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Dynamic Stochastic Variational Inequalities and Convergence of Discrete
Approximation

XIAOJUN CHEN* AND JINGLAI SHENT

Abstract. This paper studies dynamic stochastic variational inequalities (DSVIs) to deal with
uncertainties in dynamic variational inequalities (DVIs). We show the existence and uniqueness
of a solution for a class of DSVIs in C' x ), where C! is the space of continuously differentiable
functions and ) is the space of measurable functions, and discuss non-Zeno behavior. We use the
sample average approximation (SAA) and time-stepping schemes as discrete approximation for the
uncertainty and dynamics of the DSVIs. We then show the uniform convergence and an exponential
convergence rate of the SAA of the DSVI. A time-stepping EDIIS method is proposed to solve the
DVI arising from the SAA of DSVI; its convergence is established. Our results are illustrated by a
point-queue model for an instantaneous dynamic user equilibrium in traffic assignment problems.

Key words. Dynamic stochastic variational inequalities, sample average approximation, time-
stepping method, Anderson acceleration.
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1. Introduction. Consider the following dynamic stochastic variational inequal-
ity (DSVI)

(L1) i(t) = 7+ {Ix (2(t) - E[0(t, € 2(1). y(t. )] ) —2(1) },
(1:2) 2(0) = w,
0€ W(t,&x(t),yt, ) + N (y(t,6)), forae & €.

Here ~ is a nonzero real number, X C R" is a nonempty closed convex set, £ :  —
R? is a random vector defined on a probability space (Q, F,P) whose probability
distribution P = Po ¢~ is supported on the set = := £(Q) C RY, @ : R, x RY x R™ x
R™ — R” and ¥ : R, x R x R® x R™ — R™, IIx : R” — X denotes the Euclidean
projection operator onto X, and N¢, (y(t,€)) is the normal cone to C¢ at y(t, ), where
C¢ is a nonempty closed convex set in R™ for each £ and is A-measurable. We make
the following assumption through this paper (unless otherwise stated):

A.0 Given £ € =, the functions ®(-,&,-,-) and ¥(-,&,-,) are Lipschitz continuous
in (t,z,y) with Lipschitz moduli k¢ (§) and kg () with respect to a norm (e.g.,
Il |l2 or || - ||so), respectively, where k¢ (-) and kg(-) are measurable.

Further, let ) denote the space of measurable functions from = to R™. For a given
(t,x), let SOL(t,x,£(+)) : 2 = ) denote the solution set of the variational inequality
or VI (1.3), which is a random set-valued mapping. Let y.(t,-) or simply y(t,-) be
a measurable selection of solutions in SOL(¢,z,£(+)) of the VI (1.3) such that the
expected value in (1.1) is well defined, i.e., each element of E[®(t, &, z, y(t,£))] attains
a finite value for any (¢,x). Specific conditions ensuring these assumptions to hold
will be given in the following development.
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2 XIAOJUN CHEN AND JINGLAI SHEN

The DSVI (1.1)-(1.3) includes the deterministic differential variational inequality
(DVI) as a special case. In fact, if v = —1, X = R", and y(t, -) is deterministic, then
the DSVI becomes

(1.4) &(t) = ®(t,z(t), y(t), (0) = zo,
0 € Wt z(t), y(t)) + No(y(t),

which is the deterministic DVI [2, 11, 22, 23, 24]. The DSVI also reduces to the
functional evolutionary VI [2] if v = 1 and ® is deterministic and independent of y.

A class of the bimodal piecewise affine system [14] can be written as the dynamic
linear complementarity problem (DLCP)

(1.6) i(t) = Aw(t) — emax(c"z(t),0) + f +by(t), x(0) = wo,
(1.7) 0 <y(t)LN@)z(t) + M(t)y(t) +q(t) = 0,

where A, e, c, f,b,N(t), M(t),q(t) are given vectors or matrices. When the data
b, N, M, q have uncertainties, we consider the following model

(1.8) @(t) = Az(t) — emax(c" 2(t),0) + E[B(Oy(t, )] + f,  2(0) = xo
(1.9) 0 <y(t,6)LN(t,&)x(t) + M(t,&)y(t, &) + q(t,€) >0, for ae. & € 2.

Here A € R™"™, ¢, f € R?, B(-) : R? — R™™ M(.,-) : Ry x R? — R™X™
N(,): Ry x R — R™*" and q(-,-) : Ry x R — R™ are continuous matrix valued
mappings, and e € R" is the vector with all elements 1. The above model is a
special case of the DSVI (1.1)-(1.3) when X = R"™, v = 1, and ®(¢, &, z(t),y(t,£)) =
~[Aw(t) —e max(cTa(t), 0)+ B()y(t, &)+ /] so that E[®(t, &, 2(t), y(t, £))] = —[Az(t) —
e max(cTw(t),0) + ELB(E)y(t, )] + 1

Consider the case where the functions ® and ¥ are independent of ¢, namely, they
are time invariant. Hence, we write them as ®(&, z,y) and U(&, x,y) respectively.
Suppose this DSVI is well-posed, i.e., its solution (x(t),y(¢,§)) exists and is unique
for any ¢t > 0 and any initial condition xg. Then (2¢y°(¢)) € R™ x Y is called an
equilibrium of the DSVTI if for a.e. £ € =,

(1.10) 0 = IIx(z° —E[®(&, 2 y°(£))]) —x°, and 0€ V(2% y°(&)) + N (¥°(€))-

Clearly, (z(t),y(t,&)) = (z¢,y°(&)) for all ¢ > 0 provided that z(0) = x°. Note that
the value of the nonzero constant v on the right-hand side of (1.1) does not affect
such an equilibrium although it does affect the dynamics of the DSVI.

The first equation of (1.10) is defined by the natural mapping associated with the
VI: —F(v) € Nx(v) , and is known to be an equivalent formulation of this VI [15,
Section 1.5.2]. Therefore, (z¢,y¢(§)) is an equilibrium of the DSVT if and only if it is
a solution to the following (static) two-stage stochastic variational inequality (SVI)
extensively studied recently [5, 6, 7, 26, 27]:

(1.11) 0 € E[®(&,2,y(€))]) + Nx (),
(1.12) 0 € U(E, 2, y(€)) + Ny (y(€)), for aue. € € .

Moreover, as far as the equilibria of the DSVI (or the solutions of the two-stage SVI)
are concerned, we may replace the right-hand side of (1.1) by any function (or even
a set-valued mapping) whose zero set, along with (1.3), gives rise to the same SVI
(1.11)-(1.12) for its equilibrium. This leads to different formulations of the DSVI using
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DYNAMIC STOCHASTIC VARIATIONAL INEQUALITIES 3

various equation formulations of the VIs or complementarity problems. For example,
in view of u = Il x(z — G(t,z)) if and only if 0 € u — (x — G(t, x)) + Nx (u), the DSVI
(1.1)-(1.3) can be equivalently written as

113)  #0=r- () —a(),  (0) =0
(1.14) 0 € u(t) — z(t) + E[®(t, & 2(t), y= (¢, £))] + Nx (u(t)),
(1.15) 0€ W(t,&x(t),yt, ) +Nee (y(t,6)), forae & €.

Moreover, when X = R’ , many equation formulations can be obtained from the
NCP-functions and residual functions of nonlinear complementarity problems [15].

The main contributions of this paper are two-fold. (i) We show under certain
conditions that DSVI (1.1)-(1.3) has a unique solution of a pair € C'[0,T] and
y € CY[0,T] x ), where C! is the space of continuously differentiable functions and
Y is the space of measurable functions. Moreover, we provide sufficient conditions for
the non-Zeno behavior of the solution x. (ii) We establish the uniform convergence
and an exponential convergence rate of the sample average approximation (SAA) of
DSVI. We propose a time-stepping EDIIS method to solve the DVI arising from the
SAA of the DSVI, and provide a convergence theorem. It worth noting that the
analysis for DSVI requires not only the existing results for DVI and SVI but also new
techniques for dynamic equilibrium problems in an uncertain environment.

This paper is organized as follows. In Section 2, we discuss solution existence,
uniqueness, and non-Zenoness of the DSVI (1.1)-(1.3). Section 3 establishes the uni-
form convergence and an exponential convergence rate of the SAA of the DSVI. In
Section 4, we propose a time-stepping EDIIS method. Section 5 considers a point-
queue model for the instantaneous dynamic user equilibrium.

2. Fundamental Solution Properties. This section is concerned with the so-
lution existence and uniqueness (i.e., well-posedness) and other basic solution proper-
ties of the initial-value problem of the DSVI (1.1)-(1.3). Toward this end, we introduce
the following assumptions:

A.1 For any given t € R and 2 € R", the stochastic VI: 0 € W(t,£,z,-) + Ne, (+) a.e.
¢ € E has a solution y,(t,&) € V;

A.2 The function G(t,x) := E[®(¢, &, z,y(t,&))] is (locally) Lipschitz continuous at
any given (t,z) € R x R™ for some measurable selection of solutions y,(t,&) €
SOL(t, x, &) at each (¢, z).

In Section 3, we give sufficient conditions on ¢ and ¥ such that A.1-A.2 hold.

LEMMA 2.1. Under assumptions A.1-A.2, for any T > 0, the DSVI (1.1)-(1.3)
has a solution (z(t,zo),y(t,§)) for any t € [0,T] and any initial condition xo with
x(t, z0) being unique and C*. Further, if y(t,€) in A.1 is also unique for any t € Ry
and x € R™, then the DSVI solution (x(t,x0),y(t,£)) is also unique. Besides, x(t, zo)
18 continuous in xq at each t.

Proof. Tt suffices to prove that the time-varying ODE: &(t) = ~ - [Ux(z(t) —
G(t,z(t))) — z(t)] with z(0) = z has a unique C! solution. Since IIx(-) is globally
Lipschitz with the Lipschitz constant one with respect to || - |2, the right-hand side
of this ODE is locally Lipschtiz at any (t,z). It follows from the Picard-Lindel6f
Theorem that there exists a unique C! solution x(t) for all t € [—6, ] for a positive
number & > 0 with the initial value x(0) = z( [12]. Since 0 is independent of the
initial point and T, we can repeat the argument on each interval [¢,¢ + 6] and show
that for any 7" > 0 and any initial condition, the DSVI (1.1)-(1.3) has a solution
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4 XIAOJUN CHEN AND JINGLAI SHEN

(x(t,x0),y(t,&)) with z(t, ) being unique and C!. The rest of the statement follows
readily. 0

LEMMA 2.2. Suppose A.1-A.2 hold. Let x(t,zo) denote the solution of the ODE
(1.1): @(t) = v Mx(x() — G(t,z(t))) — x(t)] from the initial condition xo. The
following statements hold:

(i) Let v>0. Then xg € X = x(t,x9) € X,Vt > 0.
(ii) Let X be an affine set. Then for any v € R, g € X = x(t,z9) € X,Vt > 0.

Proof. (i) This proof is similar to [2, Proposition 5.8]. We provide essential details
to be self-contained. Since &(t) = v - [x (z(t) — G(t,x(t))) — z(t)] and x(0) = zo, we
have, for any t > 0,

t
z(t,xg) = e g —|—/ e_'Y(t_T)VHX[a:(T, x0) — G(1,2(T, 20)) | d.
0
h(7)

Letting s :=¢ > 0 and 7 = 7, we have

Ji " (s’
fy e dr’ '

x(s,xg) = e Pag+ (1 - 6_73)

z

Since X is a closed convex set, it follows from the proof of [2, Proposition 5.8] that
z € X. Further, because vy > 0 and s > 0, we see that x(s, zg) is a convex combination
of zg € X and z € X. Therefore, x(t, z9) = x(s,20) € X.

(ii) When X is an affine set, we see from the proof for (i) that for any v, x(s, zo)
is an affine combination of zy € X and z € X. Hence, z(s,z¢) € X. O

When v < 0, statement (i) may fail. For example, let X = Ry. This yields
& = —v-min(z, G(t,z)). Suppose G(t,z) = v — 1 —t whose associated LCP: 0 <z L
x —1—1t >0 has a unique solution z.(t) = 1+ ¢. Since G(0,0) < 0 and v < 0, then
for o = 0, £(0) = —vG(0,0) < 0 so that z(t) < 0 for all ¢ > 0 sufficiently small.

2.1. Mode Switching and non-Zeno Properties of the DSVI. When X is
a proper subset of R” and/or G is nonsmooth in z, the right-hand side of the DSVI
(1.1) is defined by a nonsmooth function due to the projection operator IIx. Further,
along with nonsmooth properties of the stochastic VI in (1.3), the right-hand side of
the DSVT (1.1) may be cast as a piecewise continuous (or smooth) function such that
the solution z(t,xo) demonstrates mode switching behaviors, which lead to the so-
called Zeno or non-Zeno behaviors [17, 29, 31]. In what follows, we discuss Zeno-free
cases; these results are useful for numerical computation and analysis of the DSVI.

To characterize the non-Zeno behavior, we introduce several notions. Consider
the ODE & = f(x) with 2(0) = xo, where f : R” — R" is continuous and piecewise
affine. Hence, f attains a polyhedral subdivision of R™ given by {X;}'_; [15, Section
4.2]. For a solution z(t,xz() starting from the initial condition zg, a time ¢, is not
a switching time along (¢, z¢) if there exist X; and a constant ¢ > 0 such that
x(t,x0) € &; for all t € [t. —e, t. +£]; otherwise, the ODE has a mode switching at ..
For a given constant 7' > 0 and a given xg, x(t,zo) is non-Zeno if there are finitely
many switchings on the time interval [0,T]. The ODE is robust non-Zeno if there is
a uniform bound on the number of switchings on [0, T] regardless of z(’s [30]. Other
mode switching and non-Zeno notions for DVIs can be found in [3, 17, 22, 29, 31, 32].

This manuscript is for review purposes only.



DYNAMIC STOCHASTIC VARIATIONAL INEQUALITIES 5

LEMMA 2.3. Suppose X is polyhedral, ® and ¥ are time invariant, and é(z) =
E[®(&, z,y(&))] is piecewise affine (and continuous). Then the ODE (1.1) is robust
non-Zeno in the above sense.

Proof. Since X is a polyhedral set, its Euclidean projection operator ITx(:) is
continuous and piecewise affine [15, Proposition 4.1.4]. As G is continuous and piece-
wise affine, we deduce that the right-hand side function of (1.1) given by ~ - [Ix (z —
G(z))— 1] is also continuous and piecewise affine. Hence, it follows from [30, Theorem
2.19] that the ODE (1.1) is robust non-Zeno. d

We apply the above lemma to a specific example. Consider the stochastic linear
complementarity problem (SLCP) with C¢ = R for all £ € Z. Then the DSVI
becomes the following DSLCP:

(2.1) i ={Tx (v - (A2 + EB©u: (O] + a1) ) — 2},
0<y(€) L MEYE) +N©+a() 20, ae €E.

Suppose the solution set SOL(M (&), N(§)x + g2(€)) of the SLCP in (2.1) is nonempty
for any £ € Q and z, and B(§)SOL(M (&), N(&)x + ¢2(&)) is singleton. This con-
dition holds, for example, when M () is a P-matrix; see [32] for other examples
where SOL(M (&), N(&)z + g2(€)) is non-singleton. It is known that for each &,
B(§)SOL(M(£), N(&§)x + ¢2(€)) is continuous and piecewise affine in x [32]. Further,
if £ has a discrete and finite distribution, then E[B(£)SOL(M (), N(§)x + ¢2(£))] is
continuous and piecewise affine in x. Therefore, when X is polyhedral, the DSLCP
(2.1) is robust non-Zeno.

REMARK 2.1. It is worth pointing out that if £ has a continuous distribution,
then E[B(£)SOL(M (), N(&)x + q2(£))] is not necessarily piecewise affine although it
remains continuous in z. For example, let z,y(-) € R, £ be uniformly distributed on
Q:=[0,1] CR, M) =1, N =&, and ¢2(¢) = 1, which yields that 0 < y(&) L
y(&) +[€x — 1] > 0 has a unique solution y,(§) = — min(x — 1,0). Suppose B(§) = 1.
Then E[B(§)y.(£)] = —E[min(x — 1,0)], where

1
(€ — 1)dE, ifrx<1 {320_1, ifz<1

/e L ifr>1
/ (Ex—1)dg, ifx>1 -
0

E[min(éz — 1,0)] =

2z

which is not piecewise affine for £ > 1. Hence, the right-hand side of (2.1) is not
piecewise affine when X = R (although it is piecewise affine when X C (—o0,1] by
Lemma 2.3). However, it is seen that the right-hand side of (2.1) is piecewise analytic
in the following sense [29].

We introduce the concept of piecewise analytic systems treated in [33] as follows.
Let f: R™ — R"” be a piecewise analytic function, namely, there exists a finite family
of selection functions {f*}, such that f(z) € {f*(z)}™, for each z € R™, and that
the following conditions hold:

(H1) For each f?, there exists a nonempty subanalytic set X; C R™ such that f(z) =
fi(x), Yo € X;, and {X;}™, forms a finite partition of R™;

(H2) For each X;, there exists an open set ©; C R™ such that cls X; C Q; and f? is
real analytic on §2;, where cls stands for the closure of a set;

This manuscript is for review purposes only.
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6 XIAOJUN CHEN AND JINGLAI SHEN

(H3) The continuity of f holds, i.e., z € clsX; NclsX; = fi(z) = f/(x) for any
i,7€{L,...,m}.

Consider the ODE system whose right-hand side f satisfies (H1)-(H3):

(2.2) i = f(x).

Given T > 0, let z(t,zo) be a solution of (2.2) on [0,7] with the initial condition
xog. We say that x(¢,z¢) has no switching at a time instant ¢, [33] if there exist
i € {1,...,m} and a constant £ > 0 such that z(¢t,xzg) € X;,V ¢ € [t. — &, tx + £];
otherwise, x(t, o) has a mode switching at t,.

THEOREM 2.1. [33, Theorem II] Consider the system (2.2) satisfying (H1)-(HS3).
For a compact set V C R"™ and a constant T > 0, there exists N(V,T) € N such that
for any time interval I C [0, T, if x(t, zo) satisfies {x(t,xo) |t € [} CV, then x(t,xo)
has at most N(V,T) mode switchings on I.

Motivated by the example in Remark 2.1, we consider the following case.

LEMMA 2.4. Let I = [a,b] with a,b € R anda < b, ¢ € R, and g : R — R be
a strictly monotone and analytic function such that g(0) = 0 and ¢’'(§) # 0 for all
£ #0. Let h be a real-valued, analytic function over an open set containing I. Define
G(z) == fgel min(0, g(§)z +q)h(€)dE, Yz € R. Then G satisfies the conditions (H1)-

(H3) and is piecewise analytic on R.
The above setting includes the case where ¢'(0) # 0, e.g., g(§) = 2§ or g(§) = —¢.

Proof. Since I is compact and the integrand of G is continuous in (z, ), G(z) € R
for each x € R and G is continuous on R. Clearly, g is a homeomorphism such that
its inverse function g~! is strictly monotone and continuous on R. Since g(0) = 0 and
g is strictly monotone, g(§) # 0 for all £ # 0. Further, since ¢'(£) # 0 for all £ # 0,
we deduce via the Inverse Function Theorem that g~! is analytic at each g(¢) with
€ # 0. Hence, g~'(2) is analytic at any z # 0. By the definition of G,

min(b,g™ ' (<))

/ 9(©x + dh(E)de,  if x> 0;
G(r) = %
/ Y&z + gh()de, i = <o.

max(a,g~ ' (= 1))

When ¢ = 0, it is easy to see that G is a piecewise linear function and thus satisfies
(H1)-(H3). In what follows, we consider ¢ < 0 only since ¢ > 0 follows from the
similar argument. Further, we assume, without loss of generality, that g is strictly
increasing, since otherwise g(€)x can be written as [—g(&)](—x) and the desired result
will follow.

Let ¢ < 0. Since g and g~! are strictly increasing, min(b,g~!(s)) = g~ ! o
min(g(b),s) and max(a,g~1(s)) = ¢g~' o max(g(a),s) for any s € R. Using this
result and letting f(z, ) := [g(&)x + ¢]h(£), we obtain: for z > 0,

1

b
f(z,8)ds, if g(b) < 0;

roTH(—1)
Gla) = / fa,©)de, i g(b) >0 and @ > &

b
/ f(@,8)dg, it g(b)>0 and 0 <z <—&

This manuscript is for review purposes only.
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and for z < 0,

b
/f@@ﬂ& it g(a) > 0;
%

/ f(x,f)d& if g(a)<0 and 0>z >—_&5.

Consequently, we have the following results for G:
Case (1): g(b) <0, which implies g(a) < 0 as g is strictly increasing. In this case,

b

| regae. it o>t
b

[ t@od it ws-gt
P

Case (2): g(b) > 0 and g(a) > 0. In this case,

G(z) =

g (-9)
[ rwea it e
b
| #a6pie, TP

Case (3): g(b) > 0 and g(a) < 0. In this case,

G(z) =

g (=)
/a [z, €)de, if xZ—ﬁ;
b
Glz) = /a [z, &)dE, it — s <w< s
b
/gl(_q)f(x7§>d£7 1f -’I/‘S—ﬁ

Consider Case (3) first. The domain of each selection function in G is a closed
interval in R. In fact, X; = [—ﬁ,oo)7 Xy = [—%,—ﬁ], and X3 = (—oo, —%],
which are clearly subanalytic and form a partition of R. As ¢ < 0, g(b) > 0 and
g(a) < 0, we have *W > 0 and L) < 0. Hence, there exists a sufficiently
small constant € > 0 such that the open interval €y = (— g(b) — €,00) contains
Xp and —% > 0 for all € Q. Since g~!(2) is analytic at each z # 0 and h is
analytic on an open set containing I, it is easy to verify that the selection function

—1
= fg =2 (z,£)d¢ is analytic on Ql Similarly, f2 is analytic on an open

set Qg containing Xg Further, since f2(z f f(x,€)dE is an affine function, it is
analytic on an open interval containing X2 Consequently, G satisfies (H1)- (H3) and
is piecewise analytic on R. The similar argument can be used to show the desired
results for Cases (1)-(2). O

REMARK 2.2. The above lemma can be extended to a strictly increasing and
analytic function g satisfying the following conditions: there exists some ¢ € R such
that ¢’(z) # 0 for all x # ¢, and either one of the following holds: (1) g(c) ¢ [g9(a),0) if
g(a) < g(b) < 0;(2) g(c) ¢ (0,9(b)] if g(b) > g(a) = 0; and (3) g(c) ¢ [g(a),0)U(0, g(b)]
if g(b) > 0 > g(a). The similar extension can be made for a strictly decreasing and
analytic function g.

This manuscript is for review purposes only.
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PROPOSITION 2.1. Consider the DSLCP (2.1), where m = n = d. Suppose that
X is a polyhedral set, M is a constant diagonal matrix with positive diagonal entries,
(N(f)x)i = gi(&)x; for each i, where g; satisfies the assumption on g in Lemma 2.4
or Remark 2.2, and qs is a constant vector. Further, assume that the support = is a
compact box constraint, and the probability density function p(-) and B(-) are analytic
over an open set containing =. Then the right hand side of the DSLCP (2.1) is
piecewise analytic on R™ and is non-Zeno in the sense of Theorem 2.1.

Proof. Let my;, 1 =1,...,n be the positive diagonal entries of M. Then for each
7, 0 < y;(&) L myy (&) + g;(&)x; + (g2); > 0 has a unique solution y;(z,§) =
—min(O,m#jj[gj(ﬁj)xj + (g2);]). Let E = [a1,b1] X -+ X [an, by], where —o0 < a; <
b; <oofori=1,...,n. For each i,7, let

Fiswin€) = ~By@min (0, ——[g;(&)a; + (a2),]) p(6).

)

Hence,

]E[Blj(f)ﬂ](‘rag)] = fi,j(‘rjag)dfl t dgn

£e=

L (o)

By Lemma 2.4, it is easy to show that E[B;;(£)y;(x, €)] satisfies the conditions (H1)-
(H3) and is piecewise analytic in x; on R. Hence, E[B(§)y(x,&)] is piecewise analytic
on R™. Since X is polyhedral, Iy is piecewise affine. Since the composition of two
piecewise analytic functions remains piecewise analytic, we see that the right-hand side
of (2.1) is piecewise analytic and is therefore non-Zeno in the sense of Theorem 2.1.0

We comment that the results in Proposition 2.1 can be generalized to other DSVIs.
For example, the non-Zeno result remains to hold if the term Ax + ¢; in the DSLCP
(2.1) is replaced by a piecewise analytic function in z.

2.2. Strongly Regular DSVI: Local Solution Existence and Uniqueness.
We have focused on the global solution existence and uniqueness at the beginning of
this section. In what follows, we discuss a case where local solution existence and
uniqueness can be obtained. Consider the time-invariant DSVT of the following form:

(23) & ={Tx (1@ (6,7, 52(6)]) ~2}, 0 <y(€) L H(w,y(€),6) >0, ae.( €=

Consider the stochastic NCP: 0 <u L H(x,u,§) > 0, where we assume that H(-,-,§)
is continuously differentiable for any given £. Given £ € E, define the three fundamen-
tal index sets («g, o, v0) corresponding to the solution pair (zg,uo(€)). (We write
uo(€) as ug below for notational simplicity.)

ao(z0,u0,&) = {1 : (ug); > 0= Hi(x0,u0,§)},
Bo(wo,u0,§) = {i : (uo)i =0 = H;i(wo,u0,§)},
Yo(xo,u0,&) = {i : (uo)i =0 < Hi(xo,uo,&)}-

The Jacobian J, H (g, ug, £) is given by

Ju(,OHao(x07u0a£) JugoHao(anumg) JumHao(l'O;umf)
JuH(-'EOaumE) = JuaoHﬂo(anUOag) JuﬁoHﬁo(l‘Oyumf) JuWOHﬁo(fﬂOaumf)

JuaonyO(l'(),’U,o,g) Ju[;OH'yO(xmuva) Ju»mH’Yo(anUOaf)

This manuscript is for review purposes only.
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For a given &, uo(§) is a strongly regular solution of xq [22, 25] if (i) Ju,, Ha, (0, uo, &)
is invertible, and (ii) the following Schur complement is a P-matrix:

M(l’o, Ug, 5)
-1
= ‘]uﬁo Hﬁo (1:0’ Uo, 5) - Juao Hﬁo (IOa Ug, €) [‘]Uao Hao (‘T()v Uo, g):l Ju/go Hao (x07 Uo, g)
We make the following assumption on the stochastic NCP at xq:

H For a.e. £ € Z, ug(£) is a strongly regular solution of xg, ug(§) is measurable, and
the following conditions hold: there exist a constant ¢; > 0 and two measurable
functions ¢;(§) > 0 with ¢ = 2,3 such that for a.e. £ € =, ¢(M(zg, uo(£),£)) > c1,
||J$H(m07u0(§)>€)”00 < 62(5)5 and

() Juus, Hog (205 10(E) €)oo max (|| Juuy, Hpy (20, u0(§), €)- K (€)[oos 1) +e1- [ K (E) [l

< e3(§), where

c(M) = min|,|__—1 maxXi<i<m z;(Mz); and K(§) := — [Juao Hea, (2o, uo(f),ﬁ)]*l.

The following example illustrates the conditions given in H. Suppose = is a com-
pact support, and the stochastic NCP corresponding to a solution pair (zg, uo(£)) in
(2.3) is such that ug(&) is continuous in &, J,H (o, uo(£),€) is a P-matrix for each
given & € 2, and J,H (zo,u0(§), &) and J,H(zo,uo(§),§) are continuous in £ on E.
Then (zg,u0(§)) is a strongly regular solution of zy for each ¢ as the Schur comple-
ment of a P-matrix remains a P-matrix. Further, K () defined above is continuous in
. Along with the continuity of J, H and J,H in £ at (xg,uo(§)) and the compactness
of =, we see that there exists ¢; > 0 such that ¢(M (zg, uo(£),&)) > ¢1 and the desired
c2,c3 can be chosen as certain positive constants. Hence, H holds.

LEMMA 2.5. Suppose H holds. Then for any given constant e > 0 and a.e. £ € Z,
there exist two neighborhoods Ve of xo and Ue of uo(§) and a Lipschitz continuous
function ug : Ve — U with the Lipschitz constant (ca(§) + €)[max(c3(€)/c1,1/c1) + €]
with respect to ||-||oo such that for any x € Ve, ue(x) € Ue is a solution of the stochastic
NCP corresponding to x and &.

Note that the stochastic NCP may attain multiple solutions at x € Vg, and
ue(x) € Ue is one of these solutions indicated in the above lemma.

Proof. Fix a constant € > 0 and a £ € = where u((£) is a strongly regular solution
at xo. Then there exist two neighborhoods V¢ of zg and U of uo(§) and a Lipschitz
function ug : Ve — Ue such that for any @ € Ve, ug(x) € Ue is a solution of the
NCP corresponding to = and £ [22, 25]. To establish the desired Lipschitz constant
of ug, consider the following LCP in v obtained from the linearization of the NCP at

(z0,u0(§)):
0 < (ug(§) +v) L H(wo,uo(§),§) + JuH (z0,u0(§),)v +p >0,

where the vector p = (Pay,DPs,: Py, ), and we write its solution as wve(p). Denote
M(zo,u0(€),€) by M(&) for notational simplicity. For any p of sufficiently small
magnitude, we have

Ve, a0 (p) = Kl(g)'vﬂo (P)+K(§)Pay, 0= Ve, Bo (p) L M(f)vfﬂo (p)JrK”(g)pao +pg, 20,
and ve , = 0, where the matrices K () := —[Ju. Ha, (w0, uo(f),f)]_l, and

uao

K/(S) = 7K(§) ' JuBOHao(iﬂovuo(f)’f% K”(f) = *JuaOHﬁo(ﬂfmuo(f),f) ' K(f)

This manuscript is for review purposes only.
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Since M (€) is a P-matrix, we have, for all p, ¢ of sufficiently small magnitude,

max ([ K" (€)[los 1)

l[ve,80(P) — ve,8,(D)]loc < P = qlloo,
and
max (|| K" (§) o, 1)
V.0 (P) = ve.ap (@lloe < (1) o S K@)l ) I~ all
es(§)
<—p—dl-
C1
This yields the local Lipschitz constant max(c3(&),1)/c1 of ve(+) with respect to |- || oo-

Finally, given u(€) for a fixed &, we have, for all z, 2’ € Ve by possibly restricting V,

[H (,10(€),€) = H (2", u0(8), ) lloo < [[IJaH (0, u0(8),€)lloe + ] - [l — 2”[|o
< (@) +e) -z -2l
By [25, Corollary 2.2], (ca(§)+¢)[max(cs(§)/c1,1/c1)~+e] is the local Lipschitz constant
of Ug. O

Suppose that there exist an open set Vy of xp with Vo C V¢ ae. £ € E and
another open set Uy with Uy C Ue ae. § € Z. (Clearly, such Vy and Uy ex-
ist if ¢ has a finite discrete distribution.) Furthermore, suppose Elke ()] < oo,
E[ke (&) max(cs(£),1)] < oo and E[ke (€)ca(€) max(c3(€),1)] < oco. For a given & > 0,
define G(x) := E[®(§, z, ue(x)] for x € Vo and ug(x) € Uy. Then for any z,z’ € Vo,
we have, via assumption A.O, that

IG(z) = G(a")lloo < E[ra (&)l (2, ug(@)) — (27, ug(2)) o]
< E[ra (&) (1 + (c2(€) + &) (max(es(€) /e1, 1/c1) + €))] [l — 2| o

I=RG

By the given assumptions, 0 < kg < oo such that G(+) is Lipschitz continuous on the
neighborhood Vj of xy. This shows that there exists a constant ¢ > 0 such that the
DSVI (2.3) has a unique solution x(t) := x(t,z9) € Vo on the time interval [—, ¢]
with 2(0) = zg and y(z(t), ) = ue(x(t)) € Up for all t € [—p, ¢].

3. Sample Average Approximation of the DSVI. In this section, we con-
centrate on two cases. The first case is when the underlying VI in the second stage
defined by U is strongly monotone, whereas in the second case, we consider a special
non-monotone VI given by a box-constrained linear VI satisfying the P-property.

ASSUMPTION 3.1. Case (i) The function ¥ is (uniformly) strongly monotone on
C¢ respect to y for any t,x € R", a.e. £ € = in the sense that there is a constant
n > 0, independent of t,x and &, such that

(31) (z—2)T (\Il(t,é,x,z) — \I/(t7§,m7z’)) > nllz— 2|3, V2,2 €C ae £€E.

Case (ii) The set C¢ = [l¢, ue] a.e. € € 2, wherele € {RU{—00}}", ue € {RU{c0}}",
and le < ug, and U(t,&,z,y) = M(&)y +¥(t, &, x), where M(§) € R™*™ s q
P-matriz and there is a constant 1 > 0 independent of & such that

(3.2) Hzr\?inzl ( max zZ(M(f)z)l) >, a.e. £ € 2,

1<i<m

and the function (-, &, ") is Lipschitz continuous a.e. £ € Z.

This manuscript is for review purposes only.
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We make two comments on Case (ii) as follows.

(ii.1) Clearly, the Lipschitz continuity of the function ¢ (-, €, ) a.e. £ € = follows from
the Lipschitz continuity of ¥ in assumption A.0. Conversely, if (-, €, -) is Lip-
schitz in (¢, ) a.e. £ € Z with the measurable Lipschitz modulus and | M ()| is
measurable, then (-, &, -, ) is Lipschitz in (¢, z, y) with the measurable Lipschitz
modulus.

(ii.2) When = is a compact support and M(-) is continuous, there exists a con-
stant 77 > 0 independent of £ such that (3.2) holds for all £ € E. In fact,
let f(£,2) := max;—1,..n (2:(M(£)z);), which is continuous in (£, z). Hence, f
attains a minimizer (£*, 2*) on the compact set =X {z | ||z]|coc = 1}. Since M (£*)
is a P-matrix and z* # 0, 1 := f(£*,2*) > 0. Thus miny,;_—; f(§,2) > 7 for
all € € =.

In either case of Assumption 3.1, the VI (1.3) has a unique solution g, (t,&) [15,
Theorem 2.3.3, Proposition 3.5.10] for any ¢ > 0,2 € R™, a.e. £ € E. We assume that
Uz (t,-) is measurable for any given (¢,z) so that assumptions A.1 holds. Sufficient
conditions for the measurability of 7, (¢,-) can be established. For example, in Case
(1), if C¢ = C for a closed convex set C' and for any fixed (¢,x) and any given y € C,
U(t,-,x,y) is continuous on = and xy (+) is bounded on any small neighborhood of each
¢ € E, then by the similar argument in (3.5), the unique solution ¥, (¢, -) is continuous
at any £ € = and thus measurable. This result can be extended to the case when
the closed, convex-valued set-valued mapping C is continuous in &; see [15, Corollary
5.1.5] and [15, Proposition 5.4.1] for the related results.

Consider Case (ii). Let M € R™*™ g e R™, [ € (RU{—00})™, u € (RU{+o0})™
with [ < u, and K = {v € R™|l < v < u}. The box-constrained linear VI, denoted
by LVI(M, ¢,1,u), is to find v € R™ such that

0€ Mv+q+ Ng(v).

Let mid denote the componentwise median operator, i.e., for any a,b,c € R,

mid(a, b, ¢) := a+b+c—max(a, b, ¢) —min(a, b, c). When M is a P-matrix, it is shown
in [8, 10] that the solution of the LVI is Lipschitz continuous in (M, ¢); the following
lemma shows the continuity in (M, q,l, u).

LEMMA 3.1. Suppose M* is a P-matrixz. Then the unique solution of this LVI
is continuous in (M,q,l,u) at (M*,q*,1*,u*) for any ¢* € R™, I* € (RU{—0c0})™,
u* € (RU{+oo})™ with I* < u*.

Proof. Let {(M*,q*,1* u*)} be a sequence that converges to (M*,q*,1*,u*).
Since M* is a P-matrix, we may assume without of generality that each MF is a
P-matrix such that the LVI attains a unique solution v* for each k. Therefore, v*
satisfies the equation mid(v* — ¥ v* — u* M*oF 4 ¢*) = 0 for each k [8]. We first
consider the case where both [*,u* € R™. Clearly, {I*} and {u*} are bounded such
that {v*} is bounded and hence has a convergent subsequence. Let {v*'} be an
arbitrary convergent subsequence of {v*}, and let its limit be v°. Since the me-
dian operator is continuous, it can be seen by passing the limit that v°® satisfies
mid(v® — I*,v® — u*, M*v°® + ¢*) = 0. Since the LVI(M*, ¢*,1*,u*) has the unique
solution v*, we have v® = v*. This shows that any convergent subsequence of {v*}
has the same limit v*. Hence, {v*} converges to v*. This shows that the solution of
the LVI is continuous in (M, q,l,u) at (M*, ¢*,1*,u*).

Next, we consider the case where some [; or u; takes an extended real-value. Let
Z, J, and K be three disjoint index subsets of {1,...,m} such that I = —co and
u; € Rforalli € Z, uf = 4ooand I € Rforall i € J, and I = —o0 and u] = +oo

This manuscript is for review purposes only.
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for all 7 € K. Hence, for any v € R™,

mid(vz — Iz, vz — uz, (M*v)z + ¢7) = max(vy — uz, (M*v)z + q7),
mid(vy — %, v7 —u’y, (M*v) 7 +q¢%) = min(vy — U5, (M*v) 7 + ¢%),
mid(ve — I, v — uk, (M™0) + gx) = (M) + gc-

Besides, for each ¢ ¢ ZU J UK, we have mid(v} — I, v} — u}, (M*v*); + ¢f) = 0.

i Y

We claim that (v*) is bounded. Suppose not. Without loss of generality, we let
0% — o, ﬁ — ¥ # 0, and for all large k, [¥ = —occ for all i € ZU K, and
uk = 400 for all i € J UK. Since, for all large k,

max(vk —uk (MFoF) 7z + ¢k) min(v% — 1%, (M*0*) 7 + ¢%) 0

[[o¥]] o [0l

(M*04) + gk mid (vl — 15,0 — u, O*00), + gb)
o o

we have, by passing the limit, that max(vz, (M*v)z) = 0, min(vy, (M*0)7) = 0,
(M*?) = 0, and for each i ¢ ZU J UK, mid(v;, v;, (M*v);) = 0. This implies that
Ui(M*0); =0 for all i = 1,...,n. Since M* is a P-matrix, we have ¥ = 0, yielding a
contradiction. Hence, (v*) is bounded. It follows from the similar argument for the
first case and the continuity of min, max and mid that any convergent subsequence of
{v*} has the limit v*, leading to the desired continuity. O

In what follows, let P be the set of all P-matrices in R™*™, and W := {(l,u) €
(RU{—00c})™ x (RU{+0o0})™ |l < u}. Clearly, P and W are open.

COROLLARY 3.1. In Case (ii), if each entry of (M(£),1(§),u(§)) € P x W is a
measurable function on Z, and each entry of ¥(t,-,x) is measurable for any (t,z),
then yX(t,-) is measurable for any (t,x).

Proof. Fix (t,z). Let y*(§) € R™ be the unique solution of the LVI in Case (ii)
(we omit (¢,2) in y* as it is fixed). Let ¢(§) := 9(¢,-, ), which is measurable on

E. By Lemma 3.1, y* viewed as a function of (M, q,!,u) is continuous on the open
set P x R™ x W. Since each entry of M(-),q(+),1(-),u(-) is measurable, we see that

=0, and

=0,fori ¢ ZUJ UK,

for each i = 1,...,m, the real-valued function y;(-) is a composition of a continuous
function and finitely many measurable functions. Hence, each y;(+) is measurable so
that y*(-) is measurable. O

The next lemma provides sufficient conditions for assumption A.2 being fulfilled
in each of the two cases of Assumption 3.1. As G(t,z) = E[®(t,&,x,y(t,E))], the
DSVI (1.1)-(1.3) can be written as

(3.3) i(t) = 7+ {Ix (2(t) - G(t.2()]) - =)},
(3.4) x(0) = xp.

For notation simplicity, we write 3, (¢,£) as y(x,t,€) in the subsequent development.

LEMMA 3.2. Suppose that E[re(£)] < oo, Elke (£)kw (€)] < 0o, and E[ke (£)k%(€)]
< 00. In either of the two cases in Assumption 3.1, the function G is globally Lip-
schitz continuous, and for any initial condition xg, the DSVI (1.1)-(1.3) has a unique
solution (z*(t),y*(t,€)) with z* € C*[0,00) and y*(-, &) being (locally) Lipschitz con-
tinuous in [0,00) a.e. £ € E.

This manuscript is for review purposes only.



DYNAMIC STOCHASTIC VARIATIONAL INEQUALITIES 13

165 Proof. By [15, Theorem 2.3.3, Proposition 3.5.10], given any ¢t > 0,z € R", a.e.
466 & € Z, the VI (1.3) has a unique solution measurable on Z. To show that G is
467  (globally) Lipschitz continuous, let v = g(z,t,£) and v' = y(a’,t',€) for a fixed £ € =,
468 where (z,t), (2/,t") € R x R. Clearly, v,v" € C¢.

469 Case (i) It follows from (3.1) that for almost every & € E,

470 ||’l)*"l)/||2 <7]/(§)”’U*HCE(’U* (tlagaxlav))”Q

471 /(f)H’U—Hcg(U— (tlagvx/ﬂ]» _’U+HCg(’U_\I/(t’§7x7U))”2
472 < (OIU(E, &, 2", v) — B¢, & z,0)|2

175 (3.5) <7 (Oru O, 2) = (¢, 2)]2,

74 where the first inequality is from [15, Theorem 2.3.3] with 1’ () = (1+ kg (€))/n !, the
175 second inequality is due to v—TIlc, (v—®(t,§, z,v)) = 0, and the third inequality follows
176 from the fact that the Euclidean projection is Lipschitz continuous with Lipschitz
477 constant 1. Hence we obtain

478 IG(t, ) — G, 2|2 = [E[®(1, & 2, G(a, 1, ) — B, & 2" G’ ', )],
479 <E[|2(t & Gz, t,)) — ot &, o', §la', ) ||2]
180 < E[ra(€) - lI(t,z y(x t 5)) (¥, e, . €) )ll2]
5L (3.7) < Elke(€)(1+ 7' (©ru(€)] - I(t;2) = (2|2,

182 where the first inequality follows from the Jensen’s inequality. By 7n/(§) = (1 +
183 Ky (€))/n, we obtain

484 kg = E[ka () (1+1(§ru(€))] = Elka(§)] + E[ra ()1 (§)rw (£)]
w38 = Elra(©] + o (Elre(©ra O]+ Blra (R3] < .

486 where the last inequality follows from the given assumption on expectations. Hence,
487 @ is (globally) Lipschitz continuous with the Lipschitz constant kq-.

488 By Lemma 2.1, (3.3) and (3.4) has a unique solution z* € C1[0,00). From (3.5),
189 y*(t, &) == y(z*(t),1,€) is (locally) Lipschitz continuous in [0, 00) a.e. £ € .

190 Case (ii) Since M(€) is a P-matrix, the box-constrained linear VI has a unique
491 solution for any fixed t,z,£ [15, Section 3.5.2]. For any given (¢,z) and (¢, 2'), the
492 unique solutions v and v’ can be expressed in terms of the median operator mid(-)
493 respectively:

194 (3.9) v—mid(le, ug,x — ¥(t,&,2,0)) =0, v —mid(le, ue, 2’ — V(t',&,2",0")) =0,

IThere is a minor mistake in the proof of [15, Theorem 2.3.3(ii)]. Here we give a modified proof
of [15, Theorem 2.3.3(ii)] and derive the following inequality

1 =

(3.6) lo—v*lle < (o ~He - F@)|,) T, veecd,

where C' C R” is a closed convex set, ¢ > 2, ¢ > 0,k > 0, F' : R — R” satisfying
(u—0)"(F(u) = F(v)) > ¢|u—vl5, Vu,0 €C, and [[F(u) = F(v)]l2 < llu— o],

and v* is the unique solution of the VI: 0 € F(u)+N¢(u). Foragivenv € C, let r = v—Ilg(v—F(v)).
Following the same argument as in [15, Theorem 2.3.3(iii)], we have (v* —v+7)T (F(x) —r) > 0 and
(v—7—v*)T F(v*) > 0. Adding these inequalities and using the conditions on F, we deduce

cllv =¥l < (v = v") T (F(v) = F(v") < 7T (F(v) = F(W*) =rTr = (0" =) Tr < rllz - k- flo = o[l + [Irl2 - o — v*
This gives rise to (3.6).

This manuscript is for review purposes only.
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where we recall that U(¢, &, x,y) = M(&)y+1(t, &, ). Following the same argument in

the proof of [8, Lemma 2.1], there exists a vector d € [0,1]™ (depending on v and v’)
such that (I - D)(U - vl) + D (M(f)(v - vl) +w(t7 57 QL') - ¢(tl, 57 LC/)> = 07 where D :=

diag(d). This implies (I - D+ DM(§)) (v—v)=—D(¥(t,&x) —p(t', & a')). Since
M(€) is a P-matrix a.e. £ € Z, it is known that I — D+ DM (£) is also a P-matrix [10,
Theorem 2.2] and thus invertible a.e. £ € E. Define Soo (M (§)) := mMax g 11m (I -
D+DM () D, and ¢(M(€)) := miny,; =1 (maxi<i<m z:(M(£)z);). It is known
that Boo(M(£)) < m [10, Theorem 2.2]. Hence, by (3.2), Boo(M(€)) < % a.e.
¢ € Z. Further, it follows from [8, Lemma 2.1] and [13, Lemma 7.3.10] that

”U - v/”OO < ﬂOO(M(g))Hw(tvgax) - w(tlvgaxl)noo < m‘@(tvfa@ - ¢(t/,§7xl)’|oo
1 1
10 < Lt g o) v e, = L g e v e a ),
< MO (t0) - (¢,2)]| ., ae €=

Ui

Therefore, G is (globally) Lipschitz continuous with the Lipschitz constant kg :=
Elke(£)(1+ H‘I’T@)} < oo (with respect to || - ||s), by the same argument in the proof
for Case (i). O

REMARK 3.1. If n = 0 in (3.1) or i = 0 in (3.2), the solution set of each second
stage problem may be empty or has multiple solutions. In the latter case, we can
use the regularization approach by U (¢,&,x,2) = U(t, &, x,2) + ez with € > 0 (see
for example [9]). The function ¥, satisfies Assumption 3.1 and each second stage
problem has a unique solution y.(t,§) for any € > 0, which converges to a solution of
the original problem as € | 0 for any fixed t,&.

Let {¢'} with ¢ = ¢%(w),Vi € N be an independent identically distributed (iid)
sequence of d-dimensional random vectors defined on the probability space (2, F,P).
We consider the sample average approximation (SAA) of (3.3)-(3.4) as follows:

(3.11) i(t) =7 {Tx (2(0) = GN (L 2(1))]) - 20},
(3.12) z(0) = o,

where

DR (AN IONCONAS))
N

with 7(x(t),t,£") being the unique solution of the variational inequality

GN(t,x(t))

0 Wt &, 2(t),y) + New (y)-

Since all £ = £/(w) are defined on the probability space (Q, F,P), we view G (¢, z) as
the random function GV (¢, z,w) on R x R" x Q. By a similar argument in Lemma 3.2,
GY is (globally) Lipschitz continuous in (¢,7). Hence, the DSVI (3.11)-(3.12) has a
unique solution %V € C[0, 00).

In what follows, we prove the uniform convergence of {zV'} to the solution of (3.3)-
(3.4) with probability 1 for either of the two cases of Assumption 3.1. Toward this end,
we recall some results and introduce more notions. For either case of Assumption 3.1,

This manuscript is for review purposes only.
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let @(t,z,f) = O, &, x,y(x,t,£)). It is shown in the proof of Lemma 3.2 that in
either case, there exists a measurable function k. : = — R such that

(313) ’|Z£(tax»£) - a\)(t/’wl7£)’| < HC(E) H(t,(ﬂ) - (t/vxl)Hv a.e. 5 €E.

In particular, for case (i), kc(€) = K (€) (1 + 7/ (€)rw(§)) with respect to || -||2, where

' (§) = (14 ru(€))/n; for case (ii), Ke(€) = ra(€)(1 + “5) with respect to || - [|oo-
Under the assumptions of Lemma 3.2, E[s.(£)] < oo for both the cases.
We define moment generating functions for k. and ®;,7i =1,...,n as follows. Let

M, (1) := Elexp(7k.(£))], M(it@)(’r) = E[exp(T(ZI\Di(t,x,f)], i=1,...,n.

Recall that the moment generating function M, (7) := E[e™X] of a (real-valued) ran-
dom variable x is finite-valued in a neighborhood of zero if there exists a constant
€ > 0 such that for any 7 € (—¢,¢), M, (1) < co. We make the following assumption:
on M, and M(it7m) for any (¢,x) € [0,T] x X:

(M): M, and all M(im) are finite valued in a neighborhood of zero.

REMARK 3.2. Obviously, if = is a compact support and k., @i,i =1,...,n are
continuous in ¢ € Z for any given (¢, z), then the condition (M) holds; see Example 4.1
for an example. For a general case where the support = is unbounded, one may es-
tablish the decay rate of moments using the probability density function of £ and
properties of k. and ®;’s to show that their moment generating functions are finite
valued near zero. Further, one can approximate an unbounded support by a compact
support and show that the error between the original DSVI solution and its approx-
imate solution can be made arbitrarily small by choosing a suitable approximating
compact support; see [7] for the related results.

We first consider a convex compact set X.

THEOREM 3.1. Suppose that the assumptions of Lemma 3.2 hold, X is a convex
compact set, ©(0) € X, T > 0, and v > 0. Let x* be the unique solution of (5.3)-(5.4)
and 0 = exp(w(ﬁ%. Then the following statements hold for either of the two
cases in Assumption 3.1:

(i) {zN} converges to x* uniformly on [0,T) w.p. 1;

(ii) Suppose, in addition, that the assumption (M) holds. Then for any constant
e > 0, there exist positive constants p(fe) and o(f¢), independent of N, such
that

(3.14) IP’{ sup |2V (8) — 2 (1) = e} < plbe) exp( — No(0e)).
t€[0,T]

Proof. (i) We first show that G (-, -) converges uniformly to G(-,-) on [0,T] x X
with probability 1. For this purpose, we establish the following two claims.

Claim (a): ®(t,x,&) is continuous in (¢,z) at each (t,z) a.e. £ € =.

To prove Claim (a), note that in both cases of Assumption 3.1, ® is Lipschitz
continuous in (¢, z,y) and y(z,t,&) is Lipschitz in (x,¢) as shown in Lemma 3.2 a.e.
¢ € Z. Hence, @(t,x,ﬁ) = ®(t, &, x,y(x,t,€)) is continuous in (¢, z) a.e. £ € E.

Claim (b): Each element of ®(t,z,¢) is dominated by a nonnegative integrable
function h(§), i.e., h(€) is a nonnegative measurable function with E[h(£)] < +oco such

that for any (t,z) € [0,T] x X, |®;(t,z,€)| < h(€) for each i = 1,...,n.
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16 XIAOJUN CHEN AND JINGLAI SHEN

To show Claim (b), consider case (i) of Assumption 3.1 first. It follows from (3.7)
that for any (¢,z), (t,2') € [0,T] x X, ||®(t, z,&) — D', 2',&)|l2 < Kel€) - ||(t,2) —
(t',2")||2. Since X and [0, T] are bounded, there exists a constant v > 0 such that for
any (t,z), (t',2') € [0, T|x X, |®(t, z,&)—D(t', 2/, )||2 < vke(£). Furthermore, choose

an arbitrary (¢°,2°) € [0,T]x X. Since ®(¢°, 2°, £) is measurable and its expectation is
of finite value, || ®(t°, z°, &)||2 is also measurable and E[||®(t°, 2°, £)||2] < +oo. Define

the nonnegative measurable function h(€) := [|®(t°, 2°,€)||2 +vke(€). Clearly, for any
(t,x) € [0,T] x X, we have
182Gt 2,&)ll2 < 1B, 2°, )2 + [ B(t, 2, 6) = B(t°,2%, )l < h(§),  ae E€E.

From the assumptions of Lemma 3.2, we have E[h(£)] = E[[|®(t°, z°,)||2] + vrg < oo,
where k¢ is given in (3.8). Consequently, each element of &J(t, x,€) is dominated by
the nonnegative integrable function h(£). The same result can be shown for case (ii)
of Assumption 3.1 using the similar argument in Lemma 3.2.

In view of the above two claims and the fact that the sample {1 ..., fN} is iid, we
deduce via [28, Theorem 7.48] that for each i = 1,...,n, GN (¢, z) converges uniformly
to Gi(t,x) on [0, T]x X with probability 1, i.e., sup(, ,)e0.17xx |G (5, 2)=Gi(s, z)| =
0 w.p. 1. Hence, sup(, ,)e0,71xx |GV (s,2) = G(s,2)|| = 0 w.p. 1.

Next, we use the above results to establish the uniform convergence of {zV} to
x*. Tt follows from Lemma 3.2 that ¥ € C'[0,T] and from (i) of Lemma 2.2 that
2N (t) € X for all t € [0,T] and N. Further, by Lemma 2.2, we have, for each N,

t
2N (1) = e g +/ ey Ty (2N (1) — GV (r, 2N (7))] dr,
0

2(1) = e~ tag + /O eIy Ty [2*(7) — G(r, 2*(7))] dr.

Therefore, using the kg derived in the proof of Lemma 3.2 for either of the two cases
in Assumption 3.1, we have, for any t € [0, T],

o) -0
< / e |2V (7) — GN(1,2N (7)) — 27 () — G(r, 27 (7)) || dr
0

< ’Y/O (HJCN(T> —2*(1)|| + |G(r, 2™ (7)) = G(r,2*(7))|| + |GV (. 2™ (1)) — G(7, xN(T))H)dT

t N —x*(r su N s.1) — . -
SV/O ((1+HG)H117 (1) ()H+(s,m)e[0%)T]><XHG (s,z) — G(s, )||>d

Since sup(, ye0,7]x x |GN(s,2)—G(s,z)|| = 0 w.p. 1, we have that for all sufficiently
large N, sup(, 4yej0,77x x |GN (s,x) — G(s,7)| < oo a.e. £ € Z. Using [9, Lemma 2.6
and the Gronwall inequality [12, pp. 146], we obtain that for all large N and for any
t e 0,17,

(v +ke)t) — 1

) exp
[+ @) = @] < 1+ kg (s,m>eSE(1)PT]xxHGN(S’x) -Gl

Recalling that 6 = exp(v(ﬁ%, we thus have, for all large IV,

(3.15) 0 sup ||z (t) —z*(t)|| < sup HGN(s,x) — G(s,2)].
te[0,T] (s,2)€[0,T]x X
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Since sup(, ,)e0.1)xx |GN (s,2) — G(s, )| = 0 w.p. 1, we conclude that {z"V} uni-
formly converges to «* on [0,7] w.p. 1.

(ii) In view of the above proof for part (i), it suffices to establish the uniform
exponential bound

]P’{ sup G (t, ) — G(t,z)|| > e}

(t,x)€[0,T|x X

for any constant e > 0. Toward this end, consider Case (i) of Assumption 3.1 first.
Under the condition (M), M, and all M/, . are finite valued in a neighborhood of zero

(t,z)
at any (t,z) € [0, T] x X. Since each G;(t, x) is finite valued at any (¢,z) € [0,T] x X,
it is easy to see that for any (¢,z) € [0,7] x X and each i = 1,...,n, the moment

generating function E[exp(T(t/I;i(t, x,&) — G,(t,x))] is finite valued in a neighborhood
of zero. Further, for each i =1,...,n,

|@i(t,2,6) = (¢, &) < ||t 2. &) — (1,26, < Rel) I(t2) = (¢, 7)1

for all £ € E and any (t,), (¢,2") € [0,T] x X. Consequently, it follows from [28,
Theorem 7.65] that for any constant € > 0, there exist positive constants p(e) and
o(¢€), independent of N, such that

(3.16) IP’{ sup IGN(t,z) — G(t,z)||]2 > 6} < p(e)exp(—Noal(e)).
(t,z)€[0, T x X

In light of (3.15), we obtain

P{ sup V(1) ~ a* (D)2 = € } < p(0e) exp(~No(0e)).
te[0,T)

The similar result can be established for Case (ii) of Assumption 3.1 where || - ||oo is
used.

Using (ii) of Lemma 2.2 and Theorem 3.1, we have the following corollary.

COROLLARY 3.2. If X is a bounded affine set and x(0) € X, then Theorem 3.1

. _ 1+k
holds with 0 = W'

To handle an unbounded closed convex set X, we make the following assumption:
A.3 (i) There exist constants Le > 0 and Ly > 0 such that ke(§) < Lg and
ky(€) < Ly ae. £ € E; and
(ii) there exist ¢t°,x° and a constant 5 > 0 such that || ®(¢°, &, z°, y(x°,t°,£))| <
B a.e. £ € E, where y(z°,t°,£) is a solution of the VI: 0 € U(t°, &, z°%,y) +
Ne, (y).

By A.3, kg, ke and ||D(t°, -, 2%, 3(x°,t°,-))| are essentially bounded. Furthermore,
E[rie(§)] < Lo < 00, E[ra(§)rw(§)] < Lo Ly < oo, and E[ke (§)5(§)] < Le-(Lw)? <
00. Hence, Lemma 3.2 holds.

REMARK 3.3. Sufficient conditions for A.3 to hold can be established for specific
classes of DSVIs. For example, consider the DSLCP in (2.1). We show below that A.3
holds if [|B(EIl, 1M (E)Il, IN(€)] and ||g2(&)|| are essentially bounded and Case (ii)
of Assumption 3.1 holds. Clearly, if || B(E)|], [|M (&), |N ()| are essentially bounded,
then kg and ky are essentially bounded such that (i) of A.3 holds. We next show that
(ii) of A.3 holds. Let 2° = 0. The SLCP in (2.1) becomes: 0 <y L M(§)y+q2(&) > 0.
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Since M (&) is a P-matrix a.e. £ € 2, the SLCP has a unique solution y(&) for a given
g2(€). Particularly, the solution y(§) = 0 when ¢2(§) = 0. Therefore, by (3.10),
ly(€) — 0]l e < %H(Jz(f) — 0o a.e. £ € Z, where 77 > 0 is a constant independent of
¢ given in (3.2). Hence, [|®(£, 2%, y(2%,8))lloc = [ BE)U(2°,€) + q1lloc < [IB()]loo -
%qu(f)ﬂoo + |1l ae. € € 2. Thus [|P(E, 2%, y(a®,€))||eo is essentially bounded
such that (ii) of A.3 holds. Consequently, A.3 holds. This result also holds when
the assumptions of Case (ii) of Assumption 3.1 are replaced by those of Case (i).

In fact, when Case (i) holds for the DSLCP, M (&) satisfies 2T M(£)z > 1|23 ae.
T
¢ € 2. In view of max;—1__m, z;(M(§)z); > 2 MOz o see that (3.2) in Case (ii)

holds with 7 := /L > 0. Hence, the desired resultm follows. Furthermore, consider the
DSVI satisfying the conditions in Case (i). Suppose = is a compact support. If Ky, ke
are continuous in &, then they are essentially bounded on =. Besides, as indicated
below Comment (ii.2), if C, = C for a closed convex set C' and ¥, ® are continuous
in £ on E for any fixed (¢,x,y), then the unique solution y(z,t,-) is continuous in &
using the techniques for parametric VIs [15, Section 5.1]. Thus for any fixed (z°,t°),
[|[®(t°, &z, y(x®,t°,€))|| is continuous in £ and attains a uniform upper bound on the

compact support =. Therefore, A.3 holds.

Under A.3 and Case (i) of Assumption 3.1 (i.e., ® is strongly monotone on C¢
uniformly in &, where n > 0 is independent of &), equation (3.5) shows that for any
(t,z) and (¢',2') and a.e. £ € 2,

[9(2,t,6) = 5", ', 9, < w'(©)ru(©)II(t,2) — (', 2")]|2,

where 1/(€) := (1 + kg (€))/n. Hence, ' (§) < (14 Ly)/n a.e. £ € Z. Moreover, for
any iid sample {¢!,... &N} of the random vector & € Z,

N i I(gi i
(3.17) |G (t,z) — GN (¢, 2)|2 < iz Fo( )[1]\—;— m(&)rw(E) |t z) — (&, "),
Let L := Lg x [1 + %L\p] > 0. By A.3, we see that |GV (t,z) — GN(¢',2')||]2 <
L||(t,z) — (t',2")||2 independent of N. Similar results can be obtained for Case (ii) of
Assumption 3.1.

THEOREM 3.2. Suppose that A.3 and the assumptions of Lemma 3.2 hold, and
v > 0. Let x* be the unique solution of (5.3)-(3.4). Then for any given T > 0 and
any initial condition xo € R™, the sequence {x™} that converges to x* uniformly on
[0, T] with probability 1 for either of the two cases in Assumption 5.1.

Proof. We consider Case (i) of Assumption 3.1 only, since Case (ii) follows from
an almost identical argument. Consider an arbitrary constant 7' > 0 and an arbitrary
initial condition zo € R™. Let fV(¢,z) denote the right hand side of (3.11) for each
N, i.e.,

ANt z) =~ {Ix[z - G(t,z)] —z}.
Similar to GV (t, z), we view fV (¢, ) as the random function fV (¢, z,w) on (Q, F,P).
Since GN(-,-) has the uniform Lipschitz constant L > 0 independent of N with
probability 1, it is easy to see that fV(¢,z) has a uniform Lipschitz constant L>0
regardless of N with probability 1. Further, since

xN(t,xo) =z + /t fN(T, =N (r, x0))dT
0

:;cOJr/O fN(O,xO)dTJr/O [fN(T,xN(T,:Eo)) *fN(O,ZL'o)]dT,
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we have for each t € [0, T],
- t
2™ (¢, 20) = @oll2 < [[FN(0,20) |2 x T+L/ (@ (T, 20),7) = (x0,0)||2dT
0
t
(3.18) < (1N (0, z9)|]2 + L) x T+L/ 2™ (7, z0) — 20| 2dT.
0

We claim that || f¥(0, zg)]|2 is uniformly bounded regardless of N with probability
1. To show it, we first show that |GV (0,z0)||2 is uniformly bounded regardless of N
with probability 1, where

Z'f\il (I)(()? gi’ Zo, §($07 07 51))
N

In fact, due to (i) of A.3, we have that a.e. £ € E,
||(I)(O,€,LII0,Z/J\($Q,O,£)) - (ﬁ(toagaxoa:ly\(xo7t07§))”2
S L<I>H(_to7$0 - J)O,fj\<xo,0,§) - g(xoatoag))HQ
< Lo (174 llzo — a°ll + [5(20,0,6) ~ 5,12, €)1

< Lo (|11 + llzo = 2°ll2 + 1/ (€)wu (&) (llzo — 212 + 1£°1) )
14+ Ly

GN(Oa .’Eo) =

< Lo (|t°] + llao — 2°ll2 + Lu(leo — 2°]l2 + [¢°])),
where the second to the last inequality follows from (3.5).

By (ii) of A.3, ||®(t°, &, z°,y(z°,t°,8))|| < B ae. £ € E. Hence, there exists a
constant 3’ > 0 such that ||®(0,&, zg, Y(x0,0,£))||2 < B a.e. £ € E. This shows that
|GN(0,20)|l2 < B’ regardless of N with probability 1. Further, for an arbitrary but
fixed z € R™, it is easy to see that

[TLx (20 — GN(0,20)) |2 < |Tx (20 — 2) |2 + |[TLx (20 — GN (0, m0)) — Ix (20 — 2) |2
< |Mx (xo — 2)[l2 + Iz = GN (0, 20) 2
< Mx (w0 — 2) |2 + [|2]l2 + B

regardless of N and {¢'}¥ . Hence, ||fV(0,z0)]|2 is uniformly bounded regardless of
N. Consequently, applying the Gronwall inequality [12, pp. 146] to (3.18), we see
that there exists a constant « > 0 such that ||z (t, 20) — 2¢]l2 < v, Vt € [0, T] for all
N with probability 1.

Let D be the closed 2-ball centered at zo with the radius v. It is easy to show
via a similar argument that z*(t,2¢) € D for all t € [0,T]. Therefore, the sequence
{xN(t,20)} N is uniformly bounded in C[0,T] with probability 1. By the similar
argument for part (i) of Theorem 3.1, we have that

sup ||GN(s,x) — G(s,2)]2 = 0, w.p. 1,
(s,2)€[0,T)xD

and, for all large NV,

0 sup HxN(t) —z"(t)|]2 < sup HGN(s,x) - G(s,x)“2,
te[0,T) (s,2)€[0,T]xD

where 0 = This leads to the desired result. 0

1+kg
exp(y(14+kg)T)—1"
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4. The Time-stepping EDIIS Method. In this section, we propose a time-
stepping Energy Direct Inversion on the Iterative Subspace (EDIIS) method [4] for
solving (3.11)-(3.12) on [0,7] under Assumption 3.1.

Let the step size be h = T'/v for a positive integer v, and t; = jh, j =1,...,v.
The time-stepping method in a backward Euler type for (3.11) on [0,7] yields the
following scheme: for each j =1,..., v,

(4.1) Tj=Tj1+ ’W(Hx(%’ -GN (tj,25)) - xj),
where, for a given sample {¢1,... &N},
N i =~ i
GN(tj7xj) = % Zi:l (I)(tjag 7xjay(zj7tj7§ ))
and y(x;,t;,£") is the unique solution of the VI

0€ \I/(tj7€17xj7v) +NCE'£ (U)7

and zg = z(0). Let Z = ﬁxj_l, and p = 1&717. At each t =t;,

(x;»'—, ylzj,t;, enT, ... (g, 5, V)T € RV s a solution of the following VI:
(4.2) r =17+ pllx(z — GV (L, x)),
(4.3) 0€ (&, z,y) +Ne, (yi), i=1,...,N.

Problem (4.2) can be treated as a fixed point problem as shown shortly, and
problem (4.3) can be solved in parallel to obtain y(z;,t;,£¢%), i = 1,...,N once z;
is found. The EDIIS algorithm [4] is a modification of Anderson acceleration and
widely used in quantum chemistry. Since the most computational cost is to get
the function value GV (£, z), we use the EDIIS algorithm to optimize the utility of
computed function values G (£, 2¥) in the last few steps. We present the EDIIS(¢)
algorithm for the VI (4.2)-(4.3) in Algorithm 4.1, where ¢ is the depth of iterations.

Recall that for any iid sample {¢!,... &N} of the random variable ¢ € =, it is
shown in (3.17) that for Case (i) of Assumption 3.1,

IGN (8, 2) = GN (¢, 2")ll2 < K [|(t,2) — (2|,

oy re(E)[14n" (€ rw (€)]
N

where kKgn = . Similarly, for Case (ii) of Assumption 3.1,

HGN(LCE) - GN(t/,;v’)Hoo < Kgn H(t,ac) - (t/7xl>H

oo’

i rp (€9
X me(E)[+
where Kgn 1= ~ .

THEOREM 4.1. Assume that one of (i) and (i) in Assumption 3.1 holds, v > 0,
w(l+ kgn) <1, and xg € X. Then the following statements hold.
(i) The VI (4.2)-(4.3) has a unique solution (ij,g/j(xj,tj,fl)T, v Yy, ty, €T T
c Rn«#mN}.
(i3) The sequence {((z*)7, (y¥) ", ..., (yk) ") T} generated by Algorithm 4.1 converges
to the unique solution of the VI (4.2)-(4.5);
(iii) The time-stepping method (4.1) converges to the unique solution x™¥ of (3.11)-
(3.12) as h — 0 in the sense that ||z; — ™ (jh)|| = O(h) for all j =1,...,v.
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Algorithm 4.1 EDIIS for the VI (4.2)-(4.3)
Initial step Choose 2° =z;_; € X, T = ﬁxj_l and t = t;.

(4.4) Find y such that 0 € U(%,&", 2%, y7) + Ne,, (y7), i=1,...,N.

GN(t7xO) = %ZiZI q)(t?g 7x07yi0)5

4.5 Set
( ) x! :if+NHX(‘rO_GN(t_7xO))7 Fy =z —a.

EDIIS For k > 1: choose £;, < min{/, k}.

(4.6) Find « € argmin ||Z " 00 Fr—oyr|| st Z “oar=1,0,>20,7=0,...,0.

.’L’k+1 . MZT Oa (xk—Z+T _ GN(E, xk—@—i—r))’

(4.7)  Set By — g+ gk
(48) Find yi*" such that 0 € W(E &, 2" yf ™) + Moy, (yi ), i=1,...,N.
Set  GN(E a2kt = X L, B Ay,

Proof. (i) Since X is a convex set and zo € X, it can be proved by induction that
for any j =1,...,v and any =, 1+h7xj 1+ 1+h7HX(I — GN(t,7)) € X. Consider a
fixed j. Then from Lemma 3.2, for any z,v € X, we have

|+ pllx (z — GV (£.2)) T — ullx (v — GN(E )| < p(1+ ww) o — o]

By the assumption that u(1 4+ kgn) < 1, the mapping 7 + ullx(z — GV (¢, 7)) is a
contractive mapping in z on X. Hence (4.2) has a unique fixed point x; in X. There-
fore, by Lemma 3.2, (x;,ﬂ(xj,tj,fl)T, oYz, t;, EN)T)T is the unique solution of
the VI (4.2)-(4.3) for each j.

(ii) From the construction of Algorithm 4.1, we have {2*} C X. By the contraction
property of Z+ ullx (x — GN (,x)) and [4, Theorem 2.1], we have that {z*} converges
to the unique solution x; of (4.2). From Lemma 3.2, y¥ is the unique solution of
(4.4) for £ = 0 and (4.8) for & > 1. Moreover, there is a constant ¢ > 0 such that
lyk —g(x;,t;, )| < cl|a® —a;| fori = 1,..., N. Hence {y¥} converges to y(z;,t;,£%),
fori=1,...,N.

(iil) Slnce 7(-,t, €% is Lipschitz continuous [10, 11], the right hand side of (3.11) is
Lipschitz continuous in (¢, ). Hence it has a unique solution 2. Moreover, it follows
from the standard argument [9] that the time-stepping method (4.1) converges to the
unique solution 2™V of (3.11) as h — 0 in the sense that ||z; — 2™ (jh)|| = O(h) for all

j=1,...,v. ]
For each v € N, let ¥¥(:) be a piecewise continuous function in t generated
by linear interpolations of z;,j5 = 1,...,v. By (iii) of the above theorem, it can be

shown that the sequence (z"*¥) converges uniformly to the unique solution z(-) of
(3.11)-(3.12) on [0,T] as v — 0.

REMARK 4.1. If £ = 0, Algorithm 4.1 is the Picard or fixed point method. Using
¢ > 0 can accelerate the convergence [4]. Any norm can be used in the optimization
problem in (4.6) without changes in (ii) of Theorem 4.1. If the 1-norm, oco-norm
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or 2-norm is used, the optimization problem is either a linear programming or a
quadratic programming, which can be solved easily and efficiently. If the function
(t;, &, . . . .
( \IIE tj_’gi’ ’ ; ) is monotone, the progressive hedging method can be applied to
7S 9"
solve (4.3) under the assumptions in Case (i) of Assumption 3.1 and v > 0 [7, 27].
Comparing with the monotone assumption, p(1 + kgn) < 1 is much weaker. In fact,

since 4t — 0 as h — 0, we have p(1 + kgn) < 1 for all sufficiently small h.
The following example illustrates the SAA and time-stepping EDIIS method.
EXAMPLE 4.1. Lety =1, X = [-1,1]x[-1,1] CR?, Ce =R}, 29 = (0,1)7 € X,
£ =(&,&)7, and
O(t,&,2,y) = Az + By + £(1),
(t, & 2,y) = M(§)y + Q(E)z + q(t,€),

(10 (& 0 0
WhereA_<0 3)7]3(5)_(01 & £1>’
1 0 0 & 0
ME=( & 1 0 |, Q=1 & |,
-1 -1 0.1 1 1

F(t) = (6, )T and q(t,€) = (t&1, &, 1)7

Let =x := {¢,...,¢N} be independent identically distributed (i.i.d.) samples
of & = (&1,&)7T, where each &;, i = 1,2, follows truncated normal distribution over
[-1,1], which is constructed from normal distribution with mean 0 and standard
deviation ¢ independently. Since Z = [—1,1] x [—1, 1] is a compact support and M (-)
is continuous, it follows from the comment below (3.2) that there exists a constant
77 > 0 such that (3.2) holds for all £ € E. Further, it follows from [15, Proposition
5.10.11] with p = (1,1,1) that 7 > 5z = 1559-

0?
It is easy to verify that ® and ¥ are globally Lipschitz continuous in (z,y,t)
with respect to || - || for each ¢ € E, where the Lipschitz constants kg(§) =

max([|Alloc, | B(E)[loos 1) and ry (€) = max([[M(§)||oo, [|Q(E)l[o0s €1)- Since = is a com-
pact support and ke and kg are continuous in &, E[ke(£)] < oo and E[ke (§)kw(§)] <
oo such that assumptions for Case (ii) of Assumption 3.1 and Lemma 3.2 hold. There-
fore, by Lemma 3.2, the DSVI

(4.9) i(t) = Tx (2(t) ~ BIO(L, €, 2(), y(t,2(1),€)) ) = a(t), 2(0) = v,

0< y(t,.’L‘(t),f) 1 \P(t,f,x(t),y(t,x(t),f)) > 0; a.e. 5 €E.
and its SAA
N
(410) (1) = Tx (a(t) — o 3B €a0) y(t,2(0),€))) — (1), #(0) = o,
=1
0.< yta(t), &) LUt &, a(t) y(t,x(t),€)) 20, i=1,..,N

have unique solutions z* € C*[0,T] and =z € C1[0, T}, respectively.
As discussed below (3.13), the Lipschitz constant x.(§) := ke (§)(1 + WT@) with
respect to || - || 1s continuous in £ since k¢ (€) and ky () are continuous. Further, for
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given t, x, £, the solution (¢, z, &) € R3 of the VI in (4.9) has the following closed-form
expressions: letting w; := [Q(&)x + ¢(t,§)]; for i = 1,2,3,

t . f 0, w1 > 0
’ —wi, otherwise,

S(t, 3, &) = 0, we + &Y (L@, §) >0
—we — &191(t, 2, §), otherwise,
and
Us(t, @, &) = 0, w3 — Y1 (t, x,§) —2(t,2,8) >0
Yaih T, 10[—ws + §1(t, 2, &) + Y2 (¢, x,€)], otherwise.

Since Q(-) and ¢(-,-) are continuous in (¢,¢), we see from the above closed-form ex-
pressions of y that y(¢, x, ) is also continuous. Hence, @(t,x,ﬁ) =D, &, x,y(t,x,§))
is continuous in (¢, z,£). Since = is a compact support, we see from Remark 3.2 that
the moment generating functions M, (7) and M(t +(7),i=1,2,3 have finite values
for all 7 in a neighborhood of zero. Consequently, it follows from Theorem 3.1 that
{2V} converges to the solution x* of (4.9) w.p. 1 and for any constant ¢ > 0, there
exist positive constants p(f¢) and o(fe), independent of N, such that

IP’{ sup ||xN(t) — :z:*(t)”oo > e} < p(Be) exp(— No(fe)),
t€[0,T)

1+ka

where 0 = G Ry gt

Given N € N, the time-stepping scheme for the SAA (4.10) is given by

N
Tj=Tj-1 —|—hﬂx( NZ t],f Tj,Y t],xj,gi))D—hxj, i=1...0,
(4.11) Ogy(tj,xj,f) U(t;, x], (t],x]7§)) i=1,...,N.

Once x; is known, the VI solution g(t;, x;, &%) in (4.11) has a closed form expression as
before by setting ¢t = ¢;, * = x; and § = €. Problem (4.10) is a DVI with a Lipschitz
continuous right-hand side function in the ODE. The convergence of the time-stepping
method (4.11) follows from Theorem 4.1, which means that {z;} converges to zV as
h=T/v — 0 in the sense that ||x; — 2N (jh)|| = O(h) for all j =1,...,v

We use the EDIIS(1) method with the 2-norm in (4.6). In this case, the solution
of minimization problem (4.6) has the closed-form expressions

FL(Fy, — Fe_1) 1}

ap=1—ay, o =mid0, “———-+-
’ b { [Fr1 — Fyl?

Moreover (4.7) reduces to
2" =7 4 p(1 — aq)yx (21 = GV (E, 25 7Y)) + pon iy (2 — GN (£, 27)).
In our numerical experiments, we let T = 1, Z be a computed solution with h =

102 and N = 2000. We stop EDIIS(1) once ||z**! — 2| < 107°. For the fixed con-
stant h = 1073, we carry out tests with sample size N = 100, 200, 400, 800, 1200, 1500
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and the standard deviation 0.5, 1, 1.5, 2 of the truncated normal distribution over the

compact support Z. We compute 2V and
10° 10°
Ery =107 ||z1(ih) — 2 (ih)|| and  Ery =102 ||z2(ih) — 27 (ih)||
i=1 =1

60 times and average them. Figure 1 depicts the decreasing tendencies of Er; and
FEry as N increases and o decreases.

3
20 210

0 500 1000 1500 0 500 1000 1500
sample size N sample size N

Fic. 1. Decreasing tendencies of Er1 and Era.

5. A Modified Point-queue Model for the Instantaneous Dynamic User
Equilibrium in Traffic Assignment Problems. Stochastic variational inequali-
ties and dynamic variational inequalities have been extensively studied for traffic
assignment problems [5, 16, 20, 36]. Since the travel demand and travel cost are often
uncertain and subject to stochastic uncertainties, it is natural to study dynamic traffic
assignment problems via DSVIs. We formulate such a problem as a DSVT as follows.

Consider the a-point-queue model for the instantaneous dynamic user equilibrium
(IDUE) problem proposed in [19, 20]. We focus on the single destination case treated
in [20, Section 3.1], and we introduce the following notation:

N the set of nodes

L the set of links given by (i,7) with i,j € N/

d;(t)  the travel demand from node i € N to the destination, a given
(nonnegative) function of ¢

¢i;(t)  the queue length of traffic on link (¢,5) € £
i(t) the (nonnegative) rate of entry flow on link (7,j) € £

%
7;(t)  the (nonnegative) instantaneous minimum travel time from node
i € N to the destination
o the positive free flow travel time on link (i,5) € £

Cij the positive capacity of exit flow on link (7, 5) € £

Qi the positive constant associated with the queue length dynamic g;;(t)
on link (4,5) € £
In the case of single destination [20, Section 3.1], the queue length of traffic on
each link (i,7) € L satisfies

. 0, if te [O,Tzoj]
4i; (1) = max (pij(t — Tioj) - éija —aijQij(t))u if ¢> Tioj'
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The other quantities are defined by the complementarity conditions:

qi5(t)
Cij

0<m@® L Y pu) = Y min (Chipralt — 8 + anigu(t)) - di(t) =0,
J:(i,)EL k:(k,i)EL

for all i € N and all t > 77},

min (Cij, pri(t — 7(5) + iz (t)) = 0 for all t € [0,77], where d;(t) is a given time-

varying demand function for each i. Hence, for all ¢ > le, the above system can be
formulated as a time-delayed linear dynamical complementary system.

The time delay in the above system yields many analytic and numerical challenges.

To obtain a regular ODE model, we approximate the time-delay term p;;(t — Tioj)

using ODE techniques. The Laplace operator of the time delay function with the

delay constant 7 > 0 is given by e~ "%, where s € C. It can be approximated using

: . - — 1 1 1
the pole approximation, i.e., e 7 = = = ~ . Therefore, for
p pp ) 9 1+Zi°:1 (Ts)k 1+Ts+§82 ]

o
k!
any (i,7) € L, [zij(t)l+ = pij(t — 7)), where [25]1 imposes the non-negativeness of

(TU) Zi(t) +

OSplj(t)J*T + +77](t)_77z(t)207 V(ZaJ)EK’v Vtei())Ti)

with the following initial conditions: ¢;;(¢t) = 0 and

approximation of pij, and z;;(t) is the solution of the 2nd order ODE:
T2 (t) + 245 (t) = pi; () or equivalently

(B0) = - -] (20) + i o)

Using this approximation, we obtain the following dynamical complementarity prob-
lem: for each (i,5) € £ and all ¢t > 7'”,

() - 5] )+ o)

Gij(t) = —aijaij (t) + [[205(0)]4 — Cij — @ijai; (1)),

0<py) L+ L@ w20, Vel
iJ
0<m(t) L Y pij)— Y (Cri—wri(t)) —di(t) >0, VieN,
j'(’,j)el: ks (k, i)el)

0 < upi(t) Loui(t) — [Cri — [z (0)]4 — aiqri(t)] =0, YV k: (ki) € L,

where uy;(-) is the (time—varying) slack variable for the link (k,7). Suppose the time
dependent demand function is random and is given by d;(t, &) for each i € N, where
¢ is a random variable. Then for all ¢t > Tin,

o (20 =[5 5] G0 o (ateen)

(5:2)  Gii(t) = —aijqi; (t) + [[2i;(D]+ — Cij — gz (t)] .,
(5.6)§ uki(t) 1 U,ki(t) — [6]“ — [Zki(t)]_i,_ — akiqm(t)] >0, Vk: (k,l) e L,
G0t Lo+ B 0 - mn 0 20, Vel

)

(56)§ ﬂi(t,ﬁ) 1 Z Dij (t7§) - Z (67“ - uki(t)) - dl(tag) > 07 Vieg N

j:(i,5)EL k:(k,i)eL
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Let d € N denote the (single) destination node. Then 74(¢) = 0 and dg4(t, &) = 0.
To formulate the system in (5.1)-(5.5) as a DSVI, let

z(t) == (Zij(t)72ij(t)7CIij(f)> € R,

(1,7)€L

y(t.) 1= (pig(t.€)mi(t, ), uni() eR™,

(i,9)ELIEN k:(k,i)EL

for some suitable n,m € N. Let X = R" and v = 1. Define to := max(; j)cr 7;;- Then
for all t > tg, (5.1)-(5.5) can be expressed as the following DSVI:

(5.6) i ={Tx (v - (A2 + E[Bya(&)] + (Ca + [)4) ) — a},
0<y() L My(§)+ Nz +g(t,&) >0, ae €T,

for constant matrices A, B, C, M N, a constant vector f, and a vector-valued function
g- When 0 < ¢ < ming jyer T, Z], the point-queue model is described by a static com-
plementarity problem (without ODE dynamics), and when ¢ is between min; jye . g
and tg, it yields a mixed model of a DSVI and a static complementarity problem.

We discuss the analytic properties of the DSVI (5.6). First, if the DSVI (5.6) has
a solution z(t) and q” (to) > 0,V (i,7) € L, then it follows from (5.2) that ¢;;(t) =
e @ii(t=to)g, i (to) + f e~ i (t=5) [[ i(8)]+ —Cij — aijqij(s)]ers such that ¢;;(t) >0
for all ¢ > to along 1:( ). Similarly, by this result and (5.3), Cr; — ug;(t) > 0 for all
t > to along x(t). For notational simplicity, let y = (p,n, u), where

P = (Dij) i jyec € R™, = Ni)ien €R™,  u = (Uki)k:(k,i)ec € R™.

0 M, O
Then the matrix in the underlying LCP in (5.6) is M = {M,, 0  M,, |, where
0 0 In,

the submatrix [ ]WO Op 7’} is copositive [1, Proposition 2]. Since M,,, is nonnegative,
np

M is copositive. In light of ny = 0, it can be shown that y” My = 0, My > 0, and
y > 0 imply that

u=0, n=0, y"(Ne+g(t,&))= ) p”(T +3”)20
(i,5)€L Cij

(5.6) has a (possibly non-unique) solution for any Nz and g(¢,§) satisfying g;; > 0.
To further study the DSVI (5.6), we consider the case where each non-destination
node has exactly one exit link, i.e., (¢,7) € £ if and only if j =i+ 1 for i # d. Hence,

=|L|=N|-1=m,—1, M, = [Imp} and My, = [M,, en,|, where M, is

provided that ¢;; > 0,V (4,5) € £. By [13, Theorem 3.8.6], the underlying LCP in

0 P
a square matrix of order m,, whose diagonal entries are —1, (M,, )i i+1 = 1 and other
entries are zero. Further, e,,, = (0,...,0,1)T € R™». It is easy to show that (Mz’m)_1
is a non-positive matrix. Suppose 74 = 7, , and 7’ := (1, . ., me) € R™». It can

be verified that the underlying LCP has the following solution: ug; = r;ﬂ — [z;m +—
akﬂ]kih < Chi, p = (pij)(i,j)eﬁ = (Zk:(k,i)eg (Cki - uki) +d; (t7§)>(i7j)€£7 and
n = —(Mz’m)_lw7 where w = (w;) = (70,4, + —gfi‘”l) > 0if g ;41 > 0. This

4,141
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particular LCP solution can be compactly written as u = (N,x + ¢9)4 for a constant
matrix N, and a constant vector g0, p = F,u + gg +d(t, &) for a constant matrix F),

and a constant vector g with d(t, €) = (di(t,€))ier, and 1 = F,(Nz + g(t,€)) for a
constant matrix F;. Thus for some constant matrix B, the ODE in (5.6) becomes

b= — Az — By(Fy(Nuz + g0)+ + g9 + Bld(t,€))) — (Cx+ f).

~

Hence, the right-hand side of the ODE is piecewise affine in z. If E[d(¢, £)] is Lipschitz
continuous in ¢, then the ODE has a unique solution z(t) for ¢ > tg. Therefore, all
the assumptions are fulfilled. We summarize these results as follows.

PROPOSITION 5.1. Consider the DSVI (5.6) for the a-point queue model whose
non-destination node has exactly one exit link. Further, consider the particular LCP

~

solution given above. If E[d(t,§)] is Lipschitz continuous in t and g;;(to) > 0 for all
(i,4) € L, then the DSVI has a unique solution z(t) for all t > to.

6. Conclusion. The dynamic stochastic variational inequality (DSVI) (1.1)-
(1.3) encompasses the DVI (1.4)-(1.5) and the two-stage stochastic SVI (1.11)-(1.12),
which can efficiently model dynamic equilibria subject to uncertainties. We show the
solution existence and uniqueness for a class of DSVIs under some Lipschitz condi-
tions. Moreover, we proposed a discretization scheme of the DSVI using the SAA
and the time-stepping EDIIS method. We established the uniform convergence and
an exponential convergence rate, and proved the convergence of the EDIIS method.
We illustrated our results via a class of dynamic stochastic user equilibrium problems
in traffic assignment problems. Future research topics include long-time dynamics of
the DSVI, e.g., stability of its equilibria.
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