental generalization of the static
NEPSC to consider some parameters and circumstances varying in the players’
strategies. The dynamic NEPSC appears frequently in realistic applications.
For example, let us consider a dynamic user equilibrium problem for traffic
networks studied in [35]. In a traffic network, the travelers choose their depar-
ture times and routes to minimize their generalized travel costs under a traffic
volume control scheme guaranteeing that the traffic volumes on specified links
do not exceed preferred levels. This problem can be formulated as a special dy-
namic NEPSC: dynamic user equilibrium problem with side constraints where
the side constraints characterize the restrictions on the traffic volumes.

Inspired by the VI approach for the static NEPSC, we apply the DVI ap-
proach to dynamic NEPSC where the cost functions and the strategy sets are
convex. A classic solution of the DVI is a pair (x(t), u(t)) where x is contin-
uously differentiable and u is continuous on [0, T ] such that the differential
equations and the constraints in the DVI are fulfilled for all t ∈ [0, T ]. How-
ever, in most cases, the DVI does not have a classic solution, and therefore we
have to seek the weak solution (x(t), u(t)), where x is absolutely continuous
and u is integrable on [0, T ] such that for all 0 ≤ s ≤ t ≤ T ,

x(t)− x(s) =

∫ t

s

F (τ, x(τ), u(τ))dτ,

and for almost all t ∈ [0, T ], u(t) ∈ SOL(U, Ψ(t, x(t), ·)). The latter implies
u(t) ∈ U holds almost everywhere and for any continuous functions v : [0, T ] →
U it holds ∫ T

0

[v(τ)− u(τ)]
T
Ψ(τ, x(τ), u(τ))dτ ≥ 0.

Solving the DVI is a challenging problem because it involves at each grid
a suitable selection of a set-valued mapping defining the dynamic, which ac-
tually needs solving a family of parameterized optimization problems without
standard constraint qualifications. Another difficulty is that the solution of
the DVI is usually non-smooth, and because of this we can not expect a high
order convergence if the ODE-integrators are just extended to the DVI in a
naive manner. Motivated by the availability of many powerful solvers for the
ODEs with smooth dynamics, we propose a regularized smoothing method for
solving the DVI. Namely, we use regularization and smoothing techniques for
the DVI, which give a standard ODE that has a unique classical solution and
can be efficiently solved by the existing high-order solvers. We establish the
convergence of the solutions of the ODEs to a solution of the dynamic NEPSC
when the regularization parameter λ and the smoothing parameter µ go to
zero with the order µ = o(λ). Moreover, we present some desired properties of
the limit solution.
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The remaining of this paper is organized as follows. In Section 2, we present
a detailed formulation of the dynamic NEPSC and reformulate it as a DVI. In
Section 3, we study the solvability of the DVI. In Section 4, we introduce the
regularized smoothing method and give the convergence analysis. In Section
5, we use the dynamic two-player zero sum game to illustrate the formulation
and the convergence of the regularized smoothing method.

2 Problem formulation

Consider a dynamic Nash equilibrium problem with N players. We denote by
yν ∈ Rnν and uν ∈ Rmν the ν-th player’s state and strategy variables, respec-
tively. The strategy is also called as action, decision or control. Collectively
write y = (yν)

N
ν=1 ∈ Rn, u = (uν)

N
ν=1 ∈ Rm, y−ν = (yν′)ν′ ̸=ν ∈ Rn−nν and

u−ν = (uν′)ν′ ̸=ν ∈ Rm−mν , where n =
∑N

ν=1 nν and m =
∑N

ν=1mν . When we
emphasize the ν-th player’s state and strategy variables, we use y = (yν , y−ν)
and u = (uν , u−ν) to represent y and u, respectively. For the ν-th player, we
denote

– the strategy set (admissible control set) by

Uν(u−ν) = {uν |hν(uν) ≤ 0, g(uν , u−ν) ≤ 0},

where hν(·) : Rnν → Rlν and g(·, u−ν) : R
nν → Rℓ;

– the initial state by y0ν ∈ Rnν ;
– the state dynamic by Θν(·, ·, ·) : R1+nν+mν → Rnν ;
– the cost functional by

θν(y, u) = ψν(y(T )) +

∫ T

0

φν(t, y(t), u(t))dt,

where ψν(·) : Rn → R and φν(·, ·, ·) : R1+n+m → R, and T > 0 is the
terminal time.

Writing θν(y, u) = θν(yν , y−ν , uν , u−ν), the solution (or called the equilibrium
point) of the dynamic NEPSC is a state-control pair (y∗, u∗) satisfying: for
fixed y∗−ν and u∗−ν , (y

∗
ν , u

∗
ν) is a solution of the following optimal control prob-

lem
min θν(yν , y

∗
−ν , uν , u

∗
−ν)

s.t. ẏν(t) = Θν(t, yν , uν)
yν(0) = y0ν
uν(t) ∈ Uν(u

∗
−ν(t)) for all most t ∈ [0, T ].

(2)

Note that without the shared constraint g(uν , u−ν) ≤ 0 in Uν(u−ν), (2) reduces
to the standard dynamic NEP. Write φν(t, y, u) = φν(t, yν , y−ν , uν , u−ν). Here
we make the following blanket assumptions on the smoothness and convexity
of functions in (2), which are fulfilled for many dynamic NEPSCs.
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Assumption 1 For any ν ∈ {1, . . . , N} suppose that ψν and each components
of hν and g(·, u−ν) are convex, and suppose that φν(t, ·, y−ν , ·, u−ν) and each
component of Θν(t, yν , ·) are convex and continuously differentiable for any
fixed t, y−ν and u−ν .

Define the Hamiltonian of player ν’s by

Hν(t, vν , y, u) = φν(t, y, u) + (vν)
T
Θν(t, yν , uν)

where vν is the adjoint variable of the ODE constraint in player ν’s con-
trol problem. By Bellman’s principle of optimality, (2) yields the constrained
Hamilton system

v̇ν(t) = −∇yνHν(t, vν(t), y(t), u(t))
ẏν(t) = Θν(t, yν(t), uν(t))
uν(t) ∈ argminzHν(t, vν(t), y(t), u−ν(t), z), s.t. z ∈ Uν(u−ν)
yν(0) = y0ν and vν(T ) = ∇yνψν(y(T )).

(3)

Under Assumption 1, Hν(t, vν , y, u−ν , uν) is convex in uν and the set Uν(u−ν)
is convex, so the minimization problem in (3) is equivalent to the VI: find
uν ∈ Uν(u−ν) such that

(z − uν)
T∇uνHν(t, vν , y, u−ν , uν) ≥ 0 ∀z ∈ Uν(u−ν). (4)

We denote the solution set of (4) by SOL(Uν(u−ν),∇uνHν(t, vν , y, u−ν , ·)).
Collectively write

Ψ(t, v, y, u) = (∇uνHν(t, vν , y, u))
N
ν=1

and

Γ (v(0), y(0), v(T ), y(T )) =

(
yν(0)− y0ν

vν(T )−∇yνψν(y(T ))

)N

ν=1

.

Concatenating (3) with (4) for ν = 1, . . . , N , we can formulate the dynamic
NEPSC (2) as the following differential quasi VI [29]

v̇(t) = (−∇yνHν(t, vν(t), y(t), u(t)))
N
ν=1 ,

ẏ(t) = (Θν(t, yν(t), uν(t)))
N
ν=1 ,

u(t) ∈ SOL(Ũ(u(t)), Ψ(t, v(t), y(t), ·))
0 = Γ (v(0), y(0), v(T ), y(T )),

(5)

where Ũ(u) =
∏N

ν=1 Uν(u−ν). Because of the complex structure of Ũ , it is
hard to analyze the solvability and the convergence of numerical algorithms
for solving (5). Here we propose a DVI formulation of the dynamic NEPSC
(2), instead of the quasi one. Define

U := {u ∈ Rm |hν(uν) ≤ 0, ν = 1, . . . , N, g(u) ≤ 0},

where g(u) = g(uν , u−ν) for ν = 1, . . . , N.
The following lemma states that the solvability of the VI implies the solv-

ability of the quasi VI, and justifies the DVI formulation of dynamic NEPSC
[13,14,34].
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Lemma 1 ([13]) For any fixed t, v(t) and y(t), we have

SOL(U, Ψ(t, v(t), y(t)), ·)) ⊆ SOL(Ũ , Ψ(t, v(t), y(t), ·)).

In the remainder of this paper, we will study the DVI formulation (1) of
the dynamic NEPSC (2), where

F (t, x(t), u(t)) =

(
(−∇yν

Hν(t, vν , y, u))
N
ν=1 ,

(Θν(t, yν , uν))
N
ν=1

)
and x(t) =

(
v(t)
y(t)

)
.

Here we call (y, u) as a feasible pair of the dynamic NEPSC (2) if hν(uν) ≤ 0,
g(u) ≤ 0, and ẏν(t) = Θν(t, yν(t), uν(t)) for ν = 1, . . . , N . The following theo-
rem characterizes the relation between the DVI (1) and the dynamic NEPSC
(2).

Theorem 1 Suppose that Assumption 1 holds. Let (v∗, y∗, u∗) be a weak solu-
tion of (1), and let Θν(t, yν , uν) be linear with respect to (yν , uν). Then (y∗, u∗)
is a solution of the dynamic NEPSC (2) in the following sense: for any feasible
pair (y, u) of (2), we have

θν(yν , y
∗
−ν , uν , u

∗
−ν) ≥ θν(y

∗
ν , y

∗
−ν , u

∗
ν , u

∗
−ν), ν = 1, . . . , N.

Proof Since ψν is convex and v∗ν(T ) = ∇yνψν(y
∗(T )), we have

ψν(yν(T ), y
∗
−ν(T ))− ψν(y

∗
ν(T ), y

∗
−ν(T )) (6)

≥ ⟨∇yνψν(y
∗(T )), yν(T )− y∗ν(T )⟩ = ⟨v∗ν(T ), yν(T )− y∗ν(T )⟩.

By the linearity of Θν we have

Θν(t, yν , uν)−Θν(t, y
∗
ν , u

∗
ν) = (∇yνΘν(t, y

∗
ν , u

∗
ν),∇uνΘν(t, y

∗
ν , u

∗
ν))

(
yν − y∗ν
uν − u∗ν

)
,

this yields

d
dt ⟨v

∗
ν , yν − y∗ν⟩ = ⟨v̇∗ν , yν − y∗ν⟩+ ⟨v∗ν , ẏν − ẏ∗ν⟩

= ⟨v̇∗ν , yν − y∗ν⟩+ ⟨v∗ν , Θν(t, yν , uν)−Θν(t, y
∗
ν , u

∗
ν)⟩

= ⟨v̇∗ν , yν − y∗ν⟩+ ⟨(v∗ν)T∇yνΘν(t, y
∗
ν , u

∗
ν), yν − y∗ν⟩

+⟨(v∗ν)T∇uν
Θν(t, y

∗
ν , u

∗
ν), uν − u∗ν⟩.

(7)

Noting
∇yνφν(t, y

∗
ν , y

∗
−ν , u

∗
ν , u

∗
−ν)

= ∇yνHν(t, y
∗
ν , y

∗
−ν , u

∗
ν , u

∗
−ν)− (v∗ν)

T∇yνΘν(t, y
∗
ν , u

∗
ν)

= −v̇∗ν − (v∗ν)
T∇yνΘν(t, y

∗
ν , u

∗
ν)

and
∇uνφν(t, y

∗
ν , y

∗
−ν , u

∗
ν , u

∗
−ν)

= ∇uνHν(t, y
∗
ν , y

∗
−ν , u

∗
ν , u

∗
−ν)− (v∗ν)

T∇uνΘν(t, y
∗
ν , u

∗
ν),

and noting that

⟨∇uνHν(t, y
∗
ν , y

∗
−ν , u

∗
ν , u

∗
−ν), uν − u∗ν⟩ ≥ 0
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holds for almost all t ∈ [0, T ] since (y, u) is feasible and (y∗, u∗) is a weak
solution of (1), by using (7) and considering that φν(t, ·, y−ν , ·, u−ν) is convex
and continuously differentiable, we have

φν(t, yν , y
∗
−ν , uν , u

∗
−ν)− φν(t, y

∗
ν , y

∗
−ν , u

∗
ν , u

∗
−ν)

≥ ⟨∇yνφν(t, y
∗
ν , y

∗
−ν , u

∗
ν , u

∗
−ν), yν − y∗ν⟩+ ⟨∇uνφν(t, y

∗
ν , y

∗
−ν , u

∗
ν , u

∗
−ν), uν − u∗ν⟩

= −⟨v̇∗ν , yν − y∗ν⟩ − ⟨(v∗ν)T∇yνΘν(t, y
∗
ν , u

∗
ν), yν − y∗ν⟩

+⟨∇uνHν(t, y
∗
ν , y

∗
−ν , u

∗
ν , u

∗
−ν), uν − u∗ν⟩ − ⟨(v∗ν)T∇uνΘν(t, y

∗
ν , u

∗
ν), uν − u∗ν⟩

= − d
dt ⟨v

∗
ν , yν − y∗ν⟩+ ⟨∇uνHν(t, y

∗
ν , y

∗
−ν , u

∗
ν , u

∗
−ν), uν − u∗ν⟩

≥ − d
dt ⟨v

∗
ν , yν − y∗ν⟩,

and therefore∫ T

0

[
φν(t, yν , y

∗
−ν , uν , u

∗
−ν)− φν(t, y

∗
ν , y

∗
−ν , u

∗
ν , u

∗
−ν)
]
dt

≥ −⟨v∗ν(T ), yν(T )− y∗ν(T )⟩.

Now, by this inequality and (6), we obtain

θν(yν , y
∗
−ν , uν , u

∗
−ν)− θν(y

∗
ν , y

∗
−ν , u

∗
ν , u

∗
−ν)

= ψν(yν(T ), y
∗
−ν(T ))− ψν(y

∗
ν(T ), y

∗
−ν(T ))

+

∫ T

0

[
φν(t, yν , y

∗
−ν , uν , u

∗
−ν)− φν(t, y

∗
ν , y

∗
−ν , u

∗
ν , u

∗
−ν)
]
dt ≥ 0.

This completes the proof.

3 Solvability of the DVI formulation

The DVI (1) is solvable if we can find an initial value x0 such that the initial
value problem of the differential inclusion ẋ(t) = F (t, x(t), u(t))

u(t) ∈ SOL(U, Ψ(t, x, ·))
x(0) = x0

has a solution (x(t), u(t)) fulfilling the boundary value condition of the DVI
(1) formulated from the dynamic NEPSC: Γ (x(0), x(T )) = 0. We can see that
when T = 0, this condition has the form

Γ (x, x) =

(
yν − y0ν

vν −∇yνψν(y)

)N

ν=1

= 0,

which has a unique solution

x̂0 =

(
(∇yνψν(y

0))Nν=1

y0

)
,

where y0 = (y0ν)
N
ν=1. Moreover, the Jacobian is of full rank:

∇xΓ (x̂
0, x̂0) =

(
0 I
I −(∇2

yνyν′ψν(y
0))Nν,ν′=1

)
. (8)
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Denote S(t, x) := SOL(U, Ψ(t, x, ·)). We impose the following assumption for
guaranteeing the solvability of (1).

Assumption 2 (A1) The solution set S(0, x̂0) is nonempty and bounded.
(A2) The function Ψ(t, x, ·) is monotone.

Remark 1 Assumption (A1) is fulfilled in many practical settings. For instance,
in a mixed strategy game with shared constraints, the admissible control set
often has the form

Uν(u−ν) = {uν ∈ Rmν |uν ≥ 0, eTu = 1 },

where e = (1, . . . , 1)T , which gives U = {u ∈ Rm| u ≥ 0, eTu = 1}. In such a
case, S(0, x̂0) is nonempty, convex and bounded.

Notice that S(t, x) is closed and convex for any fixed (t, x) when Ψ(t, x, ·)
is monotone. See Theorem 2.3.5 [16].

Remark 2 Assumption (A2) means that the DVI (1) is a differential monotone
variational inequality, which has been used for many applied problems, and is
called linear passive complementarity systems when the VI in (1) is a mono-
tone linear complementarity problem [4,5,19,29]. An optimal control problem
with joint control and state constraints can be formulated as a differential
monotone VI, for which Han et al [18] proposed a unified numerical scheme.
For the dynamic NEPSC, Assumption 1 assumes that each diagonal block
∇2

uνuν
Hν(t, vν , y, u) of the Jacobian ∇uΨ(t, v, y, u) is positive semi-definite,

since Ψ(t, x, u) = (∇uνHν(t, vν , y, u))
N
ν=1. Assumption (A2) assumes the Ja-

cobian ∇uΨ(t, v, y, u) is positive semi-definite. In general, Assumption 1 does
not imply Assumption (A2). However, in many applications of the dynamic
NEPSC, Assumption 1 implies Assumption (A2), that is, convexity of the ob-
jectives of individual players in their decision variables implies monotonicity
of the VI.

Below we give some sufficient conditions imposed on the original dynamic
NEPSC (2) for guaranteeing the monotonicity of the resulting DVI.

Proposition 1 Suppose that Assumption 1 holds. Then the function Ψ(t, x, ·)
is monotone if the state dynamic Θν(t, yν , uν) is linear with respect to uν for
ν = 1, . . . , N and one of the following conditions on the cost functional θν
holds:
(1) ∇2

uνui
φν(t, y, u) = −∇2

uiuν
φi(t, y, u), for ν ̸= i, and ν, i = 1, . . . , N .

(2) φν(t, y, u) = ϕν(t, y, uν) + uTν B
∑N

i=1 ui + qν(t, y) for ν = 1, . . . , N , where
uν ∈ Rm1 , ϕν : R1+n+m1 → R is convex, B ∈ Rm1×m1 is positive semi-
definite, and qν : R×Rn → R.
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Proof (1) Assumption (1) implies that the matrices ∇2
uνuν

φν(t, y, u), ν =
1, . . . , N are positive semi-definite. From the linearity of Θν(t, yν , uν) with
respect to uν and condition (1), the Jacobian of Ψ(t, x, u) has the form

∇uΨ(t, x, u) =


∇2

u1u1
φ1 ∇2

u1u2
φ1 · · · ∇2

u1uN
φ1

−∇2
u1u2

φ1 ∇2
u2u2

φ2 · · · ∇2
u2uN

φ2

...
... · · ·

...
−∇2

u1uN
φ1 −∇2

u2uN
φ2 · · · ∇2

uNuN
φN

 (t, x, u)

which is positive semi-definite. Therefore, the mapping Ψ(t, x, ·) is monotone.
(2) By simple calculations, we can find

Ψ(t, x, ·) =

(
∇uνϕν(uν) +BTuν +B

N∑
i=1

ui +∇uνΘν(t, yν , uν)
T vν

)N

ν=1

.

From the linearity of Θν(t, yν , uν) with respect to uν , the Jacobian of Ψ(t, x, ·)
has the form

∇uΨ(t, x, u) = diag(∇2
uνuν

ϕ(t, y, uν) +BT ) +B ⊗ E,

where E ∈ RN×N with all entries 1, ⊗ is the Kronecker tensor product:

E ⊗B =


B B · · · B
B B · · · B
...

... · · ·
...

B B · · · B

 .

The matrix E ⊗B is positive semi-definite, since

zT (E ⊗B)z =
N∑
j=1

(
N∑
i=1

zTi B

)
zj =

(
N∑
i=1

zi

)T

B

 N∑
j=1

zj

 ≥ 0

for any z = (uT1 , · · · , zTN )T ∈ Rm, zi ∈ Rm1 for i = 1, . . . , N . From the positive
semi-definite property of B and ∇2

uνuν
ϕ(t, y, uν) for ν = 1, . . . , N , ∇uΨ(t, x, u)

is positive semi-definite, and hence Ψ(t, x, ·) is monotone.

The following three examples show that the two conditions of Proposi-
tion 1 are from real applications. We assume the dynamic are linear in these
examples.

Example 1 The two-player zero-sum game with shared constraints and linear
dynamics satisfies condition (1) of Proposition 1. In such a game, we have two
cost functionals φ1 = φ and φ2 = −φ, one player seeks to minimize φ and the
other seeks to maximize it. In this setting Assumption 1 is just the normal
convex-concave assumption of φ, i.e., φ is assumed to be convex in u1 and
concave in u2, which gives a monotone mapping Ψ(t, x, ·) with the positive
semi-definite Jacobian

∇uΨ(t, x, u) =

(
∇2

u1u1
φ ∇2

u1u2
φ

−∇2
u1u2

φ −∇2
u2u2

φ

)
(t, x, u).
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Example 2 The dynamic NEPSC (2) with a separable cost function

φν(t, y, u) = ϕν(t, y, uν) + ϕ̂ν(t, y, u−ν), ν = 1, . . . , N

satisfies condition (1) of Proposition 1. It is easy to see that condition (1) of
Proposition 1 holds with ∇2

uνui
φν(t, y, u) = 0 for ν ̸= i, and ν, i = 1, . . . , N .

By the definition of Ψ , the Jacobian of Ψ(t, x, u) is a block diagonal matrix
with the form

∇uΨ(t, x, u) = diag(∇2
u1u1

ϕ1(t, y, u1), · · · ,∇2
uNuN

ϕN (t, y, uN )).

Assumption 1 implies that ∇2
uνuν

ϕν(t, y, uν), ν = 1, . . . , N are positive semi-
definite. Hence Ψ(t, x, ·) is monotone. Such separable cost function includes
linear functions as a special case.

Example 3 Environmental pollution games with shared constraints, quadratic
cost functionals and linear dynamics can be formulated as a dynamic monotone
VI. The static river basin pollution game in [26,33] can be extended to a
dynamic game. For the ν-th player, let the dynamic be linear with respect to
uν ∈ Rm1 , and let the cost function be

φν(t, y, u) = uTν (Qνuν +B
N∑
i=1

ui + pν) + qν(y, t),

whereB,Qν ∈ Rm1×m1 are positive semi-definite, and pν ∈ Rm1 , ν = 1, . . . , N .
From (2) of Proposition 1 it follows that the function Ψ(t, x, ·) is monotone.

In the case Qν = 0, Assumption 1 implies Assumption (A2).

It is well known that the VI can be equivalently reformulated as a system
of equations, namely, u ∈ SOL(U, Ψ(t, x, ·)) if and only if

G(t, x, u) := u−ΠU (u− Ψ(t, x, u)) = 0, (9)

where ΠU (·) is the projection taken onto U in ℓ2 norm. Now we study the
solvability of the DVI (1) by equivalently rewriting it as a differential algebraic
equation

ẋ(t) = F (t, x(t), u(t))
0 = G(t, x(t), u(t))
0 = Γ (x(0), x(T )).

(10)

From Assumption (A2) on the monotonicity of Ψ(t, x, ·), it follows that the
mapping Ĝ(u) := G(t, x, u) is weak univalent for any fixed t and x:

Definition 1 A mapping Ĝ : U ⊆ Rm → Rm is said to be weakly univalent
on its domain if it is continuous and there exists a sequence of univalent (i.e.,
continuous and injective) functions {Gk} from U into Rm such that {Gk}
converges to Ĝ uniformly on bounded subsets of U .

Denote by N (x, r) the open ball centered by x with the radius of r in the
ℓ2 norm. The weakly univalent functions have the following properties which
are useful for studying the solvability of the DVI. See Corollary 3.6.5 of [16].
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Lemma 2 ([16]) Let Ĝ : Rm → Rm be weakly univalent. Suppose Ĝ−1(0) ̸= ∅.
If Ĝ−1(0) is compact, then for every ϵ > 0 there exists δ > 0 such that for
every weakly univalent function G̃ : Rm → Rm satisfying

sup{∥Ĝ(u)− G̃(u)∥ | x ∈ cl(Ĝ−1(0) +N (0, ϵ))} ≤ δ,

where “cl” denotes the closure of a set, we have

G̃−1(0) ⊆ Ĝ−1(0) +N (0, ϵ).

Denote

F(t, x) := {F (t, x, u) |u ∈ S(t, x)}

and

Ωϵ := {u|dist(u,S(0, x̂0)) < ϵ}, (11)

where dist(u,S(0, x̂0)) = minv∈S(0,x̂0) ∥u − v∥2 is well defined if S(0, x̂0) is
nonempty and bounded, and is closed because of the continuity of G(t, x, ·).

By extending Lemma 2 we give the following properties of the set-valued
mappings S(t, x) and F(t, x), serving as a preliminary of the solvability results
for (10) and for the DVI (1).

Lemma 3 Suppose that Assumption 2 holds, and Ψ(·, ·, u) is Lipschitzian near
(0, x̂0) for any u ∈ Ωϵ with modular LΨ , where Ωϵ is defined by (11). Then
the following statements hold:

(i) ∃ T̄ , δ̄ > 0 such that S(t, x) and F(t, x) are nonempty and bounded for
any (t, x) ∈ [0, T̄ ]×N (x̂0, δ̄);

(ii) ∃ T̄ , δ̄ > 0 such that S(t, x) and F(t, x) are upper semi-continuous in
(0, T̄ )×N (x̂0; δ̄);

(iii) ∃ T0, δ0, ζ > 0 such that F(·, ·) maps [0, T0]×N (x̂0, δ0+ζT0) into N (0, ζ).

Remark 3 The proof for part (i) is similar to that of Theorem 2.4 in [9] for
the P0-function case. Here we give a simple proof for good readability.

Proof (i) From Lemma 2, it follows that there exists δ1 such that

sup
u∈Ωϵ

∥G(t, x, u)−G(0, x̂0, u)∥2 < δ1

implies

∅ ̸= S(t, x) ⊆ Ωϵ. (12)

Choose δ̄ and T̄ such that LΨ (δ̄ + T̄ ) < δ1. Then for any (t, x) ∈ [0, T̄ ] ×
N (x̂0, δ̄), and any u ∈ S(0, x̂0) +N (0, ϵ), we have

∥G(t, x, u)−G(0, x̂0, u)∥2
≤ ∥ΠU (u− Ψ(t, x, u))−ΠU (u− Ψ(0, x̂0, u))∥2
≤ ∥Ψ(t, x, u)− Ψ(0, x̂0, u)∥2
≤ LΨ (t+ ∥x− x̂0∥2) < δ1.

(13)
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Therefore, S(t, x) is nonempty and bounded, and so is F(t, x), which is due
to the continuity of F .

(ii) Let (t, x) ∈ (0, T̄ ) × N (x̂0, δ̄) be given, let ∆t and ∆x such that (t +
∆t, x+∆x) ∈ (0, T̄ )×N (x̂0, δ̄), and let ϵ′ > 0 be small enough. Denote

Ωϵ′ := {u|dist(u,S(t, x)) < ϵ′}.

Again from Lemma 2, it follows that there is δ2 such that ∅ ̸= S(t, x) ⊆ Ωϵ′ if

sup
u∈Ωϵ′

∥G(t+∆t, x+∆x, u)−G(t, x, u)∥2 < δ2.

Choose δ̃ and T̃ such that LΨ (δ̃ + T̃ ) < δ2. Then if |∆t| ≤ T̃ and ∥∆x∥2 ≤ δ̃
we have for any u ∈ Ωϵ′

∥G(t+∆t, x+∆x, u)−G(t, x, u)∥2
≤ ∥ΠU (u− Ψ(t+∆t, x+∆x, u))−ΠU (u− Ψ(t, x, u))∥2
≤ ∥Ψ(t+∆t, x+∆x, u)− Ψ(t, x, u)∥2
≤ LΨ (∆t+ ∥∆x∥2) < δ2.

Therefore, S(t+∆t, x+∆x) ⊆ Ωϵ′ , which gives the upper semi-continuity of
S at (t, x). The upper semi-continuity of F is a direct consequence from that
of S.

(iii) Denote

ζ0 = sup {∥u∥2 | u ∈ S(0, x̂0) +N (0, ϵ)}. (14)

From (12), it follows S(t, x) ⊆ N (0, ζ0) for any (t, x) ∈ [0, T̄ ]×N (x̂0, δ̄), and
so F(t, x) ⊆ N (0, ζ), where

ζ : = sup {∥F (t, x, u)∥2 | (t, x, u) ∈ [0, T̄ ]×N (x̂0, δ̄)×N (0, ζ0)}
≥ sup {∥z∥2 | z ∈ F(t, x)}. (15)

Taking δ0, T0 > 0 such that δ0 + ζT0 < δ̄, we draw the conclusion.

If Ψ(t, x, ·) is monotone and continuous, S(t, x) ̸= ∅ implies it is convex
and closed. Therefore we can define the single-valued mapping

P(t, x) = ΠS(t,x)(0). (16)

Clearly, P(t, x) is the least norm element of S(t, x). Below we give a solvability
result of (1) by using the least norm solution.

Theorem 2 Suppose that Assumption 2 holds, Ψ(·, ·, u) is Lipschitzian near
(0, x̂0) for any u ∈ Ωϵ with modular LΨ , and Γ (·, ·) is Lipschitzian near (x̂0, x̂0)
with the modular LΓ , where Ωϵ is defined by (11) with a fixed ϵ > 0. If S(t, x)
is lower semi-continuous near (0, x̂0) or F(t, x) is singleton, then there exist
T, δ0, ζ > 0 such that the boundary value problem (1) has a solution (x, u)
over [0, T ], where x(t) is continuously differentiable, x(0) ∈ N (x̂0, δ0), x(t) ∈
N (x̂0, δ0+ ζT ) for any t ∈ [0, T ], and u(t) is continuous and is the least norm
element of S(t, x(t)).
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Remark 4 The singleton assumption was imposed in [6].

Proof From Lemma 3 it follows that S(t, x) is upper semi-continuous in
(0, T̄ ) × N (ξ, δ̄). If it is moreover lower semi-continuous, then S(t, x) is con-
tinuous in (0, T̄ )×N (x̂0, δ̄). Assumption 2 (A2) implies S(t, x) is convex and
P(t, x) is continuous. Hence FP(t, x) := F (t, x,P(t, x)) is continuous, by the
continuity of F (·, ·, ·). Alternatively, if F(t, x) is singleton, then it is con-
tinuous because it is upper semi-continuous in (0, T̄ ) × N (x̂0, δ̄). Moreover,
FP(t, x) = F(t, x) is continuous.

From (iii) of Lemma 3, and by noting FP(t, x) ∈ F(t, x), we conclude that
there exist T0, δ0 > 0 such that FP(·, ·) maps [0, T0] × N (x̂0, δ0 + ζT0) into
N (0, ζ). Applying the Peano existence theorem to{

ẋ(t) = FP(t, x)
x(0) = η,

we know that for any η ∈ N (x̂0, δ0), ẋ(t) = F (t, x(t), u(t))
u(t) ∈ SOL(U, Ψ(t, x(t), ·))
x(0) = η

(17)

has a solution (x, u) over [0, T0], where x(t) is continuously differentiable, and
u(t) is the least norm element of SOL(U, Ψ(t, x(t), ·)). Noting

x(t) = η +

∫ t

0

F (s, x(s), u(s))ds,

clearly, we have x(t) ∈ N (x̂0, δ0 + ζT0) for any t ∈ [0, T0]. Therefore, for
(t, η) ∈ [0, T0]×N (x̂0, δ0), we can define the operator

A(t, η) = {x(t)|ẋ(t) = FP(t, x) with x(0) = η}. (18)

From Theorem 2.2.1 [1, p.104], it follows that A(t, ·) is continuous with A(0, ·)
being identity. And for any 0 ≤ t < T0 and η ∈ N (ξ, δ0) we have

∥A(t, η)− η∥2 = ∥x(t)− η∥2 ≤
∫ t

0

∥F (s, x(s), u(s))∥2ds ≤ tζ,

and so

∥Γ (η,A(t, η))− Γ (η, η)∥2 ≤ LΓ ∥A(t, η)− η∥2 ≤ LΓ ζt.

We remind us that Γ (x, x) has a unique solution x̂0 with a nonsingular Jaco-
bian, so Γ (x̂0, x̂0) + ϵ∇xΓ (x̂

0, x̂0)ej , j = 1, . . . , 2n will span a neighborhood
NΓ of Γ (x̂0, x̂0), where ϵ is a small positive number and ej is the j-th column
of the identity matrix [27, p.148]. Hence, there must be a sufficiently small
0 < T < T0 such that Γ (η,A(η)) ∈ NΓ and Γ (η, η) ∈ NΓ share the same de-
gree near x̂0 [27, Theorem 6.2.1], which implies that the boundary value con-
dition in (1) is fulfilled in N (x̂0, δ0). Obviously, we have x(t) ∈ N (x̂0, δ0+ ζT )
for any t ∈ [0, T ]. This completes the proof.
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Remark 5 In Theorem 2, the time span [0, T ] is required small enough. The
locality of the existence of the DVI is typical in the existing work, see [19,29].
For the dynamic NEPSC with linear dynamics and quadratic cost functionals
which are strictly convex, we can show that the initial value problem (17) has
a unique solution over any time span [8]. However, for fulfilling the boundary
value condition, additional assumptions are needed. For example, assuming
that F(t, x) is a singleton for a general DVI with boundary value conditions
in [30] and adding conditions on matrices involved in an affine DVI coming
from the optimal control problems in [18].

4 Regularization and smoothing approximation

The formulated DVI (10) is a dynamic system over the non-smooth manifold
defined by the system G(t, x, u) = 0, which may have no solution, or have
multiple (possibly infinitely many) solutions, where G(t, x, u) is defined in
(9). Finding a solution of the system involves solving optimization problems
without standard constraint qualifications at each grid.

In this section, we propose a regularized smoothing method to find a so-
lution of (10). Our main idea is to replace G(t, x, u) in (10) by the following
regularized and smoothing function

Gλ,µ(t, x, u) =

∫
R

[u−ΠU (u− Ψ(t, x, u)− λu− µse)] ρ(s)ds, (19)

where λ > 0 and µ > 0 are the regularization and smoothing parameters. The
integration is performed componentwise with e = (1, 1, · · · , 1)T and ρ(·) is a
density function with

κ =

∫
R

|s|ρ(s)ds <∞.

For any fixed (t, x), the system

Gλ,µ(t, x, u) = 0 (20)

has a unique solution u, which is continuously dependent on (t, x). Namely,
we approximate (10) by the following differential algebraic system

ẋ(t) = F (t, x(t), u(t))
0 = Gλ,µ(t, x, u)
0 = Γ (x(0), x(T )).

(21)

In the following we will show that the system (21) has a classic solution
(xλ,µ(t), uλ,µ(t)) and prove the convergence of the family of the classic so-
lutions as λ, µ ↓ 0.
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4.1 Regularization and smoothing for the static VI

When µ = 0, the regularized system

Gλ,0(t, x, u) := u−ΠU (u− Ψ(t, x, u)− λu) = 0

has a unique solution u for any fixed (t, x), but Gλ,0 and u may not be differen-
tiable with respect to (t, x). To overcome the non-smoothness of the projection
operator, we adopt the smoothing approximation. The regularized smoothing
function Gλ,µ(t, x, u) has the following properties

∥Gλ,0(t, x, u)−G(t, x, u)∥2 ≤ λ∥u∥2

and
∥Gλ,µ(t, x, u)−Gλ,0(t, x, u)∥2 ≤ κ

√
mµ. (22)

For fixed t ∈ R, x ∈ R2n, λ > 0 and µ > 0 the mapping Gλ,µ(t, x, ·) is
continuously differentiable and the system (20) has a unique solution uλ,µ(t, x).
For the properties of smoothing approximations, we refer to [7,16,17].

Smoothing approximation and regularization have been studied extensively
in solving the static VI [16]. However, to the best of our knowledge, using both
smoothing approximation and regularization to find the least norm solution
of the monotone VI has not been studied. We derive sufficient conditions for
the existence of the limit

S0(t, x) := { lim
λ,µ↓0

uλ,µ(t, x)}. (23)

Moreover, we show that if µ = o(λ), then the limit of (23) is the least norm
element of the solution set S(t, x) = SOL(U, Ψ(t, x, ·)). Note that finding the
least norm solution is significant since it can provide a stable solution path of
the DVI [10,11,19].

First of all, we use the following example to show that the relation of the
two parameters λ, µ has a considerable impact on the behavior of the limit
(23).

Example 4 Let U = R2
+, and for a fixed (t, x) let

Ψ(t, x, u) =

(
0 −1
1 0

)
u+

(
1
0

)
.

Obviously, we have S(t, x) = {0} × [0, 1]. Let us choose the following density
function

ρ(s) =
2

(s2 + 4)
3
2

,

which has been used to define the so-called Chen-Harker-Kanzow-Smale smooth-
ing function of max(0, u). The regularized smoothing function can be given by

Gλ,µ(t, x, u) =

(
(1 + λ)u1 − u2 + 1−

√
((1− λ)u1 + u2 − 1)2 + 4µ2

(1 + λ)u2 + u1 −
√
((1− λ)u2 − u1)2 + 4µ2

)
.
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For any fixed λ > 0 and µ > 0, the solution of Gλ,µ(t, x, u) = 0 satisfies (λu1−
u2+1)u1 = µ2 and (u1+λu2)u2 = µ2. Since the solution set S(t, x) is bounded,
the solution ofGλ,µ(t, x, u) = 0 is bounded when λ→ 0 and µ→ 0 [16]. Adding
these two equations gives λ(u22 + u21) + u1 = 2µ2, which, together with the
boundedness of the solution, implies (uλ,µ)1 → 0 as λ, µ ↓ 0. Moreover, from

(u1+λu2)u2 = µ2, we have u2 = (−u1+
√
u21 + 4λµ2)/(2λ) ≤ µ/

√
λ. Figure 1

shows the trajectories of uλ,µ(t, x) when λ, µ→ 0 from 1 with different order,
where the limit points are marked by “×”. We see that uλ,µ(t, x) converges
to the least norm solution (0, 0) as µ = λ2 → 0, and converges to (0, 0.1413),
(0, 0.3445) and (0, 0.4534) as µ = λ0.8 → 0, µ = λ0.5 → 0 and µ = λ0.01 → 0,
respectively.

−0.05 0 0.05 0.1 0.15 0.2 0.25 0.3
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Fig. 1 Example 1, convergence of uλ,µ(t, x) as λ, µ ↓ 0.

Now we study the system (20) where we take µ = o(λ). It is obvious
that Gλ,µ(t, x, ·) is continuously differentiable, univalent for any (t, x) and
λ ∈ [0, λ̄), and it holds

∥Gλ,µ(t, x, u)−G(t, x, u)∥2 ≤ λ∥u∥2 + κ
√
mµ ≤ (∥u∥2 + α)λ, (24)

where α > 0 is a constant independent of t, x, u and λ. We remind us that
the system Gλ,µ(t, x, u) = 0 has a unique solution uλ,µ(t, x) for fixed (t, x)
and λ > 0 and µ > 0. We will study the convergence of uλ,µ(t, x) to a certain
element of the solution set S(t, x). The solution uλ,µ(t, x) has the following
properties.
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Theorem 3 Suppose that (A2) of Assumption 2 holds. If S(t, x) is nonempty
and bounded and uλ,µ(t, x) ∈ U for λ small enough with µ = o(λ), then
limλ↓0 uλ,µ(t, x) exists and is the least norm element of S(t, x).
Proof Denote by uλ,µ the unique solution of (20) and let ũ be the least norm
element of S(t, x). Denoting u∗ = uλ,µ − Ψ(t, x, uλ,µ)− λuλ,µ, we have

∥uλ,µ −ΠU (u
∗)∥2 = ∥uλ,µ −ΠU (uλ,µ − Ψ(t, x, uλ,µ)− λuλ,µ)∥2

= ∥Gλ,µ(t, x, uλ,µ)−Gλ,0(t, x, uλ,µ)∥2 ≤ µ
√
mκ.

Considering ũ ∈ U and the well-known property of the projection

(ΠU (u
∗)− ũ)T (u∗ −ΠU (u

∗)) ≥ 0,

and noting u∗ −ΠU (u
∗) = Gλ,0(t, x, uλ,µ)− Ψ(t, x, uλ,µ)− λuλ,µ, we have

(uλ,µ − ũ)T (Gλ,0(t, x, uλ,µ)− Ψ(t, x, uλ,µ)− λuλ,µ)
≥ (uλ,µ −ΠU (u

∗))T (u∗ −ΠU (u
∗)) ≥ −µ

√
mκ∥u∗ −ΠU (u

∗)∥2.
Moreover noting

(uλ,µ − ũ)T (Gλ,µ(t, x, uλ,µ)−Gλ,0(t, x, uλ,µ))
≥ −∥uλ,µ − ũ∥2∥Gλ,µ(t, x, uλ,µ)−Gλ,0(t, x, uλ,µ)∥2
≥ −∥uλ,µ − ũ∥2µ

√
mκ,

and from the monotonicity of Ψ(t, x, ·), we have

0 ≥ (uλ,µ − ũ)T (Gλ,µ(t, x, uλ,µ)− Ψ(t, x, ũ))
= (uλ,µ − ũ)T (Ψ(t, x, uλ,µ)− Ψ(t, x, ũ) +Gλ,µ(t, x, uλ,µ)− Ψ(t, x, uλ,µ))
≥ (uλ,µ − ũ)T (Gλ,µ(t, x, uλ,µ)− Ψ(t, x, uλ,µ))
= (uλ,µ − ũ)T (λuλ,µ) + (uλ,µ − ũ)T (Gλ,0(t, x, uλ,µ)− Ψ(t, x, uλ,µ)− λuλ,µ)

+(uλ,µ − ũ)T (Gλ,µ(t, x, uλ,µ)−Gλ,0(t, x, uλ,µ))
≥ (uλ,µ − ũ)T (λuλ,µ)− µ

√
mκ∥u∗ −ΠU (u

∗)∥2 − ∥uλ,µ − ũ∥2µ
√
mκ,

therefore,

(uλ,µ − ũ)T (λuλ,µ) ≤ µ
√
mκ (∥u∗ −ΠU (u

∗)∥2 + ∥uλ,µ − ũ∥2) ,
and

(uλ,µ, uλ,µ) ≤ (ũ, uλ,µ) +
µ
λ

√
mκ (∥u∗ −ΠU (u

∗)∥2 + ∥uλ,µ − ũ∥2)
≤ ∥ũ∥2∥uλ,µ∥2 + µ

λ

√
mκ (∥u∗ −ΠU (u

∗)∥2 + ∥uλ,µ − ũ∥2) .
Let λk ↓ 0 and µk ↓ 0 when k → ∞. It can be readily shown that {uλk,µk

} is
bounded [16] as S(t, x) is nonempty and bounded. Let u be an accumulation
point of {uλk,µk

}. Considering that µ = o(λ), we know u = ũ is the least norm
element of S(t, x). This completes the proof.

Remark 6 For µ = 0, we have uλ,0(t, x) ∈ U . For µ ̸= 0, we can choose a
suitable smoothing approximation to ensure uλ,µ(t, x) ∈ U . For example, for
U = Rm

+ (the complementarity problem), if we use the Chen-Harker-Kanzow-
Smale smoothing function (See Example 4) to define the smoothing approxi-
mation, then we have uλ,µ(t, x) ∈ Rm

+ for any λ, µ ≥ 0.
As shown in Example 4, the condition µ = o(λ) may be loosened for

guaranteeing the convergence of uλ,µ(t, x) to a solution, which, however, may
not be the least norm solution.
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4.2 Regularized smoothing DVI

Approximating G(t, x, u) by Gλ,µ(t, x, u) defined by (19), we get the regular-
ized smoothing system (21) of the DVI (1). In this section, we show that the
system (21) has a unique classic solution (xλ,µ(t), uλ,µ(t)) for any λ > 0, µ > 0
under certain conditions. Moreover, we derive the convergence analysis of the
family {(xλ,µ(t), uλ,µ(t))}λ>0 when λ ↓ 0 and µ = o(λ).

Lemma 4 Suppose that Assumption 2 holds, and Ψ(·, ·, u) is Lipschitzian near
(0, x̂0) for any u ∈ Ωϵ with modular LΨ , where Ωϵ is defined by (11). Let

Fλ,µ(t, x) = F (t, x, uλ,µ(t, x)).

Then there exist λ0, µ0, T0, δ0, ζ > 0 such that ∀λ ∈ [0, λ0] and ∀µ ∈ [0, µ̄],
Fλ,µ(·, ·) maps [0, T0]×N (x̂0, δ0 + ζT0) into N (0, ζ).

Proof From Lemma 2, it follows that there exists δ1 such that

sup
u∈Ωϵ

∥Gλ,µ(t, x, u)−G(0, x̂0, u)∥2 < δ1

implies that there is uλ,µ(t, x) ∈ Ωϵ. Let ζ0 be defined by (14). It is clear
that Ωϵ ⊆ N (0, ζ0). Then by using inequalities (13) and (24), for any (t, x) ∈
[0, T̄ ]×N (x̂0, δ̄), u ∈ S(0, x̂0) +N (0, ϵ), λ ∈ [0, λ̄] and µ ∈ [0, µ̄], we have

∥Gλ,µ(t, x, u)−G(0, x̂0, u)∥2
≤ ∥Gλ,µ(t, x, u)−G(t, x, u)∥2 + ∥G(t, x, u)−G(0, x̂0, u)∥2
≤ λ∥u∥2 + κ

√
mµ+ LΨ (t+ ∥x− x̂0∥2).

Choosing positive numbers δ̄, T̄ , λ̄ and µ̄ such that

LΨ (δ̄ + T̄ ) <
δ1
3
, λ̄ζ0 <

δ1
3
, κ

√
mµ̄ <

δ1
3
,

we obtain

∥Gλ,µ(t, x, u)−G(0, x̂0, u)∥2 ≤ δ1.

Hence uλ,µ(t, x) ∈ Ωϵ ⊆ N (0, ζ0) and Fλ,µ(t, x) ∈ N (0, ζ), where ζ is defined
by (15). Taking λ0, δ0, T0 > 0 such that δ0 + ζT0 < δ̄, we draw the conclusion.

Theorem 4 Suppose that Assumption 2 holds, Ψ(·, ·, u) is Lipschitzian near
(0, x̂0) for any u ∈ Ωϵ with modular LΨ , and Γ (·, ·) is Lipschitzian near (x̂0, x̂0)
with the modular LΓ , where Ωϵ is defined by (11). If S(t, x) is lower semi-
continuous near (0, x̂0) or F(t, x) is singleton, then there exist λ0, T, δ0, ζ > 0
such that for any 0 < λ ≤ λ0 the regularized smoothing system (21) has
a classical solution (xλ,µ, uλ,µ) over [0, T ], where xλ,µ(0) ∈ N (x̂0, δ0), and
xλ,µ(t) ∈ N (x̂0, δ0 + ζT ) for any t ∈ [0, T ].
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Proof From Theorem 3 and Lemma 4, it follows that there exist λ0, T0, δ0, ζ >
0 such that ∀λ ∈ [0, λ0], Fλ,µ(·, ·) is continuous and maps [0, T0]×N (x̂0, δ0 +
ζT0) into N (0, ζ). Then by Theorem 2.1.3 of [1], we know that ẋ(t) = F (t, x(t), u(t))

0 = Gλ,µ(t, x(t), u(t))
x(0) = η

(25)

has a solution (xλ,µ, uλ,µ) over [0, T0], where xλ,µ(t) is continuously differen-
tiable. The remaining part can be proved in the same manner as used in the
proof for Theorem 2.

Denote by X and U the spaces of the continuous functions and the square
integrable functions over [0, T ], respectively, and denote for x ∈ X

∥x∥C := sup
t∈[0,T ]

∥x(t)∥2 ,

and denote for u ∈ U

∥u∥L2 := ⟨u, u⟩1/2 , where ⟨u, v⟩ :=
∫ T

0

u(t)T v(t)dt.

We define the norm for (x, u, η) ∈ W1 = X × U ×Rn:

∥(x, u, η)∥W1 = ∥x∥C + ∥u∥L2 + ∥η∥2. (26)

Let Z denote the space of the continuous functions in U . For (x, u, η) ∈ W2 =
X × Z ×Rn we denote

∥(x, u, η)∥W2 := ∥x∥C + ∥u∥C + ∥η∥2. (27)

It is clear that W2 ⊂ W1, and both are Banach spaces under the norm (26)
and (27), respectively. Define

Φ(x, u, η)(t) =

x(t)− η −
∫ t

0

F (τ, x(τ), u(τ))dτ

G(t, x, u)
Γ (η, x(T ))

 . (28)

Obviously, Φ(x, u, η) ∈ W1 for an (x, u, η) ∈ W1, and Φ(x, u, η) ∈ W2 if more-
over (x, u, η) ∈ W2. Then we can reformulate (1) as a minimization problem
over W1:

min
(x,u,η)∈W1

∥Φ(x, u, η)∥W1
.

Obviously, ∥Φ(x, u, η)∥W1 = 0 implies that (x, u) is a weak solution of (1). For
a continuous u, then ∥Φ(x, u, η)∥W2 = 0 implies that (x, u) is a classic solution.
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Let

Φλ,µ(x, u, η)(t) =

x(t)− η −
∫ t

0

F (τ, x(τ), u(τ))dτ

Gλ,µ(t, x, u)
Γ (η, x(T ))

 , (29)

where Gλ,µ is a smoothing regularization of G satisfying (24). Then the regu-
larized smoothing system (21) has a classic solution

From Theorem 4 it follows that the regularized smoothing system (21) has
a classic solution (xλ,µ(t), uλ,µ(t)) with xλ,µ(0) = ηλ,µ. Then (xλ,µ, uλ,µ, ηλ,µ)
is a minimizer of the functional ∥Φλ,µ(x, u, η)∥Wi

. Here we study the conver-
gence of {(xλ,µ, uλ,µ, ηλ,µ)}∞k=1 by the so-called epigraphical convergence of
the functional ∥Φλ,µ(x, u, η)∥Wi

when λ ↓ 0 and µ ↓ 0.
Let {Φk}∞k=1 be a sequence of approximate mappings of Φ. Taking k → ∞,

{∥Φk∥Wi}∞k=1 is said to be epigraphically convergent to ∥Φ∥Wi if
(a) for any {(xk, uk, ηk)}∞k=1 with (xk, uk, ηk) → (x, u, η)

lim inf
k→∞

∥Φk(xk, uk, ηk)∥Wi ≥ ∥Φ(x, u, η)∥Wi ;

(b) there is {(xk, uk, ηk)}∞k=1 with (xk, uk, ηk) → (x, u, η) such that

lim sup
k→∞

∥Φk(xk, uk, ηk)∥Wi ≤ ∥Φ(x, u, η)∥Wi ,

where the convergence of (xk, uk, ηk) → (x, u, η) is defined by the norm ∥·∥Wi ,
i = 1, 2. See [31], for example.

Taking sequences λk ↓ 0 and µk ↓ 0 when k → ∞, we have the following
epigraphical convergence of the sequence of the functionals {∥Φλk,µk

∥Wi}∞k=1.

Lemma 5 Let {λk}∞k=1 ↓ 0 be given and µk = o(λk). Then {∥Φλk,µk
∥Wi}∞k=1

is epigraphically convergent to ∥Φ∥Wi for i = 1, 2.

Proof Let (xk, uk, ηk) → (x, u, η) in Wi. Noting
√
a+ b+ c ≤

√
a +

√
b +

√
c

for any nonnegative numbers a, b and c, we can see

∥Φλk,µk
(xk, uk, ηk)− Φ(xk, uk, ηk)∥W1

=

(∫ T

0

∥∥Gλk,µk
(t, xk(t), uk(t))−G(t, xk(t), uk(t))

∥∥2
2
dt

)1/2

≤

(∫ T

0

(
λk∥uk(t)∥2 + κ

√
mµk

)2
dt

)1/2

=

(∫ T

0

λ2k∥uk(t)∥22dt+
∫ T

0

2κ
√
mµkλk∥uk(t)∥2dt+

∫ T

0

κ2mµ2
kdt

)1/2

≤

(∫ T

0

λ2k∥uk(t)∥22dt

)1/2

+

(∫ T

0

2κ
√
mµkλk∥uk(t)∥2dt

)1/2

+ κµk

√
mT,
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and
∥Φλk,µk

(xk, uk, ηk)− Φ(xk, uk, ηk)∥W2

= supt∈[0,T ]

∥∥Gλk,µk
(t, xk(t), uk(t))−G(t, xk(t), uk(t))

∥∥
2

≤ supt∈[0,T ](λk∥uk(t)∥2 + κ
√
mµk) = λk∥u∥C + κ

√
mµk.

Now we have ∥Φλk,µk
(xk, uk, ηk)∥Wi − ∥Φ(xk, uk, ηk)∥Wi → 0.

On the other hand we know ∥Φ(xk, uk, ηk)∥Wi
− ∥Φ(x, u, η)∥Wi

→ 0 since
∥Φ∥Wi is continuous. Therefore we can conclude ∥Φλk,µk

(xk, uk, ηk)∥Wi →
∥Φ(x, u, η)∥Wi , which implies the epigraphical convergence of {∥Φλk,µk

∥Wi}∞k=1

to ∥Φ∥Wi . This completes the proof.

Using Lemma 5 we give the following result on the convergence of the
solution (xλ,µ, uλ,µ, ηλ,µ) of the regularized smoothing system (21).

Theorem 5 Suppose that the conditions of Theorem 4 hold. Take µ = o(λ).
There exist {λk}∞k=1 ↓ 0, x ∈ X and u ∈ U such that xλk,µk

→ x uniformly
and uλk

→ u weakly, where (xλk,µk
, uλk,µk

) is the classic solution of (21) for
λ = λk. Moreover, if uλk,µk

→ u with respect to ∥ · ∥L2 , then (x, u) is a weak
solution of (1); if uλk,µk

→ u uniformly, then (x, u) is a classic solution of
(1).

Proof From Theorem 4, it follows that there exist λ0, δ0, ζ > 0 such that for
any λ ∈ (0, λ0) the regularized smoothing system (21) has a classical solution
(xλ,µ(t), uλ,µ(t)) over [0, T ], where xλ,µ(0) = ηλ,µ ∈ N (x̂0, δ0) and xλ,µ(t) ∈
N (x̂0, δ0 + ζT ) for ant t ∈ [0, T ], where x̂0 is the solution of Γ (x, x) = 0 in
Assumption 2. Hence {xλk,µk

}∞k=1 is uniformly bounded and {uλk,µk
}∞k=1 ⊆ Ωϵ

is also uniformly bounded. Since

ẋλk,µk
= F (t, xλk,µk

, uλk,µk
)

and F (t, x, u) is continuous, the uniform boundedness of {xλk,µk
}∞k=1 and

{uλk,µk
}∞k=1 follows that {ẋλk,µk

}∞k=1 is also uniformly bounded. Then by the
Arzelá-Ascoli theorem [24], we know that {xλk,µk

} is uniformly convergent to
a continuous x. Since {uλk,µk

}∞k=1 is uniformly bounded and U is reflexive, by
Alaoglu’s theorem [24], there is a subsequence of {uλk,µk

}∞k=1 that is weakly
convergent to u ∈ U .

Because (xλ,µ(t), uλ,µ(t)) is a solution of the regularized smoothing system
(21) and xλ,µ(t) and uλ,µ(t) are continuous with ηλ,µ = xλ,µ(0) ∈ N (x̂0, δ0),
we can see that it is a minimizer of ∥Φλ,µ∥Wi with

∥Φλ,µ(xλ,µ, yλ,µ, ηλ,µ)∥W1 = ∥Φλ,µ(xλ,µ, yλ,µ, ηλ,µ)∥W2 = 0,

and {ηλ,µ}∞k=1 is bounded. Therefore there is a sequence {uλk,µk
}∞k=1 that

is convergent to an η. If moreover uλk,µk
→ u with respect to ∥ · ∥L2 , then

the sequence (xλk,µk
, uλk,µk

, ηλk,µk
) is convergent to (x, u, η) with respect to

∥·∥W1 . Because {∥Φλk,µk
∥W1}∞k=1 is epigraphically convergent to ∥Φ∥W1 , from

the well known minima property of the epigraphically convergent functional
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sequence (see Proposition 7.18 of [12], for example), we conclude that (x, u, η)
is a minimizer of Φ(x, u, η) in W1 with

∥Φ(x, u, η)∥W1 = lim sup
k→∞

∥Φλk,µk
(xk, uk, ηk)∥W1 = 0.

Then (x, u) is a weak solution of (1).
If uλk,µk

→ u uniformly, then u ∈ Z is continuous, therefore the sequence
(xλk,µk

, uλk,µk
, ηλk,µk

) is convergent to (x, u, η) with respect to ∥ · ∥W2 , and
(x, u, η) is a minimizer of Φ(x, u, η) in W2 with

∥Φ(x, u, η)∥W2 = lim sup
k→∞

∥Φλk,µk
(xk, uk, ηk)∥W1 = 0.

Then (x, u) is a classic solution of (1).

We know that using regularization approximation for the static monotone
VI can find the least norm solution [11,16]. The following theorem shows that
this property can be extended to their dynamic cases.

Theorem 6 Let Ψ(t, x, u) be Lipschitzian in (t, x) for any u with modular LΨ ,
and let xλk,µk

→ x uniformly with

lim
k→∞

∥xλk,µk
− x∥C

λk
≤ ς, (30)

and let uλk,µk
→ u with respect to ∥ · ∥L2 . Then for any weak solution (x, ũ)

of (1), we have
⟨u, u⟩ ≤ ⟨ũ, u⟩+ LΨTς∥u− ũ∥L2 . (31)

Proof Denoting u∗ = uλ,µ − Ψ(t, xλ,µ, uλ,µ) − λuλ,µ, in a similar manner as
used in the proof for Theorem 3, we can show

⟨uλ,µ − ũ, Gλ,µ(t, xλ,µ, uλ,µ)− Ψ(t, xλ,µ, ũ)⟩
≥ ⟨uλ,µ − ũ, λuλ,µ⟩ − µ

√
mκ∥u∗ −ΠU (u

∗)∥L2 − ∥uλ,µ − ũ∥L2µ
√
mκ.

As uλ,µ(t) is continuous and ũ(t) ∈ SOL(U, Ψ(t, x(t), ·)) for almost every t ∈
[0, T ], we have

(uλ,µ − ũ)TΨ(t, x, ũ) ≥ 0 and Gλ,µ(t, xλ,µ, uλ,µ) = 0.

Adding the above two inequalities and taking the integral over [0, T ], we can
show

0 ≥ ⟨uλ,µ − ũ, Gλ,µ(t, xλ,µ, uλ,µ)− Ψ(t, x, ũ)⟩
≥ ⟨uλ,µ − ũ, Gλ,µ(t, xλ,µ, uλ,µ)− Ψ(t, xλ,µ, ũ) + Ψ(t, xλ,µ, ũ)− Ψ(t, x, ũ)⟩
≥ ⟨uλ,µ − ũ, λuλ,µ⟩ − µ

√
mκ(∥u∗ −ΠU (u

∗)∥L2 + ∥uλ,µ − ũ∥L2)
−LΨ∥xλ,µ − x∥C∥uλ,µ − ũ∥L2 .

Now we have

⟨uλ,µ − ũ, λuλ,µ⟩ ≤ µ
√
mκ(∥u∗ −ΠU (u

∗)∥L2 + ∥uλ,µ − ũ∥L2)
+LΨ∥xλ,µ − x∥C∥uλ,µ − ũ∥L2 ,
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and therefore

⟨uλ,µ, uλ,µ⟩ − ⟨ũ, uλ,µ⟩ ≤
µ

λ

√
mTκ(∥u∗ −ΠU (u

∗)∥L2 + ∥uλ,µ − ũ∥L2)

+LΨT
∥xλ,µ − x∥C

λ
∥uλ,µ − ũ∥L2 .

Taking (xλk,µk
, uλk,µk

) converging to (x, u) with µk = o(λk) and (30), we draw
the conclusion (31).

We end this section by summarizing the results achieved in this section.
Here the DVI is treated as a DAE (10), in which the function G(t, x, u) defining
the algebraic constraint is normally nonsmooth and weak univalent, the univa-
lent property is given by Assumption (A2). By the regularization and smooth-
ing techniques, we propose a regularized smoothing function Gλ,µ(t, x, u) to
approximateG(t, x, u) in the DAE (10), which yields the regularized smoothing
system (21). In Theorem 4 we show that the system (21) has a classic solution
(xλ,µ, uλ,µ), which can be efficiently solved by high order ODE-solvers. Then
we show in Theorem 5 that (xλ,µ, uλ,µ) is convergent to a weak solution of the
DVI (1), which, together with Theorem 1, gives an equilibrium point of the
dynamic NEPSC.

5 Numerical illustration

We use the two-player zero-sum game with shared constraints to illustrate
the differential monotone VI approach and the convergence of the regularized
smoothing method. At first we show that if the cost functions of the two
players are convex, then we can find a solution of the game via the differential
monotone VI.

For i = 1, 2, we suppose that the i-th player’s state dynamic is semi-linear:

Θi(t, yi, ui) = fi(t, yi) +Biui,

where fi : [0, T ] × Rni → Rni and Bi ∈ Rni×mi are given. Let the cost
functional

θ1(y, u) = ψ1(y(T )) +

∫ T

0

φ1(t, y, u)dt

be given, where T > 0 is fixed, y = (yT1 , y
T
2 )

T ∈ Rn, u = (uT1 , u
T
2 )

T ∈ Rm,
n = n1 + n2, m = m1 +m2, φ1(t, y, u) is convex in the control u1 of Player 1,
and concave in the control u2 of Player 2. In the two-player zero-sum game,
the Player 1 minimizes the cost functional θ1(y, u), while the other maximizes
it. Then by the same manner as presented in Section 2, the dynamic NEPSC
yields the DVI (1), where x = (v, y) and Ψ(t, x, u) has the following form

Ψ(t, x, u) =

(
∇u1φ1(t, y, u) +BT

1 v1
−∇u2φ1(t, y, u) +BT

2 v2

)
.
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Note that φ1(y, u) is convex in u1 and concave in u2. Hence the function
Ψ(t, v, y, ·) is monotone, and the dynamic NEPSC yields a monotone DVI when
U is convex. Moreover, by Lemma 1, if (x∗, u∗) = (v∗, y∗, u∗) is a solution of
the monotone DVI, then (y∗, u∗) is a solution of two-player dynamic NEPSC.

We use a numerical example of the two-player zero-sum game with shared
constraints to show the convergence of the regularized smoothing method. Let
n1 = n2 = 1,m1 = m2 = 2. The players’s state dynamics are

Θ1(t, y1, u1) = f1(t, y1) +B1u1 with f1(t, y1) = −2 + 2y1, B1 = (1,−2),
Θ2(t, y2, u2) = f2(t, y2) +B2u2 with f2(t, y2) = −2t− y2, B2 = (−6, 3).

The admissible control sets are

U1(u2) = {u1 |h1(u1) = −u1 ≤ 0, g(u1, u2) = eT (u1 + u2)− 1 ≤ 0},
U2(u1) = {u2 |h2(u2) = −u2 ≤ 0, g(u1, u2) = eT (u1 + u2)− 1 ≤ 0},

where e = (1, 1)T . The initial states are y01 = −1, y02 = 2. The cost functional
of Player 1 is defined by

θ1(y, u) = ψ1(y(T )) +

∫ T

0

φ1(t, y, u)dt

where
ψ1(y(T )) = y(T )T [Ly(T ) + c] ,
φ1(t, y, u) = yT [Py + Su+ h(t)] + uT [Ru+ d(t)] ,

L =

(
2 −1
3 0

)
, c =

(
−2
3

)
,

P =

(
3 −6

−1 0

)
, S =

(
−1 0 2 3
6 −9 0 −2

)
, h(t) =

(
− sin(3t)

1

)
,

R =


0 −1 −3 2
1 0 5 −1
0 −3 −1 2
2 4 −2 0

 , d(t) =


0

−1
− cos(t− π

12 )
0

 .

Then the DVI, formulated from this two-player zero-sum game, has the form:

ẋ(t) = q(t) +Ax(t) +Bu(t)
u(t) ∈ SOL(U, p(t) +Qx(t) +M(·))
b = Ex(0) + ETx(T ),

(32)

where

A =


−2 0 −6 7
0 1 −7 0
0 0 2 0
0 0 0 −1

 , B =


1 0 −2 −3
6 −9 0 −2
1 −2 0 0
0 0 −6 3

 , q(t) =


sin(3t)

1
−2
−2t

 ,



DVI Approach to Dynamic Games 25

and

Q =


1 0 −1 6

−2 0 0 −9
0 −6 −2 0
0 3 −3 2

 , M =


0 0 −3 4
0 0 2 3
3 −2 2 0

−4 −3 0 0

 , p(t) =


0

−1
cos(t− π

12 )
0

 ,

and

E =


0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

 , ET =


1 0 −4 −2
0 1 2 0
0 0 0 0
0 0 0 0

 , b =


−2
−3
−1
2

 ,

and U = {u |u ≥ 0, eTu ≤ 1} = {u|Cu ≥ c}, where

C =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

−1 −1 −1 −1

 , c =


0
0
0
0

−1

 .

In practice, it is not easy to give the close form of the smoothing function Gλ,µ

for a VI. For this example, we know however, that u(t) ∈ SOL(U, g(t)+Qx(t)+
M(·)) if and only if there is a multiplier w such that the Karush-Kuhn-Tucker
condition holds

p(t) +Qx(t) +Mu(t)− CTw = 0 and 0 ≤ w⊥Cu− c ≥ 0.

Then the system (32) can be reformulated as the linear complementarity sys-
tem

ẋ(t) = q(t) +Ax(t) +Bu(t)
0 = p(t) +Qx(t) +Mu(t)− CTw(t)
0 ≤ w(t)⊥Cu(t)− c ≥ 0
b = Ex(0) + ETx(T ).

(33)

It is obvious that for this example, the algebraic system Γ (x, x) = Ex+ETx−
b = 0 has a unique solution x̂0 = (−2,−1,−1, 2)T = (E + ET )

−1b.
As the matrix M is positive semi-definite and the domain U is convex and

compact, the problem VI(U, p(0) + Qx̂0 +M(·)) is solvable, and so is the VI
problem

0 = p(0) +Qξ +Mu− CTw
0 ≤ w ⊥ Cu− c ≥ 0.

(34)

We show that the solution set of the VI (34) is bounded. Let (34) have the solu-
tions {(uk, wk)}. Obviously, the boundedness of U yields that {uk} is bounded.
From the equality of (34) we have (CTwk)i = (p(0)+Qξ+Muk)i = wk

i −wk
5 ,

which means that wk
i − wk

5 is bounded for i = 1, 2, 3, 4. If wk
5 → ∞, then

wk
5 > 0 once k is large enough, then from 0 ≤ w⊥Cu − c ≥ 0, we know

uk1 + uk2 + uk3 + uk4 = 1, which follows that there must be a component uki > 0.
Therefore we have wk

i = 0 as 0 ≤ wk
i ⊥uki ≥ 0, which yields the unboundedness
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of {wk
i −wk

5}, this gives a contradiction. Now we can conclude that {wk} is also
bounded, and Assumption (A1) is fulfilled. Since M is positive semi-definite,
it is obvious that Assumption (A2) is fulfilled.

Now we use the Chen-Harker-Kanzow-Smale smoothing function to give a
smoothing regularization approximation of (33)

ẋ(t) = q(t) +Ax(t) +Bu(t)
0 = p(t) +Qx(t) + (M + λI)u(t)− CTw(t)
µ = 4wi(t) [Cu(t)− c+ λw(t)]i (1 ≤ i ≤ 5)
b = Ex(0) + ETx(T ).

(35)

This is a standard ODE. Here, on the platform of Matlab, we use the algebraic
equation solver “fsolve.m” and the least square problem solver “lsqnonlin.m”
to solve Gλ,µ(t, x, u) = 0, for evaluating the right hand side of the ODE. For
λ = 1, λ = 0.3 and λ = 0.1 with µ = λ2, by using the boundary value problem
solver “bvp5c.m” to the ODE (35), we get the trajectories of (xλ,µ(t), uλ,µ(t))
of (35). Here we adopt (E + ET )

−1b to initialize the solver “bvp5c.m”.
In the following two figures we plot the trajectories of the adjoint vari-

ables v1 and v2, the state variables y1 and y2, the control variables u1 =
((u1)1, (u1)2)

T and u2 = ((u2)1, (u2)2)
T . The numerical results strongly sup-

port the convergence of the regularization and smoothing approximation. From
the second figures we can observe that our method approximates the nons-
mooth solution by the smooth one. In our method we use µ = o(λ) to get the
least norm solution u in the solution set S(t, x).

Fig. 2 Numerical results for x(t) with µ = λ2
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Fig. 3 Numerical results for u(t) with µ = λ2
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