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1. Introduction. Consider the following dynamic stochastic variational inequal-16

ity (DSVI)17

ẋ(t) = γ ·
{
ΠX

(
x(t)− E[Φ(t, ξ, x(t), y(t, ξ))]

)
− x(t)

}
,(1.1)18

x(0) = x0,(1.2)19

0 ∈ Ψ(t, ξ, x(t), y(t, ξ)) +NCξ
(y(t, ξ)), for a.e. ξ ∈ Ξ.(1.3)20

Here γ is a nonzero real number, X ⊆ Rn is a nonempty closed convex set, ξ : Ω →21

Rd is a random vector defined on a probability space (Ω,F ,P) whose probability22

distribution P = P ◦ ξ−1 is supported on the set Ξ := ξ(Ω) ⊆ Rd, Φ : R+ ×Rd ×Rn ×23

Rm → Rn, and Ψ : R+ ×Rd ×Rn ×Rm → Rm, ΠX : Rn → X denotes the Euclidean24

projection operator onto X, and NCξ
(y(t, ξ)) is the normal cone to Cξ at y(t, ξ), where25

Cξ is a nonempty closed convex set in Rm for each ξ and is A-measurable. We make26

the following assumption through this paper (unless otherwise stated):27

A.0 Given ξ ∈ Ξ, the functions Φ(·, ξ, ·, ·) and Ψ(·, ξ, ·, ·) are Lipschitz continuous28

in (t, x, y) with Lipschitz moduli κΦ(ξ) and κΨ(ξ) with respect to a norm (e.g.,29

∥ · ∥2 or ∥ · ∥∞), respectively, where κΦ(·) and κΨ(·) are measurable.30

Further, let Y denote the space of measurable functions from Ξ to Rm. For a given31

(t, x), let SOL(t, x, ξ(·)) : Ω ⇒ Y denote the solution set of the variational inequality32

or VI (1.3), which is a random set-valued mapping. Let yx(t, ·) or simply y(t, ·) be33

a measurable selection of solutions in SOL(t, x, ξ(·)) of the VI (1.3) such that the34

expected value in (1.1) is well defined, i.e., each element of E[Φ(t, ξ, x, y(t, ξ))] attains35

a finite value for any (t, x). Specific conditions ensuring these assumptions to hold36

will be given in the following development.37
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2 XIAOJUN CHEN AND JINGLAI SHEN

The DSVI (1.1)-(1.3) includes the deterministic differential variational inequality38

(DVI) as a special case. In fact, if γ = −1, X = Rn, and y(t, ·) is deterministic, then39

the DSVI becomes40

ẋ(t) = Φ(t, x(t), y(t)), x(0) = x0,(1.4)41

0 ∈ Ψ(t, x(t), y(t)) +NC(y(t)),(1.5)42

which is the deterministic DVI [2, 11, 22, 23, 24]. The DSVI also reduces to the43

functional evolutionary VI [2] if γ = 1 and Φ is deterministic and independent of y.44

A class of the bimodal piecewise affine system [14] can be written as the dynamic45

linear complementarity problem (DLCP)46

ẋ(t) = Ax(t)− emax(cTx(t), 0) + f + by(t), x(0) = x0,(1.6)47

0 ≤ y(t)⊥N(t)x(t) +M(t)y(t) + q(t) ≥ 0,(1.7)48

where A, e, c, f, b,N(t),M(t), q(t) are given vectors or matrices. When the data49

b,N,M, q have uncertainties, we consider the following model50

ẋ(t) = Ax(t)− emax(cTx(t), 0) + E[B(ξ)y(t, ξ)] + f, x(0) = x0(1.8)51

0 ≤ y(t, ξ)⊥N(t, ξ)x(t) +M(t, ξ)y(t, ξ) + q(t, ξ) ≥ 0, for a.e. ξ ∈ Ξ.(1.9)52

Here A ∈ Rn×n, c, f ∈ Rn, B(·) : Rd → Rn×m, M(·, ·) : R+ × Rd → Rm×m,53

N(·, ·) : R+ × Rd → Rm×n, and q(·, ·) : R+ × Rl → Rm are continuous matrix valued54

mappings, and e ∈ Rn is the vector with all elements 1. The above model is a55

special case of the DSVI (1.1)-(1.3) when X = Rn, γ = 1, and Φ(t, ξ, x(t), y(t, ξ)) =56

−[Ax(t)−emax(cTx(t), 0)+B(ξ)y(t, ξ)+f ] so that E[Φ(t, ξ, x(t), y(t, ξ))] = −[Ax(t)−57

emax(cTx(t), 0) + E[B(ξ)y(t, ξ)] + f ].58

Consider the case where the functions Φ and Ψ are independent of t, namely, they59

are time invariant. Hence, we write them as Φ(ξ, x, y) and Ψ(ξ, x, y) respectively.60

Suppose this DSVI is well-posed, i.e., its solution (x(t), y(t, ξ)) exists and is unique61

for any t ≥ 0 and any initial condition x0. Then (xe, ye(ξ)) ∈ Rn × Y is called an62

equilibrium of the DSVI if for a.e. ξ ∈ Ξ,63

(1.10) 0 = ΠX(xe −E[Φ(ξ, xe, ye(ξ))])− xe, and 0 ∈ Ψ(ξ, xe, ye(ξ)) +NCξ
(ye(ξ)).64

Clearly, (x(t), y(t, ξ)) = (xe, ye(ξ)) for all t ≥ 0 provided that x(0) = xe. Note that65

the value of the nonzero constant γ on the right-hand side of (1.1) does not affect66

such an equilibrium although it does affect the dynamics of the DSVI.67

The first equation of (1.10) is defined by the natural mapping associated with the68

VI: −F (v) ∈ NX(v) , and is known to be an equivalent formulation of this VI [15,69

Section 1.5.2]. Therefore, (xe, ye(ξ)) is an equilibrium of the DSVI if and only if it is70

a solution to the following (static) two-stage stochastic variational inequality (SVI)71

extensively studied recently [5, 6, 7, 26, 27]:72

0 ∈ E[Φ(ξ, x, y(ξ))]) +NX(x),(1.11)73

0 ∈ Ψ(ξ, x, y(ξ)) +NCξ
(y(ξ)), for a.e. ξ ∈ Ξ.(1.12)74

Moreover, as far as the equilibria of the DSVI (or the solutions of the two-stage SVI)75

are concerned, we may replace the right-hand side of (1.1) by any function (or even76

a set-valued mapping) whose zero set, along with (1.3), gives rise to the same SVI77

(1.11)-(1.12) for its equilibrium. This leads to different formulations of the DSVI using78
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various equation formulations of the VIs or complementarity problems. For example,79

in view of u = ΠX(x−G(t, x)) if and only if 0 ∈ u− (x−G(t, x))+NX(u), the DSVI80

(1.1)-(1.3) can be equivalently written as81

ẋ(t) = γ ·
(
u(t)− x(t)

)
, x(0) = x0,(1.13)82

0 ∈ u(t)− x(t) + E[Φ(t, ξ, x(t), yx(t, ξ))] +NX(u(t)),(1.14)83

0 ∈ Ψ(t, ξ, x(t), y(t, ξ)) +NCξ
(y(t, ξ)), for a.e. ξ ∈ Ξ.(1.15)84

Moreover, when X = Rn
+, many equation formulations can be obtained from the85

NCP-functions and residual functions of nonlinear complementarity problems [15].86

The main contributions of this paper are two-fold. (i) We show under certain87

conditions that DSVI (1.1)-(1.3) has a unique solution of a pair x ∈ C1[0, T ] and88

y ∈ C0[0, T ] × Y, where C1 is the space of continuously differentiable functions and89

Y is the space of measurable functions. Moreover, we provide sufficient conditions for90

the non-Zeno behavior of the solution x. (ii) We establish the uniform convergence91

and an exponential convergence rate of the sample average approximation (SAA) of92

DSVI. We propose a time-stepping EDIIS method to solve the DVI arising from the93

SAA of the DSVI, and provide a convergence theorem. It worth noting that the94

analysis for DSVI requires not only the existing results for DVI and SVI but also new95

techniques for dynamic equilibrium problems in an uncertain environment.96

This paper is organized as follows. In Section 2, we discuss solution existence,97

uniqueness, and non-Zenoness of the DSVI (1.1)-(1.3). Section 3 establishes the uni-98

form convergence and an exponential convergence rate of the SAA of the DSVI. In99

Section 4, we propose a time-stepping EDIIS method. Section 5 considers a point-100

queue model for the instantaneous dynamic user equilibrium.101

2. Fundamental Solution Properties. This section is concerned with the so-102

lution existence and uniqueness (i.e., well-posedness) and other basic solution proper-103

ties of the initial-value problem of the DSVI (1.1)-(1.3). Toward this end, we introduce104

the following assumptions:105

A.1 For any given t ∈ R and x ∈ Rn, the stochastic VI: 0 ∈ Ψ(t, ξ, x, ·) +NCξ
(·) a.e.106

ξ ∈ Ξ has a solution yx(t, ξ) ∈ Y;107

A.2 The function G(t, x) := E[Φ(t, ξ, x, y(t, ξ))] is (locally) Lipschitz continuous at108

any given (t, x) ∈ R × Rn for some measurable selection of solutions yx(t, ξ) ∈109

SOL(t, x, ξ) at each (t, x).110

In Section 3, we give sufficient conditions on Φ and Ψ such that A.1-A.2 hold.111

Lemma 2.1. Under assumptions A.1-A.2, for any T > 0, the DSVI (1.1)-(1.3)112

has a solution (x(t, x0), y(t, ξ)) for any t ∈ [0, T ] and any initial condition x0 with113

x(t, x0) being unique and C1. Further, if y(t, ξ) in A.1 is also unique for any t ∈ R+114

and x ∈ Rn, then the DSVI solution (x(t, x0), y(t, ξ)) is also unique. Besides, x(t, x0)115

is continuous in x0 at each t.116

Proof. It suffices to prove that the time-varying ODE: ẋ(t) = γ · [ΠX(x(t) −117

G(t, x(t))) − x(t)] with x(0) = x0 has a unique C1 solution. Since ΠX(·) is globally118

Lipschitz with the Lipschitz constant one with respect to ∥ · ∥2, the right-hand side119

of this ODE is locally Lipschtiz at any (t, x). It follows from the Picard-Lindelöf120

Theorem that there exists a unique C1 solution x(t) for all t ∈ [−δ, δ] for a positive121

number δ > 0 with the initial value x(0) = x0 [12]. Since δ is independent of the122

initial point and T , we can repeat the argument on each interval [t, t + δ] and show123

that for any T > 0 and any initial condition, the DSVI (1.1)-(1.3) has a solution124
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4 XIAOJUN CHEN AND JINGLAI SHEN

(x(t, x0), y(t, ξ)) with x(t, x0) being unique and C1. The rest of the statement follows125

readily.126

Lemma 2.2. Suppose A.1-A.2 hold. Let x(t, x0) denote the solution of the ODE127

(1.1): ẋ(t) = γ · [ΠX(x(t) − G(t, x(t))) − x(t)] from the initial condition x0. The128

following statements hold:129

(i) Let γ ≥ 0. Then x0 ∈ X =⇒ x(t, x0) ∈ X,∀ t ≥ 0.130

(ii) Let X be an affine set. Then for any γ ∈ R, x0 ∈ X =⇒ x(t, x0) ∈ X,∀ t ≥ 0.131

Proof. (i) This proof is similar to [2, Proposition 5.8]. We provide essential details132

to be self-contained. Since ẋ(t) = γ · [ΠX(x(t)−G(t, x(t)))− x(t)] and x(0) = x0, we133

have, for any t ≥ 0,134

x(t, x0) = e−γtx0 +

∫ t

0

e−γ(t−τ)γΠX

[
x(τ, x0)−G(τ, x(τ, x0))︸ ︷︷ ︸

h(τ)

]
dτ.135

Letting s := t > 0 and τ ′ = τ , we have136

x(s, x0) = e−γsx0 +
(
1− e−γs

) ∫ s

0
eγτ

′
ΠX(h(τ ′))dτ ′∫ s

0
eγτ ′dτ ′︸ ︷︷ ︸
z

.137

Since X is a closed convex set, it follows from the proof of [2, Proposition 5.8] that138

z ∈ X. Further, because γ ≥ 0 and s > 0, we see that x(s, x0) is a convex combination139

of x0 ∈ X and z ∈ X. Therefore, x(t, x0) = x(s, x0) ∈ X.140

(ii) When X is an affine set, we see from the proof for (i) that for any γ, x(s, x0)141

is an affine combination of x0 ∈ X and z ∈ X. Hence, x(s, x0) ∈ X.142

When γ < 0, statement (i) may fail. For example, let X = R+. This yields143

ẋ = −γ ·min(x,G(t, x)). Suppose G(t, x) = x− 1− t whose associated LCP: 0 ≤ x ⊥144

x− 1− t ≥ 0 has a unique solution x∗(t) = 1 + t. Since G(0, 0) < 0 and γ < 0, then145

for x0 = 0, ẋ(0) = −γG(0, 0) < 0 so that x(t) < 0 for all t > 0 sufficiently small.146

2.1. Mode Switching and non-Zeno Properties of the DSVI. When X is147

a proper subset of Rn and/or G is nonsmooth in x, the right-hand side of the DSVI148

(1.1) is defined by a nonsmooth function due to the projection operator ΠX . Further,149

along with nonsmooth properties of the stochastic VI in (1.3), the right-hand side of150

the DSVI (1.1) may be cast as a piecewise continuous (or smooth) function such that151

the solution x(t, x0) demonstrates mode switching behaviors, which lead to the so-152

called Zeno or non-Zeno behaviors [17, 29, 31]. In what follows, we discuss Zeno-free153

cases; these results are useful for numerical computation and analysis of the DSVI.154

To characterize the non-Zeno behavior, we introduce several notions. Consider155

the ODE ẋ = f(x) with x(0) = x0, where f : Rn → Rn is continuous and piecewise156

affine. Hence, f attains a polyhedral subdivision of Rn given by {Xi}pi=1 [15, Section157

4.2]. For a solution x(t, x0) starting from the initial condition x0, a time t∗ is not158

a switching time along x(t, x0) if there exist Xi and a constant ε > 0 such that159

x(t, x0) ∈ Xi for all t ∈ [t∗−ε, t∗+ε]; otherwise, the ODE has a mode switching at t∗.160

For a given constant T > 0 and a given x0, x(t, x0) is non-Zeno if there are finitely161

many switchings on the time interval [0, T ]. The ODE is robust non-Zeno if there is162

a uniform bound on the number of switchings on [0, T ] regardless of x0’s [30]. Other163

mode switching and non-Zeno notions for DVIs can be found in [3, 17, 22, 29, 31, 32].164
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Lemma 2.3. Suppose X is polyhedral, Φ and Ψ are time invariant, and G̃(x) :=165

E[Φ(ξ, x, y(ξ))] is piecewise affine (and continuous). Then the ODE (1.1) is robust166

non-Zeno in the above sense.167

Proof. Since X is a polyhedral set, its Euclidean projection operator ΠX(·) is168

continuous and piecewise affine [15, Proposition 4.1.4]. As G̃ is continuous and piece-169

wise affine, we deduce that the right-hand side function of (1.1) given by γ · [ΠX(x−170

G̃(x))−x] is also continuous and piecewise affine. Hence, it follows from [30, Theorem171

2.19] that the ODE (1.1) is robust non-Zeno.172

We apply the above lemma to a specific example. Consider the stochastic linear173

complementarity problem (SLCP) with Cξ = Rm
+ for all ξ ∈ Ξ. Then the DSVI174

becomes the following DSLCP:175

ẋ = γ
{
ΠX

(
x−

(
Ax+ E[B(ξ)yx(ξ)] + q1

))
− x
}
,(2.1)176

0 ≤ y(ξ) ⊥ M(ξ)y(ξ) +N(ξ)x+ q2(ξ) ≥ 0, a.e. ξ ∈ Ξ.177

Suppose the solution set SOL(M(ξ), N(ξ)x+ q2(ξ)) of the SLCP in (2.1) is nonempty178

for any ξ ∈ Ω and x, and B(ξ)SOL(M(ξ), N(ξ)x + q2(ξ)) is singleton. This con-179

dition holds, for example, when M(ξ) is a P -matrix; see [32] for other examples180

where SOL(M(ξ), N(ξ)x + q2(ξ)) is non-singleton. It is known that for each ξ,181

B(ξ)SOL(M(ξ), N(ξ)x+ q2(ξ)) is continuous and piecewise affine in x [32]. Further,182

if ξ has a discrete and finite distribution, then E[B(ξ)SOL(M(ξ), N(ξ)x + q2(ξ))] is183

continuous and piecewise affine in x. Therefore, when X is polyhedral, the DSLCP184

(2.1) is robust non-Zeno.185

Remark 2.1. It is worth pointing out that if ξ has a continuous distribution,186

then E[B(ξ)SOL(M(ξ), N(ξ)x+ q2(ξ))] is not necessarily piecewise affine although it187

remains continuous in x. For example, let x, y(·) ∈ R, ξ be uniformly distributed on188

Ω := [0, 1] ⊂ R, M(ξ) ≡ 1, N(ξ) = ξ, and q2(ξ) ≡ 1, which yields that 0 ≤ y(ξ) ⊥189

y(ξ)+ [ξx− 1] ≥ 0 has a unique solution yx(ξ) = −min(ξx− 1, 0). Suppose B(ξ) ≡ 1.190

Then E[B(ξ)yx(ξ)] = −E[min(ξx− 1, 0)], where191

E[min(ξx− 1, 0)] =


∫ 1

0

(ξx− 1)dξ, if x ≤ 1∫ 1/x

0

(ξx− 1)dξ, if x ≥ 1

=

{
x
2 − 1, if x ≤ 1
− 1

2x , if x ≥ 1
192

which is not piecewise affine for x ≥ 1. Hence, the right-hand side of (2.1) is not193

piecewise affine when X = R (although it is piecewise affine when X ⊂ (−∞, 1] by194

Lemma 2.3). However, it is seen that the right-hand side of (2.1) is piecewise analytic195

in the following sense [29].196

We introduce the concept of piecewise analytic systems treated in [33] as follows.197

Let f : Rn → Rn be a piecewise analytic function, namely, there exists a finite family198

of selection functions {f i}mi=1 such that f(x) ∈ {f i(x)}mi=1 for each x ∈ Rn, and that199

the following conditions hold:200

(H1) For each f i, there exists a nonempty subanalytic set Xi ⊆ Rn such that f(x) =201

f i(x), ∀x ∈ Xi, and {Xi}mi=1 forms a finite partition of Rn;202

(H2) For each Xi, there exists an open set Ωi ⊆ Rn such that clsXi ⊆ Ωi and f
i is203

real analytic on Ωi, where cls stands for the closure of a set;204
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6 XIAOJUN CHEN AND JINGLAI SHEN

(H3) The continuity of f holds, i.e., x ∈ clsXi ∩ clsXj =⇒ f i(x) = f j(x) for any205

i, j ∈ {1, . . . ,m}.206

Consider the ODE system whose right-hand side f satisfies (H1)–(H3):207

(2.2) ẋ = f(x).208

Given T > 0, let x(t, x0) be a solution of (2.2) on [0, T ] with the initial condition209

x0. We say that x(t, x0) has no switching at a time instant t∗ [33] if there exist210

i ∈ {1, . . . ,m} and a constant ε > 0 such that x(t, x0) ∈ Xi,∀ t ∈ [t∗ − ε, t∗ + ε];211

otherwise, x(t, x0) has a mode switching at t∗.212

Theorem 2.1. [33, Theorem II] Consider the system (2.2) satisfying (H1)-(H3).213

For a compact set V ⊆ Rn and a constant T > 0, there exists N(V, T ) ∈ N such that214

for any time interval I ⊆ [0, T ], if x(t, x0) satisfies {x(t, x0) | t ∈ I} ⊆ V, then x(t, x0)215

has at most N(V, T ) mode switchings on I.216

Motivated by the example in Remark 2.1, we consider the following case.217

Lemma 2.4. Let I = [a, b] with a, b ∈ R and a < b, q ∈ R, and g : R → R be218

a strictly monotone and analytic function such that g(0) = 0 and g′(ξ) ̸= 0 for all219

ξ ̸= 0. Let h be a real-valued, analytic function over an open set containing I. Define220

G(x) :=
∫
ξ∈I

min(0, g(ξ)x+ q)h(ξ)dξ, ∀x ∈ R. Then G satisfies the conditions (H1)-221

(H3) and is piecewise analytic on R.222

The above setting includes the case where g′(0) ̸= 0, e.g., g(ξ) = 2ξ or g(ξ) = −ξ.223

Proof. Since I is compact and the integrand of G is continuous in (x, ξ), G(x) ∈ R224

for each x ∈ R and G is continuous on R. Clearly, g is a homeomorphism such that225

its inverse function g−1 is strictly monotone and continuous on R. Since g(0) = 0 and226

g is strictly monotone, g(ξ) ̸= 0 for all ξ ̸= 0. Further, since g′(ξ) ̸= 0 for all ξ ̸= 0,227

we deduce via the Inverse Function Theorem that g−1 is analytic at each g(ξ) with228

ξ ̸= 0. Hence, g−1(z) is analytic at any z ̸= 0. By the definition of G,229

G(x) =


∫ min(b,g−1(− q

x ))

a

[g(ξ)x+ q]h(ξ)dξ, if x > 0;∫ b

max(a,g−1(− q
x ))

[g(ξ)x+ q]h(ξ)dξ, if x < 0.

230

When q = 0, it is easy to see that G is a piecewise linear function and thus satisfies231

(H1)-(H3). In what follows, we consider q < 0 only since q > 0 follows from the232

similar argument. Further, we assume, without loss of generality, that g is strictly233

increasing, since otherwise g(ξ)x can be written as [−g(ξ)](−x) and the desired result234

will follow.235

Let q < 0. Since g and g−1 are strictly increasing, min(b, g−1(s)) = g−1 ◦236

min(g(b), s) and max(a, g−1(s)) = g−1 ◦ max(g(a), s) for any s ∈ R. Using this237

result and letting f(x, ξ) := [g(ξ)x+ q]h(ξ), we obtain: for x > 0,238

G(x) =



∫ b

a

f(x, ξ)dξ, if g(b) ≤ 0;∫ g−1(− q
x )

a

f(x, ξ)dξ, if g(b) > 0 and x ≥ − q
g(b) ;∫ b

a

f(x, ξ)dξ, if g(b) > 0 and 0 < x ≤ − q
g(b)

239
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and for x < 0,240

G(x) =



∫ b

a

f(x, ξ)dξ, if g(a) ≥ 0;∫ b

g−1(− q
x )

f(x, ξ)dξ, if g(a) < 0 and x ≤ − q
g(a) ;∫ b

a

f(x, ξ)dξ, if g(a) < 0 and 0 > x ≥ − q
g(a) .

241

Consequently, we have the following results for G:242

Case (1): g(b) ≤ 0, which implies g(a) < 0 as g is strictly increasing. In this case,243

G(x) =


∫ b

a

f(x, ξ)dξ, if x ≥ − q
g(a) ;∫ b

g−1(− q
x )

f(x, ξ)dξ, if x ≤ − q
g(a) .

244

Case (2): g(b) > 0 and g(a) ≥ 0. In this case,245

G(x) =


∫ g−1(− q

x )

a

f(x, ξ)dξ, if x ≥ − q
g(b) ;∫ b

a

f(x, ξ)dξ, if x ≤ − q
g(b) .

246

Case (3): g(b) > 0 and g(a) < 0. In this case,247

G(x) =



∫ g−1(− q
x )

a

f(x, ξ)dξ, if x ≥ − q
g(b) ;∫ b

a

f(x, ξ)dξ, if − q
g(a) ≤ x ≤ − q

g(b) ;∫ b

g−1(− q
x )

f(x, ξ)dξ, if x ≤ − q
g(a) .

248

Consider Case (3) first. The domain of each selection function in G is a closed249

interval in R. In fact, X1 = [− q
g(b) ,∞), X2 = [− q

g(a) ,−
q

g(b) ], and X3 = (−∞,− q
g(a) ],250

which are clearly subanalytic and form a partition of R. As q < 0, g(b) > 0 and251

g(a) < 0, we have − q
g(b) > 0 and − q

g(a) < 0. Hence, there exists a sufficiently252

small constant ε > 0 such that the open interval Ω1 := (− q
g(b) − ε,∞) contains253

X1 and − q
x > 0 for all x ∈ Ω1. Since g−1(z) is analytic at each z ̸= 0 and h is254

analytic on an open set containing I, it is easy to verify that the selection function255

f1(x) :=
∫ g−1(− q

x )

a
f(x, ξ)dξ is analytic on Ω1. Similarly, f3 is analytic on an open256

set Ω3 containing X3. Further, since f2(x) :=
∫ b

a
f(x, ξ)dξ is an affine function, it is257

analytic on an open interval containing X2. Consequently, G satisfies (H1)-(H3) and258

is piecewise analytic on R. The similar argument can be used to show the desired259

results for Cases (1)-(2).260

Remark 2.2. The above lemma can be extended to a strictly increasing and261

analytic function g satisfying the following conditions: there exists some c ∈ R such262

that g′(x) ̸= 0 for all x ̸= c, and either one of the following holds: (1) g(c) /∈ [g(a), 0) if263

g(a) < g(b) ≤ 0; (2) g(c) /∈ (0, g(b)] if g(b) > g(a) ≥ 0; and (3) g(c) /∈ [g(a), 0)∪(0, g(b)]264

if g(b) > 0 > g(a). The similar extension can be made for a strictly decreasing and265

analytic function g.266
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Proposition 2.1. Consider the DSLCP (2.1), where m = n = d. Suppose that267

X is a polyhedral set, M is a constant diagonal matrix with positive diagonal entries,268 (
N(ξ)x

)
i
= gi(ξi)xi for each i, where gi satisfies the assumption on g in Lemma 2.4269

or Remark 2.2, and q2 is a constant vector. Further, assume that the support Ξ is a270

compact box constraint, and the probability density function ρ(·) and B(·) are analytic271

over an open set containing Ξ. Then the right hand side of the DSLCP (2.1) is272

piecewise analytic on Rn and is non-Zeno in the sense of Theorem 2.1.273

Proof. Let mii, i = 1, . . . , n be the positive diagonal entries of M . Then for each274

j, 0 ≤ yj(ξ) ⊥ mjjyj(ξ) + gj(ξj)xj + (q2)j ≥ 0 has a unique solution ŷj(x, ξ) =275

−min(0, 1
mjj

[gj(ξj)xj + (q2)j ]). Let Ξ = [a1, b1] × · · · × [an, bn], where −∞ < ai <276

bi <∞ for i = 1, . . . , n. For each i, j, let277

fi,j(xj , ξ) := −Bij(ξ)min
(
0,

1

mjj
[gj(ξj)xj + (q2)j ]

)
ρ(ξ).278

Hence,279

E[Bij(ξ)ŷj(x, ξ)] =

∫
ξ∈Ξ

fi,j(xj , ξ)dξ1 · · · dξn

=

∫ b1

a1

· · ·
∫ bj−1

aj−1

∫ bj+1

aj+1

· · ·
∫ bn

an

(∫ bj

aj

fi,j(xj , ξ)dξj

)
dξ1 · · · dξj−1dξj+1 · · · dξn.

280

By Lemma 2.4, it is easy to show that E[Bij(ξ)ŷj(x, ξ)] satisfies the conditions (H1)-281

(H3) and is piecewise analytic in xj on R. Hence, E[B(ξ)ŷ(x, ξ)] is piecewise analytic282

on Rn. Since X is polyhedral, ΠX is piecewise affine. Since the composition of two283

piecewise analytic functions remains piecewise analytic, we see that the right-hand side284

of (2.1) is piecewise analytic and is therefore non-Zeno in the sense of Theorem 2.1.285

We comment that the results in Proposition 2.1 can be generalized to other DSVIs.286

For example, the non-Zeno result remains to hold if the term Ax+ q1 in the DSLCP287

(2.1) is replaced by a piecewise analytic function in x.288

2.2. Strongly Regular DSVI: Local Solution Existence and Uniqueness.289

We have focused on the global solution existence and uniqueness at the beginning of290

this section. In what follows, we discuss a case where local solution existence and291

uniqueness can be obtained. Consider the time-invariant DSVI of the following form:292

(2.3) ẋ = γ
{
ΠX

(
x−E[Φ(ξ, x, yx(ξ)]

)
−x
}
, 0 ≤ y(ξ) ⊥ H(x, y(ξ), ξ) ≥ 0, a.e. ξ ∈ Ξ.293

Consider the stochastic NCP: 0 ≤ u ⊥ H(x, u, ξ) ≥ 0, where we assume that H(·, ·, ξ)294

is continuously differentiable for any given ξ. Given ξ ∈ Ξ, define the three fundamen-295

tal index sets (α0, β0, γ0) corresponding to the solution pair (x0, u0(ξ)). (We write296

u0(ξ) as u0 below for notational simplicity.)297

α0(x0, u0, ξ) = {i : (u0)i > 0 = Hi(x0, u0, ξ)},298

β0(x0, u0, ξ) = {i : (u0)i = 0 = Hi(x0, u0, ξ)},299

γ0(x0, u0, ξ) = {i : (u0)i = 0 < Hi(x0, u0, ξ)}.300

The Jacobian JuH(x0, u0, ξ) is given by301

JuH(x0, u0, ξ) =

Juα0
Hα0(x0, u0, ξ) Juβ0

Hα0(x0, u0, ξ) Juγ0
Hα0(x0, u0, ξ)

Juα0
Hβ0

(x0, u0, ξ) Juβ0
Hβ0

(x0, u0, ξ) Juγ0
Hβ0

(x0, u0, ξ)
Juα0

Hγ0
(x0, u0, ξ) Juβ0

Hγ0
(x0, u0, ξ) Juγ0

Hγ0
(x0, u0, ξ)

 .302
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For a given ξ, u0(ξ) is a strongly regular solution of x0 [22, 25] if (i) Juα0
Hα0

(x0, u0, ξ)303

is invertible, and (ii) the following Schur complement is a P -matrix:304

M(x0, u0, ξ)

:= Juβ0
Hβ0

(x0, u0, ξ)− Juα0
Hβ0

(x0, u0, ξ)
[
Juα0

Hα0
(x0, u0, ξ)

]−1
Juβ0

Hα0
(x0, u0, ξ).

305

We make the following assumption on the stochastic NCP at x0:306

H For a.e. ξ ∈ Ξ, u0(ξ) is a strongly regular solution of x0, u0(ξ) is measurable, and307

the following conditions hold: there exist a constant c1 > 0 and two measurable308

functions ci(ξ) > 0 with i = 2, 3 such that for a.e. ξ ∈ Ξ, c(M(x0, u0(ξ), ξ)) ≥ c1,309

∥JxH(x0, u0(ξ), ξ)∥∞ ≤ c2(ξ), and310

∥K(ξ)·Juβ0
Hα0

(x0, u0(ξ), ξ)∥∞ max(∥Juα0
Hβ0

(x0, u0(ξ), ξ)·K(ξ)∥∞, 1)+c1 ·∥K(ξ)∥∞311

≤ c3(ξ), where312

c(M) := min∥z∥∞=1 max1≤i≤m zi(Mz)i and K(ξ) := −
[
Juα0

Hα0
(x0, u0(ξ), ξ)

]−1
.313

The following example illustrates the conditions given in H. Suppose Ξ is a com-314

pact support, and the stochastic NCP corresponding to a solution pair (x0, u0(ξ)) in315

(2.3) is such that u0(ξ) is continuous in ξ, JuH(x0, u0(ξ), ξ) is a P -matrix for each316

given ξ ∈ Ξ, and JuH(x0, u0(ξ), ξ) and JxH(x0, u0(ξ), ξ) are continuous in ξ on Ξ.317

Then (x0, u0(ξ)) is a strongly regular solution of x0 for each ξ as the Schur comple-318

ment of a P -matrix remains a P -matrix. Further, K(ξ) defined above is continuous in319

ξ. Along with the continuity of JxH and JuH in ξ at (x0, u0(ξ)) and the compactness320

of Ξ, we see that there exists c1 > 0 such that c(M(x0, u0(ξ), ξ)) ≥ c1 and the desired321

c2, c3 can be chosen as certain positive constants. Hence, H holds.322

Lemma 2.5. Suppose H holds. Then for any given constant ε > 0 and a.e. ξ ∈ Ξ,323

there exist two neighborhoods Vξ of x0 and Uξ of u0(ξ) and a Lipschitz continuous324

function uξ : Vξ → Uξ with the Lipschitz constant (c2(ξ) + ε)[max(c3(ξ)/c1, 1/c1) + ε]325

with respect to ∥·∥∞ such that for any x ∈ Vξ, uξ(x) ∈ Uξ is a solution of the stochastic326

NCP corresponding to x and ξ.327

Note that the stochastic NCP may attain multiple solutions at x ∈ Vξ, and328

uξ(x) ∈ Uξ is one of these solutions indicated in the above lemma.329

Proof. Fix a constant ε > 0 and a ξ ∈ Ξ where u0(ξ) is a strongly regular solution330

at x0. Then there exist two neighborhoods Vξ of x0 and Uξ of u0(ξ) and a Lipschitz331

function uξ : Vξ → Uξ such that for any x ∈ Vξ, uξ(x) ∈ Uξ is a solution of the332

NCP corresponding to x and ξ [22, 25]. To establish the desired Lipschitz constant333

of uξ, consider the following LCP in v obtained from the linearization of the NCP at334

(x0, u0(ξ)):335

0 ≤ (u0(ξ) + v) ⊥ H(x0, u0(ξ), ξ) + JuH(x0, u0(ξ), ξ)v + p ≥ 0,336

where the vector p = (pα0
, pβ0

, pγ0
), and we write its solution as vξ(p). Denote337

M(x0, u0(ξ), ξ) by M(ξ) for notational simplicity. For any p of sufficiently small338

magnitude, we have339

vξ,α0(p) = K ′(ξ)·vβ0(p)+K(ξ)pα0 , 0 ≤ vξ,β0(p) ⊥M(ξ)vξ,β0(p)+K
′′(ξ)pα0+pβ0 ≥ 0,340

and vξ,γ0
= 0, where the matrices K(ξ) := −

[
Juα0

Hα0
(x0, u0(ξ), ξ)

]−1
, and341

K ′(ξ) := −K(ξ) · Juβ0
Hα0

(x0, u0(ξ), ξ), K ′′(ξ) := −Juα0
Hβ0

(x0, u0(ξ), ξ) ·K(ξ).342
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Since M(ξ) is a P -matrix, we have, for all p, q of sufficiently small magnitude,343

∥vξ,β0
(p)− vξ,β0

(q)∥∞ ≤ max(∥K ′′(ξ)∥∞, 1)
c1

∥p− q∥∞,344

and345

∥vξ,α0(p)− vξ,α0(q)∥∞ ≤
(
∥K ′(ξ)∥∞ · max(∥K ′′(ξ)∥∞, 1)

c1
+ ∥K(ξ)∥∞

)
∥p− q∥∞

≤ c3(ξ)

c1
∥p− q∥∞.

346

This yields the local Lipschitz constant max(c3(ξ), 1)/c1 of vξ(·) with respect to ∥·∥∞.347

Finally, given u0(ξ) for a fixed ξ, we have, for all x, x′ ∈ Vξ by possibly restricting Vξ,348

∥H(x, u0(ξ), ξ)−H(x′, u0(ξ), ξ)∥∞ ≤
[
∥JxH(x0, u0(ξ), ξ)∥∞ + ε

]
· ∥x− x′∥∞

≤ (c2(ξ) + ε) · ∥x− x′∥∞.
349

By [25, Corollary 2.2], (c2(ξ)+ε)[max(c3(ξ)/c1, 1/c1)+ε] is the local Lipschitz constant350

of uξ.351

Suppose that there exist an open set V0 of x0 with V0 ⊆ Vξ a.e. ξ ∈ Ξ and352

another open set U0 with U0 ⊆ Uξ a.e. ξ ∈ Ξ. (Clearly, such V0 and U0 ex-353

ist if ξ has a finite discrete distribution.) Furthermore, suppose E[κΦ(ξ)] < ∞,354

E[κΦ(ξ)max(c3(ξ), 1)] < ∞ and E[κΦ(ξ)c2(ξ)max(c3(ξ), 1)] < ∞. For a given ε > 0,355

define G(x) := E[Φ(ξ, x, uξ(x)] for x ∈ V0 and uξ(x) ∈ U0. Then for any x, x′ ∈ V0,356

we have, via assumption A.0, that357

∥G(x)−G(x′)∥∞ ≤ E
[
κΦ(ξ)∥(x, uξ(x))− (x′, uξ(x

′))∥∞
]

358

≤ E
[
κΦ(ξ)

(
1 + (c2(ξ) + ε)(max(c3(ξ)/c1, 1/c1) + ε)

)]︸ ︷︷ ︸
:=κG

·∥x− x′∥∞.359

By the given assumptions, 0 < κG <∞ such that G(·) is Lipschitz continuous on the360

neighborhood V0 of x0. This shows that there exists a constant φ > 0 such that the361

DSVI (2.3) has a unique solution x(t) := x(t, x0) ∈ V0 on the time interval [−φ,φ]362

with x(0) = x0 and ŷ(x(t), ξ) := uξ(x(t)) ∈ U0 for all t ∈ [−φ,φ].363

3. Sample Average Approximation of the DSVI. In this section, we con-364

centrate on two cases. The first case is when the underlying VI in the second stage365

defined by Ψ is strongly monotone, whereas in the second case, we consider a special366

non-monotone VI given by a box-constrained linear VI satisfying the P -property.367

Assumption 3.1. Case (i) The function Ψ is (uniformly) strongly monotone on368

Cξ respect to y for any t, x ∈ Rn, a.e. ξ ∈ Ξ in the sense that there is a constant369

η > 0, independent of t, x and ξ, such that370

(3.1) (z − z′)⊤
(
Ψ(t, ξ, x, z)−Ψ(t, ξ, x, z′)

)
≥ η∥z − z′∥22, ∀ z, z′ ∈ Cξ, a.e. ξ ∈ Ξ.371

Case (ii) The set Cξ = [lξ, uξ] a.e. ξ ∈ Ξ, where lξ ∈ {R∪{−∞}}n, uξ ∈ {R∪{∞}}n,372

and lξ < uξ, and Ψ(t, ξ, x, y) =M(ξ)y + ψ(t, ξ, x), where M(ξ) ∈ Rm×m is a373

P-matrix and there is a constant η̃ > 0 independent of ξ such that374

(3.2) min
∥z∥∞=1

(
max

1≤i≤m
zi(M(ξ)z)i

)
≥ η̃, a.e. ξ ∈ Ξ,375

and the function ψ(·, ξ, ·) is Lipschitz continuous a.e. ξ ∈ Ξ.376
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We make two comments on Case (ii) as follows.377

(ii.1) Clearly, the Lipschitz continuity of the function ψ(·, ξ, ·) a.e. ξ ∈ Ξ follows from378

the Lipschitz continuity of Ψ in assumption A.0. Conversely, if ψ(·, ξ, ·) is Lip-379

schitz in (t, x) a.e. ξ ∈ Ξ with the measurable Lipschitz modulus and ∥M(ξ)∥ is380

measurable, then Ψ(·, ξ, ·, ·) is Lipschitz in (t, x, y) with the measurable Lipschitz381

modulus.382

(ii.2) When Ξ is a compact support and M(·) is continuous, there exists a con-383

stant η̃ > 0 independent of ξ such that (3.2) holds for all ξ ∈ Ξ. In fact,384

let f(ξ, z) := maxi=1,...,n

(
zi(M(ξ)z)i

)
, which is continuous in (ξ, z). Hence, f385

attains a minimizer (ξ∗, z∗) on the compact set Ξ×{z | ∥z∥∞ = 1}. SinceM(ξ∗)386

is a P -matrix and z∗ ̸= 0, η̃ := f(ξ∗, z∗) > 0. Thus min∥z∥∞=1 f(ξ, z) ≥ η̃ for387

all ξ ∈ Ξ.388

In either case of Assumption 3.1, the VI (1.3) has a unique solution ŷx(t, ξ) [15,389

Theorem 2.3.3, Proposition 3.5.10] for any t ≥ 0, x ∈ Rn, a.e. ξ ∈ Ξ. We assume that390

ŷx(t, ·) is measurable for any given (t, x) so that assumptions A.1 holds. Sufficient391

conditions for the measurability of ŷx(t, ·) can be established. For example, in Case392

(i), if Cξ ≡ C for a closed convex set C and for any fixed (t, x) and any given y ∈ C,393

Ψ(t, ·, x, y) is continuous on Ξ and κΨ(·) is bounded on any small neighborhood of each394

ξ ∈ Ξ, then by the similar argument in (3.5), the unique solution ŷx(t, ·) is continuous395

at any ξ ∈ Ξ and thus measurable. This result can be extended to the case when396

the closed, convex-valued set-valued mapping Cξ is continuous in ξ; see [15, Corollary397

5.1.5] and [15, Proposition 5.4.1] for the related results.398

Consider Case (ii). LetM ∈ Rm×m, q ∈ Rm, l ∈ (R∪{−∞})m, u ∈ (R∪{+∞})m399

with l < u, and K = {v ∈ Rm | l ≤ v ≤ u}. The box-constrained linear VI, denoted400

by LVI(M, q, l, u), is to find v ∈ Rm such that401

0 ∈Mv + q +NK(v).402

Let mid denote the componentwise median operator, i.e., for any a, b, c ∈ R,403

mid(a, b, c) := a+b+c−max(a, b, c)−min(a, b, c). WhenM is a P -matrix, it is shown404

in [8, 10] that the solution of the LVI is Lipschitz continuous in (M, q); the following405

lemma shows the continuity in (M, q, l, u).406

Lemma 3.1. Suppose M∗ is a P -matrix. Then the unique solution of this LVI407

is continuous in (M, q, l, u) at (M∗, q∗, l∗, u∗) for any q∗ ∈ Rm, l∗ ∈ (R ∪ {−∞})m,408

u∗ ∈ (R ∪ {+∞})m with l∗ < u∗.409

Proof. Let {(Mk, qk, lk, uk)} be a sequence that converges to (M∗, q∗, l∗, u∗).410

Since M∗ is a P -matrix, we may assume without of generality that each Mk is a411

P -matrix such that the LVI attains a unique solution vk for each k. Therefore, vk412

satisfies the equation mid(vk − lk, vk − uk,Mkvk + qk) = 0 for each k [8]. We first413

consider the case where both l∗, u∗ ∈ Rm. Clearly, {lk} and {uk} are bounded such414

that {vk} is bounded and hence has a convergent subsequence. Let {vk′} be an415

arbitrary convergent subsequence of {vk}, and let its limit be v⋄. Since the me-416

dian operator is continuous, it can be seen by passing the limit that v⋄ satisfies417

mid(v⋄ − l∗, v⋄ − u∗,M∗v⋄ + q∗) = 0. Since the LVI(M∗, q∗, l∗, u∗) has the unique418

solution v∗, we have v⋄ = v∗. This shows that any convergent subsequence of {vk}419

has the same limit v∗. Hence, {vk} converges to v∗. This shows that the solution of420

the LVI is continuous in (M, q, l, u) at (M∗, q∗, l∗, u∗).421

Next, we consider the case where some li or ui takes an extended real-value. Let422

I, J , and K be three disjoint index subsets of {1, . . . ,m} such that l∗i = −∞ and423

u∗i ∈ R for all i ∈ I, u∗i = +∞ and l∗i ∈ R for all i ∈ J , and l∗i = −∞ and u∗i = +∞424
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for all i ∈ K. Hence, for any v ∈ Rm,425

mid(vI − l∗I , vI − u∗I , (M
∗v)I + q∗I) = max(vI − u∗I , (M

∗v)I + q∗I),426

mid(vJ − l∗J , vJ − u∗J , (M
∗v)J + q∗J ) = min(vJ − l∗J , (M

∗v)J + q∗J ),427

mid(vK − l∗K, vK − u∗K, (M
∗v)K + q∗K) = (M∗v)K + q∗K.428

Besides, for each i /∈ I ∪ J ∪ K, we have mid(v∗i − l∗i , v
∗
i − u∗i , (M

∗v∗)i + q∗i ) = 0.429

We claim that (vk) is bounded. Suppose not. Without loss of generality, we let430

∥vk∥ → ∞, vk

∥vk∥ → ṽ ̸= 0, and for all large k, lki = −∞ for all i ∈ I ∪ K, and431

uki = +∞ for all i ∈ J ∪ K. Since, for all large k,432

max(vkI − ukI , (M
kvk)I + qkI)

∥vk∥
= 0,

min(vkJ − lkJ , (M
kvk)J + qkJ )

∥vk∥
= 0,433

434
(Mkvk)K + qkK

∥vk∥
= 0, and

mid(vki − lki , v
k
i − uki , (M

kvk)i + qki )

∥vk∥
= 0, fori /∈ I ∪ J ∪ K,435

we have, by passing the limit, that max(ṽI , (M
∗ṽ)I) = 0, min(ṽJ , (M

∗ṽ)J ) = 0,436

(M∗ṽ)K = 0, and for each i /∈ I ∪ J ∪ K, mid(ṽi, ṽi, (M
∗ṽ)i) = 0. This implies that437

ṽi(M
∗ṽ)i = 0 for all i = 1, . . . , n. Since M∗ is a P -matrix, we have ṽ = 0, yielding a438

contradiction. Hence, (vk) is bounded. It follows from the similar argument for the439

first case and the continuity of min,max and mid that any convergent subsequence of440

{vk} has the limit v∗, leading to the desired continuity.441

In what follows, let P be the set of all P -matrices in Rm×m, and W := {(l, u) ∈442

(R ∪ {−∞})m × (R ∪ {+∞})m | l < u}. Clearly, P and W are open.443

Corollary 3.1. In Case (ii), if each entry of (M(ξ), l(ξ), u(ξ)) ∈ P × W is a444

measurable function on Ξ, and each entry of ψ(t, ·, x) is measurable for any (t, x),445

then y∗x(t, ·) is measurable for any (t, x).446

Proof. Fix (t, x). Let y∗(ξ) ∈ Rm be the unique solution of the LVI in Case (ii)447

(we omit (t, x) in y∗ as it is fixed). Let q(ξ) := ψ(t, ·, x), which is measurable on448

Ξ. By Lemma 3.1, y∗ viewed as a function of (M, q, l, u) is continuous on the open449

set P × Rm ×W. Since each entry of M(·), q(·), l(·), u(·) is measurable, we see that450

for each i = 1, . . . ,m, the real-valued function y∗i (·) is a composition of a continuous451

function and finitely many measurable functions. Hence, each y∗i (·) is measurable so452

that y∗(·) is measurable.453

The next lemma provides sufficient conditions for assumption A.2 being fulfilled454

in each of the two cases of Assumption 3.1. As G(t, x) = E[Φ(t, ξ, x, y(t, ξ))], the455

DSVI (1.1)-(1.3) can be written as456

ẋ(t) = γ ·
{
ΠX

(
x(t)−G(t, x(t))]

)
− x(t)

}
,(3.3)457

x(0) = x0.(3.4)458

For notation simplicity, we write ŷx(t, ξ) as ŷ(x, t, ξ) in the subsequent development.459

Lemma 3.2. Suppose that E[κΦ(ξ)] <∞, E[κΦ(ξ)κΨ(ξ)] <∞, and E[κΦ(ξ)κ2Ψ(ξ)]460

< ∞. In either of the two cases in Assumption 3.1, the function G is globally Lip-461

schitz continuous, and for any initial condition x0, the DSVI (1.1)-(1.3) has a unique462

solution (x∗(t), y∗(t, ξ)) with x∗ ∈ C1[0,∞) and y∗(·, ξ) being (locally) Lipschitz con-463

tinuous in [0,∞) a.e. ξ ∈ Ξ.464
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Proof. By [15, Theorem 2.3.3, Proposition 3.5.10], given any t ≥ 0, x ∈ Rn, a.e.465

ξ ∈ Ξ, the VI (1.3) has a unique solution measurable on Ξ. To show that G is466

(globally) Lipschitz continuous, let v = ŷ(x, t, ξ) and v′ = ŷ(x′, t′, ξ) for a fixed ξ ∈ Ξ,467

where (x, t), (x′, t′) ∈ Rn × R. Clearly, v, v′ ∈ Cξ.468

Case (i) It follows from (3.1) that for almost every ξ ∈ Ξ,469

∥v − v′∥2 ≤ η′(ξ)∥v −ΠCξ
(v −Ψ(t′, ξ, x′, v))∥2470

≤ η′(ξ)∥v −ΠCξ
(v −Ψ(t′, ξ, x′, v))− v +ΠCξ

(v −Ψ(t, ξ, x, v))∥2471

≤ η′(ξ)∥Ψ(t′, ξ, x′, v)−Ψ(t, ξ, x, v)∥2472

≤ η′(ξ)κΨ(ξ)∥(t, x)− (t′, x′)∥2,(3.5)473

where the first inequality is from [15, Theorem 2.3.3] with η′(ξ) = (1+κΨ(ξ))/η
1, the474

second inequality is due to v−ΠCξ
(v−Φ(t, ξ, x, v)) = 0, and the third inequality follows475

from the fact that the Euclidean projection is Lipschitz continuous with Lipschitz476

constant 1. Hence we obtain477

∥G(t, x)−G(t′, x′)∥2 =
∥∥E[Φ(t, ξ, x, ŷ(x, t, ξ))− Φ(t′, ξ, x′, ŷ(x′, t′, ξ))

]∥∥
2

478

≤ E
[
∥Φ(t, ξ, x, ŷ(x, t, ξ))− Φ(t′, ξ, x′, ŷ(x′, t′, ξ))∥2

]
479

≤ E
[
κΦ(ξ) · ∥(t, x, ŷ(x, t, ξ))− (t′, x′, ŷ(x′, t′, ξ))∥2

]
480

≤ E
[
κΦ(ξ)

(
1 + η′(ξ)κΨ(ξ)

)]
· ∥(t, x)− (t′, x′)∥2,(3.7)481

where the first inequality follows from the Jensen’s inequality. By η′(ξ) = (1 +482

κΨ(ξ))/η, we obtain483

κG := E
[
κΦ(ξ)

(
1 + η′(ξ)κΨ(ξ)

)]
= E[κΦ(ξ)] + E[κΦ(ξ)η′(ξ)κΨ(ξ)]484

= E[κΦ(ξ)] +
1

η

(
E[κΦ(ξ)κΨ(ξ)] + E[κΦ(ξ)κ2Ψ(ξ)]

)
<∞,(3.8)485

where the last inequality follows from the given assumption on expectations. Hence,486

G is (globally) Lipschitz continuous with the Lipschitz constant κG.487

By Lemma 2.1, (3.3) and (3.4) has a unique solution x∗ ∈ C1[0,∞). From (3.5),488

y∗(t, ξ) := ŷ(x∗(t), t, ξ) is (locally) Lipschitz continuous in [0,∞) a.e. ξ ∈ Ξ.489

Case (ii) Since M(ξ) is a P -matrix, the box-constrained linear VI has a unique490

solution for any fixed t, x, ξ [15, Section 3.5.2]. For any given (t, x) and (t′, x′), the491

unique solutions v and v′ can be expressed in terms of the median operator mid(·)492

respectively:493

(3.9) v −mid
(
lξ, uξ, x−Ψ(t, ξ, x, v)

)
= 0, v′ −mid

(
lξ, uξ, x

′ −Ψ(t′, ξ, x′, v′)
)
= 0,494

1There is a minor mistake in the proof of [15, Theorem 2.3.3(ii)]. Here we give a modified proof
of [15, Theorem 2.3.3(ii)] and derive the following inequality

(3.6) ∥v − v∗∥2 ≤
(κ+ 1

c

∥∥v −ΠC(v − F (v))
∥∥
2

) 1
ς−1

, ∀ v ∈ C,

where C ⊂ Rn is a closed convex set, ς ≥ 2, c > 0, κ > 0, F : Rn → Rn satisfying

(u− v)⊤(F (u)− F (v)) ≥ c∥u− v∥ς2, ∀u, v ∈ C, and ∥F (u)− F (v)∥2 ≤ κ∥u− v∥2,

and v∗ is the unique solution of the VI: 0 ∈ F (u)+NC(u). For a given v ∈ C, let r = v−ΠC(v−F (v)).
Following the same argument as in [15, Theorem 2.3.3(iii)], we have (v∗ − v+ r)⊤(F (x)− r) ≥ 0 and
(v − r − v∗)⊤F (v∗) ≥ 0. Adding these inequalities and using the conditions on F , we deduce

c∥v − v∗∥ς2 ≤ (v − v∗)⊤(F (v)− F (v∗)) ≤ r⊤(F (v)− F (v∗))− r⊤r − (v∗ − v)⊤r ≤ ∥r∥2 · κ · ∥v − v∗∥2 + ∥r∥2 · ∥v − v∗∥2.

This gives rise to (3.6).

This manuscript is for review purposes only.



14 XIAOJUN CHEN AND JINGLAI SHEN

where we recall that Ψ(t, ξ, x, y) =M(ξ)y+ψ(t, ξ, x). Following the same argument in495

the proof of [8, Lemma 2.1], there exists a vector d̂ ∈ [0, 1]m (depending on v and v′)496

such that (I−D)(v−v′)+D
(
M(ξ)(v−v′)+ψ(t, ξ, x)−ψ(t′, ξ, x′)

)
= 0, where D :=497

diag(d̂). This implies
(
I −D +DM(ξ)

)
(v − v′) = −D

(
ψ(t, ξ, x)− ψ(t′, ξ, x′)

)
. Since498

M(ξ) is a P -matrix a.e. ξ ∈ Ξ, it is known that I−D+DM(ξ) is also a P -matrix [10,499

Theorem 2.2] and thus invertible a.e. ξ ∈ Ξ. Define β∞(M(ξ)) := maxd̂∈[0,1]m ∥(I −500

D+DM(ξ))−1D∥∞, and c(M(ξ)) := min∥z∥∞=1

(
max1≤i≤m zi(M(ξ)z)i). It is known501

that β∞(M(ξ)) ≤ 1
c(M(ξ)) [10, Theorem 2.2]. Hence, by (3.2), β∞(M(ξ)) ≤ 1

η̃ a.e.502

ξ ∈ Ξ. Further, it follows from [8, Lemma 2.1] and [13, Lemma 7.3.10] that503

∥v − v′∥∞ ≤ β∞(M(ξ))
∥∥ψ(t, ξ, x)− ψ(t′, ξ, x′)

∥∥
∞ ≤ 1

c(M(ξ))

∥∥ψ(t, ξ, x)− ψ(t′, ξ, x′)
∥∥
∞504

≤ 1

η̃

∥∥ψ(t, ξ, x)− ψ(t′, ξ, x′)
∥∥
∞ =

1

η̃

∥∥Ψ(t, ξ, x, v′)−Ψ(t′, ξ, x′, v′)
∥∥
∞(3.10)505

≤
κΨ(ξ)

η̃

∥∥(t, x)− (t′, x′)
∥∥
∞, a.e. ξ ∈ Ξ.506

Therefore, G is (globally) Lipschitz continuous with the Lipschitz constant κG :=507

E[κΦ(ξ)(1 + κΨ(ξ)
η̃ )] <∞ (with respect to ∥ · ∥∞), by the same argument in the proof508

for Case (i).509

Remark 3.1. If η = 0 in (3.1) or η̃ = 0 in (3.2), the solution set of each second510

stage problem may be empty or has multiple solutions. In the latter case, we can511

use the regularization approach by Ψϵ(t, ξ, x, z) = Ψ(t, ξ, x, z) + ϵz with ϵ > 0 (see512

for example [9]). The function Ψϵ satisfies Assumption 3.1 and each second stage513

problem has a unique solution yϵ(t, ξ) for any ϵ > 0, which converges to a solution of514

the original problem as ϵ ↓ 0 for any fixed t, ξ.515

Let {ξi} with ξi = ξi(ω),∀ i ∈ N be an independent identically distributed (iid)516

sequence of d-dimensional random vectors defined on the probability space (Ω,F ,P).517

We consider the sample average approximation (SAA) of (3.3)-(3.4) as follows:518

ẋ(t) = γ ·
{
ΠX

(
x(t)−GN (t, x(t))]

)
− x(t)

}
,(3.11)519

x(0) = x0,(3.12)520

where521

GN (t, x(t)) =

∑N
i=1 Φ(t, ξ

i, x(t), ŷ(x(t), t, ξi))

N
522

with ŷ(x(t), t, ξi) being the unique solution of the variational inequality523

0 ∈ Ψ(t, ξi, x(t), y) +NCξi
(y).524

Since all ξi = ξi(ω) are defined on the probability space (Ω,F ,P), we view GN (t, x) as525

the random function GN (t, x, ω) on R×Rn×Ω. By a similar argument in Lemma 3.2,526

GN is (globally) Lipschitz continuous in (t, x). Hence, the DSVI (3.11)-(3.12) has a527

unique solution xN ∈ C1[0,∞).528

In what follows, we prove the uniform convergence of {xN} to the solution of (3.3)-529

(3.4) with probability 1 for either of the two cases of Assumption 3.1. Toward this end,530

we recall some results and introduce more notions. For either case of Assumption 3.1,531
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let Φ̂(t, x, ξ) := Φ(t, ξ, x, ŷ(x, t, ξ)). It is shown in the proof of Lemma 3.2 that in532

either case, there exists a measurable function κc : Ξ → R+ such that533

(3.13)
∥∥Φ̂(t, x, ξ)− Φ̂(t′, x′, ξ)

∥∥ ≤ κc(ξ) ∥(t, x)− (t′, x′)∥, a.e. ξ ∈ Ξ.534

In particular, for case (i), κc(ξ) := κΦ(ξ)
(
1+ η′(ξ)κΨ(ξ)

)
with respect to ∥ · ∥2, where535

η′(ξ) = (1 + κΨ(ξ))/η; for case (ii), κc(ξ) := κΦ(ξ)(1 +
κΨ(ξ)

η̃ ) with respect to ∥ · ∥∞.536

Under the assumptions of Lemma 3.2, E[κc(ξ)] <∞ for both the cases.537

We define moment generating functions for κc and Φ̂i, i = 1, . . . , n as follows. Let538

Mκc
(τ) := E[exp(τκc(ξ))], M i

(t,x)(τ) := E[exp(τ(Φ̂i(t, x, ξ)], i = 1, . . . , n.539

Recall that the moment generating function Mχ(τ) := E[eτχ] of a (real-valued) ran-540

dom variable χ is finite-valued in a neighborhood of zero if there exists a constant541

ε > 0 such that for any τ ∈ (−ε, ε), Mχ(τ) <∞. We make the following assumption:542

on Mκc and M i
(t,x) for any (t, x) ∈ [0, T ]×X:543

(M) : Mκc
and all M i

(t,x) are finite valued in a neighborhood of zero.544

Remark 3.2. Obviously, if Ξ is a compact support and κc, Φ̂i, i = 1, . . . , n are545

continuous in ξ ∈ Ξ for any given (t, x), then the condition (M) holds; see Example 4.1546

for an example. For a general case where the support Ξ is unbounded, one may es-547

tablish the decay rate of moments using the probability density function of ξ and548

properties of κc and Φ̂i’s to show that their moment generating functions are finite549

valued near zero. Further, one can approximate an unbounded support by a compact550

support and show that the error between the original DSVI solution and its approx-551

imate solution can be made arbitrarily small by choosing a suitable approximating552

compact support; see [7] for the related results.553

We first consider a convex compact set X.554

Theorem 3.1. Suppose that the assumptions of Lemma 3.2 hold, X is a convex555

compact set, x(0) ∈ X, T > 0, and γ > 0. Let x∗ be the unique solution of (3.3)-(3.4)556

and θ = 1+κG

exp(γ(1+κG)T )−1 . Then the following statements hold for either of the two557

cases in Assumption 3.1:558

(i) {xN} converges to x∗ uniformly on [0, T ] w.p. 1;559

(ii) Suppose, in addition, that the assumption (M) holds. Then for any constant560

ϵ > 0, there exist positive constants ρ(θϵ) and σ(θϵ), independent of N , such561

that562

(3.14) P
{

sup
t∈[0,T ]

∥xN (t)− x∗(t)∥ ≥ ϵ
}

≤ ρ(θϵ) exp
(
−Nσ(θϵ)

)
.563

Proof. (i) We first show that GN (·, ·) converges uniformly to G(·, ·) on [0, T ]×X564

with probability 1. For this purpose, we establish the following two claims.565

Claim (a): Φ̂(t, x, ξ) is continuous in (t, x) at each (t, x) a.e. ξ ∈ Ξ.566

To prove Claim (a), note that in both cases of Assumption 3.1, Φ is Lipschitz567

continuous in (t, x, y) and ŷ(x, t, ξ) is Lipschitz in (x, t) as shown in Lemma 3.2 a.e.568

ξ ∈ Ξ. Hence, Φ̂(t, x, ξ) := Φ(t, ξ, x, ŷ(x, t, ξ)) is continuous in (t, x) a.e. ξ ∈ Ξ.569

Claim (b): Each element of Φ̂(t, x, ξ) is dominated by a nonnegative integrable570

function h(ξ), i.e., h(ξ) is a nonnegative measurable function with E[h(ξ)] < +∞ such571

that for any (t, x) ∈ [0, T ]×X, |Φ̂i(t, x, ξ)| ≤ h(ξ) for each i = 1, . . . , n.572
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To show Claim (b), consider case (i) of Assumption 3.1 first. It follows from (3.7)573

that for any (t, x), (t′, x′) ∈ [0, T ] × X, ∥Φ̂(t, x, ξ) − Φ̂(t′, x′, ξ)∥2 ≤ κc(ξ) · ∥(t, x) −574

(t′, x′)∥2. Since X and [0, T ] are bounded, there exists a constant ν > 0 such that for575

any (t, x), (t′, x′) ∈ [0, T ]×X, ∥Φ̂(t, x, ξ)−Φ̂(t′, x′, ξ)∥2 ≤ νκc(ξ). Furthermore, choose576

an arbitrary (t⋄, x⋄) ∈ [0, T ]×X. Since Φ̂(t⋄, x⋄, ξ) is measurable and its expectation is577

of finite value, ∥Φ̂(t⋄, x⋄, ξ)∥2 is also measurable and E[∥Φ(t⋄, x⋄, ξ)∥2] < +∞. Define578

the nonnegative measurable function h(ξ) := ∥Φ̂(t⋄, x⋄, ξ)∥2+νκc(ξ). Clearly, for any579

(t, x) ∈ [0, T ]×X, we have580

∥Φ̂(t, x, ξ)∥2 ≤ ∥Φ̂(t⋄, x⋄, ξ)∥2 + ∥Φ̂(t, x, ξ)− Φ̂(t⋄, x⋄, ξ)∥2 ≤ h(ξ), a.e. ξ ∈ Ξ.581

From the assumptions of Lemma 3.2, we have E[h(ξ)] = E[∥Φ̂(t⋄, x⋄, ξ)∥2]+νκG <∞,582

where κG is given in (3.8). Consequently, each element of Φ̂(t, x, ξ) is dominated by583

the nonnegative integrable function h(ξ). The same result can be shown for case (ii)584

of Assumption 3.1 using the similar argument in Lemma 3.2.585

In view of the above two claims and the fact that the sample {ξ1, . . . , ξN} is iid, we586

deduce via [28, Theorem 7.48] that for each i = 1, . . . , n, GN
i (t, x) converges uniformly587

to Gi(t, x) on [0, T ]×X with probability 1, i.e., sup(s,x)∈[0,T ]×X |GN
i (s, x)−Gi(s, x)| →588

0 w.p. 1. Hence, sup(s,x)∈[0,T ]×X ∥GN (s, x)−G(s, x)∥ → 0 w.p. 1.589

Next, we use the above results to establish the uniform convergence of {xN} to590

x∗. It follows from Lemma 3.2 that xN ∈ C1[0, T ] and from (i) of Lemma 2.2 that591

xN (t) ∈ X for all t ∈ [0, T ] and N . Further, by Lemma 2.2, we have, for each N ,592

xN (t) = e−γtx0 +

∫ t

0

e−γ(t−τ)γΠX

[
xN (τ)−GN (τ, xN (τ))

]
dτ,593

x∗(t) = e−γtx0 +

∫ t

0

e−γ(t−τ)γΠX

[
x∗(τ)−G(τ, x∗(τ))

]
dτ.594

Therefore, using the κG derived in the proof of Lemma 3.2 for either of the two cases595

in Assumption 3.1, we have, for any t ∈ [0, T ],596 ∥∥xN (t)− x∗(t)
∥∥597

≤
∫ t

0

e−γ(t−τ)γ
∥∥xN (τ)−GN (τ, xN (τ))− x∗(τ)−G(τ, x∗(τ))

∥∥dτ598

≤ γ

∫ t

0

(∥∥xN (τ)− x∗(τ)
∥∥+ ∥∥G(τ, xN (τ))−G(τ, x∗(τ))

∥∥+ ∥∥GN (τ, xN (τ))−G(τ, xN (τ))
∥∥)dτ599

≤ γ

∫ t

0

(
(1 + κG)

∥∥xN (τ)− x∗(τ)
∥∥+ sup

(s,x)∈[0,T ]×X

∥∥GN (s, x)−G(s, x)
∥∥)dτ.600

Since sup(s,x)∈[0,T ]×X ∥GN (s, x)−G(s, x)∥ → 0 w.p. 1, we have that for all sufficiently601

large N , sup(s,x)∈[0,T ]×X ∥GN (s, x)−G(s, x)∥ <∞ a.e. ξ ∈ Ξ. Using [9, Lemma 2.6]602

and the Grönwall inequality [12, pp. 146], we obtain that for all large N and for any603

t ∈ [0, T ],604 ∥∥xN (t)− x∗(t)
∥∥ ≤ exp(γ(1 + κG)t)− 1

1 + κG
sup

(s,x)∈[0,T ]×X

∥∥GN (s, x)−G(s, x)
∥∥.605

Recalling that θ = 1+κG

exp(γ(1+κG)T )−1 , we thus have, for all large N ,606

(3.15) θ sup
t∈[0,T ]

∥xN (t)− x∗(t)∥ ≤ sup
(s,x)∈[0,T ]×X

∥∥GN (s, x)−G(s, x)
∥∥.607
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Since sup(s,x)∈[0,T ]×X ∥GN (s, x) − G(s, x)∥ → 0 w.p. 1, we conclude that {xN} uni-608

formly converges to x∗ on [0, T ] w.p. 1.609

(ii) In view of the above proof for part (i), it suffices to establish the uniform610

exponential bound611

P
{

sup
(t,x)∈[0,T ]×X

∥GN (t, x)−G(t, x)∥ ≥ ϵ
}

612

for any constant ϵ > 0. Toward this end, consider Case (i) of Assumption 3.1 first.613

Under the condition (M),Mκc and allM i
(t,x) are finite valued in a neighborhood of zero614

at any (t, x) ∈ [0, T ]×X. Since each Gi(t, x) is finite valued at any (t, x) ∈ [0, T ]×X,615

it is easy to see that for any (t, x) ∈ [0, T ] × X and each i = 1, . . . , n, the moment616

generating function E[exp(τ(Φ̂i(t, x, ξ)−Gi(t, x))] is finite valued in a neighborhood617

of zero. Further, for each i = 1, . . . , n,618 ∣∣Φ̂i(t, x, ξ)− Φ̂i(t
′, x′, ξ)

∣∣ ≤ ∥∥Φ̂(t, x, ξ)− Φ̂(t′, x′, ξ)
∥∥
2
≤ κc(ξ) ∥(t, x)− (t′, x′)∥2619

for all ξ ∈ Ξ and any (t, x), (t′, x′) ∈ [0, T ] × X. Consequently, it follows from [28,620

Theorem 7.65] that for any constant ϵ > 0, there exist positive constants ρ(ϵ) and621

σ(ϵ), independent of N , such that622

(3.16) P
{

sup
(t,x)∈[0,T ]×X

∥GN (t, x)−G(t, x)∥2 ≥ ϵ
}

≤ ρ(ϵ) exp(−Nσ(ϵ)).623

In light of (3.15), we obtain624

P
{

sup
t∈[0,T ]

∥xN (t)− x∗(t)∥2 ≥ ϵ
}

≤ ρ(θϵ) exp(−Nσ(θϵ)).625

The similar result can be established for Case (ii) of Assumption 3.1 where ∥ · ∥∞ is626

used.627

Using (ii) of Lemma 2.2 and Theorem 3.1, we have the following corollary.628

Corollary 3.2. If X is a bounded affine set and x(0) ∈ X, then Theorem 3.1629

holds with θ = 1+κG

exp(|γ|(1+κG)T )−1 .630

To handle an unbounded closed convex set X, we make the following assumption:631

A.3 (i) There exist constants LΦ > 0 and LΨ > 0 such that κΦ(ξ) ≤ LΦ and632

κΨ(ξ) ≤ LΨ a.e. ξ ∈ Ξ; and633

(ii) there exist t⋄, x⋄ and a constant β > 0 such that ∥Φ(t⋄, ξ, x⋄, ŷ(x⋄, t⋄, ξ))∥ ≤634

β a.e. ξ ∈ Ξ, where ŷ(x⋄, t⋄, ξ) is a solution of the VI: 0 ∈ Ψ(t⋄, ξ, x⋄, y) +635

NCξ
(y).636

By A.3, κΨ, κΦ and ∥Φ(t⋄, ·, x⋄, ŷ(x⋄, t⋄, ·))∥ are essentially bounded. Furthermore,637

E[κΦ(ξ)] ≤ LΦ <∞, E[κΦ(ξ)κΨ(ξ)] ≤ LΦ·LΨ <∞, and E[κΦ(ξ)κ2Ψ(ξ)] ≤ LΦ·(LΨ)
2 <638

∞. Hence, Lemma 3.2 holds.639

Remark 3.3. Sufficient conditions for A.3 to hold can be established for specific640

classes of DSVIs. For example, consider the DSLCP in (2.1). We show below that A.3641

holds if ∥B(ξ)∥, ∥M(ξ)∥, ∥N(ξ)∥ and ∥q2(ξ)∥ are essentially bounded and Case (ii)642

of Assumption 3.1 holds. Clearly, if ∥B(ξ)∥, ∥M(ξ)∥, ∥N(ξ)∥ are essentially bounded,643

then κΦ and κΨ are essentially bounded such that (i) of A.3 holds. We next show that644

(ii) ofA.3 holds. Let x⋄ = 0. The SLCP in (2.1) becomes: 0 ≤ y ⊥M(ξ)y+q2(ξ) ≥ 0.645
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Since M(ξ) is a P -matrix a.e. ξ ∈ Ξ, the SLCP has a unique solution y(ξ) for a given646

q2(ξ). Particularly, the solution y(ξ) = 0 when q2(ξ) = 0. Therefore, by (3.10),647

∥y(ξ) − 0∥∞ ≤ 1
η̃∥q2(ξ) − 0∥∞ a.e. ξ ∈ Ξ, where η̃ > 0 is a constant independent of648

ξ given in (3.2). Hence, ∥Φ(ξ, x⋄, ŷ(x⋄, ξ))∥∞ = ∥B(ξ)ŷ(x⋄, ξ) + q1∥∞ ≤ ∥B(ξ)∥∞ ·649
1
η̃∥q2(ξ)∥∞ + ∥q1∥∞ a.e. ξ ∈ Ξ. Thus ∥Φ(ξ, x⋄, ŷ(x⋄, ξ))∥∞ is essentially bounded650

such that (ii) of A.3 holds. Consequently, A.3 holds. This result also holds when651

the assumptions of Case (ii) of Assumption 3.1 are replaced by those of Case (i).652

In fact, when Case (i) holds for the DSLCP, M(ξ) satisfies zTM(ξ)z ≥ η∥z∥22 a.e.653

ξ ∈ Ξ. In view of maxi=1,...,m zi(M(ξ)z)i ≥ zTM(ξ)z
m , we see that (3.2) in Case (ii)654

holds with η̃ := η
m > 0. Hence, the desired result follows. Furthermore, consider the655

DSVI satisfying the conditions in Case (i). Suppose Ξ is a compact support. If κΨ, κΦ656

are continuous in ξ, then they are essentially bounded on Ξ. Besides, as indicated657

below Comment (ii.2), if Cξ ≡ C for a closed convex set C and Ψ,Φ are continuous658

in ξ on Ξ for any fixed (t, x, y), then the unique solution ŷ(x, t, ·) is continuous in ξ659

using the techniques for parametric VIs [15, Section 5.1]. Thus for any fixed (x⋄, t⋄),660

∥Φ(t⋄, ξ, x⋄, ŷ(x⋄, t⋄, ξ))∥ is continuous in ξ and attains a uniform upper bound on the661

compact support Ξ. Therefore, A.3 holds.662

Under A.3 and Case (i) of Assumption 3.1 (i.e., Φ is strongly monotone on Cξ663

uniformly in ξ, where η > 0 is independent of ξ), equation (3.5) shows that for any664

(t, x) and (t′, x′) and a.e. ξ ∈ Ξ,665 ∥∥ŷ(x, t, ξ)− ŷ(x′, t′, ξ)
∥∥
2
≤ η′(ξ)κΨ(ξ) ∥(t, x)− (t′, x′)∥2,666

where η′(ξ) := (1 + κΨ(ξ))/η. Hence, η′(ξ) ≤ (1 + LΨ)/η a.e. ξ ∈ Ξ. Moreover, for667

any iid sample {ξ1, . . . , ξN} of the random vector ξ ∈ Ξ,668

(3.17) ∥GN (t, x)−GN (t′, x′)∥2 ≤
∑N

i=1 κΦ(ξ
i)[1 + η′(ξi)κΨ(ξ

i)]

N

∥∥(t, x)− (t′, x′)
∥∥
2
.669

Let L := LΦ × [1 + 1+LΨ

η LΨ] > 0. By A.3, we see that ∥GN (t, x) − GN (t′, x′)∥2 ≤670

L∥(t, x)− (t′, x′)∥2 independent of N . Similar results can be obtained for Case (ii) of671

Assumption 3.1.672

Theorem 3.2. Suppose that A.3 and the assumptions of Lemma 3.2 hold, and673

γ > 0. Let x∗ be the unique solution of (3.3)-(3.4). Then for any given T > 0 and674

any initial condition x0 ∈ Rn, the sequence {xN} that converges to x∗ uniformly on675

[0, T ] with probability 1 for either of the two cases in Assumption 3.1.676

Proof. We consider Case (i) of Assumption 3.1 only, since Case (ii) follows from677

an almost identical argument. Consider an arbitrary constant T > 0 and an arbitrary678

initial condition x0 ∈ Rn. Let fN (t, x) denote the right hand side of (3.11) for each679

N , i.e.,680

fN (t, x) := γ ·
{
ΠX

[
x−GN (t, x)

]
− x
}
.681

Similar to GN (t, x), we view fN (t, x) as the random function fN (t, x, ω) on (Ω,F ,P).682

Since GN (·, ·) has the uniform Lipschitz constant L > 0 independent of N with683

probability 1, it is easy to see that fN (t, x) has a uniform Lipschitz constant L̃ > 0684

regardless of N with probability 1. Further, since685

xN (t, x0) = x0 +

∫ t

0

fN (τ, xN (τ, x0))dτ686

= x0 +

∫ t

0

fN (0, x0)dτ +

∫ t

0

[
fN (τ, xN (τ, x0))− fN (0, x0)

]
dτ,687
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we have for each t ∈ [0, T ],688

∥xN (t, x0)− x0∥2 ≤ ∥fN (0, x0)∥2 × T + L̃

∫ t

0

∥(xN (τ, x0), τ)− (x0, 0)∥2dτ689

≤
(
∥fN (0, x0)∥2 + L̃

)
× T + L̃

∫ t

0

∥xN (τ, x0)− x0∥2dτ.(3.18)690

We claim that ∥fN (0, x0)∥2 is uniformly bounded regardless of N with probability691

1. To show it, we first show that ∥GN (0, x0)∥2 is uniformly bounded regardless of N692

with probability 1, where693

GN (0, x0) =

∑N
i=1 Φ(0, ξ

i, x0, ŷ(x0, 0, ξ
i))

N
.694

In fact, due to (i) of A.3, we have that a.e. ξ ∈ Ξ,695 ∥∥Φ(0, ξ, x0, ŷ(x0, 0, ξ))− Φ(t⋄, ξ, x⋄, ŷ(x⋄, t⋄, ξ))
∥∥
2

696

≤ LΦ

∥∥(−t⋄, x0 − x⋄, ŷ(x0, 0, ξ)− ŷ(x⋄, t⋄, ξ))
∥∥
2

697

≤ LΦ

(
|t⋄|+ ∥x0 − x⋄∥2 + ∥ŷ(x0, 0, ξ)− ŷ(x⋄, t⋄, ξ)∥2

)
698

≤ LΦ

(
|t⋄|+ ∥x0 − x⋄∥2 + η′(ξ)κΨ(ξ)

(
∥x0 − x⋄∥2 + |t⋄|

))
699

≤ LΦ

(
|t⋄|+ ∥x0 − x⋄∥2 +

1 + LΨ

η
LΨ(∥x0 − x⋄∥2 + |t⋄|)

)
,700

where the second to the last inequality follows from (3.5).701

By (ii) of A.3, ∥Φ(t⋄, ξ, x⋄, ŷ(x⋄, t⋄, ξ))∥ ≤ β a.e. ξ ∈ Ξ. Hence, there exists a702

constant β′ > 0 such that ∥Φ(0, ξ, x0, ŷ(x0, 0, ξ))∥2 ≤ β′ a.e. ξ ∈ Ξ. This shows that703

∥GN (0, x0)∥2 ≤ β′ regardless of N with probability 1. Further, for an arbitrary but704

fixed z ∈ Rn, it is easy to see that705

∥ΠX(x0 −GN (0, x0))∥2 ≤ ∥ΠX(x0 − z)∥2 + ∥ΠX(x0 −GN (0, x0))−ΠX(x0 − z)∥2706

≤ ∥ΠX(x0 − z)∥2 + ∥z −GN (0, x0)∥2707

≤ ∥ΠX(x0 − z)∥2 + ∥z∥2 + β′
708

regardless of N and {ξi}Ni=1. Hence, ∥fN (0, x0)∥2 is uniformly bounded regardless of709

N . Consequently, applying the Grönwall inequality [12, pp. 146] to (3.18), we see710

that there exists a constant γ > 0 such that ∥xN (t, x0)− x0∥2 ≤ γ,∀ t ∈ [0, T ] for all711

N with probability 1.712

Let D be the closed 2-ball centered at x0 with the radius γ. It is easy to show713

via a similar argument that x∗(t, x0) ∈ D for all t ∈ [0, T ]. Therefore, the sequence714

{xN (t, x0)}N is uniformly bounded in C[0, T ] with probability 1. By the similar715

argument for part (i) of Theorem 3.1, we have that716

sup
(s,x)∈[0,T ]×D

∥GN (s, x)−G(s, x)∥2 → 0, w.p. 1,717

and, for all large N ,718

θ sup
t∈[0,T ]

∥xN (t)− x∗(t)∥2 ≤ sup
(s,x)∈[0,T ]×D

∥∥GN (s, x)−G(s, x)
∥∥
2
,719

where θ = 1+κG

exp(γ(1+κG)T )−1 . This leads to the desired result.720
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4. The Time-stepping EDIIS Method. In this section, we propose a time-721

stepping Energy Direct Inversion on the Iterative Subspace (EDIIS) method [4] for722

solving (3.11)-(3.12) on [0, T ] under Assumption 3.1.723

Let the step size be h = T/ν for a positive integer ν, and tj = jh, j = 1, . . . , ν.724

The time-stepping method in a backward Euler type for (3.11) on [0, T ] yields the725

following scheme: for each j = 1, . . . , ν,726

xj = xj−1 + hγ
(
ΠX(xj −GN (tj , xj))− xj

)
,(4.1)727

where, for a given sample {ξ1, . . . , ξN},728

GN (tj , xj) =
1
N

∑N
i=1 Φ(tj , ξ

i, xj , ŷ(xj , tj , ξ
i))729

and ŷ(xj , tj , ξ
i) is the unique solution of the VI730

0 ∈ Ψ(tj , ξ
i, xj , v) +NCξi

(v),731

and x0 = x(0). Let x̄ = 1
1+hγxj−1, and µ = hγ

1+hγ . At each t̄ = tj ,732

(x⊤j , ŷ(xj , tj , ξ
1)⊤, . . . , ŷ(xj , tj , ξ

N )⊤)⊤ ∈ Rn+mN is a solution of the following VI:733

x = x̄+ µΠX(x−GN (t̄, x)),(4.2)734

0 ∈ Ψ(t̄, ξi, x, yi) +NCξi
(yi), i = 1, . . . , N.(4.3)735

Problem (4.2) can be treated as a fixed point problem as shown shortly, and736

problem (4.3) can be solved in parallel to obtain ŷ(xj , tj , ξ
i), i = 1, . . . , N once xj737

is found. The EDIIS algorithm [4] is a modification of Anderson acceleration and738

widely used in quantum chemistry. Since the most computational cost is to get739

the function value GN (t̄, x), we use the EDIIS algorithm to optimize the utility of740

computed function values GN (t̄, xk) in the last few steps. We present the EDIIS(ℓ)741

algorithm for the VI (4.2)-(4.3) in Algorithm 4.1, where ℓ is the depth of iterations.742

Recall that for any iid sample {ξ1, . . . , ξN} of the random variable ξ ∈ Ξ, it is743

shown in (3.17) that for Case (i) of Assumption 3.1,744

∥GN (t, x)−GN (t′, x′)∥2 ≤ κGN

∥∥(t, x)− (t′, x′)
∥∥
2
,745

where κGN :=
∑N

i=1 κΦ(ξi)[1+η′(ξi)κΨ(ξi)]

N . Similarly, for Case (ii) of Assumption 3.1,746

∥GN (t, x)−GN (t′, x′)∥∞ ≤ κGN

∥∥(t, x)− (t′, x′)
∥∥
∞,747

where κGN :=
∑N

i=1 κΦ(ξi)[1+
κΨ(ξi)

η̃ ]

N .748

Theorem 4.1. Assume that one of (i) and (ii) in Assumption 3.1 holds, γ > 0,749

µ(1 + κGN ) < 1, and x0 ∈ X. Then the following statements hold.750

(i) The VI (4.2)-(4.3) has a unique solution (x⊤j , ŷ(xj , tj , ξ
1)⊤, . . . , ŷ(xj , tj , ξ

N )⊤)⊤751

∈ Rn+mN ;752

(ii) The sequence {((xk)⊤, (yk1 )⊤, . . . , (ykN )⊤)⊤} generated by Algorithm 4.1 converges753

to the unique solution of the VI (4.2)-(4.3);754

(iii) The time-stepping method (4.1) converges to the unique solution xN of (3.11)-755

(3.12) as h→ 0 in the sense that ∥xj − xN (jh)∥ = O(h) for all j = 1, . . . , ν.756
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Algorithm 4.1 EDIIS for the VI (4.2)-(4.3)
Initial step Choose x0 = xj−1 ∈ X, x̄ = 1

1+hγxj−1 and t̄ = tj .

(4.4) Find y0i such that 0 ∈ Ψ(t̄, ξi, x0, y0i ) +NCξi
(y0i ), i = 1, . . . , N.

(4.5) Set
GN (t̄, x0) = 1

N

∑N
i=1 Φ(t̄, ξ

i, x0, y0i ),

x1 = x̄+ µΠX

(
x0 −GN (t̄, x0)), F0 = x1 − x0.

EDIIS For k ≥ 1: choose ℓk ≤ min{ℓ, k}.

(4.6) Find α ∈ argmin ∥
∑ℓk

τ=0ατFk−ℓ+τ∥ s.t.
∑ℓk

τ=0ατ = 1, ατ ≥ 0, τ = 0, . . . , ℓk.

(4.7) Set
xk+1 = x̄+ µ

∑ℓk
τ=0α

k
τΠX

(
xk−ℓ+τ −GN (t̄, xk−ℓ+τ )),

Fk = xk+1 − xk.

(4.8) Find yk+1
i such that 0 ∈ Ψ(t̄, ξi, xk+1, yk+1

i ) +NCξi
(yk+1

i ), i = 1, . . . , N.

Set GN (t̄, xk+1) = 1
N

∑N
i=1 Φ(t̄, ξ

i, xk+1, yk+1
i ).

Proof. (i) Since X is a convex set and x0 ∈ X, it can be proved by induction that757

for any j = 1, . . . , ν and any x, 1
1+hγxj−1 +

hγ
1+hγΠX(x−GN (t̄, x)) ∈ X. Consider a758

fixed j. Then from Lemma 3.2, for any x, v ∈ X, we have759 ∥∥x̄+ µΠX(x−GN (t̄, x))− x̄− µΠX(v −GN (t̄, v))
∥∥ ≤ µ(1 + κGN ) ∥x− v∥.760

By the assumption that µ(1 + κGN ) < 1, the mapping x̄ + µΠX(x − GN (t̄, x)) is a761

contractive mapping in x on X. Hence (4.2) has a unique fixed point xj in X. There-762

fore, by Lemma 3.2, (x⊤j , ŷ(xj , tj , ξ
1)⊤, . . . , ŷ(xj , tj , ξ

N )⊤)⊤ is the unique solution of763

the VI (4.2)-(4.3) for each j.764

(ii) From the construction of Algorithm 4.1, we have {xk} ⊂ X. By the contraction765

property of x̄+µΠX(x−GN (t̄, x)) and [4, Theorem 2.1], we have that {xk} converges766

to the unique solution xj of (4.2). From Lemma 3.2, yki is the unique solution of767

(4.4) for k = 0 and (4.8) for k ≥ 1. Moreover, there is a constant c > 0 such that768

∥yki − ŷ(xj , tj , ξi)∥ ≤ c∥xk−xj∥ for i = 1, . . . , N . Hence {yki } converges to ŷ(xj , tj , ξ
i),769

for i = 1, . . . , N .770

(iii) Since ŷ(·, t, ξi) is Lipschitz continuous [10, 11], the right hand side of (3.11) is771

Lipschitz continuous in (t, x). Hence it has a unique solution xN . Moreover, it follows772

from the standard argument [9] that the time-stepping method (4.1) converges to the773

unique solution xN of (3.11) as h→ 0 in the sense that ∥xj − xN (jh)∥ = O(h) for all774

j = 1, . . . , ν.775

For each ν ∈ N, let xN,ν(·) be a piecewise continuous function in t generated776

by linear interpolations of xj , j = 1, . . . , ν. By (iii) of the above theorem, it can be777

shown that the sequence (xN,ν) converges uniformly to the unique solution xN (·) of778

(3.11)-(3.12) on [0, T ] as ν → ∞.779

Remark 4.1. If ℓ = 0, Algorithm 4.1 is the Picard or fixed point method. Using780

ℓ > 0 can accelerate the convergence [4]. Any norm can be used in the optimization781

problem in (4.6) without changes in (ii) of Theorem 4.1. If the 1-norm, ∞-norm782
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or 2-norm is used, the optimization problem is either a linear programming or a783

quadratic programming, which can be solved easily and efficiently. If the function784 (
Φ(tj , ξ

i, ·, ·)
Ψ(tj , ξ

i, ·, ·)

)
is monotone, the progressive hedging method can be applied to785

solve (4.3) under the assumptions in Case (i) of Assumption 3.1 and γ > 0 [7, 27].786

Comparing with the monotone assumption, µ(1 + κGN ) < 1 is much weaker. In fact,787

since µ→ 0 as h→ 0, we have µ(1 + κGN ) < 1 for all sufficiently small h.788

The following example illustrates the SAA and time-stepping EDIIS method.789

Example 4.1. Let γ = 1, X = [−1, 1]×[−1, 1] ⊂ R2, Cξ = R3
+, x0 = (0, 1)T ∈ X,790

ξ = (ξ1, ξ2)
T , and791

Φ(t, ξ, x, y) = Ax+B(ξ)y + f(t),792

Ψ(t, ξ, x, y) =M(ξ)y +Q(ξ)x+ q(t, ξ),793

where A =

(
1 0
0 3

)
, B(ξ) =

(
ξ1 0 0
0 ξ2 ξ1

)
,

M(ξ) =

 1 0 0
ξ1 1 0
−1 −1 0.1

 , Q(ξ) =

 ξ1 0
1 ξ2
1 1

 ,

f(t) = (t, 1)T and q(t, ξ) = (tξ1, ξ2, 1)
T .794

Let ΞN := {ξ1, . . . , ξN} be independent identically distributed (i.i.d.) samples795

of ξ = (ξ1, ξ2)
T , where each ξi, i = 1, 2, follows truncated normal distribution over796

[−1, 1], which is constructed from normal distribution with mean 0 and standard797

deviation σ independently. Since Ξ = [−1, 1]× [−1, 1] is a compact support and M(·)798

is continuous, it follows from the comment below (3.2) that there exists a constant799

η̃ > 0 such that (3.2) holds for all ξ ∈ Ξ. Further, it follows from [15, Proposition800

5.10.11] with p = (1, 1, 1) that η̃ ≥ 1
402 = 1

1600 .801

It is easy to verify that Φ and Ψ are globally Lipschitz continuous in (x, y, t)802

with respect to ∥ · ∥∞ for each ξ ∈ Ξ, where the Lipschitz constants κΦ(ξ) =803

max(∥A∥∞, ∥B(ξ)∥∞, 1) and κΨ(ξ) = max(∥M(ξ)∥∞, ∥Q(ξ)∥∞, ξ1). Since Ξ is a com-804

pact support and κΦ and κΨ are continuous in ξ, E[κΦ(ξ)] <∞ and E[κΦ(ξ)κΨ(ξ)] <805

∞ such that assumptions for Case (ii) of Assumption 3.1 and Lemma 3.2 hold. There-806

fore, by Lemma 3.2, the DSVI807

ẋ(t) = ΠX

(
x(t)− E[Φ(t, ξ, x(t), y(t, x(t), ξ))

)
− x(t), x(0) = x0,(4.9)808

809

0 ≤ y(t, x(t), ξ) ⊥ Ψ(t, ξ, x(t), y(t, x(t), ξ)) ≥ 0, a.e. ξ ∈ Ξ.810

and its SAA811

ẋ(t) = ΠX

(
x(t)− 1

N

N∑
i=1

Φ(t, ξi, x(t), y(t, x(t), ξ))
)
− x(t), x(0) = x0,(4.10)812

813

0 ≤ y(t, x(t), ξi) ⊥ Ψ(t, ξi, x(t), y(t, x(t), ξi)) ≥ 0, i = 1, . . . , N814

have unique solutions x∗ ∈ C1[0, T ] and xN ∈ C1[0, T ], respectively.815

As discussed below (3.13), the Lipschitz constant κc(ξ) := κΦ(ξ)(1 +
κΨ(ξ)

η̃ ) with816

respect to ∥ · ∥∞ is continuous in ξ since κΦ(ξ) and κΨ(ξ) are continuous. Further, for817
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given t, x, ξ, the solution ŷ(t, x, ξ) ∈ R3 of the VI in (4.9) has the following closed-form818

expressions: letting wi := [Q(ξ)x+ q(t, ξ)]i for i = 1, 2, 3,819

ŷ1(t, x, ξ) =

{
0, w1 ≥ 0
−w1, otherwise,

ŷ2(t, x, ξ) =

{
0, w2 + ξ1ŷ1(t, x, ξ) ≥ 0
−w2 − ξ1ŷ1(t, x, ξ), otherwise,

820

and821

ŷ3(t, x, ξ) =

{
0, w3 − ŷ1(t, x, ξ)− ŷ2(t, x, ξ) ≥ 0
10[−w3 + ŷ1(t, x, ξ) + ŷ2(t, x, ξ)], otherwise.

822

Since Q(·) and q(·, ·) are continuous in (t, ξ), we see from the above closed-form ex-823

pressions of ŷ that ŷ(t, x, ξ) is also continuous. Hence, Φ̂(t, x, ξ) := Φ(t, ξ, x, ŷ(t, x, ξ))824

is continuous in (t, x, ξ). Since Ξ is a compact support, we see from Remark 3.2 that825

the moment generating functions Mκc
(τ) and M i

(t,x)(τ), i = 1, 2, 3 have finite values826

for all τ in a neighborhood of zero. Consequently, it follows from Theorem 3.1 that827

{xN} converges to the solution x∗ of (4.9) w.p. 1 and for any constant ϵ > 0, there828

exist positive constants ρ(θϵ) and σ(θϵ), independent of N , such that829

P
{

sup
t∈[0,T ]

∥∥xN (t)− x∗(t)
∥∥
∞ ≥ ϵ

}
≤ ρ(θϵ) exp

(
−Nσ(θϵ)

)
,830

where θ = 1+κG

exp(γ(1+κG)T )−1 .831

Given N ∈ N, the time-stepping scheme for the SAA (4.10) is given by832

xj = xj−1 + hΠX

(
xj −

1

N

N∑
i=1

Φ(tj , ξ
i, xj , y(tj , xj , ξ

i))]
)
− hxj , j = 1, . . . , ν,833

0 ≤ y(tj , xj , ξ
i) ⊥ Ψ(tj , ξ

i, xj , y(tj , xj , ξ
i)) ≥ 0, i = 1, . . . , N.(4.11)834

Once xj is known, the VI solution ŷ(tj , xj , ξ
i) in (4.11) has a closed form expression as835

before by setting t = tj , x = xj and ξ = ξi. Problem (4.10) is a DVI with a Lipschitz836

continuous right-hand side function in the ODE. The convergence of the time-stepping837

method (4.11) follows from Theorem 4.1, which means that {xj} converges to xN as838

h = T/ν → 0 in the sense that ∥xj − xN (jh)∥ = O(h) for all j = 1, . . . , ν.839

We use the EDIIS(1) method with the 2-norm in (4.6). In this case, the solution
of minimization problem (4.6) has the closed-form expressions

α0 = 1− α1, α1 = mid

{
0,
FT
k (Fk − Fk−1)

∥Fk−1 − Fk∥2
, 1

}
.

Moreover (4.7) reduces to840

xk+1 = x̄+ µ(1− α1)ΠX

(
xk−1 −GN (t̄, xk−1)) + µα1ΠX

(
xk −GN (t̄, xk)).841

In our numerical experiments, we let T = 1, x̄ be a computed solution with h =
10−3 and N = 2000. We stop EDIIS(1) once ∥xk+1 − xk∥ ≤ 10−6. For the fixed con-
stant h = 10−3, we carry out tests with sample size N = 100, 200, 400, 800, 1200, 1500
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and the standard deviation 0.5, 1, 1.5, 2 of the truncated normal distribution over the
compact support Ξ. We compute xN and

Er1 = 10−3
103∑
i=1

∥∥x̄1(ih)− xN1 (ih)
∥∥ and Er2 = 10−3

103∑
i=1

∥∥x̄2(ih)− xN2 (ih)
∥∥

60 times and average them. Figure 1 depicts the decreasing tendencies of Er1 and842

Er2 as N increases and σ decreases.843
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Fig. 1. Decreasing tendencies of Er1 and Er2.

5. A Modified Point-queue Model for the Instantaneous Dynamic User844

Equilibrium in Traffic Assignment Problems. Stochastic variational inequali-845

ties and dynamic variational inequalities have been extensively studied for traffic846

assignment problems [5, 16, 20, 36]. Since the travel demand and travel cost are often847

uncertain and subject to stochastic uncertainties, it is natural to study dynamic traffic848

assignment problems via DSVIs. We formulate such a problem as a DSVI as follows.849

Consider the α-point-queue model for the instantaneous dynamic user equilibrium850

(IDUE) problem proposed in [19, 20]. We focus on the single destination case treated851

in [20, Section 3.1], and we introduce the following notation:852

N the set of nodes

L the set of links given by (i, j) with i, j ∈ N
di(t) the travel demand from node i ∈ N to the destination, a given

(nonnegative) function of t

qij(t) the queue length of traffic on link (i, j) ∈ L
pij(t) the (nonnegative) rate of entry flow on link (i, j) ∈ L
ηi(t) the (nonnegative) instantaneous minimum travel time from node

i ∈ N to the destination

τ0ij the positive free flow travel time on link (i, j) ∈ L
Cij the positive capacity of exit flow on link (i, j) ∈ L
αij the positive constant associated with the queue length dynamic qij(t)

on link (i, j) ∈ L

853

In the case of single destination [20, Section 3.1], the queue length of traffic on854

each link (i, j) ∈ L satisfies855

q̇ij(t) =

{
0, if t ∈ [0, τ0ij ]

max
(
pij(t− τ0ij)− Cij ,−αijqij(t)

)
, if t > τ0ij .

856
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The other quantities are defined by the complementarity conditions:857

0 ≤ pij(t) ⊥ τ0ij +
qij(t)

Cij

+ ηj(t)− ηi(t) ≥ 0, ∀ (i, j) ∈ L, ∀ t ∈ [0, T ],858

0 ≤ ηi(t) ⊥
∑

j:(i,j)∈L

pij(t)−
∑

k:(k,i)∈L

min
(
Cki, pki(t− τ0ki) + αkiqki(t)

)
− di(t) ≥ 0,859

for all i ∈ N and all t ≥ τ0ij , with the following initial conditions: qij(t) = 0 and860

min
(
Cij , pki(t − τ0ij) + αijqij(t)

)
= 0 for all t ∈ [0, τ0ij ], where di(t) is a given time-861

varying demand function for each i. Hence, for all t ≥ τ0ij , the above system can be862

formulated as a time-delayed linear dynamical complementary system.863

The time delay in the above system yields many analytic and numerical challenges.864

To obtain a regular ODE model, we approximate the time-delay term pij(t − τ0ij)865

using ODE techniques. The Laplace operator of the time delay function with the866

delay constant τ > 0 is given by e−τs, where s ∈ C. It can be approximated using867

the pole approximation, i.e., e−τs = 1
eτs = 1

1+
∑∞

k=1
(τs)k

k!

≈ 1

1+τs+ τ2

2 s2
. Therefore, for868

any (i, j) ∈ L, [zij(t)]+ ≈ pij(t − τ0ij), where [zij ]+ imposes the non-negativeness of869

approximation of pij , and zij(t) is the solution of the 2nd order ODE:
(τ0

ij)
2

2 z̈ij(t) +870

τ0ij żij(t) + zij(t) = pij(t) or equivalently871 (
żij(t)
z̈ij(t)

)
=

[
0 1

− 2
(τ0

ij)
2 − 2

τ0
ij

](
zij(t)
żij(t)

)
+

2

(τ0ij)
2

(
0

pij(t)

)
.872

Using this approximation, we obtain the following dynamical complementarity prob-873

lem: for each (i, j) ∈ L and all t ≥ τ0ij ,874 (
żij(t)
z̈ij(t)

)
=

[
0 1

− 2
(τ0

ij)
2 − 2

τ0
ij

](
zij(t)
żij(t)

)
+

2

(τ0ij)
2

(
0

pij(t)

)
875

q̇ij(t) = −αijqij(t) +
[
[zij(t)]+ − Cij − αijqij(t)

]
+

876

0 ≤ pij(t) ⊥ τ0ij +
qij(t)

Cij

+ ηj(t)− ηi(t) ≥ 0, ∀ (i, j) ∈ L,877

0 ≤ ηi(t) ⊥
∑

j:(i,j)∈L

pij(t)−
∑

k:(k,i)∈L

(
Cki − uki(t)

)
− di(t) ≥ 0, ∀ i ∈ N ,878

0 ≤ uki(t) ⊥ uki(t)−
[
Cki − [zki(t)]+ − αkiqki(t)

]
≥ 0, ∀ k : (k, i) ∈ L,879

where uki(·) is the (time-varying) slack variable for the link (k, i). Suppose the time880

dependent demand function is random and is given by di(t, ξ) for each i ∈ N , where881

ξ is a random variable. Then for all t ≥ τ0ij ,882 (
żij(t)
z̈ij(t)

)
=

[
0 1

− 2
(τ0

ij)
2 − 2

τ0
ij

](
zij(t)
żij(t)

)
+

2

(τ0ij)
2

(
0

E[pij(t, ξ)]

)
,(5.1)883

q̇ij(t) = −αijqij(t) +
[
[zij(t)]+ − Cij − αijqij(t)

]
+
,(5.2)884

0 ≤ uki(t) ⊥ uki(t)−
[
Cki − [zki(t)]+ − αkiqki(t)

]
≥ 0, ∀ k : (k, i) ∈ L,(5.3)885

0 ≤ pij(t, ξ) ⊥ τ0ij +
qij(t)

Cij

+ ηj(t, ξ)− ηi(t, ξ) ≥ 0, ∀ (i, j) ∈ L,(5.4)886

0 ≤ ηi(t, ξ) ⊥
∑

j:(i,j)∈L

pij(t, ξ)−
∑

k:(k,i)∈L

(
Cki − uki(t)

)
− di(t, ξ) ≥ 0, ∀ i ∈ N .(5.5)887
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Let d ∈ N denote the (single) destination node. Then ηd(t) ≡ 0 and dd(t, ξ) ≡ 0.888

To formulate the system in (5.1)-(5.5) as a DSVI, let889

x(t) :=
(
zij(t), żij(t), qij(t)

)
(i,j)∈L

∈ Rn,

y(t, ξ) :=
(
pij(t, ξ), ηi(t, ξ), uki(t)

)
(i,j)∈L,i∈N ,k:(k,i)∈L

∈ Rm,
890

for some suitable n,m ∈ N. Let X = Rn and γ = 1. Define t0 := max(i,j)∈L τ
0
ij . Then891

for all t ≥ t0, (5.1)-(5.5) can be expressed as the following DSVI:892

ẋ = γ
{
ΠX

(
x−

(
Ax+ E[Byx(ξ)] + (Cx+ f)+

))
− x
}
,(5.6)893

0 ≤ y(ξ) ⊥ My(ξ) +Nx+ g(t, ξ) ≥ 0, a.e. ξ ∈ Ξ,894

for constant matrices A,B,C,M,N , a constant vector f , and a vector-valued function895

g. When 0 ≤ t ≤ min(i,j)∈L τ
0
ij , the point-queue model is described by a static com-896

plementarity problem (without ODE dynamics), and when t is between min(i,j)∈L τ
0
ij897

and t0, it yields a mixed model of a DSVI and a static complementarity problem.898

We discuss the analytic properties of the DSVI (5.6). First, if the DSVI (5.6) has899

a solution x(t) and qij(t0) ≥ 0,∀ (i, j) ∈ L, then it follows from (5.2) that qij(t) =900

e−αij(t−t0)qij(t0) +
∫ t

t0
e−αij(t−s)

[
[zij(s)]+ − Cij − αijqij(s)

]
+
ds such that qij(t) ≥ 0901

for all t ≥ t0 along x(t). Similarly, by this result and (5.3), Cki − uki(t) ≥ 0 for all902

t ≥ t0 along x(t). For notational simplicity, let y = (p, η, u), where903

p := (pij)(i,j)∈L ∈ Rmp , η := (ηi)i∈N ∈ Rmη , u := (uki)k:(k,i)∈L ∈ Rmu .904

Then the matrix in the underlying LCP in (5.6) is M =

 0 Mpη 0
Mηp 0 Mηu

0 0 Imu

 , where905

the submatrix

[
0 Mpη

Mηp 0

]
is copositive [1, Proposition 2]. SinceMηu is nonnegative,906

M is copositive. In light of ηd = 0, it can be shown that yTMy = 0, My ≥ 0, and907

y ≥ 0 imply that908

u = 0, η = 0, yT (Nx+ g(t, ξ)) =
∑

(i,j)∈L

pTij

(
τ0ij +

qij

Cij

)
≥ 0909

provided that qij ≥ 0,∀ (i, j) ∈ L. By [13, Theorem 3.8.6], the underlying LCP in910

(5.6) has a (possibly non-unique) solution for any Nx and g(t, ξ) satisfying qij ≥ 0.911

To further study the DSVI (5.6), we consider the case where each non-destination912

node has exactly one exit link, i.e., (i, j) ∈ L if and only if j = i+1 for i ̸= d. Hence,913

mp = |L| = |N | − 1 = mη − 1, Mηp =

[
Imp

0

]
and Mpη =

[
M ′

pη emp

]
, where M ′

pη is914

a square matrix of order mp whose diagonal entries are −1, (M ′
pη)i,i+1 = 1 and other915

entries are zero. Further, emp
= (0, . . . , 0, 1)T ∈ Rmp . It is easy to show that

(
M ′

pη

)−1
916

is a non-positive matrix. Suppose ηd = ηmη
, and η′ := (η1, . . . , ηmp

)T ∈ Rmp . It can917

be verified that the underlying LCP has the following solution: uki =
[
Cki −

[
zki]+ −918

αkiqki
]
+

≤ Cki, p = (pij)(i,j)∈L =
(∑

k:(k,i)∈L
(
Cki − uki

)
+ di(t, ξ)

)
(i,j)∈L, and919

η′ = −
(
M ′

pη

)−1
w, where w := (wi) =

(
τ0i,i+1 +

qi,i+1

Ci,i+1

)
≥ 0 if qi,i+1 ≥ 0. This920
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particular LCP solution can be compactly written as u = (Nux+ g0u)+ for a constant921

matrix Nu and a constant vector g0u, p = Fpu+ g0p + d̂(t, ξ) for a constant matrix Fp922

and a constant vector g0p with d̂(t, ξ) = (di(t, ξ))i∈L, and η = Fη(Nx + g(t, ξ)) for a923

constant matrix Fη. Thus for some constant matrix Bp, the ODE in (5.6) becomes924

ẋ = −Ax−Bp

(
Fp(Nux+ g0u)+ + g0p + E[d̂(t, ξ)]

)
− (Cx+ f)+.925

Hence, the right-hand side of the ODE is piecewise affine in x. If E[d̂(t, ξ)] is Lipschitz926

continuous in t, then the ODE has a unique solution x(t) for t ≥ t0. Therefore, all927

the assumptions are fulfilled. We summarize these results as follows.928

Proposition 5.1. Consider the DSVI (5.6) for the α-point queue model whose929

non-destination node has exactly one exit link. Further, consider the particular LCP930

solution given above. If E[d̂(t, ξ)] is Lipschitz continuous in t and qij(t0) ≥ 0 for all931

(i, j) ∈ L, then the DSVI has a unique solution x(t) for all t ≥ t0.932

6. Conclusion. The dynamic stochastic variational inequality (DSVI) (1.1)-933

(1.3) encompasses the DVI (1.4)-(1.5) and the two-stage stochastic SVI (1.11)-(1.12),934

which can efficiently model dynamic equilibria subject to uncertainties. We show the935

solution existence and uniqueness for a class of DSVIs under some Lipschitz condi-936

tions. Moreover, we proposed a discretization scheme of the DSVI using the SAA937

and the time-stepping EDIIS method. We established the uniform convergence and938

an exponential convergence rate, and proved the convergence of the EDIIS method.939

We illustrated our results via a class of dynamic stochastic user equilibrium problems940

in traffic assignment problems. Future research topics include long-time dynamics of941

the DSVI, e.g., stability of its equilibria.942
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