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Abstract: We propose a formulation of Distributionally Robust Variational Inequalities

(DRVI) to deal with uncertainties of distributions of the involved random variables in varia-

tional inequalities. Examples of the DRVI are provided, including the optimality conditions

for distributionally robust optimization and distributionally robust games. The existence of

solutions and monotonicity of the DRVI are discussed. Moreover, we propose a sample average

approximation (SAA) approach to the DRVI and study its convergence properties. Numerical

examples of distributionally robust games are presented to illustrate solutions of the DRVI and

convergence properties of the SAA approach.
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1 Introduction

LetX ⊆ Rn be a nonempty closed convex set andNX(x) be the normal cone toX at x ∈ Rn (note

thatNX(x) = ∅ if x 6∈ X). Let ξ ∈ R` be a random vector with support set Ξ ⊂ R` equipped with

its Borel sigma algebra B and probability distribution P . We consider the stochastic variational

inequalities (SVI)

0 ∈ EP [Φ(x, ξ)] +NX(x), (1.1)

where Φ : X × Ξ → Rn is such that the corresponding expectation is well defined. By writing

EP we emphasize that the expectation is taken with respect to a considered probability measure

(distribution) P on (Ξ,B). With some abuse of the notation we use ξ to denote random vector
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whose probability distribution is supported on the set Ξ, and also a point (an element) of the

set Ξ, specific meaning will be clear from the context.

The SVI provide a unified form of the first order optimality conditions of stochastic op-

timization and model numerous equilibrium problems in economic, finance, management and

engineering [25, 27, 29]. In the recent two decades, the SVI have been studied extensively and

many new algorithms for solving the SVI have been developed [5, 7, 11]. Moreover, the two-

stage SVI and multi-stage SVI have been introduced and investigated actively in the last few

years [6, 8, 9, 22, 23, 29]. In the SVI, the probability distribution of ξ is supposed to be known

(specified) exactly. However, unlike well-studied distributionally robust optimization (DRO),

the theory and algorithms of distributionally robust variational inequalities (DRVI) are very

limited. In practice the “true” distribution P of random variables is not known and could be

estimated at best from historical data. The uncertainty of the “true” distribution in itself mo-

tivates the distributionally robust approach. We suggest the following formulation of the DRVI

as a counterpart of (1.1):

0 ∈ EP [Φ(x, ξ)] +NX(x), (1.2)

P ∈ arg max
Q∈M

EQ[φ(x, ξ)], (1.3)

where φ : X ×Ξ→ R and M is a specified set of probability measures (distributions) on (Ξ,B).

Note that by solving the above DRVI we mean to find a pair x̄ ∈ X and P̄ ∈ M satisfying

(1.2)-(1.3). We give examples of such DRVI in section 2.

Our main contributions in this paper are threefold.

• Based on (1.2)-(1.3), we propose a comprehensive formulation of the DRVI to deal with

the uncertain distribution in the SVI. We show that the first order optimality conditions

of distributionally robust optimization and distributionally robust games are special cases

of this formulation of the DRVI.

• We define the monotonicity of the DRVI and show that there is a pair of a decision vector

x̄ ∈ X and a distribution P̄ ∈M such that (x̄, P̄ ) solves the DRVI under certain conditions.

• We propose a SAA approach to the DRVI and investigate its convergence properties.

Moreover, we use numerical examples of distributionally robust games to illustrate the

formulation of the DRVI and the convergence of the SAA approach.

In section 2, we review three fundamental examples that are special cases of the DRVI. The

first two examples are the first order optimality conditions of two types of DRO problems. The

last example is an equivalent formulation of distributionally robust games (DRG) with convex

objective functions of players and share constraints among players. In section 3, we define the

monotonicity of the DRVI and prove the existence of solutions to the DRVI. In section 4, we
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propose a SAA approach for the DRVI with the corresponding convergence analysis. In section

5, we use numerical examples to illustrate the DRVI and the convergence of the SAA.

2 Formulation of the DRVI

In this section we give an extended (multivariate) definition of the DRVI and consider three

relevant examples.

Definition 2.1 (DRVI) Let Mi, i = 1, ..., r, be sets of probability measures on the sample space

(Ξ,B), X ⊆ Rn be a nonempty closed convex set, Φ : X×Ξ→ Rn, φi : X×Ξ→ R, i = 1, . . . , r,

be continuous functions in x ∈ X, Φ(x, ·) and φi(x, ·) are measurable. The DRVI is to find a

pair (x, P ) ∈ X ×M satisfying

0 ∈ EP [Φ(x, ξ)] +NX(x), (2.1)

Pi ∈ arg max
Q∈Mi

EQ[φi(x, ξ)], i = 1, . . . , r, (2.2)

where M := {P1 × . . .× Pr : Pi ∈Mi, i = 1, ..., r},

EP [Φ(x, ξ)] :=
(
EP1 [Φ1(x, ξ)]>, · · · ,EPr [Φr(x, ξ)]

>
)>

with Φ(x, ξ) = (Φ>1 (x, ξ), · · · ,Φ>r (x, ξ))>, Φi(x, ξ) ∈ Rni and
∑r

i=1 ni = n.

Example 2.1 Consider the following distributionally robust stochastic program

min
x∈X

sup
P∈M

EP [φ(x, ξ)], (2.3)

where φ : X × Ξ→ R. A point (x̄, P̄ ) ∈ X ×M is a saddle point of the minimax problem (2.3)

if and only if

x̄ ∈ arg min
x∈X

EP̄ [φ(x, ξ)] and P̄ ∈ arg max
P∈M

EP [φ(x̄, ξ)]. (2.4)

Assuming that φ is differentiable in x and the differentiation and expectation operators can be

interchanged, we can write the optimality conditions for the first problem in (2.4) in the form

(2.1) with Φ(x, ξ) := ∇xφ(x, ξ). This leads to the DRVI of the form (2.1) - (2.2) with r = 1.

Example 2.2 Consider the following distributionally robust stochastic program

min
x∈X

sup
P0∈M

EP0 [φ0(x, ξ)]

s.t. sup
P1∈M

EP1 [φ1(x, ξ)] ≤ 0,
(2.5)

where φi(x, ξ), i = 0, 1, are convex and twice continuously differentiable w.r.t. x.

The corresponding Largrange function is

L(x, λ) := sup
P0∈M

EP0 [φ0(x, ξ)] + λ sup
P1∈M

EP1 [φ1(x, ξ)],
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where λ ≥ 0. Suppose that the supremum in (2.5) is finite valued for every x ∈ X and the Slater

constraint qualification holds [19], then DRO (2.5) is equivalent to

min
x∈X

max
λ≥0

sup
P0∈M

EP0 [φ0(x, ξ)] + λ sup
P1∈M

EP1 [φ1(x, ξ)].

Since φi, i = 0, 1 are convex, the above problem is equivalent to

min
x∈X

max
λ≥0,P0∈M,P1∈M

EP0 [φ0(x, ξ)] + λEP1 [φ1(x, ξ)].

Then the corresponding DRVI is

0 ∈ EP0 [∇xφ0(x, ξi)] + λEP1 [∇xφ1(x, ξi)] +NX(x),

0 ∈ −EP1 [φ1(x, ξi)] +NR+(λ),

Pi ∈ arg max
Q∈M

EQ[φi(x, ξ)], i = 0, 1.

Example 2.3 Consider the following distributionally robust formulation of Nash equilibrium

with r players: find (x∗1, ..., x
∗
r) ∈ Rn1 × · · · × Rnr such that

x∗i ∈ arg min
xi∈Xi

max
Pi∈Mi

EPi [φi(xi, x
∗
−i, ξ)], i = 1, ..., r. (2.6)

Here Xi ⊂ Rni is a nonempty convex closed set, Mi is a set of probability measures on (Ξi,Bi),
Ξi ⊂ R`i, and φi : Rn1 × · · · × Rnr × Ξi → R, i = 1, ..., r. Similar to (2.4), problem (2.6) leads

to the following DRVI formulation (under appropriate differentiability assumptions)

0 ∈ EPi [Φi(x1, ..., xr, ξ)] +NXi(xi), i = 1, ..., r,

Pi ∈ arg max
Qi∈Mi

EQi [φi(x1, ..., xr, ξ)], i = 1, ..., r,

with Φi(x1, ..., xr, ξ) := ∇xiφi(x1, ..., xr, ξ), i = 1, ..., r.

Remark 2.1 If X = Rn+, then (1.2)-(1.3) reduces to the formulation of the distributionally

robust complementarity problem (DRCP)

0 ≤ x ⊥EP [Φ(x, ξ)] ≥ 0, P ∈ arg max
Q∈M

EQ[φ(x, ξ)]. (2.7)

Other formulation of the DRCP from [8] can be written as follows

0 ≤ x, max
P∈M

EP [−Φi(x, ξ)] ≤ 0, i = 1, . . . , n (2.8)

max
P∈M

EP [x>Φ(x, ξ)] = 0. (2.9)

Obviously, if (x∗, P ∗) is a solution of (2.8)-(2.9), then it is a solution of (2.7) with φ(x, ξ) =

x>Φ(x, ξ). Hence, (2.8)-(2.9) is a special case of (2.7).
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3 Existence of solutions of the DRVI

In this section we investigate existence of solutions of the DRVI in three cases: discrete distri-

butions, continuous distributions and monotone setting.

3.1 Finite dimensional setting

Suppose that the random vector ξ has a discrete distribution with a finite support Ξ :=

{ξ1, ..., ξm} of cardinality m. Then a probability distribution on Ξ can be identified with prob-

ability vector q ∈ ∆m, where

∆m :=
{
q ∈ Rm+ : q1 + ...+ qm = 1

}
.

That is, each set Mi, i = 1, ..., r, can be viewed as a subset of ∆m, and can be assumed to be

convex and closed. Condition (2.2) can be written then as 0 ∈ −φx +NM(p), where

φx := (φ1(x, ξ1), ..., φ1(x, ξm), ..., φr(x, ξ
1), ..., φr(x, ξ

m))> ∈ Rrm

and NM(p) is the normal cone to the set M := M1 × ...×Mr ⊂ Rrm at p := (p1, · · · , pr). Thus

in that case the corresponding DRVI can be written as the following finite dimensional VI:

0 ∈
m∑
i=1

piΦ(x, ξi) +NX(x), (3.1)

0 ∈ −φx +NM(p), (3.2)

in variables (x, p) ∈ X ×∆r
m and piΦ(x, ξi) = (pi1Φ1(x, ξi)>, ..., pirΦr(x, ξ

i)>)>.

In that setting existence of solution follows by the standard results, e.g. [15, Corollary 2.2.5].

Proposition 3.1 Suppose Φ(x, ξ) and φ(x, ξ) are continuous in x and the set X is bounded (and

hence the set X ×M ⊂ Rn × Rrm is convex compact). Then finite dimensional VI (3.1)-(3.2)

has a nonempty and compact solution set.

3.2 Continuous distributions setting

Let us consider now settings with continuous distributions of the random vector ξ. We assume

existence of a reference probability measure P on (Ξ,B) and that the ambiguity set consists

of probability measures in some sense close to the reference measure P. To proceed consider

the space1 Z := Lp(Ξ,B,P), p ∈ [1,∞), and its dual space Z∗ := Lq(Ξ,B,P), q ∈ (1,∞],

1Banach spaces Z and Z∗, equipped with the respective weak and weak∗ topologies, are paired topological

vector spaces with respect to the bilinear form (scalar product) 〈ζ, Z〉 =
∫

Ξ
ζZdP, Z ∈ Z, ζ ∈ Z∗. Note that the

weak topology of Z and weak∗ topology of Z∗, restricted to respective bounded sets, are metrizable and hence

can be described in terms of convergent sequences. The weak convergence Zk
w→ Z̄ means that 〈ζ, Zk〉 converges

to 〈ζ, Z̄〉 for any ζ ∈ Z∗. The weak∗ convergence ζk
w∗
→ ζ̄ means that 〈ζk, Z〉 converges to 〈ζ̄, Z〉 for any Z ∈ Z.
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1/p + 1/q = 1. We assume p = q = 2 in this section (Section 3). We also use notation

Φx
i (·) := Φi(x, ·) and φxi (·) := φi(x, ·).

Assumption 3.1 Suppose that, for i = 1, ..., r, the set Mi in (2.2) consists of probability mea-

sures that are absolutely continuous with respect to P and consider the set Ai := {ζ = dQ/dP :

Q ∈ Mi} of the corresponding density functions. Suppose further that Ai is a bounded, convex

and weakly* closed subset of Z∗, and that φxi ∈ Z for every x ∈ X and i = 1, ..., r.

Assumption 3.1 will hold for several setting of ambiguity sets, e.g., law invariant coherent risk

measure [26], φ-divergence ball [20] and so on.

Since φxi ∈ Z, it follows that for any ζ ∈ Ai and dQ = ζdP the integral

EQ[φxi ] =

∫
Ξ
φxi ζdP

is well defined and finitely valued. In what follows, we consider the ambiguity sets that satisfy

Assumption 3.1 and hence (2.1)-(2.2) can be rewritten as

0 ∈
∫

Ξ
Φx
i ζidP +NXi(xi), i = 1, . . . , r, (3.3)

ζi ∈ arg max
η∈Ai

∫
Ξ
φxi ηdP, i = 1, . . . , r. (3.4)

Under Assumption 3.1, for i = 1, · · · , r, the set Ai is convex and closed in the weak∗ topology

of Z∗i , and hence is weakly∗ compact. It follows that the set

Āxi := arg max
η∈Ai

∫
Ξ
φxi ηdP

is nonempty for any x ∈ X (note that the set Āxi represents the set of densities of the “arg max”

probability measures in the right hand side of (2.2)) and Ai. Consider the mapping Φ and

denote Φx(·) := Φ(x, ·). Suppose that for every x ∈ X, every component of Φx belongs to the

space Z := Z1 × · · · × Zr. Consider the multifunction F : X ⇒ Rn defined as

F(x) :=

{
y =

∫
Ξ

Φx ζdP : ζ ∈ Āx
}
,

where ζ = (ζ1, ..., ζr) with ζi ∈ Āxi , i = 1, ..., r and Φx ζ := (Φ1(x, ·) ζ1, ...,Φr(x, ·) ζr)>. In order

to show the existence of solutions of the DRVI we need to verify that the following generalized

equations have a solution

0 ∈ F(x) +NX(x). (3.5)

Proposition 3.2 Suppose that the set X is nonempty convex closed and bounded, and the map-

pings φx and Φx are weakly continuous with respect to x ∈ X. Then generalized equations (3.5)

have a solution.
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Proof. It suffices to verify that the multifunction F is closed, that is, for any sequences

xk ∈ X converging to x̄ and yk ∈ F(xk) converging to ȳ, we have ȳ ∈ F(x̄). Indeed, consider the

multifunction S : X ⇒ X defined as

S(x) := arg min
v∈X
{dist(v,F(x))},

where dist(x,A) denotes the Euclidean distance from x to a set A ⊂ Rn. Note that if the set

A is convex, then dist(·, A) is a convex function. We have that for every x ∈ X, the set Āx is

convex and hence the set F(x) is convex, and thus S(x) is convex. Also if F is closed, then S is

closed. It follows by Kakutani’s fixed-point theorem that the multifunction S has a fixed point

x̄ ∈ X. Let ȳ be the closest point of F(x̄) to x̄. Then ȳ − x̄ ∈ NX(x̄).

In order to verify that F is closed we can proceed as follows. By the weak∗ compactness of A

and the weak continuity of φx, we have that the multifunction X 3 x 7→ Āx is weakly∗ closed2

(e.g., [4, Propsition 4.4 and discussion on page 264 ]). By the weak continuity of Φx it follows

that F is closed. This follows from the fact that if Zk
w→ Z̄ and ζk

w∗→ ζ̄, then 〈ζk, Zk〉 → 〈ζ̄, Z̄〉
(e.g., [4, Theorem 2.23(iv)]). �

Remark 3.1 Recall that it is assumed that φx ∈ Z for every x ∈ X. The mapping φx is weakly

continuous if φ(x, ξ) is continuous in x and there is η ∈ Z such that |φ(x, ξ)| ≤ η(ξ) for all x ∈ X
and ξ ∈ Ξ. Indeed then for any ζ ∈ Z∗ we have that |φxζ| ≤ η|ζ| and

∫
η|ζ|dP <∞. Thus for a

sequence {xk} ⊂ X converging to x̄ it follows by the Lebesgue dominated convergence theorem

that

lim
k→∞

∫
Ξ
φxk(z) ζ(z)dP(z) =

∫
Ξ

lim
k→∞

φxk(z) ζ(z)dP(z) =

∫
Ξ
φx̄(z) ζ(z)dP(z).

This shows that φx is weakly continuous. Similar conditions can be applied to every component

of the mapping Φx to guarantee its weak continuity.

Remark 3.2 For the set Ai ⊂ Z∗i of density functions, we consider functional Ri : Zi → R
defined as

Ri(Z) := sup
ζi∈Ai

∫
Ξ
ZζidP. (3.6)

Since Ai is a bounded subset of Z∗i , the value Ri(Z) is finite for any Z ∈ Zi. This functional

can be viewed as the dual representation of the corresponding so-called coherent risk measure.

Various examples of coherent risk measures, their dual representations and closed forms for the

corresponding sets Āx are given in (e.g., [25, Section 6.3.2]).

The optimality condition (2.2) can be written in the VI form as follows. For each player i,

i = 1, ..., r, recall that Zi and Z∗i can be viewed as paired spaces with respect to the bilinear form

〈ζi, Z〉 =
∫

Ξ ζiZdP. Consider the indicator function IAi(·) of the set Ai ⊂ Z∗i , that is IAi(ζi) = 0

2That is, if xk ∈ X converges to x̄ and ζk ∈ Āxk is such that ζk
w∗
→ ζ̄, then ζ̄ ∈ Āx̄.
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for ζi ∈ Ai and IAi(ζi) = +∞ for ζi 6∈ Ai. At a point ζi ∈ Ai the subdifferential ∂IAi(ζ) is equal

to the normal cone

NAi(ζi) = {Z ∈ Zi : 〈η − ζi, Z〉 ≤ 0, ∀η ∈ Ai}.

For ζi 6∈ Ai the normal cone NAi(ζi) = ∅. For Z ∈ Zi we have that ζ̄i ∈ arg minζi∈Ai〈ζi,−Z〉
iff ζ̄i ∈ arg minζi∈Z∗i 〈ζi,−Z〉 + IAi(ζi). Since the subdifferential of 〈ζi,−Z〉 + IAi(ζi) at ζ̄i is

equal to −Z + ∂IAi(ζ̄i), it follows that ζ̄i ∈ arg minζi∈Ai〈ζi,−Z〉 iff 0 ∈ −Z + NAi(ζ̄i), that is,

0 ∈ −φ(x, ·) +NAi(ζi). Therefore the optimality condition (2.2) can be written here as

0 ∈ −φx +NA(ζ), (3.7)

where A := A1 × · · · ×Ar and ζ = (ζ1, ..., ζr). Note that by pairing Z and Z∗, the normal cone

NA(ζ) is a subset of the space Z.

This can be compared with the finite dimensional setting discussed in Section 3.1. Let P
be the probability measure on the corresponding finite set Ξ = {ξ1, ..., ξm} assigning equal

probability 1/m to each elementary event. Then any probability measure Q on Ξ is absolutely

continuous with respect to P and its density dQ/dP is given by mq where q ∈ ∆m is the respective

probability vector.

3.3 Monotonicity property

By (3.7) in section 3.2, we can write DRVI (3.3)-(3.4) as follows:

0 ∈
∫

Ξ
ΦxζdP +NX(x), (3.8)

0 ∈ −φx +NA(ζ), (3.9)

where 0 : Ξ→ Rr is a constant function with value 0, φx = (φ1(x, ·), · · · , φr(x, ·))> is a vector-

valued random function, NA(ζ) := NA1(ζ1)× · · · × NAr(ζr).

Note that Rn ×Z and Rn ×Z∗ are paired by the bilinear form (scalar product), that is, for

x, z ∈ Rn, u ∈ Z and ζ ∈ Z∗,

〈(x, u), (z, ζ)〉 := x>z +

r∑
i=1

∫
Ξ
uiζidP.

Consider mapping G : Rn ×Z∗ → Rn ×Z defined as

G(x, ζ) :=

(∫
Ξ ΦxζdP
−φx

)
,

and denote the DRVI (2.1)-(2.2) by DRVI(G, (X,A)). Monotonicity properties of this mapping

are defined in the usual way. In particular, the mapping G is said to be monotone if for any

(x, ζ), (z, η) ∈ Rn × A, we have〈
G(x, ζ)− G(z, η),

(
x− z
ζ − η

)〉
≥ 0, (3.10)
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and G is said to be strongly monotone if there is α > 0 such that〈
G(x, ζ)− G(z, η),

(
x− z
ζ − η

)〉
≥ α(‖x− z‖2 + ‖ζ − η‖2L2

), (3.11)

where ‖ζ − η‖L2 is defined by function metric in L2 space. Moreover, it is easy to observe that,

G(x, ζ)−G(x, η) =
(
(
∫

Ξ ΦxζdP)> − (
∫

Ξ ΦxηdP)>,0
)>

, G cannot be strongly monotone. However,

G can be monotone under some reasonable conditions.

To investigate the monotonicity of G, we use ∇xf(x, ·) and Jxf(x, ·) to denote the partial

derivative and partial Jacobian of f with respect to x. For j = 1, · · · , r, ξ̃j : Ω → Ξ is a

random vector with continuous distribution Qj such that dQj = ζjdP, let Sj(ξ)
>, Sj(ξ̃j)

> ∈ R`,
ξ̃ := (ξ̃1, · · · , ξ̃r) ∈ Ξr ⊆ Rr`,

S(ξ̃) := (S1(ξ̃1)>, · · · , Sr(ξ̃r)>)> and S(ξ) := (S1(ξ)>, · · · , Sr(ξ)>)>.

Lemma 3.1 Suppose for any ξ̃ ∈ Ξr, S(ξ̃) is a positive semidefinite matrix. Then
∫

Ξ S(ξ)ζdP
is positive semidefinite.

Proof. We consider a discrete approximation of
∫

Ξ S(ξ)ζdP firstly. Let ΞN := {ξ1, · · · , ξN}
be a discrete approximation of Ξ with the weight vectors {p1

1, · · · , pN1 }, · · · , {p1
r , · · · , pNr } such

that for i = 1, · · · , N , j = 1, · · · , r, pij ≥ 0,
∑N

i=1 p
i
j = 1 and w.p.1

lim
N→∞

N∑
i=1

pijSj(ξ
i) =

∫
Ξ
Sj(ξ)ζjdP. (3.12)

There are several ways to construct an approximation above. One way is construct i.i.d. samples

ΞNj := {ξ1
j , · · · , ξ

Nj
j } of continuous distribution Qj such that dQj = ζjdP for j = 1, · · · , r. Then

ΞN = ∪rj=1ΞNj , N = |ΞN | ≤
∑r

j=1N
j and pij = 1

Nj
if ξi ∈ ΞNj and pij = 0 otherwise.

Let P i := diag(pi1, · · · , pir) for i = 1, · · · , N , then

N∑
i=1

P iS(ξi) :=
(∑N

i=1 p
i
1S1(ξi)>, · · · ,

∑N
i=1 p

i
rSr(ξ

i)>
)>

is an approximation of
∫

Ξ S(ξ)ζdP. We then prove
∑N

i=1 P
iS(ξi) is positive semidefinite.

To this end, we do the following procedure.

Step 0. Let k = 1. We reorder the weight vectors {p1
1, · · · , pN1 }, · · · , {p1

r , · · · , pNr } to {p(1)
1 , · · · , p(N)

1 },
· · · , {p(1)

r , · · · , p(N)
r } such that p

(1)
j ≥ p

(2)
j · · · ≥ p

(N)
j for j = 1, · · · , r. Let ξ̃k = (ξ̃

(1)
1 , · · · , ξ̃(1)

r )

and p̃k = min{p(1)
j , j = 1, · · · , r}. We construct p̃kJxΦ(x, ξ̃k) and reduce p̃k from p

(1)
j , that

is new p
(1)
j := p

(1)
j − p̃k, for j = 1, · · · , r. Note that by the condition of the lemma, p̃kS(ξ̃k)

is positive semidefinite. Let k = k + 1.
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Step 1. For j = 1, · · · , r, since we have reduced p̃k−1 from p
(1)
j and p

(1)
j may not be the largest

one of {p(1)
j , · · · , p(N)

j }, we reorder the the weight vectors again. To easy notation, we still

denote the newly reordered weight vectors as {p(1)
1 , · · · , p(N)

1 }, · · · , {p(1)
r , · · · , p(N)

r }. Note

that now
∑N

i=1 p
(i)
j = 1 −

∑k−1
i=1 p̃i. If

∑N
i=1 p

(i)
j = 0, for j = 1, · · · , r, stop. Note that∑N

i=1 p
(i)
j =

∑N
i=1 p

(i)
l for all j, l ∈ {1, · · · , r}. Otherwise, go to Step 2.

Step 2. Let ξ̃k = (ξ̃
(1)
1 , · · · , ξ̃(1)

r ) and p̃k = min{p(1)
j , j = 1, · · · , r}. We construct p̃kS(ξ̃k) and

reduce p̃k from p
(1)
j , that is new p

(1)
j := p

(1)
j − p̃k, for j = 1, · · · , r. Note that by the

condition of the lemma, p̃kS(ξ̃k) is positive semidefinite. Let k = k + 1. Go to Step 1.

Note that ξ̃k ∈ ΞNr and |ΞNr | = N r, the procedure above will stop at finite iterations, denote

by K, K ≤ N r. Since S(ξ̃k) is positive semidefinite for k = 1, · · · ,K and
∑K

k=1 p̃k = 1, then

N∑
i=1

P iS(ξi) =

K∑
k=1

p̃kS(ξ̃k)

is positive semidefinite, and by (3.12),
∫

Ξ S(ξ)ζdP is positive semidefinite w.p.1. �

Let ξ̃ := (ξ̃1, · · · , ξ̃r) ∈ Ξr ⊂ Rr`, and

∫
Ξ
JxΦ(x, ξ)ζdP :=


∫

Ξ JxΦx
1ζ1dP

...∫
Ξ JxΦx

r ζrdP

 .

Proposition 3.3 Consider DRVI (3.8)-(3.9). Suppose (a) for i = 1, · · · , r and ξ ∈ Ξ, Φi(·, ξ)
and φi(·, ξ) are continuously differentiable, (b) for any ξ̃ ∈ Ξr and x ∈ X,(

(JxΦ1(x, ξ̃1))>, · · · , (JxΦr(x, ξ̃r))
>
)>

is a positive semidefinite matrix, (c) for P-a.e. ξ ∈ Ξ, ζi(ξ)(x̃>i Φi(x, ξ) − Jxφi(x, ξ)x̃) ≥ 0, for

all x ∈ X, x̃ ∈ Rn and ζ̃ ∈ Z, i = 1, · · · , r, then G is monotone over X × A.

Proof. It is easy to observe that

JG(x,ζ) =



∫
Ξ JxΦx

1ζ1dP Φ1(x, ·) · · · 0
...

...
. . .

...∫
Ξ JxΦx

r ζrdP 0 · · · Φr(x, ·)
−Jxφ1(x, ·) 0 · · · 0

...
...

. . .
...

−Jxφr(x, ·) 0 · · · 0


, JG(x,ζ)

(
x̃

ζ̃

)
=



∫
Ξ JxΦx

1ζ1dPx̃+
∫

Ξ Φx
1 ζ̃1dP

...∫
Ξ JxΦx

r ζrdPx̃+
∫

Ξ Φx
r ζ̃rdP

−Jxφ1(x, ·)x̃
...

−Jxφr(x, ·)x̃


and 〈

(x̃, ζ̃), JG(x,ζ)

(
x̃

ζ̃

)〉
=

r∑
i=1

(
x̃>i

∫
Ξ
JxΦx

i ζidPx̃+ x̃>i

∫
Ξ

Φx
i ζ̃idP−

∫
Ξ
Jxφ

x
i ζ̃idPx̃]

)
.
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By condition (b) and Lemma 3.1,
∫

Ξ JxΦ(x, ξ)ζdP is positive semidefinite. By condition (c),

for any x̃ ∈ X and ζ̃ ∈ Z,
r∑
i=1

(
x̃>i

∫
Ξ

Φx
i ζ̃idP−

∫
Ξ
Jxφ

x
i ζ̃idPx̃

)
≥ 0. (3.13)

Then

〈
(x̃, ζ̃), JGx,ζ

(
x̃

ζ̃

)〉
≥ 0 holds for any x̃ ∈ Rn and ζ̃ ∈ Z, and then by [12, Theorem 3.1],

G(x, ζ) is monotone over X × A. �

The above proposition shows the monotone properties of the DRVI in the continuous distri-

butions setting (section 3.2). Note that in the case of finite dimensional setting (section 3.1),

we can simply rewrite Proposition 3.3 as follows.

Corollary 3.1 Consider DRVI (3.1)-(3.2). Suppose (a) for i = 1, · · · , r and ξ ∈ Ξm, Φi(·, ξ)
and φi(·, ξ) are continuously differentiable, (b) for any ξ̃ ∈ (Ξm)r and x ∈ X,(

(JxΦ1(x, ξ̃1))>, · · · , (JxΦr(x, ξ̃r))
>
)>

is a positive semidefinite matrix, (c) for all ξ ∈ Ξm, x ∈ X, x̃ ∈ Rn, i = 1, ..., r, x̃>i Φi(x, ξ) −
Jxφi(x, ξ)x̃ = 0. Then G corresponding to DRVI (3.1)-(3.2) is monotone over X ×M.

In what follows, we give the existence of solutions of the DRVI based on the monotone

properties.

Definition 3.1 ([16, Definition 12.1]) The mapping G : Rn × A → Rn × Z is hemicontinuous

on Rn × Z∗ if G is continuous on line segments in Rn × Z∗, i.e., for every pair of points

(x, ζ), (z, η) ∈ Rn ×Z∗, the following function is continuous

t 7→

〈
G(tx+ (1− t)z, tζ + (1− t)η),

(
x− z
ζ − η

)〉
, 0 ≤ t ≤ 1.

Definition 3.2 ([16, Definition 12.3 (i)]) The mapping G : X ×Z∗ → X ×Z is weakly coercive

if there exists (x0, ζ
0) ∈ Rn ×Z∗ such that〈

G(x, ζ),

(
x− x0

ζ − ζ0

)〉
→∞ as ‖x− x0‖+ ‖ζ − ζ0‖ → ∞ and (x, ζ) ∈ X ×Z∗.

Theorem 3.1 Suppose the conditions of Proposition 3.3 hold. If X ⊆ Rn is a closed and convex

set, A is convex and weakly* compact in Z and G is weakly coercive, then DRVI(G, (X,A)) has

a solution.

By Proposition 3.3, it is obvious that G is hemicontinuous and monotone on Rn ×P. Then

Theorem 3.1 is from [16, Theorem 12.1 and Corollary 12.2] directly.

Moreover, we can also have a finite dimension version of Theorem 3.1 as follows.

Corollary 3.2 Suppose the conditions of Corollary 3.1 hold. If X ⊆ Rn is a closed and convex

set, M is compact in Rrm and G is coercive, then DRVI(G, (X,M)) (3.1)-(3.2) has a solution.
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3.4 Examples of monotone DRVI

We illustrate the monotone property and coerciveness of G in the DRVI by two examples from

the DRO and distributionally robust generalized Nash equilibrium.

Example 3.1 Consider the DRO (2.3), where φ is convex and twice continuously differentiable,

Ξ := {ξ1, ξ2}, M ⊂ {(p1, p2) : pi ≥ 0, p1 + p2 = 1, i = 1, 2} is convex and compact.

Then the corresponding DRVI is

0 ∈ p1∇xφ(x, ξ1) + p2∇xφ(x, ξ2) +NX(x), (3.14)

0 ∈

(
−φ(x, ξ1)

−φ(x, ξ2)

)
+NM((p1, p2)). (3.15)

And the corresponding function is

G(x, P ) =


p1∇xφ(x, ξ1) + p2∇xφ(x, ξ2)

−φ(x, ξ1)

−φ(x, ξ2)

 .

Moreover,

JG(x,P ) =


p1∇xxφ(x, ξ1) + p2∇xxφ(x, ξ2) ∇xφ(x, ξ1) ∇xφ(x, ξ2)

−∇xφ(x, ξ1)> 0 0

−∇xφ(x, ξ2)> 0 0


is positive semidefinite over X ×M and then G is monotone.

Then we prove the coercive of G. Let X = R2
+ and x0 = (0, 0), P 0 = (1, 0). Suppose for any

ξ ∈ Ξ, φ(x, ξ) is a strongly convex function of x with parameter m(ξi) > 0, i = 1, 2, we have

when x sufficiently large, φ(x, ξi) ≥ 0, i = 1, 2 and

φ(0, ξi) ≥ φ(x, ξi)−∇xφ(x, ξi)>x+
m(ξi)

2
‖x‖22.

Then

lim inf
x≥0,‖x‖→∞

〈
G(x, P ),

(
x− x0

P − P 0

)〉
‖x‖

= lim inf
x≥0,‖x‖→∞

x>(p1∇xφ(x, ξ1) + p2∇xφ(x, ξ2)) + (P − P 0)>

(
−φ(x, ξ1)

−φ(x, ξ2)

)
‖x‖

= lim inf
x≥0,‖x‖→∞

p1(x>∇xφ(x, ξ1)− φ(x, ξ1)) + p2(x>∇xφ(x, ξ2)− φ(x, ξ2)) + φ(x, ξ1)

‖x‖

≥ lim inf
x≥0,‖x‖→∞

p1(x>∇xφ(x, ξ1)− φ(x, ξ1)) + p2(x>∇xφ(x, ξ2)− φ(x, ξ2))

‖x‖

≥ lim inf
x≥0,‖x‖→∞

∑2
i=1 p

i(m(ξi)
2 ‖x‖

2 − φ(0, ξi))

‖x‖
> 0.

Combining the monotonicity and coerciveness of G, by Corollary 3.2, the DRVI has a solution.
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We can also consider a distributionally robust generalized Nash equilibrium problem as

follows.

Example 3.2 Consider the distributionally robust generalized Nash equilibrium problem as fol-

lows:

min
xi∈Xi

max
Pi∈Mi

EPi [fi(x, ξ)] + gi(x), s.t. b1x1 + b2x2 ≤ c, i = 1, 2, (3.16)

where x = (x1, x2), xi ∈ Rni, Xi ⊆ Rni is a convex set, for Pi-a.e. ω, ∀Pi ∈Mi fi(·, ξ) is convex

and twice continuously differentiable with respect to x, and gi is convex and twice continuously

differentiable, Ξ := {ξ1, ξ2}, Mi ⊂ {(p1
i , p

2
i ) : pji ≥ 0, p1

i +p2
i = 1, j = 1, 2} is convex and compact,

i = 1, 2. Suppose J
(
∇x1g1(x),∇x2g2(x)

)>
is positive semi-definite.

Then the corresponding DRVI is

0 ∈ p1
i∇xifi(x, ξ1) + p2

i∇xifi(x, ξ2) +∇xigi(x) + biµ+NXi(xi), i = 1, 2 (3.17)

0 ∈ c− b1x1 − b2x2 +NR+(µ) (3.18)

0 ∈

(
−fi(x, ξ1)

−fi(x, ξ2)

)
+NMi((p

1
i , p

2
i )), i = 1, 2. (3.19)

Let

Φ(x, ξ) =

(
∇x1f1(x1, ξ) +∇x1g1(x) + b1µ

∇x2f2(x2, ξ) +∇x2g2(x) + b2µ

)
and φ(x, ξ) =

(
−f1(x, ξ)

−f2(x, ξ)

)
.

Then the DRVI (3.17)-(3.19) is corresponding to (3.1)-(3.2) with (3.18). Moreover,

G(x, µ, P ) =



p1
1∇x1f1(x, ξ1) + p2

1∇x1f1(x, ξ2) +∇x1g1(x) + b1µ

p1
2∇x2f2(x, ξ1) + p2

2∇x2f2(x, ξ2) +∇x2g2(x) + b2µ

c− b1x1 − b2x2

−f1(x, ξ1)

−f1(x, ξ2)

−f2(x, ξ1)

−f2(x, ξ2)


.

For i, j = 1, 2, let

aij = p1
i∇xixjfi(xi, ξ1) + p2

i∇xixjfi(xi, ξ2) +∇xixjgi(x),

then JG(x,µ,P ) is

a11 a12 b1 ∇x1f1(x, ξ1) ∇x1f1(x, ξ2) 0 0

a21 a22 b2 0 0 ∇x2f2(x, ξ1) ∇x2f2(x, ξ2)

−b1 −b2 0 0 0 0 0

−∇x1f1(x, ξ1)> −∇x2f1(x, ξ1)> 0 0 0 0 0

−∇x1f1(x, ξ2)> −∇x2f1(x, ξ2)> 0 0 0 0 0

−∇x1f2(x, ξ1)> −∇x2f2(x, ξ1)> 0 0 0 0 0

−∇x1f2(x, ξ2)> −∇x2f2(x, ξ2)> 0 0 0 0 0


.
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It is obvious that in general, G is nonmonotone. Moreover, G can be monotone if f1 is only

w.r.t. (x1, ξ) and f2 is only w.r.t. (x2, ξ), that is f1(x1, ξ) and f2(x2, ξ), then(
∇x1x1f1(x1, ξ

i) +∇x1g(x) ∇x1x2g(x)

∇x2x1g(x) ∇x2x2f2(x2, ξ
j) +∇x2x2g(x)

)
is positive semidefinite for i, j = 1, 2.

Then we show the coerciveness of G. Similar as in Example 3.1, let Xj = R+ and xj0 = 0,

µ0 = 0, P 0
j = (1, 0) for j = 1, 2. Suppose fj(x, ξ

i) and g(x) are strongly convex with parameter

mj(ξ
i) > 0 and mg

j > 0 respectively, for i = 1, 2 and j = 1, 2, c > 0, we have

lim inf
(x,µ)≥0,‖(x,µ)‖→∞

〈
G(x, µ, P ),

(
x− x0, µ− µ0, P − P 0

)>〉
‖(x, µ, P )‖

≥ lim inf
(x,µ)≥0,‖(x,µ)‖→∞

2∑
i=1

2∑
j=1

(
pij(xj∇xjfj(xj , ξi) + xj∇xjg(x)− fj(xj , ξi)) + pij0fj(xj , ξ

i)
)

+ µc

‖(x, µ)‖

≥ lim inf
(x,µ)≥0,‖(x,µ)‖→∞

2∑
i=1

2∑
j=1

pij(xj∇xjfj(xj , ξi)− fj(xj , ξi) + xj∇xjgj(x)) + µc

‖(x, µ)‖

≥ lim inf
(x,µ)≥0,‖(x,µ)‖→∞

∑2
i=1

∑2
j=1 p

i
j(
mj(ξ

i)
2 ‖xj‖2 − fj(0, ξi) +

mgj
2 ‖xj‖

2 − gj(0)) + µc

‖(x, µ)‖
> 0.

Combining the monotonicity and coerciveness of G, by Corollary 3.2, the DRVI has a solution.

4 Discretization of Probability Distributions

In this section, we consider the discretization of DRVI with the ambiguity sets formed from

continuous distributions in the setting specified in Assumption 3.1. There are several ways to

discretize the ambiguity set [10, 26, 30]. We propose a SAA approach to the DRVI. For the

sake of simplicity we assume here that r = 1 and drop the subscript i in Φx
i and φxi , etc. An

extension for r > 1 will be straightforward. Recall that P is the reference probability measure

(distribution) on (Ξ,B), Z = Lp(Ξ,B,P), Z∗ = Lq(Ξ,B,P), A is a convex bounded weakly∗

closed subset of Z∗ of densities associated with the ambiguity set M, and

R(Z) = sup
ζ∈A

∫
Ξ
Z(s)ζ(s)dP(s), Z ∈ Z. (4.1)

Let us introduce some definitions.

It is said that random variables Y, Y ′ : Ξ → R are distributionally equivalent (with respect

to P), denoted Y
D∼ Y ′, if P(Y ≤ y) = P(Y ′ ≤ y) for all y ∈ R. It is said that a functional

R : Z → R is law invariant if R(Z) = R(Z ′) for any distributionally equivalent Z,Z ′ ∈ Z. The

set A ⊂ Z∗ is said to be law invariant if ζ ∈ A and ζ ′
D∼ ζ, then ζ ′ ∈ A. It is known that the

functional R is law invariant iff the corresponding set A is law invariant (cf., [26, Theorem 2.3]).
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Assumption 4.1 The set A is law invariant.

By Assumption 4.1 we have that the functional R(Z) is law invariant, and hence can be

viewed as a function of the respective cumulative distribution function (CDF) of Z. It is possible

to proceed with the required discretization by making discretization of the corresponding CDF

of φx(ξ). However, such approach is indirect and inconvenient for applications. Therefore we

discuss below several important cases where this can be performed in a rather straightforward

way.

Consider an iid sample ξj ∈ Ξ, j = 1, ..., N , from the reference distribution P. With the law

invariant risk measure R is associated the corresponding empirical functional3 R̂N : RN → R.

The functional RN has the dual representation

RN (Z) := sup
ζ∈AN

N−1
N∑
j=1

ζjZ(ξj), (4.2)

where AN is the respective convex closed set of densities4 ζ = (ζ1, ..., ζN ). In the next section

we give examples of how the empirical functional can be constructed.

For the generated sample,

R̂N (φx) = sup
ζ∈AN

N−1
N∑
j=1

ζjφ
x(ξj) (4.3)

can be considered as an empirical estimate of R(φx). We have that under mild regularity

conditions, R̂N (φx) epiconverges w.p.1 to R(φx) on X (cf. [24]). This suggests the following

discretization of problem (3.3) - (3.4):

0 ∈
N∑
j=1

ζjΦ(x, ξj) +NX(x), (4.4)

ζ ∈ arg max
η∈AN

N∑
j=1

ηjφ(x, ξj). (4.5)

4.1 Construction of the empirical estimates

Here we discuss construction of the empirical estimates of the risk measure R defined in (4.1).

For a random variable Z we denote by HZ(z) := P(Z ≤ z) its cumulative distribution function

(CDF) and by H−1
Z (t) := inf{τ : HZ(τ) ≥ t} the corresponding quantile function (also called

Value-at-Risk). Note that the subdifferential of R(Z) is given by

∂R(Z) = arg max
ζ∈A

∫
Ξ
Z(s)ζ(s)dP(s) (4.6)

(e.g., [25, eq. (6.49), page 284]). Let us consider the following example.

3Any Z : {ξ1, ..., ξN} → R can be identified with N -dimentional vector (Z(ξ1), ..., Z(ξN )), and hence the

empirical risk measure can be viewed as defined on RN .
4Note that ζ is a density on {ξ1, ..., ξN} if ζ ≥ 0 and N−1 ∑N

i=1 ζi = 1, i.e., N−1ζ ∈ ∆N .
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Example 4.1 Consider the Average Value-at-Risk,

AV@R1−α(Z) :=
1

1− α

∫ 1

α
H−1
Z (t)dt = inf

τ∈R

{
τ + (1− α)−1EP[Z − τ ]+

}
, α ∈ (0, 1). (4.7)

Here Z = L1(Ξ,B,P) and a minimizer in the right hand side of (4.7) is τ̄ = H−1
Z (α). The

empirical estimate of AV@R1−α(φx) is then

ÂV@R(1−α)N (φx) = inf
τ∈R

τ +
1

(1− α)N

N∑
j=1

[
φx(ξj)− τ

]
+

 . (4.8)

We have that ∂AV@R1−α(Z) is a singleton iff P{Z = κ} = 0, where κα := H−1
Z (α). Suppose

that ∂AV@R1−α(Z) = {ζ̄} is a singleton. Then

ζ̄(s) =

{
(1− α)−1 if Z(s) > κ, s ∈ Ξ,

0 if Z(s) < κ, s ∈ Ξ,
(4.9)

(cf. [25, eq. (6.80), page 292]). For x ∈ X and Z := φx let {ζ̄x} be the corresponding

subdifferential. The subdifferential ζ̂x = (ζx1 , ..., ζ
x
N ) of the corresponding empirical estimate is

obtained by replacing κα with their empirical estimates. That is ζxj = (1−α)−1 if φx(ξj) > κα,N

and ζxj = 0 if φx(ξj) < κα,N , where κα,N is the empirical estimate of κα. Note that because of

the assumption P{Z = κ} = 0, the empirical estimate κα,N converges w.p.1 to κα.

Consider the probability distribution P xN on {ξ1, ..., ξN} associated with density ζ̂x, i.e., with

ξj is assigned probability 1/((1 − α)N) if φx(ξj) > κxα,N , and 0 otherwise. We view P xN as the

empirical counterpart of P x, where P x is the probability measure absolutely continuous with

respect to P and having density ζ̄x, i.e.,

dP x = ζ̄xdP. (4.10)

Consider a continuous bounded function g : Ξ → R. Since g(·) is bounded and continuous,

κxα,N → κxα w.p.1 and P{φx(ξ) = κxα} = 0, we have that∫
Ξ
g(s)dP xN (s) =

1

(1− α)N

∑
φx(ξj)>κxα,N

g(ξj)

converges w.p.1 to ∫
Ξ
g(s)ζ̄x(s)dP(s) =

1

1− α

∫
φx(ξ)>κxα

g(s)dP(s).

That is P xN converges weakly5 to P x. Moreover, by Proposition 7.1 in the Appendix, we have if

{xN} is a sequence in X converging to x, then
∫

Ξ g(s)dP xNN (s) converges to
∫
φx(ξ)>κ g(s)dP(s)

w.p.1, and hence P xNN converges weakly to P x.

5Recall that a sequence PN of probability measures converges weakly to a probability measure P if
∫
gdPN →∫

gdP for any bounded continuous function g : Ξ→ R, see e.g., Billingsley [3] for a discussion of weak convergence

of probability measures.
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Spectral risk measure. This can be extended to a general setting. Let us first consider

spectral risk measure R. That is6

R(H−1
Z ) :=

∫ 1

0
σ(t)H−1

Z (t)dt, (4.11)

where σ : [0, 1) → R+ is monotonically nondecreasing, left side continuous function such that∫ 1
0 σ(t)dt = 1. The Average Value-at-Risk AV@Rα is a spectral risk measure with spectral

function σ(t) = 0 for t ∈ [0, 1− α), and σ(t) = 1/α for t ∈ [1− α, 1].

Let Hφx(z) := P{φx(ξ) ≤ z} be the cumulative distribution function (CDF) of φx(ξ) and

Hφx,N be the CDF of φx(ξj), j = 1, .., N . That is, function Hφx,N (·) is stepwise constant with

jumps 1/N at points φx(1), ..., φ
x
(N), where φx(1), ..., φ

x
(N) are values φx(ξ1), ..., φx(ξN ) arranged in

the increasing order, i.e.,

Hφx,N (·) = N−1
N∑
j=1

1(−∞,φx
(j)

](·). (4.12)

Then

R(H−1
φx,N ) =

∫ 1

0
σ(t)H−1

φx,N (t)dt =
N∑
j=1

qjφ
x
(j), (4.13)

where

qj :=

∫ j/N

(j−1)/N
σ(t)dt, j = 1, ...., N. (4.14)

Note that qj ≥ 0,
∑N

j=1 qj =
∫ 1

0 σ(t)dt = 1.

Remark 4.1 The corresponding set AN is the convex hull of vectors (qπ(1), ..., qπ(N)), π ∈ Π,

where Π is the set of permutations of the set {1, ..., N}. By Hardy - Littlewood inequality, we

have here

sup
ζ∈AN

N∑
j=1

ζjφ
x(ξj) =

N∑
j=1

qjφ
x
(j), (4.15)

and the corresponding maximizer ζ̄ ∈ arg maxζ∈AN
∑N

j=1 ζjφ
x(ξj) is given by ζ̄ = (qπ(1), ..., qπ(N))

with the permutation π ∈ Π corresponding to the order φx(1) ≤ · · · ≤ φx(N). Note that this per-

mutation and hence the maximizer ζ̄ depend on x.

We can also write this spectral risk measure in the form

R(φx) =

∫ 1

0
AV@R1−α(φx)dµ(α), (4.16)

where µ is the probability measure on the interval [0, 1) associated with the spectral function

σ(·), given by

µ(α) = (1− α)σ(α) +

∫ α

0
σ(t)dt.

6By the law invariance of R(Z) it can be considered as a function of HZ .
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This is the so-called Kusuoka representation of the spectral risk measure (e.g., [25, p. 307]).

That is

R(φx) =

∫ 1

0
EP
{
τ(α) + (1− α)−1[φx − τ(α)]+

}
dµ(α), (4.17)

where τ(α) := H−1
φx (α). The empirical estimate R(H−1

φx,N ) can be written then as

R(H−1
φx,N ) =

1

N

∫ 1

0

N∑
j=1

{
τ̂N (α) + (1− α)−1[φx(ξj)− τ̂N (α)]+

}
dµ(α), (4.18)

where τ̂N (α) is the empirical estimate of H−1
φx (α).

The subdifferential of R(φx) can be taken inside the integral in (4.16), i.e.,

∂R(φx) =

∫ 1

0
∂AV@R1−α(φx)dµ(α). (4.19)

We have that ∂R(φx) = {ζ̄x} is a singleton iff ∂AV@R1−α(φx) is a singleton for µ-almost every

α ∈ [0, 1), i.e., iff P{φx = κα} = 0 for µ-almost every α ∈ [0, 1), where κα = H−1
φx (α). Then we

have by Example 4.1 that the subdifferential ∂AV@R1−α(φx) = {ζ̄α} is given by

ζ̄α(s) =

{
(1− α)−1 if φx(s) > κα, s ∈ Ξ,

0 if φx(s) < κα, s ∈ Ξ.
(4.20)

The subdifferential ζ̂xα = (ζxα1, ..., ζ
x
αN ) of the corresponding empirical estimate is obtained by

replacing κα = H−1
φx (α) with their empirical estimates.

For a continuous and bounded function g : Ξ→ R we have that∫
Ξ
g(s)dP xN (s) =

∫
α∈[0,1)

1

N

N∑
j=1

g(ξj)ζxαjdµ(α) =

∫
α∈[0,1)

1

(1− α)N

∑
φx(ξj)>καN

g(ξj)dµ(α)

converges w.p.1 to∫
Ξ
g(s)ζ̄x(s)dP(s) =

∫
α∈[0,1)

∫
Ξ
g(s)ζ̄xα(s)dP(s)dµ(α) =

∫
α∈[0,1)

1

1− α

∫
φx(ξ)>κα

g(s)dP(s)dµ(α).

Then we have that P xN converges weakly to P x, where P x has density ζ̄x (see (4.10)). Moreover,

by Proposition 7.1 in the Appendix, we have if {xN} is a sequence in X converging to x, then∫
Ξ g(s)dP xNN (s) converges to

∫
φx(ξ)>κ g(s)dP(s) w.p.1, and hence P xNN converges weakly to P x.

Law invariant coherent risk measure. By dual representation, any law invariant coherent

risk measure can be represented as follows

max
ζ∈A

∫
Ξ
Z(s)ζ(s)dP(s) = R(Z) = R(H−1

Z ) = sup
σ∈S

∫ 1

0
σ(t)H−1

φx (t)dt (4.21)

with

S := {σ = H−1
ζ : ζ ∈ A} (4.22)
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being a set of spectral functions.

Let Hφx,N denote the CDF of the empirical distribution corresponding to the i.i.d. samples

{φx(ξ1), · · · , φx(ξN )}. Note that Hφx,N is a function of the random sample, and hence is random.

We have

∂R(H−1
φx ) = arg max

σ∈S

∫ 1

0
σ(t)H−1

φx (t)dt and ∂R
(
H−1
φx,N

)
= arg max

σ∈S

∫ 1

0
σ(t)H−1

φx,N (t)dt. (4.23)

Lemma 4.1 Consider a point x̄ ∈ X and a sequence {xN} ⊂ X converging to x̄. Suppose that

Assumptions 3.1 and 4.1 hold, φ(·, ξ) is continuous and ∂R(H−1
φx̄ ) = {σ̄} is a singleton. Then

any sequence σN ∈ ∂R
(
H−1
φxN ,N

)
weakly∗ converges to σ̄ w.p.1.

Proof. We first note that H−1
φx and H−1

φxN ,N belong to the space Lp. We can apply a general

theory of sensitivity analysis applied to the optimization problem (4.23) with viewing H−1
φx as

parameter in the space Lp. We have that H−1
φxN ,N converges w.p.1 to H−1

φx in the norm topology

of Lp as N →∞. This can be proved by an extension of [24, Theorem 2.1] (see Theorem 7.1 in

the Appendix). Since the set S is weakly∗ compact and the maximizer σ̄ of the right hand side

of (4.23) is unique, it follows by [4, Lemma 4.3 and example 4.5] that if

σN ∈ arg max
σ∈S

∫ 1

0
σ(t)H−1

φxN ,N (t)dt, (4.24)

then {σN} is weak∗ convergent w.p.1 to σ̄. �

For law invariant coherent risk measure, by the Kusuoka representation, (4.21) can also be

presented as

R(H−1
φx ) = sup

σ∈S

∫ 1

0
σ(t)H−1

φx (t)dt = sup
µ∈V

∫ 1

0
AVaR1−α(φx)dµ(α) (4.25)

and its SAA can be written as

R(H−1
φx,N

) = sup
µ∈V

1

N

∫ 1

0

N∑
j=1

{
τ̂N (α) + (1− α)−1[φx(ξj)− τ̂N (α)]+

}
dµ(α), (4.26)

where V := {µ : µ(α) = (1−α)σ(α)+
∫ α

0 σ(t)dt, σ ∈ S}. Then we have that ∂R(φx) = {ζ̄x} is a

singleton (which implies ∂R(H−1
φx̄ ) is a singleton) if and only if ∂AV@R1−α(φx) is a singleton for

µ-almost every α ∈ [0, 1), i.e., if and only if P{φx = κα} = 0 for µ-almost every α ∈ [0, 1), where

κα = H−1
φx (α), µ ∈ V. Note that if P{φx = κα} = 0 for every α ∈ [0, 1), then the condition that

∂R(H−1
φx̄ ) = {σ̄} is a singleton holds.

Then we consider the convergence analysis between

max
η∈AN

N∑
j=1

ηjφ(xN , ξ
j) = sup

µ∈V

1

N

∫ 1

0

N∑
j=1

{
τ̂N (α) + (1− α)−1[φxN (ξj)− τ̂N (α)]+

}
dµ(α) (4.27)

and

max
η∈A

∫
Ξ
φx̄ηdP = sup

µ∈V

∫ 1

0
AVaR1−α(φx̄)dµ(α), (4.28)
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where xN → x̄. Let (ζxNN , µN ) and (ζ∗, µ̄) denote the optimal solutions of (4.27) and (4.28),

respectively. Note that ζxNN corresponds to a discrete distribution P xNN and ζ∗ corresponds to a

continuous distribution P ∗ = ζ∗P.

Proposition 4.1 Consider a point x̄ ∈ X and a sequence {xN} ⊂ X converging to x̄ and the

ambiguity set corresponding to a law invariant coherent risk measure. Suppose (i) Assumptions

3.1 and 4.1 hold, φ(·, ξ) is Lipschitz continuous, (ii) ∂R(H−1
φx̄ ) = {σ̄} is a singleton, (iii) the CDF

of φx̄ is strictly monotone, and (iv) there exists positive measure µ̂ such that for all N sufficiently

large,
∫

[0,1] h(t)µ̂(t) ≥
∫

[0,1] h(t)µN (t) for all bounded function h(t). Then P xNN converges weakly

to P x̄.

The proof of Proposition 4.1 is in the Appendix.

Example 4.2 Consider the ψ-divergence approach to construction of the uncertainty sets. The

concept of ψ-divergence is originated in Csiszár [13] and Morimoto [17], and was extensively

discussed in Ben-Tal and Teboulle [2]. We also can refer to Bayraksan and Love [1] for a recent

survey of this approach. That is, consider a convex lower semicontinuous function ψ : R →
R+ ∪ {+∞} such that ψ(1) = 0. For x < 0 we set ψ(x) = +∞. For c > 0 consider

A :=
{
ζ ∈ D :

∫
Ξ ψ(ζ(s))dP(s) ≤ c

}
, (4.29)

where D := {ζ ∈ Z∗ :
∫
ζdP = 1, ζ � 0} denotes the set of densities. If ζ

D∼ ζ ′, then∫
Ξ ψ(ζ(s))dP(s) =

∫
Ξ ψ(ζ ′(s))dP(s). Hence the set A and the corresponding functional R are

law invariant. Since ψ-divergence is a law invariant coherent risk measure, it has Kusuoka rep-

resentation (Note that the representation is only for constructing the SAA and proving the weak

convergence).

Proposition 4.2 [14, Proposition 5.6] A ψ-divergence risk measure can be written in the form

R(Z) = sup
σ∈S

∫ 1

0
σ(t)H−1

Z (t)dt, (4.30)

where S := {σ : [0, 1]→ [0,∞] : σ is non-decreasing ,
∫ 1

0 σ(t)dt = 1,
∫ 1

0 ψ(σ(t))dt ≤ c}.

Moreover, let µ(α) = (1 − α)σ(α) +
∫ α

0 σ(t)dt (that is σ(t) =
∫ t

0
1

1−αdµ(α)). By Kusuoka

representation, we have

R(Z) = sup
µ∈V

∫ 1

0
AV@R1−α(Z)dµ(α) = sup

µ∈V

∫ 1

0
EP
{
τ(α) + (1− α)−1[Z − τ(α)]+

}
dµ(α), (4.31)

where V := {µ : [0, 1) → [0,∞] :
∫ 1

0 dµ(α) = 1,
∫ 1

0 ψ(
∫ t

0
1

1−αdµ(α))dt ≤ c}. Although the

structure of V looks complicated, the discretization way is exactly SAA and same as in the

paper. Then with the conditions of Proposition 4.1, we can show P xNN converges weakly to P x̄.
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By discussion above, we have shown that for law invariant coherent risk measure and under

mild conditions, P xNN converges weakly to P x̄.

However, to prove the convergence between (3.3)-(3.4) and (4.4)-(4.5), we need stronger

convergence results between P xNN and P x̄. To this end, we need the following assumption.

Assumption 4.2 Let M and MN be nonempty and closed. Suppose

(a) there exists a weakly compact set M̂ ⊂M such that M,MN ⊂ M̂ holds for N sufficiently

large;

(b) supP∈M̂ EP [‖ξ‖] is bounded.

Assumption 4.2 is used and discussed in [28]. One sufficient condition for Assumption 4.2

is the compactness of support set Ξ. Then we prove the main convergence result for the case

when r = 1. It is straightforward to extend the result to the case when r > 1.

Theorem 4.1 Let (x̂N , ζ̂N ) ∈ X × AN be a solution of the SAA variational inequalities (4.4)

- (4.5). Suppose (a) Assumptions 3.1, 4.1 and 4.2 hold, (b) φ(x, ·) is Lipschitz continuous and

bounded on Ξ, Φ(·, ξ) and Φ(x, ·) are Lipschitz continuous with Lipschitz modulus κ(ξ) and κ̄

over X and Ξ respectively, and supP∈M̂ EP [κ(ξ)] <∞, (c) x̂N converges w.p.1 to a point x̄, (d)

∂R(φx̄) = {ζ̄} is a singleton, (e) P x̄ is probability measure on (Ξ,B) with density ζ̄, and P x̂NN

is the empirical measure associated with ζ̂N , and P x̂NN weakly converges to P x̄. Then (x̄, ζ̄) is a

solution of the DRVI (3.3) - (3.4).

The proof of Theorem 4.1 is in the Appendix. Note that the sufficient conditions for as-

sumption (e) are given in Proposition 4.1.

5 Numerical examples

In this section, we use a continuous version of Example 3.2 of the distributionally robust gen-

eralized Nash equilibrium problem to illustrate the SAA approach and its convergence, where

fi and gi are quadratic convex functions, Mi is constructed by modified χ2-distance, i = 1, 2.

Particularly, let

fi(x, ξ) :=
1

2
x>i M̃i(ξ)xi + c̃i(ξ)

>xi, gi(x) :=
1

2
x>i Mixi + c>i xi + x>i Rix−i,

Xi = R2
+, b1 = b2 = (1, 1)> and c = 10. Let P follow the uniform distribution over [−1, 1],

ξ : Ω → [−1, 1], then the density function of P is a constant function with value 1
2 over [−1, 1]

and the ambiguity set

Mi :=

{
P ∈P :

∫
ξ∈[−1,1]

2(p(ξ)− 1)2dξ ≤ 0.05

}
,
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where P denotes all probability measures over [−1, 1], p(ξ) is the density function of P , i = 1, 2.

Note that this is a particular case of ψ-divergence. It is obvious that Mi is a weakly compact

subset in L2 over [−1, 1]. Let E be the 2×2 matrix with all elements 1, Ri = E, M̃i(ξ) = 5I+ξI

and Mi = I. Then for any ξi, ξj ∈ [0, 1],(
∇x1x1f1(x, ξi) +∇x1x1g1(x) ∇x1x2f1(x, ξi) +∇x1x2g1(x)

∇x2x1f2(x, ξj) +∇x2x1g2(x) ∇x2x2f2(x, ξj) +∇x2x2g2(x)

)
=

(
M̃1(ξi) +M1 R1

R2 M̃2(ξj) +M2

)

is positive definite and then for any ξi, ξj ∈ [0, 1],
M̃1(ξi) +M1 R1 b1

R2 M̃2(ξj) +M2 b2

−b>1 −b>2 0


is positive semi-definite. Since random variable φx(ξ) in (4.26) is f1(x, ξ) and f2(x, ξ) and P
follows the uniform distribution over [−1, 1], f1(x, ξ) and f2(x, ξ) follow continuous distribution

and their α-quantiles, denote by κ1
α and κ2

α, are unique for all α ∈ [0, 1] when x 6= 0. In this

case, P(f1(x, ξ) = κ1
α) = 0 and P(f2(x, ξ) = κ2

α) = 0 for all α ∈ [0, 1], and then ∂f1R(f1(x, ξ))

and ∂f2R(f2(x, ξ)) are singleton.

Let {ξ1, · · · , ξN} be the i.i.d. sample of ξ generated from P. Then we solve

0 ∈
N∑
j=1

pji∇xifi(x, ξ
j) +∇xigi(x) + biµ+NXi(xi), i = 1, 2 (5.1)

0 ∈ c− b1x1 − b2x2 +NR+(µ), (5.2)

where for i = 1, 2, Pi = (p1
i , · · · , pNi ) is from

Pi ∈ arg max
Qi∈MN

i

1

N

N∑
j=1

qjiφi(x1, x2, ξ
j), (5.3)

where φ(x1, x2, ξ) = fi(x1, x2, ξ) + gi(x1, x2), Qi = (q1
i , · · · , qNi ) and

MN
i :=

P ∈ RN+ :
N∑
j=1

(pj − 1

N
)2 ≤ 0.05

N
,

N∑
j=1

pj = 1

 .

We consider sample size N = (50, 100, 300, 600, 1200). For each sample size, we generate 20

group of samples and solve the corresponding DRVI (5.1) - (5.3) by Algorithm 1 with τ = 0.2

and randomly generated z0 ∈ [0, 1]5 using the uniform distribution in Matlab.

Since the two players are symmetric, then x1 = x2 and we only show x1 with x1 = (x11, x12)>

in Figures 1-2. From the two figures, we can observe the tendency of convergence as sample size

increases, which is consistent with our convergence results.
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Algorithm 1 Projection method for solving DRVI.

1: Choose a parameter τ ∈ (0, 1) and an initial point z0 = ((x0
1)>, (x0

2)>, µ0)>. Set k ← 0.

2: Solve

P ki = arg max
Qi∈MN

i

EQi [φi(x
k, ξ)], for i = 1, 2.

3: Set

F k(z) =


∑N

j=1(pj1)k∇x1f1(x, ξj) +∇x1g1(x) + b1µ∑N
j=1(pj2)k∇x2f2(x, ξj) +∇x2g2(x) + b2µ

c− b1x1 − b2x2


where ((p1

i )
k, · · · , (pNi )k) = P ki , i = 1, 2.

4: If ‖min(zk, F k(zk))‖2 ≤ 10−8, stop, otherwise find zk+1 such that

‖zk+1 − ProjR5
+

(zk+1 − τF k(zk+1))‖ ≤ 10−8.

5: k ← k + 1, go to Step 2.

50 100 300 600 1200
Sample Size

1.46

1.465

1.47

1.475

x 11

Figure 1: convergence of x11

50 100 300 600 1200
Sample Size

1.025

1.03

1.035

1.04

x 12

Figure 2: convergence of x12
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6 Conclusion remarks

To deal with uncertainties of probability distributions P in the SVI (1.1), we propose a formu-

lation of the DRVI in Definition 2.1. This formulation provides a unified framework for the

research of many important problems including the optimality conditions for distributionally

robust optimization and distributionally robust games. We show the existence of solutions of

the DRVI under the conditions that the set X of decision variables is convex and bounded or

the operator in the DRVI is monotone and coercive. Moreover, under the condition that the set

of densities associated with the ambiguity set M is law invariant, we propose a SAA approach

to the DRVI by using the corresponding law invariant risk measure R and establish its conver-

gence properties as the sample size N goes to infinity. The formulation of the DRVI, solutions

of the DRVI, the monotone condition, the SAA approach and the convergence properties of the

SAA are illustrated by seven examples. Within this new DRVI framework, some new algorithms

can be developed for finding robust solutions of optimization and equilibrium problems under

uncertain environment.
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7 Appendix

In this appendix, we give some proofs and necessary results used in this paper.

Proposition 7.1 Suppose (i) φ(·, ξ) is Lipschitz continuous in x ∈ X with a uniform Lipschitz

modules kφ, (ii) the CDF of φx̄ is strictly monotone, and (iii) {xN} is a sequence in X converging

to x̄, (iv) |κx′α | is bounded by a constant number for all x′ ∈ B(x)∩X, then for any bounded and

continuous function g,
∫

Ξ g(s)dP xNN (s) converges to
∫
φx̄(ξ)>κx̄α

g(s)dP(s).

Proof. For any continuous and bounded function g(s),∣∣∣∣∣∣∣
1

αN

∑
φxN (ξj)>κ

xN
α,N

g(ξj)− 1

α

∫
φx̄(ξ)>κx̄α

g(s)dP(s)

∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣
1

αN

∑
φxN (ξj)>κ

xN
α,N

g(ξj)− 1

αN

∑
φx̄(ξj)>κx̄α

g(ξj)

∣∣∣∣∣∣∣+

∣∣∣∣∣∣ 1

αN

∑
φx̄(ξj)>κx̄α

g(ξj)− 1

α

∫
φx̄(ξ)>κx̄α

g(s)dP(s)

∣∣∣∣∣∣ .
(7.1)

We first prove that κxNα,N converges to κx̄α w.p.1. To see this, by condition (ii), we have

P{φx̄(ξ) = κx̄α} = 0, then

κx̄α = arg min
τ

τ +
1

1− α
EP[(φx̄ − τ)+]

and

κxNα,N ∈ arg min
τ

τ +
1

(1− α)N

N∑
j=1

(φxN (ξj)− τ)+.
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It is easy to observe that (φx̄(ξ) − τ)+ is continuous w.r.t. x and dominated by an integrable

function, then by uniform law of large numbers [25, Theorem 7.48]∣∣∣∣∣∣EP[(φx̄ − τ)+]− 1

N

N∑
j=1

(φxN (ξj)− τ)+

∣∣∣∣∣∣→ 0

as N →∞ w.p.1. Then by conditions (i)-(iv) and [4, Proposition 4.4], we have κxNα,N converges

to κx̄α w.p.1.

Then we prove the convergence of first part in the right side of (7.1). Let

A1
N = {ξ ∈ Ξ : φxN (ξ) > κxNα,N , φ

x̄(ξ) ≤ κx̄α}, A2
N = {ξ ∈ Ξ : φxN (ξ) ≤ κxNα,N , φ

x̄(ξ) > κx̄α}

A3
N = {ξ ∈ Ξ : φx̄(ξ) ≥ κxNα,N − kφ‖x̄− xN‖, φ

x̄(ξ) ≤ κx̄α},

and

A4
N = {ξ ∈ Ξ : φx̄(ξ) ≤ κxNα,N + kφ‖x̄− xN‖, φx̄(ξ) ≥ κx̄α}.

Then ∣∣∣∣∣∣∣
1

αN

∑
φxN (ξj)>κ

xN
α,N

g(ξj)− 1

αN

∑
φx̄(ξj)>κx̄α

g(ξj)

∣∣∣∣∣∣∣ ≤ 1
αPN (A1

N ∪A2
N )|maxs g(s)|

≤ 1
αPN (A3

N ∪A4
N )|maxs g(s)|,

where PN is an empirical estimation of P. Note that κxNα,N → κx̄α and xN → x̄, A1
N ⊂ A3

N

and A2
N ⊂ A4

N , and A3
N and A4

N converge to singleton sets. Then by condition (i) and (ii),

PN (A1
N ∪A2

N ) ≤ PN (A3
N ∪A4

N )→ 0 as N →∞ w.p.1, which implies∣∣∣∣∣∣∣
1

αN

∑
φxN (ξj)>κ

xN
α,N

g(ξj)− 1

αN

∑
φxN (ξj)>κx̄α

g(ξj)

∣∣∣∣∣∣∣→ 0 (7.2)

as N →∞ w.p.1.

Then we consider the second part in the right side of (7.1). Since g is continuous and

bounded, by classical law of large numbers, as N →∞ w.p.1,∣∣∣∣∣∣ 1

αN

∑
φx̄(ξj)>κx̄α

g(ξj)− 1

α

∫
φx̄(ξ)>κx̄α

g(s)dP(s)

∣∣∣∣∣∣→ 0.

Combining discussion above, we have the conclusion. �

Then we derive a kind of uniform Glivenko-Cantelli theorem which we need in the proof of

Lemma 4.1. Let f(x, ξ) be a random function and {xN} → x as N → ∞. Moreover, suppose

f(x, ξ) is Lipschitz continuous w.r.t. x and ξ, and the Lipschitz modules κ(ξ) of f(·, ξ) is

integrable. We use HxN (t) and Hx(t) to denote the CDF of f(xN , ξ) and f(x, ξ) w.r.t. P and

HN
xN

(t) and HN
x (t) are used to denote the CDF of their empirical distributions i.i.d samples

{ξ1, · · · , ξN}.
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Lemma 7.1 Suppose f(x, ξ) is integrable and continuous w.r.t. x, and P is a continuous dis-

tribution. Then for each ε > 0, there exists a finite partition of the real line of the form

−∞ = t0 < t1 < · · · < tk =∞ such that for 0 ≤ j ≤ k − 1, H(xN , tj+1)−H(xN , tj) ≤ ε for all

N sufficiently large.

Proof. Since P is a continuous distribution, Hx(t) is a CDF of continuous distribution and

then, for any ε > 0 there exists −∞ = t0 < t1 < · · · < tk = ∞ such that for 0 ≤ j ≤ k − 1,

Hx(tj+1) − Hx(tj) ≤ ε
2 . Moreover, since f(x, ξ) is integrable and continuous w.r.t. x, by

Lebesgue’s dominated convergence theorem, for any continuous and bounded function h,

lim
N→∞

E[h(f(x, ξ))− h(f(xN , ξ))] = E
[

lim
N→∞

(h(f(x, ξ))− h(f(xN , ξ)))

]
= 0.

Then f(x, ·) converges to f(xN , ·) weakly, which equivalents to limn→∞ |HxN (t)−Hx(t)| = 0 for

any t ∈ R. Then there exists sufficiently large n such that supj∈{0,··· ,k} |HxN (tj)−Hx(tj)| ≤ ε
4 .

Then we have

|HxN (tj+1)−HxN (tj)| ≤ |HxN (tj+1)−Hx(tj+1)|+ |Hx(tj+1)−Hx(tj)|+ |Hx(tj)−HxN (tj)|
≤ ε

4 + ε
2 + ε

4 = ε. �

Theorem 7.1 Suppose f(x, ξ) is Lipschitz continuous w.r.t. x and ξ, and the Lipschitz modules

κ(ξ) of f(·, ξ) is integrable, f(x, ·) ∈ LP (Ξ,F ,P) and P is a continuous distribution. Then w.p.1

lim
N→∞

sup
t∈R
|HN

xN
(t)−Hx(t)| = 0, (7.3)

and (HN
xN

)−1 converges w.p.1 to H−1
x in the norm topology of Lp as N →∞.

Proof. Note that

|HN
xN

(t)−Hx(t)| ≤ |HN
xN

(t)−HxN (t)|+ |HxN (t)−Hx(t)|.

It is sufficiently to show that for any ε > 0,

lim sup
N→∞

sup
t
|HN

xN
(t)−HxN (t)| ≤ ε (7.4)

and

lim sup
N→∞

sup
t
|HxN (t)−Hx(t)| ≤ ε. (7.5)

We consider (7.4) firstly. By Lemma 7.1, there exists −∞ = t0 < t1 < · · · < tk = ∞ such that

for 0 ≤ j ≤ k − 1, HxN (tj+1)−HxN (tj) ≤ ε
2 for all n sufficiently large. For any t, there exists j

such that tj ≤ t ≤ tj+1. For such j,

HN
xN

(tj) ≤ HN
xN

(t) ≤ HN
xN

(tj+1) and HxN (tj) ≤ HxN (t) ≤ HxN (tj+1),

which implies

HN
xN

(tj)−HxN (tj+1) ≤ HN
xN

(t)−HxN (t) ≤ HN
xN

(tj+1)−HxN (tj).
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Then we have

HN
xN

(tj)−HxN (tj) +HxN (tj)−HxN (tj+1) ≤ HN
xN

(t)−HxN (t)

and

HN
xN

(tj+1)−HxN (tj+1) +HxN (tj+1)−HxN (tj) ≥ HN
xN

(t)−HxN (t).

Note that by Lemma 7.1 and by uniform law of large numbers [25, Theorem 7.48], HxN (tj+1)−
HxN (tj) ≤ ε

2 and |HN
xN

(tj+1) −HxN (tj)| ≤ ε
4 for all N sufficiently large and j = 0, · · · , k, then

we have (7.4). Now we consider (7.5). Similar as the procedure above, For any t, there exists j

such that tj ≤ t ≤ tj+1. For such j,

Hx(tj) ≤ Hx(t) ≤ Hx(tj+1) and HxN (tj) ≤ HxN (t) ≤ H(xN , tj+1).

Then by continuous distribution of P, Lipschitz continuous of f(x, ξ) w.r.t. x and Lemma 7.1,

for any t ∈ R,

|HxN (t)−Hx(t)| ≤ |Hx(t)−HxN (tj)|+ |HxN (tj)−Hx(tj)|+ |Hx(tj)−Hx(t)|
≤ |HxN (tj+1)−HxN (tj)|+ |HxN (tj)−Hx(tj)|+ |Hx(tj)−Hx(tj+1)|
≤ ε.

Combine (7.4) and (7.5), we have (7.3).

Moreover, (7.3) implies (HN
xN

)−1 pointwise converges to H−1
x on the set [0, 1]. Then, if the

sequence {|(HN
xN

)−1(s)−H−1
x (s)|p} is uniformly integrable, (HN

xN
)−1 converges w.p.1 to H−1

x in

the norm topology of Lp as N →∞, that is w.p.1

lim
N→∞

∫ 1

0
|(HN

xN
)−1(s)−H−1

x (s)|pds =

∫ 1

0
lim
N→∞

|(HN
xN

)−1(s)−H−1
x (s)|pds = 0,

where the first equality comes from the Lebesgue’s dominated convergence theorem.

Let us show that the uniform integrability indeed holds. By triangle inequality,

|(HN
xN

)−1(s)−H−1
x (s)|p ≤ |(HN

xN
)−1(s)|p + |H−1

x (s)|p.

Then we only need to show the uniform integrability of |(HN
xN

)−1(s)|p. Note that

∫ 1

0
|(HN

xN
)−1(s)|pds =

∫
Ξ
|f(xN , ξ)|pdHN

xN
=

1

N

N∑
i=1

|f(xN , ξ
i)|p.

Since the Lipschitz continuity of f(x, ξ) with Lipschitz modules κ(ξ),

| 1
N

∑N
i=1 |f(xN , ξ

i)|p − EP[|f(x, ξ)|p]| ≤ | 1
N

∑N
i=1 |f(xN , ξ

i)|p − 1
N

∑N
i=1 |f(x, ξi)|p|

+ | 1
N

∑N
i=1 |f(x, ξi)|p − EP[|f(x, ξ)|p]|

≤ | 1
N

∑N
i=1 κ(ξ)(x− xN )|p

+ | 1
N

∑N
i=1 |f(x, ξi)|p − EP[|f(x, ξ)|p]|.
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Moreover, by the Law of Large Numbers and xN → x, 1
N

∑N
i=1 κ(ξ)→ EP[κ(ξ)], | 1

N

∑N
i=1 κ(ξ)(x−

xN )|p → 0 and | 1
N

∑N
i=1 |f(x, ξi)|p − EP[|f(x, ξ)|p]| → 0 as N → ∞ w.p.1. It follows that

|(HN
xN

)−1(s)|p converges w.p.1 to a finite limit, which implies that w.p.1 |(HN
xN

)−1(s)|p is uni-

formly integrable. �

Proof of Proposition 4.1. For any continuous and bounded function g : Ξ→ R, we have that∫
Ξ
g(s)ζ̄ x̄(s)dP(s) =

∫
[0,1)

∫
Ξ
g(s)ζ̄ x̄α(s)dP(s)dµ̄(α) =

∫
[0,1)

1

1− α

∫
φx̄(ξ)>κα

g(s)dP(s)dµ̄(α),

where µ̄ is corresponding to σ̄. Moreover,∫
Ξ
g(s)dP xNN (s) =

∫
[0,1)

1

N

N∑
j=1

g(ξj)(ζxNj )αdµN (α) =

∫
[0,1)

1

(1− α)N

∑
φxN (ξj)>καN,xN

g(ξj)dµN (α).

Then

|
∫

Ξ g(s)dP xNN (s)−
∫

Ξ g(s)ζ̄ x̄(s)dP(s)|

≤

∣∣∣∣∣∣∣
∫

[0,1)

1

(1− α)N

∑
φxN (ξj)>καN,xN

g(ξj)dµN (α)−
∫

[0,1)

1

1− α

∫
φx̄(ξ)>κα

g(s)dP(s)dµN (α)

∣∣∣∣∣∣∣
+

∣∣∣∣∣
∫

[0,1)

1

1− α

∫
φx̄(ξ)>κα

g(s)dP(s)dµN (α)−
∫

[0,1)

1

1− α

∫
φx̄(ξ)>κα

g(s)dP(s)dµ̄(α)

∣∣∣∣∣.
(7.6)

We first prove∣∣∣∣∣
∫

[0,1)

1

1− α

∫
φx̄(ξ)>κα

g(s)dP(s)dµN (α)−
∫

[0,1)

1

1− α

∫
φx̄(ξ)>κα

g(s)dP(s)dµ̄(α)

∣∣∣∣∣→ 0 (7.7)

as N →∞. From condition (iii), g(ξ) is continuous and bounded and φx̄(ξ) is continuous w.r.t.

ξ, then for any α′ → α, α′, α ∈ [0, 1), we have∣∣∣∣∣
∫
φx̄(ξ)>κα′

g(s)dP(s)−
∫
φx̄(ξ)>κα

g(s)dP(s)

∣∣∣∣∣ ≤ P((Aα′ −Aα) ∪ (Aα −Aα′)) max
s
g(s),

where Aα = {ξ : φx̄(ξ) > κα} and Aα′ = {ξ : φx̄(ξ) > κα′}. Note that a′ → a and the CDF

of φx̄ is strictly monotone, Aα′ → Aα and P((Aα′ − Aα) ∪ (Aα − Aα′)) → 0. Then we have
1

1−α
∫
φx̄(ξ)>κα

g(s)dP(s) is continuous and bounded w.r.t. α, and (7.7) is from the fact that µN

weak* converges to µ. Indeed, by Lemma 4.1, σN weak* converges to σ̄, then for any continuous

and bounded function g(t),
∫

[0,1) g(t)σN (t)dt→
∫

[0,1) g(t)σ̄(t)dt as N →∞. Then

|
∫

[0,1) g(α)µN (α)dα−
∫

[0,1) g(α)µ̄(α)dα| = (1− α)|
∫

[0,1) g(α)σN (α)dα−
∫

[0,1) g(α)σ̄(α)dα|
+

∫
[0,1)

∫ α
0 g(α)(σN (t)− σ̄(t))dtdα→ 0

as N →∞, which implies µN weak* converges to µ̄.
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Then we prove∣∣∣∣∣∣∣
∫

[0,1)

1

(1− α)N

∑
φxN (ξj)>καN,xN

g(ξj)dµN (α)−
∫

[0,1)

1

1− α

∫
φx̄(ξ)>κα

g(s)dP(s)dµN (α)

∣∣∣∣∣∣∣→ 0.

Note that φx̄(ξ) is Lipschitz continuous w.r.t. x, the given g is continuous and bounded func-

tion w.r.t. ξ and {ξj}Nj=1 is i.i.d. samples from P, both 1
(1−α)N

∑
φxN (ξj)>καN,xN

g(ξj) and
1

1−α
∫
φx̄(ξ)>κα

g(s)dP(s) are bounded by maxs∈[0,1] g(s) and by Proposition 7.1

lim
N→∞

∣∣∣∣∣∣∣
1

(1− α)N

∑
φxN (ξj)>καN,xN

g(ξj)− 1

1− α

∫
φx̄(ξ)>κα

g(s)dP(s)

∣∣∣∣∣∣∣ = 0.

We then have

lim
N→∞

∣∣∣∣∣∣∣
∫

[0,1)

1

(1− α)N

∑
φxN (ξj)>καN,xN

g(ξj)dµN (α)−
∫

[0,1)

1

1− α

∫
φx̄(ξ)>κα

g(s)dP(s)dµN (α)

∣∣∣∣∣∣∣
≤ lim

N→∞

∫
[0,1)

∣∣∣∣∣∣∣
1

αN

∑
φxN (ξj)>καN,xN

g(ξj)−
∫

[0,1)

1

α

∫
φx̄(ξ)>κα

g(s)dP(s)

∣∣∣∣∣∣∣ dµN (α)

≤ lim
N→∞

∫
[0,1)

∣∣∣∣∣∣∣
1

αN

∑
φxN (ξj)>καN,xN

g(ξj)−
∫

[0,1)

1

α

∫
φx̄(ξ)>κα

g(s)dP(s)

∣∣∣∣∣∣∣ dµ̂(α)

= 0,

where the second inequality is from condition (iii) and the third equality is from Lebesgue’s

dominated convergence theorem.

Combining the above analysis, we have (7.6), that is then P xNN converges weakly to P x̄. �

Proof of Theorem 4.1. By conditions (c) - (e),

P x̄ ∈ arg max
Q∈M

EQ[φ(x̄, ξ)].

Then we only need to prove x̄ is a solution of (3.3), that is equivalent to

0 ∈ EP x̄ [Φ(x̄, ξ)] +NX(x̄). (7.8)

Since x̂N → x̄,

lim sup
N→∞

NX(x̂N ) ⊂ NX(x̄). (7.9)

Moreover,

‖E
P
x̂N
N

[Φ(x̂N , ξ)]− EP x̄ [Φ(x̄, ξ)]‖ ≤ ‖E
P
x̂N
N

[Φ(x̂N , ξ)]− EP x̄ [Φ(x̂N , ξ)]‖

+ ‖EP x̄ [Φ(x̂N , ξ)]− EP x̄ [Φ(x̄, ξ)]‖.
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Note that since P x̂NN → P x̄ weakly and by Assumption 4.2 (b), P x̂NN → P x̄ under Wasserstein

metric [21]. Then by condition (b), we have for any N , Φ(x̂N , ·) is Lipschitz continuous and

lim
N→∞

sup
z∈Z̄
‖E

P
x̂N
N

[Φ(z, ξ)]− EP x̄ [Φ(z, ξ)]‖ = 0, (7.10)

where Z̄ := {x̂N , N = 1, 2, · · · }. Moreover,

lim
N→∞

‖EP x̄ [Φ(x̄, ξ)]− EP x̄ [Φ(x̂N , ξ)]‖ ≤ lim
N→∞

EP x̄ [κ(ξ)]‖x̄− x̂N‖

≤ lim
N→∞

sup
P∈M̂

EP [κ(ξ)]‖x̄− x̂N‖

= 0.

(7.11)

Combining (7.10)-(7.11), we have

lim
N→∞

‖E
P
x̂N
N

[Φ(x̂N , ξ)]− EP x̄ [Φ(x̄, ξ)]‖ = 0, (7.12)

which implies (7.8). �
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