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lutions and monotonicity of the DRVI are discussed. Moreover, we propose a

Sample Average Approximation (SAA) approach to the DRVI and study its

convergence properties. Numerical examples of DRG are presented to illustrate

solutions of the DRVI and convergence properties of the SAA approach.
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1 Introduction

Let X ⊆ Rn be a nonempty closed convex set and

NX(x) =
{
y ∈ Rn : y⊤(x′ − x) ≤ 0, x′ ∈ X

}
be the normal cone to X at x ∈ X (note that NX(x) = ∅ if x ̸∈ X). Let ξ ∈ Rℓ

be a random vector with support set Ξ ⊂ Rℓ equipped with its Borel sigma

algebra B and probability distribution P . Consider the stochastic variational

inequality (SVI):

0 ∈ EP [Φ(x, ξ)] +NX(x), (1)

where Φ : X × Ξ → Rn is such that the corresponding expectation is well

defined. By writing EP we emphasize that the expectation is taken with respect

to the considered probability measure (distribution) P on (Ξ,B). With some

abuse of the notation we use ξ to denote a random vector whose probability

distribution is supported on the set Ξ, and also a point (an element) of the

set Ξ, specific meaning will be clear from the context.

The SVI provides a unified form of the first order optimality conditions of

stochastic optimization, and models numerous equilibrium problems in eco-

nomics, finance, management and engineering [27,29,31]. In the recent two

decades, the SVI has been studied extensively and many new algorithms for

solving the SVI have been developed [6,8,12]. Moreover, the two-stage SVI

and multi-stage SVI have been introduced and investigated actively in the

last few years [7,9,10,24,25,31]. In the SVI, the probability distribution of ξ

is supposed to be known (specified) exactly. However, unlike the well-studied

distributionally robust optimization (DRO), theories and algorithms of DRVI

are very limited. In practice the “true” distribution P of random variables is

not known and could be estimated at best from historical data. The uncer-

tainty of the “true” distribution in itself motivates the distributionally robust

approach. We suggest the following formulation of the DRVI as a counterpart

of (1):

0 ∈ EP [Φ(x, ξ)] +NX(x), (2)

P ∈ arg max
Q∈M

EQ[ϕ(x, ξ)], (3)
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where ϕ : X × Ξ → R and M is a specified set of probability measures

(distributions) on (Ξ,B). Note that by solving the above DRVI we mean to

find a pair x̄ ∈ X and P̄ ∈ M satisfying (2)-(3).

The robust Linear Complementarity Problem (LCP) is another kind of

robust version of the stochastic LCP. The earliest work is [32] which considers

ρ-robust solutions of robust LCPs. Xie and Shanbhag analyse tractable strictly

robust counterparts of uncertain LCPs [34]. More recently, the Γ -robustness

[4] is applied to the robust LCPs [18]. Note that robust LCPs can be considered

as a robust version of expected residual minimization formulation [6]. It is also

valuable to point out that the robust LCPs try to find a solution which can

minimize the gap function over an uncertain set, while the DRVI (2)-(3) is to

find a solution of the SVI under the worst distribution over the ambiguity set

M, see Remark 2 for more details.

We give the definition and examples of such DRVIs in section 2. We also

highlight the difference between DRVI and SVI, see Remark 1. Our main

contributions in this paper are threefold.

– Based on (2)-(3), we propose a comprehensive formulation of the DRVI to

deal with the uncertain distribution in the SVI. We show that the first or-

der optimality conditions of distributionally robust optimization and DRG

are special cases of this formulation of the DRVI. Moreover, the DRVI for-

mulation can be used to describe stochastic equilibrium problems in the

case when the distribution of random variables is ambiguous.

– We define the monotonicity of the DRVI and show the existence of the

solutions of the DRVI under certain conditions.

– We investigate convergence properties of the SAA approach to discretiza-

tion of DRVIs. Moreover, we use numerical examples of DRG to illustrate

the formulation of the DRVI and the convergence of the SAA method.

In section 2, we review four fundamental examples that are special cases of

the DRVI. The first two examples are the first order optimality conditions of

two types of DRO problems. The third example is an equivalent formulation of

DRG with convex objective functions of players and share constraints among

players. The fourth example discusses a Walrasian equilibrium problem with

uncertain costs. In section 3, we define the monotonicity of the DRVI and

prove the existence of solutions to the DRVI. In section 4, we propose an SAA

approach for the DRVI with the corresponding convergence analysis. In section
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5, we use numerical examples to illustrate the DRVI and the convergence of

the SAA.

2 Formulation of the DRVI

In this section we give an extended (multivariate) definition of the DRVI and

consider four relevant examples.

Definition 1 (DRVI) Let Mi, i = 1, ..., r, be sets of probability measures

on the sample space (Ξ,B), X ⊆ Rn be a closed convex set with nonempty

interior, Φ : X × Ξ → Rn, ϕi : X × Ξ → R, i = 1, . . . , r, be continuous

functions in x ∈ X such that Φ(x, ·) and ϕi(x, ·) are measurable. The DRVI is

to find a pair (x, P ) ∈ X ×M satisfying

0 ∈ EP [Φ(x, ξ)] +NX(x), (4)

Pi ∈ arg max
Q∈Mi

EQ[ϕi(x, ξ)], i = 1, . . . , r, (5)

where1 M := {P1 × . . .× Pr : Pi ∈ Mi, i = 1, ..., r},

EP [Φ(x, ξ)] :=
(
EP1

[Φ1(x, ξ)]
⊤, · · · ,EPr

[Φr(x, ξ)]
⊤)⊤ ,

with Φ(x, ξ) = (Φ⊤
1 (x, ξ), · · · , Φ⊤

r (x, ξ))
⊤, Φi(x, ξ) ∈ Rni and

∑r
i=1 ni = n.

Remark 1 It is worthwhile to explain the difference between SVI and DRVI

defined above. In the case when the decision makers know the true distributions

Pi, i.e., Mi = {Pi}, i = 1, · · · , r, then (5) trivially holds and the DRVI reduces

to SVI. When the decision makers do not know the true distributions Pi, but

the ambiguity sets Mi are specified, then they would like to solve the SVI (4)

under the worst random environment (worst distribution), and (5) is used to

define the worst distribution over Mi, i = 1, · · · , r. It is interesting to consider

how to design ϕi in (5) (how to define the worst random environment). We

give several examples below to illustrate this issue. In Examples 1-3, the worst

distributions come from the DRO, which make the worst objective values.

Moreover, if there is no objective function, the worst case distributions are

still used to describe the worst case random environment, which depends on

the decision makers’ purposes, see Example 4.

1 The notation P1 × . . .× Pr stands for the product of measures P1, . . . , Pr.
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Example 1 Consider the following distributionally robust stochastic program

min
x∈X

sup
P∈M

EP [ϕ(x, ξ)], (6)

where ϕ : X × Ξ → R. A point (x̄, P̄ ) ∈ X × M is a saddle point of the

minimax problem (6) iff

x̄ ∈ arg min
x∈X

EP̄ [ϕ(x, ξ)] and P̄ ∈ arg max
P∈M

EP [ϕ(x̄, ξ)]. (7)

Assuming that ϕ is differentiable in x and the differentiation and expectation

operators can be interchanged, we can write the optimality conditions for the

first problem in (7) in the form (4) with Φ(x, ξ) := ∇xϕ(x, ξ). This leads to

the DRVI of the form (4) - (5) with r = 1.

Example 2 Consider the following distributionally robust stochastic program2

min
x∈X

sup
P0∈M

EP0 [ϕ0(x, ξ)]

s.t. sup
P1∈M

EP1 [ϕ1(x, ξ)] ≤ 0,
(8)

where ϕi(x, ξ), i = 0, 1, are convex and twice continuously differentiable with

respect to x.

The corresponding Lagrangian function is

L(x, λ) := sup
P0∈M

EP0
[ϕ0(x, ξ)] + λ sup

P1∈M
EP1

[ϕ1(x, ξ)],

where λ ≥ 0. Suppose that the supremum in (8) is finite valued for every

x ∈ X and the Slater constraint qualification holds [21], then distributionally

robust stochastic program (8) is equivalent to

min
x∈X

max
λ≥0

sup
P0∈M

EP0
[ϕ0(x, ξ)] + λ sup

P1∈M
EP1

[ϕ1(x, ξ)].

Since ϕi, i = 0, 1, are convex, the above problem is equivalent to

min
x∈X

max
λ≥0,P0∈M,P1∈M

EP0
[ϕ0(x, ξ)] + λEP1

[ϕ1(x, ξ)].

Then the corresponding DRVI is

0 ∈ EP0
[∇xϕ0(x, ξ)] + λEP1

[∇xϕ1(x, ξ)] +NX(x),

0 ∈ −EP1 [ϕ1(x, ξ)] +NR+(λ),

Pi ∈ arg max
Q∈M

EQ[ϕi(x, ξ)], i = 0, 1.

2 For the sake of simplicity we consider here just one constraint; of course this can be

extended to a finite number of such constraints in a straightforward way.
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Example 3 Consider the following distributionally robust formulation of Nash

equilibrium with r players: find (x∗1, ..., x
∗
r) ∈ Rn1 × · · · × Rnr such that

x∗i ∈ arg min
xi∈Xi

max
Pi∈Mi

EPi
[ϕi(xi, x

∗
−i, ξ)], i = 1, ..., r. (9)

Here Xi ⊂ Rni is a nonempty convex closed set with nonempty interior, Mi is

a set of probability measures on (Ξi,Bi), Ξi ⊂ Rℓi , and ϕi : Rn1 × · · · ×Rnr ×
Ξi → R, i = 1, ..., r. Similar to (7), problem (9) leads to the following DRVI

formulation (under appropriate differentiability assumptions)

0 ∈ EPi [Φi(x1, ..., xr, ξ)] +NXi(xi), i = 1, ..., r,

Pi ∈ arg max
Qi∈Mi

EQi
[ϕi(x1, ..., xr, ξ)], i = 1, ..., r,

with Φi(x1, ..., xr, ξ) := ∇xi
ϕi(x1, ..., xr, ξ), i = 1, ..., r.

Example 4 Consider the Walrasian equilibrium problem with uncertain costs.

Let m and n be the number of economic activities and goods, respectively.

The uncertain cost is described by random cost functions ci(xi, ξi), where xi

denotes the unknown level of the i-th activity and ξi is a random variable,

i = 1, · · · ,m. The initial endowment of the j-th good is bj and the demand

function for the j-th good is dj(p), where p ∈ Rn is the price vector of all

goods, j = 1, · · · , n. The technology input-output matrix of the economy is

given by the m × n matrix A. Then a pair of activity-price patterns (y, p) is

a general equilibrium if the following conditions are satisfied (in the sense of

expectation):

0 ≤ x ⊥ EP [c(x, ξ)]−Ap ≥ 0, (10)

0 ≤ p ⊥ b+A⊤x− d(p) ≥ 0, (11)

where P := (P1, · · · , Pm) and

EP [c(x, ξ)] = (EP1 [c1(x1, ξ1)], · · · ,EPm [cm(xm, ξm)])⊤.

Consider the setting where the distributions P1, · · · , Pm are not known,

and respective ambiguity sets M1, ...,Mm are specified. We hope to reduce

the total cost, which leads to the worst case random environment

Pi ∈ arg max
Qi∈Mi

EQi
[ci(xi, ξi)], i = 1, · · · ,m.
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Then the DRVI should be

0 ≤ x ⊥ EP [c(x, ξ)]−Ap ≥ 0, (12)

0 ≤ p ⊥ b+A⊤x− d(p) ≥ 0, (13)

Pi ∈ arg max
Qi∈Mi

EQi
[ci(xi, ξi)], i = 1, · · · ,m. (14)

Note also that the worst distribution can be defined in different ways, which

depends on the purpose of decision makers.

Remark 2 If X = Rn
+, then (2)-(3) reduces to the formulation of the distribu-

tionally robust complementarity problem (DRCP)

0 ≤ x ⊥EP [Φ(x, ξ)] ≥ 0, P ∈ arg max
Q∈M

EQ[ϕ(x, ξ)]. (15)

Other formulation of the DRCP from [9] can be written as follows

0 ≤ x, max
P∈M

EP [−Φi(x, ξ)] ≤ 0, i = 1, . . . , n, (16)

max
P∈M

EP [x
⊤Φ(x, ξ)] = 0, (17)

which is to find x to solve 0 ≤ x ⊥EP [Φ(x, ξ)] ≥ 0 for all P ∈ M. Obviously,

if (x∗, P ∗) is a solution of (16)-(17), then it is a solution of (15) with ϕ(x, ξ) :=

x⊤Φ(x, ξ).

In the case when (16)-(17) has no solution, it can be considered as a dis-

tributionally robust version of expected residual minimization formulation:

min
x

max
P∈M

EP [x
⊤Φ(x, ξ)] (18)

s.t. 0 ≤ x, EP [−Φ(x, ξ)] ≤ 0, ∀P ∈ M.

It is also interesting to see the difference between distributionally robust

LCP (15) (with Φ(x, ξ) := M(ξ1)x + q(ξ2)) and the robust LCP (e.g. [32,34,

18])

min
x

max
(ξ1,ξ2)∈Ξ

x⊤(M(ξ1)x+ q(ξ2)) (19)

s.t. 0 ≤ x, −(M(ξ1)x+ q(ξ2)) ≤ 0, ∀(ξ1, ξ2) ∈ Ξ,

where ξ := (ξ1, ξ2) is a random vector with support set Ξ. Note that distribu-

tionally robust LCP (15) is to find a solution of the stochastic LCP under the

worst distribution over M. In contrast, the robust LCP (19) does not consider

the distribution of ξ, and its solution is not a solution of an LCP in general.
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3 Existence of solutions of the DRVI

In this section we investigate the existence of solutions of the DRVI in three

cases: discrete distributions, continuous distributions and monotone setting.

3.1 Finite dimensional setting

Suppose that the random vector ξ has a discrete distribution with a finite

support Ξ := {ξ1, ..., ξm} of cardinality m. This setting is especially relevant

for discretization of the involved, possibly continuous, distributions which is

required for numerical solutions. Then a probability distribution on Ξ can be

identified with probability vector q ∈ ∆m, where

∆m :=
{
q ∈ Rm

+ : q1 + ...+ qm = 1
}
.

That is, each set Mi, i = 1, ..., r, can be viewed as a subset of ∆m, and can

be assumed to be convex and closed. Condition (5) can be then written as

0 ∈ −ϕx +NM(p), where

ϕx := (ϕ1(x, ξ
1), ..., ϕ1(x, ξ

m), ..., ϕr(x, ξ
1), ..., ϕr(x, ξ

m))⊤ ∈ Rrm

and NM(p) is the normal cone to the set M := M1 × ... × Mr ⊂ Rrm at

p := (p1, · · · , pr). Thus in that case the corresponding DRVI can be written

as the following finite dimensional Variational Inequality (VI):

0 ∈
m∑
j=1

pjΦ(x, ξj) +NX(x), (20)

0 ∈ −ϕx +NM(p), (21)

in variables (x, p) ∈ X×∆r
m and pjΦ(x, ξj) = (pj1Φ1(x, ξ

j)⊤, ..., pjrΦr(x, ξ
j)⊤)⊤.

In that setting existence of solution follows by the standard results (e.g.,

[16, Corollary 2.2.5]).

Proposition 1 Suppose Φ(x, ξ) and ϕi(x, ξ) are continuous in x for every

ξ ∈ Ξ, i = 1, · · · , r, and the set X is bounded (and hence the set X × M ⊂
Rn × Rrm is convex and compact). Then finite dimensional VI (20)-(21) has

a nonempty and compact solution set.
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3.2 Continuous distributions setting

Let us consider now settings with continuous distributions of the random vec-

tor ξ. We assume the existence of a reference probability measure P on (Ξ,B)
and that the ambiguity set consists of probability measures in some sense close

to the reference measure3 P. To proceed consider the space4 Z := Lp(Ξ,B,P),
p ∈ [1,∞), and its dual space Z∗ := Lq(Ξ,B,P), q ∈ (1,∞], 1/p + 1/q = 1.

We assume p = q = 2 in this section. We also use notations Φx
i (·) := Φi(x, ·)

and ϕxi (·) := ϕi(x, ·).

Assumption 1 Suppose that, for i = 1, ..., r, the set Mi in (5) consists of

probability measures that are absolutely continuous with respect to P and con-

sider the set Ai := {ζ = dQ/dP : Q ∈ Mi} of the corresponding density

functions. Suppose further that Ai is a bounded, convex and weakly* closed

subset of Z∗, and that ϕxi ∈ Z for every x ∈ X and i = 1, ..., r.

Assumption 1 will hold for several settings of ambiguity sets, e.g., law invariant

coherent risk measure [27, section 6.3.2], [28], ψ-divergence ball5 [22], [28,

Section 3.2] and so on. Moreover, Assumption 1 can also hold in the discrete

distributions setting when P is discrete (e.g. P is empirical distribution).

Remark 3 Historically the first approach to what is now called “distributional

robustness”, was based on the following argument. The employed probability

distribution is not ‘exact’ and hence one can hedge against a worst case by con-

sidering a family of probability distributions. In that approach, construction

(estimation) of the nominal distribution from the available data is based on a

(parametric) model, and typically the constructed distribution is continuous.

More recently the ‘data driven’ approach became popular. It is assumed that

3 For convenience, we use the same notation P for the true distribution and the reference

measure. We can distinguish them by context.
4 Banach spaces Z and Z∗, equipped with the respective weak and weak∗ topologies, are

paired topological vector spaces with respect to the bilinear form ⟨ζ, Z⟩ =
∫
Ξ ζZdP, Z ∈ Z,

ζ ∈ Z∗. Note that the weak topology of Z and weak∗ topology of Z∗, restricted to respective

bounded sets, are metrizable and hence can be described in terms of convergent sequences.

The weak convergence Zk
w→ Z̄ means that ⟨ζ, Zk⟩ converges to ⟨ζ, Z̄⟩ for any ζ ∈ Z∗. The

weak∗ convergence ζk
w∗
→ ζ̄ means that ⟨ζk, Z⟩ converges to ⟨ζ̄, Z⟩ for any Z ∈ Z.

5 In some publications “ϕ-divergence”, rather than “ψ-divergence”, terminology is used.

Here we use the definition of ψ-divergence from [28, Section 3.2] and its references. The

precise definition will be given later (see Example 7 below).
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the observed (finite) random sample is coming from the ‘true’ distribution. If

this assumption about the existence of the true distribution is accepted, then

the question is why it is better to use the distributionally robust approach,

with quite an artificially constructed ambiguity set, rather then the empirical

distribution which was used in statistics for a long time. Of course, a polemic

about this is far beyond the scope of this paper.

Since ϕxi ∈ Z, it follows that for any ζ ∈ Ai and dQ = ζdP the integral

EQ[ϕ
x
i ] =

∫
Ξ

ϕxi ζdP

is well defined and finitely valued. In what follows, we consider the ambiguity

sets that satisfy Assumption 1 and hence (4)-(5) can be rewritten as

0 ∈
∫
Ξ

Φx
i ζidP+NXi

(xi), i = 1, . . . , r, (22)

ζi ∈ argmax
η∈Ai

∫
Ξ

ϕxi ηdP, i = 1, . . . , r. (23)

Under Assumption 1, for i = 1, · · · , r, the set Ai is convex and closed in

the weak∗ topology of Z∗
i , and hence is weakly∗ compact. It follows that the

set

Āx
i := argmax

η∈Ai

∫
Ξ

ϕxi ηdP

is nonempty for any x ∈ X (note that the set Āx
i represents the set of densities

of the “argmax” probability measures in the right hand side of (5)) and i.

Consider the mapping Φ and denote Φx(·) := Φ(x, ·). Suppose that for every

x ∈ X, every component of Φx belongs to the space Z := Z1 × · · · × Zr.

Consider the multifunction F : X ⇒ Rn defined as

F(x) :=

{
y =

∫
Ξ

Φx ζdP : ζ ∈ Āx

}
,

where ζ = (ζ1, ..., ζr) with ζi ∈ Āx
i , i = 1, ..., r and

Φx ζ := (Φ1(x, ·) ζ1, ..., Φr(x, ·) ζr)⊤.

In order to show the existence of solutions of the DRVI, we need to verify that

the following generalized equations have a solution

0 ∈ F(x) +NX(x). (24)
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Proposition 2 Suppose that the set X is nonempty convex closed and bounded,

and the mappings ϕx and Φx are weakly continuous with respect to x ∈ X. Then

the generalized equation (24) has a solution.

Proof It suffices to verify that the multifunction F is closed, that is, for any

sequences xk ∈ X converging to x̄ and yk ∈ F(xk) converging to ȳ, we have

ȳ ∈ F(x̄). Indeed, consider the multifunction S : X ⇒ X defined as

S(x) := argmin
v∈X

{dist(v,F(x))},

where dist(x,A) denotes the Euclidean distance from x to set A ⊂ Rn. Note

that if the set A is convex, then dist(·, A) is a convex function. We have that for

every x ∈ X, the set Āx is convex and hence the set F(x) is convex, and thus

S(x) is convex. Also if F is closed, then S is closed. It follows by Kakutani’s

fixed-point theorem that the multifunction S has a fixed point x̄ ∈ X. Let ȳ

be the closest point of F(x̄) to x̄. Then ȳ − x̄ ∈ NX(x̄).

In order to verify that F is closed we can proceed as follows. By the weak∗

compactness of A and the weak continuity of ϕx, we have that the multifunc-

tion X ∋ x 7→ Āx is weakly∗ closed6 (e.g., [5, Propsition 4.4 and discussion on

p. 264 ]). By the weak continuity of Φx it follows that F is closed. This follows

from the fact that if Zk
w→ Z̄ and ζk

w∗

→ ζ̄, then ⟨ζk, Zk⟩ → ⟨ζ̄, Z̄⟩ (e.g., [5,

Theorem 2.23 (iv)]). □

Remark 4 Recall that it is assumed that ϕx ∈ Z for every x ∈ X. The mapping

ϕx is weakly continuous if ϕ(x, ξ) is continuous in x and there is η ∈ Z such

that |ϕ(x, ξ)| ≤ η(ξ) for all x ∈ X and ξ ∈ Ξ. Indeed, for any ζ ∈ Z∗ we have

that |ϕx(ξ)ζ(ξ)| ≤ η(ξ)|ζ(ξ)| and
∫
η(ξ)|ζ(ξ)|dP < ∞. Thus for a sequence

{xk} ⊂ X converging to x̄ it follows by the Lebesgue dominated convergence

theorem that

lim
k→∞

∫
Ξ

ϕxk(z) ζ(z)dP(z) =
∫
Ξ

lim
k→∞

ϕxk(z) ζ(z)dP(z) =
∫
Ξ

ϕx̄(z) ζ(z)dP(z).

This shows that ϕx is weakly continuous. Similar conditions can be applied to

every component of the mapping Φx to guarantee its weak continuity.

Remark 5 For the set Ai ⊂ Z∗
i of density functions, we consider functional

Ri : Zi → R defined as

Ri(Z) := sup
ζi∈Ai

∫
Ξ

ZζidP. (25)

6 That is, if xk ∈ X converges to x̄ and ζk ∈ Āxk is such that ζk
w∗
→ ζ̄, then ζ̄ ∈ Āx̄.
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Since Ai is a bounded subset of Z∗
i , the value Ri(Z) is finite for any Z ∈ Zi.

This functional can be viewed as the dual representation of the corresponding

so-called coherent risk measure. Various examples of coherent risk measures,

their dual representations and closed forms for the corresponding sets Āx are

given in (e.g., [27, section 6.3.2]).

The optimality condition (5) can be written in the VI form as follows.

For each player i, i = 1, ..., r, recall that Zi and Z∗
i can be viewed as paired

spaces with respect to the bilinear form ⟨ζi, Z⟩ =
∫
Ξ
ζiZdP. Consider the

indicator function IAi(·) of the set Ai ⊂ Z∗
i , that is IAi(ζi) = 0 for ζi ∈ Ai

and IAi
(ζi) = +∞ for ζi ̸∈ Ai. At a point ζi ∈ Ai the subdifferential ∂IAi

(ζ)

is equal to the normal cone

NAi
(ζi) = {Z ∈ Zi : ⟨η − ζi, Z⟩ ≤ 0, ∀η ∈ Ai}.

For ζi ̸∈ Ai the normal cone NAi(ζi) = ∅. For Z ∈ Zi we have that ζ̄i ∈
argminζi∈Ai

⟨ζi,−Z⟩ iff ζ̄i ∈ argminζi∈Z∗
i
⟨ζi,−Z⟩ + IAi

(ζi). Since the subdif-

ferential of ⟨ζi,−Z⟩ + IAi
(ζi) at ζ̄i is equal to −Z + ∂IAi

(ζ̄i), it follows that

ζ̄i ∈ argminζi∈Ai
⟨ζi,−Z⟩ iff 0 ∈ −Z+NAi

(ζ̄i), that is, 0 ∈ −ϕ(x, ·)+NAi
(ζi).

Therefore the optimality condition (5) can be written here as

0 ∈ −ϕx +NA(ζ), (26)

where A := A1 × · · ·×Ar and ζ = (ζ1, ..., ζr). Note that by pairing Z and Z∗,

the normal cone NA(ζ) is a subset of the space Z.

This can be compared with the finite dimensional setting discussed in sec-

tion 3.1. Let P be the probability measure on the corresponding finite set

Ξ = {ξ1, ..., ξm} assigning equal probability 1/m to each elementary event.

Then any probability measure Q on Ξ is absolutely continuous with respect

to P and its density dQ/dP is given by mq where q ∈ ∆m is the respective

probability vector.

3.3 Monotonicity property

By (26) in section 3.2, we can write DRVI (22)-(23) as follows:

0 ∈
∫
Ξ

ΦxζdP+NX(x), (27)

0 ∈ −ϕx +NA(ζ), (28)
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where 0 : Ξ → Rr is a constant function with value 0, ϕx = (ϕ1(x, ·), · · · , ϕr(x, ·))⊤

is a vector-valued random function, and NA(ζ) := NA1
(ζ1)× · · · × NAr

(ζr).

Note that Rn ×Z and Rn ×Z∗ are paired by the respective bilinear form;

that is, for x, z ∈ Rn, u ∈ Z and ζ ∈ Z∗,

⟨(x, u), (z, ζ)⟩ := x⊤z +

r∑
i=1

∫
Ξ

uiζidP.

Consider mapping G : Rn ×Z∗ → Rn ×Z defined as

G(x, ζ) :=

(∫
Ξ
ΦxζdP
−ϕx

)
,

and denote the DRVI (4)-(5) by DRVI(G, (X,A)). Monotonicity properties of

this mapping are defined in the usual way. In particular, the mapping G is said

to be monotone if for any (x, ζ), (z, η) ∈ Rn × A, we have〈
G(x, ζ)− G(z, η),

(
x− z

ζ − η

)〉
≥ 0, (29)

and G is said to be strongly monotone if there is α > 0 such that〈
G(x, ζ)− G(z, η),

(
x− z

ζ − η

)〉
≥ α(∥x− z∥2 + ∥ζ − η∥2L2

), (30)

where ∥ζ−η∥L2
is defined by function metric in L2 space. Moreover, G cannot

be strongly monotone, since G(x, ζ)−G(x, η) =
(
(
∫
Ξ
ΦxζdP)⊤ − (

∫
Ξ
ΦxηdP)⊤,0

)⊤
.

However, G can be monotone under some reasonable conditions.

In what follows, we investigate the monotonicity of G. For j = 1, · · · , r, ξ̃j
is a random vector with support set Ξ and continuous distribution Qj such

that dQj = ζjdP, let Sj(ξ)
⊤, Sj(ξ̃j)

⊤ ∈ Rr, ξ̃ := (ξ̃1, · · · , ξ̃r) ∈ Ξr ⊆ Rrℓ,

S(ξ̃) := (S1(ξ̃1)
⊤, · · · , Sr(ξ̃r)

⊤)⊤ and S(ξ) := (S1(ξ)
⊤, · · · , Sr(ξ)

⊤)⊤.

Note that∫
Ξ

S(ξ)ζdP =

((∫
Ξ

S1(ξ)ζ1dP
)⊤

, · · · ,
(∫

Ξ

Sr(ξ)ζrdP
)⊤
)⊤

,

and the positive semidefiniteness of S(ξ) for every ξ ∈ Ξ cannot guarantee

that
∫
Ξ
S(ξ)ζdP is positive semidefinite, unless ζi = ζj , i, j ∈ {1, · · · , r}. The

following lemma gives a sufficient condition of the positive semidefiniteness of∫
Ξ
S(ξ)ζdP and is used to show the monotonicity of G. The key idea of the
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proof for the lemma is: we consider an SAA approach of
∫
Ξ
S(ξ)ζdP, and then

rewrite the SAA term as a finite sum of many positive semidefinite matrices

by a decomposition procedure.

Lemma 1 Suppose for any ξ̃ ∈ Ξr, S(ξ̃) is a positive semidefinite matrix.

Then for any ζ ∈ A,
∫
Ξ
S(ξ)ζdP is positive semidefinite.

Proof We consider a discrete approximation of
∫
Ξ
S(ξ)ζdP firstly. Let ΞN

j :=

{ξ1j , · · · , ξNj }, j = 1, · · · , N , be a discrete approximation of Ξ with the weight

vectors {p11, · · · , pN1 }, · · · , {p1r, · · · , pNr } such that for i = 1, · · · , N , j = 1, · · · , r,
pij ≥ 0,

∑N
i=1 p

i
j = 1 and w.p.1

lim
N→∞

N∑
i=1

pijSj(ξ
i) =

∫
Ξ

Sj(ξ)ζjdP. (31)

For any given ζ ∈ A, there are several ways to construct an approximation

above. One way is to construct i.i.d. samples ΞN
j := {ξ1j , · · · , ξNj } from con-

tinuous distribution Qj such that dQj = ζjdP for j = 1, · · · , r. Then pij = 1
N

if ξij ∈ ΞN
j and pij = 0 otherwise.

Let P i := diag(pi1, · · · , pir) for i = 1, · · · , N . Then∑N
i=1 P

iS(ξi) :=
(∑N

i=1 p
i
1S1(ξ

i)⊤, · · · ,
∑N

i=1 p
i
rSr(ξ

i)⊤
)⊤

is a discrete approximation of
∫
Ξ
S(ξ)ζdP. In what follows, we prove that∑N

i=1 P
iS(ξi) is positive semidefinite.

To this end, we do the following procedure.

Step 0. Let k = 1.We reorder the weight vectors {p11, · · · , pN1 }, · · · , {p1r, · · · , pNr }
to {p(1)1 , · · · , p(N)

1 }, · · · , {p(1)r , · · · , p(N)
r } such that p

(1)
j ≥ p

(2)
j · · · ≥ p

(N)
j for

j = 1, · · · , r. Let ξ̃k = (ξ̃
(1)
1 , · · · , ξ̃(1)r ) and p̃k = min{p(1)j , j = 1, · · · , r}. We

construct p̃kS(ξ̃
k) and reduce p̃k from p

(1)
j , that is new p

(1)
j := p

(1)
j − p̃k, for

j = 1, · · · , r. Note that by the condition of the lemma, p̃kS(ξ̃
k) is positive

semidefinite. Let k = k + 1.

Step 1. For j = 1, · · · , r, since we have reduced p̃k−1 from p
(1)
j and p

(1)
j may

not be the largest one of {p(1)j , · · · , p(N)
j }, we reorder the the weight vectors

again. To easy notation, we still denote the newly reordered weight vectors

as {p(1)1 , · · · , p(N)
1 }, · · · , {p(1)r , · · · , p(N)

r }. Note that now
∑N

i=1 p
(i)
j = 1 −∑k−1

i=1 p̃i. If
∑N

i=1 p
(i)
j = 0, for j = 1, · · · , r, stop. Note that

∑N
i=1 p

(i)
j =∑N

i=1 p
(i)
l for all j, l ∈ {1, · · · , r}. Otherwise, go to Step 2.
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Step 2. Let ξ̃k = (ξ̃
(1)
1 , · · · , ξ̃(1)r ) and p̃k = min{p(1)j , j = 1, · · · , r}. We con-

struct p̃kS(ξ̃
k) and reduce p̃k from p

(1)
j , that is new p

(1)
j := p

(1)
j − p̃k, for

j = 1, · · · , r. Note that by the condition of the lemma, p̃kS(ξ̃
k) is positive

semidefinite. Let k = k + 1. Go to Step 1.

Note that ξ̃k ∈ ΞN
r and |ΞN

r | = Nr, the procedure above will stop at

finite iterations, denote by K, K ≤ Nr. Since S(ξ̃k) is positive semidefinite

for k = 1, · · · ,K and
∑K

k=1 p̃k = 1, then

N∑
i=1

P iS(ξi) =

K∑
k=1

p̃kS(ξ̃
k)

is positive semidefinite, and by (31),
∫
Ξ
S(ξ)ζdP is positive semidefinite w.p.1.

Consequently the deterministic matrix
∫
Ξ
S(ξ)ζdP is positive semidefinite. □

We use Jxf(x, ·) to denote the partial Jacobian of f with respect to x. Let

ξ̃ := (ξ̃1, · · · , ξ̃r) ∈ Ξr ⊂ Rrℓ, and
∫
Ξ
JxΦ(x, ξ)ζdP :=


∫
Ξ
JxΦ

x
1ζ1dP
...∫

Ξ
JxΦ

x
r ζrdP

 .

Proposition 3 Consider DRVI (27)-(28). Suppose: (a) for i = 1, · · · , r and

ξ ∈ Ξ, Φi(·, ξ) and ϕi(·, ξ) are continuously differentiable; (b) for any ξ̃ ∈ Ξr

and x ∈ X,
(
(JxΦ1(x, ξ̃1))

⊤, · · · , (JxΦr(x, ξ̃r))
⊤
)⊤

is a positive semidefinite

matrix; (c) for P-a.e. ξ ∈ Ξ, x̃⊤i Φi(x, ξ)− Jxϕi(x, ξ)x̃ ≥ 0, for all x ∈ X and

x̃ ∈ Rn, i = 1, · · · , r. Then G is monotone over X × A.

Proof It is easy to observe that

JG(x,ζ) =



∫
Ξ
JxΦ

x
1ζ1dP Φ1(x, ·) · · · 0
...

...
. . .

...∫
Ξ
JxΦ

x
r ζrdP 0 · · · Φr(x, ·)

−Jxϕ1(x, ·) 0 · · · 0
...

...
. . .

...

−Jxϕr(x, ·) 0 · · · 0


, JG(x,ζ)

(
x̃

ζ̃

)
=



∫
Ξ
JxΦ

x
1ζ1dPx̃+

∫
Ξ
Φx
1 ζ̃1dP

...∫
Ξ
JxΦ

x
r ζrdPx̃+

∫
Ξ
Φx
r ζ̃rdP

−Jxϕ1(x, ·)x̃
...

−Jxϕr(x, ·)x̃


and〈
(x̃, ζ̃), JG(x,ζ)

(
x̃

ζ̃

)〉
=

r∑
i=1

(
x̃⊤i

∫
Ξ

JxΦ
x
i ζidPx̃+ x̃⊤i

∫
Ξ

Φx
i ζ̃idP−

∫
Ξ

Jxϕ
x
i ζ̃idPx̃

)
.
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By condition (b) and Lemma 1,
∫
Ξ
JxΦ(x, ξ)ζdP is positive semidefinite.

By condition (c), for any x̃ ∈ X and ζ̃ ∈ Z,

r∑
i=1

(
x̃⊤i

∫
Ξ

Φx
i ζ̃idP−

∫
Ξ

Jxϕ
x
i ζ̃idPx̃

)
≥ 0. (32)

Then

〈
(x̃, ζ̃), JGx,ζ

(
x̃

ζ̃

)〉
≥ 0 holds for any x̃ ∈ Rn and ζ̃ ∈ Z, and by [13,

Theorem 3.1], G(·, ·) is monotone over X × A. □

The above proposition shows the monotonicity properties of the DRVI in

the continuous distributions setting (section 3.2). Note that we may weaken the

continuous differentiability condition to Lipschitz continuity by considering the

Clarke subdifferential and Clarke Jacobian instead of differential and Jacobian.

Note also that in the case of finite dimensional setting (section 3.1), we can

simply rewrite Proposition 3 as follows.

Corollary 1 Consider DRVI (20)-(21). Suppose: (a) for i = 1, · · · , r and ξ ∈
Ξm, Φi(·, ξ) and ϕi(·, ξ) are continuously differentiable; (b) for any ξ̃ ∈ (Ξm)r

and x ∈ X,
(
(JxΦ1(x, ξ̃1))

⊤, · · · , (JxΦr(x, ξ̃r))
⊤
)⊤

is a positive semidefinite

matrix; (c) for all ξ ∈ Ξm, x ∈ X, x̃ ∈ Rn, i = 1, ..., r, x̃⊤i Φi(x, ξ) −
Jxϕi(x, ξ)x̃ ≥ 0. Then G corresponding to DRVI (20)-(21) is monotone over

X ×M.

In what follows, we give conditions for the existence of solutions of the

DRVI based on the monotonicity properties.

Definition 2 ([17, Definition 12.1]) The mapping G : Rn × A → Rn × Z is

hemicontinuous on Rn × Z∗ if G is continuous on line segments in Rn × Z∗,

i.e., for every pair of points (x, ζ), (z, η) ∈ Rn × Z∗, the following function is

continuous

t 7→

〈
G(tx+ (1− t)z, tζ + (1− t)η),

(
x− z

ζ − η

)〉
, 0 ≤ t ≤ 1.

Definition 3 ([17, Definition 12.3 (i)]) The mapping G : X ×Z∗ → X ×Z is

weakly coercive if there exists (x0, ζ
0) ∈ Rn ×Z∗ such that〈

G(x, ζ),

(
x− x0

ζ − ζ0

)〉
→ ∞ as ∥x−x0∥+∥ζ−ζ0∥ → ∞ and (x, ζ) ∈ X×Z∗.
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Theorem 1 Suppose the conditions of Proposition 3 hold, X ⊆ Rn is a closed

and convex set, A is convex and weakly* compact in Z and G is weakly coercive.

Then DRVI(G, (X,A)) has a solution.

By Proposition 3, it is obvious that G is hemicontinuous and monotone on

Rn × P. Then Theorem 1 is from [17, Theorem 12.2 and Corollary 12.2]

directly.

Moreover, for the finite dimensional case with coercivity condition, we

have the following result directly from [16, Proposition 2.2.7].

Corollary 2 Suppose for i = 1, · · · , r and ξ ∈ Ξm, Φi(·, ξ) and ϕi(·, ξ) are

continuous, X ⊆ Rn is a closed and convex set, M is closed and G is coercive.

Then DRVI(G, (X,M)) (20)-(21) has a solution.

Note that, in contrast to Proposition 1, Corollary 2 does not require the com-

pactness of X, but replaces it with coercivity. Note also that Corollary 2 does

not need the monotonicity condition. However, monotonicity is still important

for the algorithm design.

3.4 Examples of monotone DRVI

We illustrate the monotonicity property and coerciveness of G in the DRVI by

two examples from the distributionally robust stochastic program and distri-

butionally robust generalized Nash equilibrium.

Example 5 Consider distributionally robust stochastic program (6) with X =

R2
+, where ϕ is convex and twice continuously differentiable w.r.t. x, Ξ :=

{ξ1, ξ2}, M ⊂ {(p1, p2) : pi ≥ 0, p1 + p2 = 1, i = 1, 2} is convex and compact.

Then the corresponding DRVI is

0 ∈ p1∇xϕ(x, ξ
1) + p2∇xϕ(x, ξ

2) +NX(x), (33)

0 ∈

(
−ϕ(x, ξ1)
−ϕ(x, ξ2)

)
+NM((p1, p2)). (34)

And the corresponding function is

G(x, P ) =


p1∇xϕ(x, ξ

1) + p2∇xϕ(x, ξ
2)

−ϕ(x, ξ1)
−ϕ(x, ξ2)

 .
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Moreover,

JG(x,P ) =


p1∇xxϕ(x, ξ

1) + p2∇xxϕ(x, ξ
2) ∇xϕ(x, ξ

1) ∇xϕ(x, ξ
2)

−∇xϕ(x, ξ
1)⊤ 0 0

−∇xϕ(x, ξ
2)⊤ 0 0


is positive semidefinite over X ×M and then G is monotone.

Then we prove the coercivity of G. Let x0 = (0, 0) and P 0 = (1, 0). Suppose

for any ξ ∈ Ξ, ϕ(x, ξ) is a strongly convex function of x with parameter

m(ξi) > 0, i = 1, 2. We have when x sufficiently large, ϕ(x, ξi) ≥ 0, i = 1, 2

and

ϕ(0, ξi) ≥ ϕ(x, ξi)−∇xϕ(x, ξ
i)⊤x+

m(ξi)

2
∥x∥22.

Then

lim inf
x≥0,∥x∥→∞

〈
G(x, P ),

(
x− x0

P − P 0

)〉
∥x∥

= lim inf
x≥0,∥x∥→∞

x⊤(p1∇xϕ(x, ξ
1) + p2∇xϕ(x, ξ

2)) + (P − P 0)⊤

(
−ϕ(x, ξ1)
−ϕ(x, ξ2)

)
∥x∥

= lim inf
x≥0,∥x∥→∞

p1(x
⊤∇xϕ(x, ξ

1)− ϕ(x, ξ1)) + p2(x
⊤∇xϕ(x, ξ

2)− ϕ(x, ξ2)) + ϕ(x, ξ1)

∥x∥

≥ lim inf
x≥0,∥x∥→∞

p1(x
⊤∇xϕ(x, ξ

1)− ϕ(x, ξ1)) + p2(x
⊤∇xϕ(x, ξ

2)− ϕ(x, ξ2))

∥x∥

≥ lim inf
x≥0,∥x∥→∞

∑2
i=1 p

i(m(ξi)
2 ∥x∥2 − ϕ(0, ξi))

∥x∥
> 0.

Combining the monotonicity and coercivity of G, by Corollary 2, the DRVI

has a solution.

We can also consider a distributionally robust generalized Nash equilibrium

problem as follows.

Example 6 Consider the distributionally robust generalized Nash equilibrium

problem as follows:

min
xi∈Xi

max
Pi∈Mi

EPi
[fi(x, ξ)] + gi(x), s.t. b1x1 + b2x2 ≤ c, i = 1, 2, (35)

where x = (x1, x2), xi ∈ Xi = R+, for Pi-a.e. ξ, ∀Pi ∈ Mi fi(·, ξ) is convex and

twice continuously differentiable with respect to x, and gi is convex and twice

continuously differentiable, Ξ := {ξ1, ξ2}, Mi ⊂ {(p1i , p2i ) : p
j
i ≥ 0, p1i + p2i =
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1, j = 1, 2} is convex and compact, i = 1, 2. Suppose J
(
∇x1g1(x),∇x2g2(x)

)⊤
is positive semidefinite.

Then the corresponding DRVI is

0 ∈
2∑

j=1

pji∇xifi(x, ξ
j) +∇xigi(x) + biµ+NXi(xi), i = 1, 2 (36)

0 ∈ c− b1x1 − b2x2 +NR+(µ), (37)

0 ∈

(
−fi(x, ξ1)
−fi(x, ξ2)

)
+NMi

((p1i , p
2
i )), i = 1, 2. (38)

Let

Φ(x, ξ) =

(
∇x1

f1(x1, ξ) +∇x1
g1(x) + b1µ

∇x2f2(x2, ξ) +∇x2g2(x) + b2µ

)
and ϕ(x, ξ) =

(
−f1(x, ξ)
−f2(x, ξ)

)
.

Then the DRVI (36)-(38) is corresponding to (20)-(21) with (37). Moreover,

G(x, µ, P ) =



p11∇x1f1(x, ξ
1) + p21∇x1f1(x, ξ

2) +∇x1g1(x) + b1µ

p12∇x2f2(x, ξ
1) + p22∇x2f2(x, ξ

2) +∇x2g2(x) + b2µ

c− b1x1 − b2x2

−f1(x, ξ1)
−f1(x, ξ2)
−f2(x, ξ1)
−f2(x, ξ2)


.

For i, j = 1, 2, let

aij = p1i∇xixjfi(xi, ξ
1) + p2i∇xixjfi(xi, ξ

2) +∇xixjgi(x).

Then JG(x,µ,P ) is

a11 a12 b1 ∇x1
f1(x, ξ

1) ∇x1
f1(x, ξ

2) 0 0

a21 a22 b2 0 0 ∇x2
f2(x, ξ

1) ∇x2
f2(x, ξ

2)

−b1 −b2 0 0 0 0 0

−∇x1
f1(x, ξ

1)⊤ −∇x2
f1(x, ξ

1)⊤ 0 0 0 0 0

−∇x1
f1(x, ξ

2)⊤ −∇x2
f1(x, ξ

2)⊤ 0 0 0 0 0

−∇x1
f2(x, ξ

1)⊤ −∇x2
f2(x, ξ

1)⊤ 0 0 0 0 0

−∇x1f2(x, ξ
2)⊤ −∇x2f2(x, ξ

2)⊤ 0 0 0 0 0


.
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It is obvious that in general, G is nonmonotone. However, G can be monotone

if f1 is only w.r.t. (x1, ξ) and f2 is only w.r.t. (x2, ξ), and(
∇x1x1

f1(x1, ξ
i) +∇x1x1

g1(x) ∇x1x2
g1(x)

∇x2x1g2(x) ∇x2x2f2(x2, ξ
j) +∇x2x2g2(x)

)
is positive semidefinite for i, j = 1, 2.

Then we show the coerciveness of G. Similar as in Example 5, let xj0 = 0,

µ0 = 0, P 0
j = (1, 0) for j = 1, 2. Suppose in (35), c > 0, fj(x, ξ

i) and gj(x) are

strongly convex with parameter mj(ξ
i) > 0 and mg

j > 0 respectively, i = 1, 2

and j = 1, 2. Then

lim inf
(x,µ)≥0,∥(x,µ)∥→∞

〈
G(x, µ, P ),

(
x− x0, µ− µ0, P − P 0

)⊤〉
∥(x, µ, P )∥

≥ lim inf
(x,µ)≥0,∥(x,µ)∥→∞

2∑
i=1

2∑
j=1

(
pij(xj∇xj

fj(xj , ξ
i) + xj∇xj

gj(x)− fj(xj , ξ
i)) + pij0fj(xj , ξ

i)
)
+ µc

∥(x, µ)∥

≥ lim inf
(x,µ)≥0,∥(x,µ)∥→∞

2∑
i=1

2∑
j=1

pij(xj∇xjfj(xj , ξ
i)− fj(xj , ξ

i) + xj∇xjgj(x)) + µc

∥(x, µ)∥

≥ lim inf
(x,µ)≥0,∥(x,µ)∥→∞

∑2
i=1

∑2
j=1 p

i
j(

mj(ξ
i)

2 ∥xj∥2 − fj(0, ξ
i) +

mg
j

2 ∥xj∥2 − gj(0)) + µc

∥(x, µ)∥
> 0.

Combining the monotonicity and coerciveness of G, by Corollary 2, the DRVI

has a solution.

4 Discretization of probability distributions

In this section, we consider the discretization of DRVI with the ambiguity sets

formed from continuous distributions in the setting specified in Assumption 1.

There are several ways to discretize the ambiguity set [11,28,33]. We propose

the SAA approach to the DRVI. For the sake of simplicity we assume here

that r = 1 and drop the subscript i in Φx
i and ϕxi , etc. An extension for r > 1

will be straightforward. Recall that P is the reference probability measure

(distribution) on (Ξ,B), Z = Lp(Ξ,B,P), Z∗ = Lq(Ξ,B,P), A is a convex

bounded weakly∗ closed subset of Z∗ of densities associated with the ambiguity

set M, and

R(Z) = sup
ζ∈A

∫
Ξ

Z(s)ζ(s)dP(s), Z ∈ Z. (39)
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Let us introduce some definitions.

It is said that random variables Y, Y ′ : Ξ → R are distributionally equiv-

alent (with respect to P), denoted Y
D∼ Y ′, if P(Y ≤ y) = P(Y ′ ≤ y) for all

y ∈ R. It is said that a functional R : Z → R is law invariant if R(Z) = R(Z ′)

for any distributionally equivalent Z,Z ′ ∈ Z. The set A ⊂ Z∗ is said to be law

invariant if ζ ∈ A and ζ ′
D∼ ζ, then ζ ′ ∈ A. It is known that the functional R

is law invariant iff the corresponding set A is law invariant (cf., [28, Theorem

2.3]).

Assumption 2 The set A is law invariant.

By Assumption 2 we have that the functional R(Z) is law invariant, and

hence can be viewed as a function of the respective cumulative distribution

function (CDF) of Z. It is possible to proceed with the required discretiza-

tion by making discretization of the corresponding CDF of ϕx(ξ). However,

such approach is indirect and inconvenient for applications. Therefore we dis-

cuss below several important cases where this can be performed in a rather

straightforward way.

Consider an iid sample ξj ∈ Ξ, j = 1, ..., N , from the reference distribu-

tion P. The law invariant risk measure R is associated with the corresponding

empirical functional7 R̂N : RN → R. The functional RN has the dual repre-

sentation

RN (Z) := sup
ζ∈AN

N−1
N∑
j=1

ζjZ(ξ
j), (40)

where AN is the respective convex closed set of densities8 ζ = (ζ1, ..., ζN ).

In the next section we give examples of how the empirical functional can be

constructed.

For the generated sample,

R̂N (ϕx) = sup
ζ∈AN

N−1
N∑
j=1

ζjϕ
x(ξj) (41)

can be considered as an empirical estimate of R(ϕx). We have that under mild

regularity conditions, R̂N (ϕx) epiconverges w.p.1 to R(ϕx) on X (cf., [26]).

7 Any Z : {ξ1, ..., ξN} → R can be identified withN -dimensional vector (Z(ξ1), ..., Z(ξN )),

and hence the empirical risk measure can be viewed as defined on RN .
8 Note that ζ is a density on {ξ1, ..., ξN} if ζ ≥ 0 and N−1

∑N
i=1 ζi = 1, i.e., N−1ζ ∈ ∆N .
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This suggests the following discretization of problem (22) - (23) (with r = 1):

0 ∈
N∑
j=1

ζjΦ(x, ξ
j) +NX(x), (42)

ζ ∈ arg max
η∈AN

N∑
j=1

ηjϕ(x, ξ
j). (43)

4.1 Construction of the empirical estimates

Here we discuss construction of the empirical estimates of the risk measure R
defined in (39). For a random variable Z we denote by HZ(z) := P(Z ≤ z)

its CDF and by H−1
Z (t) := inf{τ : HZ(τ) ≥ t} the corresponding quantile

function (also called Value-at-Risk). Note that the subdifferential of R(Z) is

given by

∂R(Z) = argmax
ζ∈A

∫
Ξ

Z(s)ζ(s)dP(s) (44)

(e.g., [27, eq. (6.49), p. 284]). Let us first consider spectral risk measure R.

Spectral risk measure. Spectral risk measure is9

R(H−1
Z ) :=

∫ 1

0

σ(t)H−1
Z (t)dt, (45)

where σ : [0, 1) → R+ is monotonically nondecreasing, and left side continuous

function such that
∫ 1

0
σ(t)dt = 1. The Average Value-at-Risk AV@Rα is a

spectral risk measure with spectral function σ(t) = 0 for t ∈ [0, 1 − α), and

σ(t) = 1/α for t ∈ [1− α, 1], see Example 8 in the Appendix

LetHϕx(z) := P{ϕx(ξ) ≤ z} be the CDF of ϕx(ξ) andHϕx,N be the CDF of

ϕx(ξj), j = 1, .., N . That is, function Hϕx,N (·) is stepwise constant with jumps

1/N at points ϕx(1), ..., ϕ
x
(N), where ϕ

x
(1), ..., ϕ

x
(N) are values ϕx(ξ1), ..., ϕx(ξN )

arranged in the increasing order, i.e.,

Hϕx,N (·) = N−1
N∑
j=1

1(−∞,ϕx
(j)

](·). (46)

Then

R(H−1
ϕx,N ) =

∫ 1

0

σ(t)H−1
ϕx,N (t)dt =

N∑
j=1

qjϕ
x
(j), (47)

9 By the law invariance of R(Z) it can be considered as a function of HZ .
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where

qj :=

∫ j/N

(j−1)/N

σ(t)dt, j = 1, ...., N. (48)

Note that qj ≥ 0,
∑N

j=1 qj =
∫ 1

0
σ(t)dt = 1.

Remark 6 The corresponding set AN is the convex hull of vectors (qπ(1), ..., qπ(N)),

π ∈ Π, where Π is the set of permutations of the set {1, ..., N}. By Hardy -

Littlewood inequality, we have here

sup
ζ∈AN

N∑
j=1

ζjϕ
x(ξj) =

N∑
j=1

qjϕ
x
(j), (49)

and the corresponding maximizer ζ̄ ∈ argmaxζ∈AN

∑N
j=1 ζjϕ

x(ξj) is given by

ζ̄ = (qπ(1), ..., qπ(N)) with the permutation π ∈ Π corresponding to the order

ϕx(1) ≤ · · · ≤ ϕx(N). Note that this permutation and hence the maximizer ζ̄

depend on x.

We can also write this spectral risk measure in the form

R(ϕx) =

∫ 1

0

AV@R1−α(ϕ
x)dµ(α), (50)

where µ is the probability measure on the interval [0, 1) associated with the

spectral function σ(·), given by

µ(α) = (1− α)σ(α) +

∫ α

0

σ(t)dt.

This is the so-called Kusuoka representation of the spectral risk measure (e.g.,

[27, p. 307]). That is

R(ϕx) =

∫ 1

0

EP
{
τ(α) + (1− α)−1[ϕx − τ(α)]+

}
dµ(α), (51)

where τ(α) := H−1
ϕx (α). The empirical estimate R(H−1

ϕx,N ) can be written then

as

R(H−1
ϕx,N ) =

1

N

∫ 1

0

N∑
j=1

{
τ̂N (α) + (1− α)−1[ϕx(ξj)− τ̂N (α)]+

}
dµ(α), (52)

where τ̂N (α) is the empirical estimate of H−1
ϕx (α).

The subdifferential of R(ϕx) can be taken inside the integral in (50), i.e.,

∂R(ϕx) =

∫ 1

0

∂AV@R1−α(ϕ
x)dµ(α). (53)
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We have that ∂R(ϕx) = {ζ̄x} is a singleton iff ∂AV@R1−α(ϕ
x) is a singleton for

µ-almost every α ∈ [0, 1), i.e., iff P{ϕx = κα} = 0 for µ-almost every α ∈ [0, 1),

where κα = H−1
ϕx (α). Then we have by Example 8 that the subdifferential

∂AV@R1−α(ϕ
x) = {ζ̄α} is given by

ζ̄α(s) =

{
(1− α)−1 if ϕx(s) > κα, s ∈ Ξ,

0 if ϕx(s) < κα, s ∈ Ξ.
(54)

The subdifferential ζ̂xα = (ζxα1, ..., ζ
x
αN ) of the corresponding empirical estimate

is obtained by replacing κα = H−1
ϕx (α) with their empirical estimates.

For a continuous and bounded function g : Ξ → R we have that∫
Ξ

g(s)dP x
N (s) =

∫
α∈[0,1)

1

N

N∑
j=1

g(ξj)ζxαjdµ(α) =

∫
α∈[0,1)

1

(1− α)N

∑
ϕx(ξj)>κα

N

g(ξj)dµ(α)

converges w.p.1 to∫
Ξ

g(s)ζ̄x(s)dP(s) =
∫
α∈[0,1)

∫
Ξ

g(s)ζ̄xα(s)dP(s)dµ(α) =
∫
α∈[0,1)

1

1− α

∫
ϕx(ξ)>κα

g(s)dP(s)dµ(α).

Then we have that P x
N converges weakly to P x, where P x has density ζ̄x (see

(A4)). Moreover, by Proposition 6 in the Appendix, we have if {xN} is a se-

quence inX converging to x, then
∫
Ξ
g(s)dP xN

N (s) converges to
∫
ϕx(ξ)>κ

g(s)dP(s)
w.p.1, and hence P xN

N converges weakly to P x as N → ∞.

Law invariant coherent risk measure. By dual representation, any law

invariant coherent risk measure can be represented as follows

max
ζ∈A

∫
Ξ

Z(s)ζ(s)dP(s) = R(Z) = R(H−1
Z ) = sup

σ∈S

∫ 1

0

σ(t)H−1
ϕx (t)dt (55)

with

S := {σ = H−1
ζ : ζ ∈ A} (56)

being a set of spectral functions.

Let Hϕx,N denote the CDF of the empirical distribution corresponding to

the i.i.d. samples {ϕx(ξ1), · · · , ϕx(ξN )}. Note that Hϕx,N is a function of the

random sample, and hence is random. We have

∂R(H−1
ϕx ) = argmax

σ∈S

∫ 1

0

σ(t)H−1
ϕx (t)dt and ∂R

(
H−1

ϕx,N

)
= argmax

σ∈S

∫ 1

0

σ(t)H−1
ϕx,N (t)dt.

(57)
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Lemma 2 Consider a point x̄ ∈ X and a sequence {xN} ⊂ X converging to x̄.

Suppose that Assumptions 1 and 2 hold, ϕ(·, ξ) is continuous and ∂R(H−1
ϕx̄ ) =

{σ̄} is a singleton. Then any sequence σN ∈ ∂R
(
H−1

ϕxN ,N

)
weakly∗ converges

to σ̄ w.p.1.

Proof We first note that H−1
ϕx and H−1

ϕxN ,N belong to the space Lp. We can ap-

ply a general theory of sensitivity analysis applied to the optimization problem

(57) with viewing H−1
ϕx as parameter in the space Lp. We have that H−1

ϕxN ,N

converges w.p.1 to H−1
ϕx in the norm topology of Lp as N → ∞. This can be

proved by an extension of [26, Theorem 2.1] (see Theorem 3 in the Appendix).

Since the set S is weakly∗ compact and the maximizer σ̄ of the right hand

side of (57) is unique, it follows by [5, Lemma 4.3 and example 4.5] that if

σN ∈ argmax
σ∈S

∫ 1

0

σ(t)H−1
ϕxN ,N (t)dt, (58)

then {σN} is weak∗ convergent w.p.1 to σ̄. □

For law invariant coherent risk measure, by the Kusuoka representation,

(55) can also be presented as

R(H−1
ϕx ) = sup

σ∈S

∫ 1

0

σ(t)H−1
ϕx (t)dt = sup

µ∈V

∫ 1

0

AVaR1−α(ϕ
x)dµ(α) (59)

and its SAA can be written as

R(H−1
ϕx,N ) = sup

µ∈V

1

N

∫ 1

0

N∑
j=1

{
τ̂N (α)+(1−α)−1[ϕx(ξj)−τ̂N (α)]+

}
dµ(α), (60)

where V := {µ : µ(α) = (1− α)σ(α) +
∫ α

0
σ(t)dt, σ ∈ S}. Then we have that

∂R(ϕx) = {ζ̄x} is a singleton (which implies that ∂R(H−1
ϕx̄ ) is a singleton) if

and only if ∂AV@R1−α(ϕ
x) is a singleton for µ-almost every α ∈ [0, 1), i.e., if

and only if P{ϕx = κα} = 0 for µ-almost every α ∈ [0, 1), where κα = H−1
ϕx (α),

µ ∈ V. Note that if P{ϕx = κα} = 0 for every α ∈ [0, 1), then the condition

that ∂R(H−1
ϕx̄ ) = {σ̄} is a singleton holds.

Then we consider the convergence analysis between

max
η∈AN

N∑
j=1

ηjϕ(xN , ξ
j) = sup

µ∈V

1

N

∫ 1

0

N∑
j=1

{
τ̂N (α)+(1−α)−1[ϕxN (ξj)−τ̂N (α)]+

}
dµ(α)

(61)
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and

max
η∈A

∫
Ξ

ϕx̄ηdP = sup
µ∈V

∫ 1

0

AVaR1−α(ϕ
x̄)dµ(α), (62)

where xN → x̄. Let (ζxN

N , µN ) and (ζ∗, µ̄) denote the optimal solutions of (61)

and (62), respectively. Note that ζxN

N corresponds to a discrete distribution

P xN

N and ζ∗ corresponds to a continuous distribution P ∗ = ζ∗P.

Proposition 4 Consider a point x̄ ∈ X and a sequence {xN} ⊂ X converg-

ing to x̄ and the ambiguity set corresponding to a law invariant coherent risk

measure. Suppose (i) Assumptions 1 and 2 hold, and ϕ(·, ξ) is Lipschitz con-

tinuous; (ii) ∂R(H−1
ϕx̄ ) = {σ̄} is a singleton; (iii) the CDF of ϕx̄ is strictly

monotone, and (iv) there exists positive measure µ̂ such that for all N suf-

ficiently large,
∫
[0,1]

h(t)µ̂(t) ≥
∫
[0,1]

h(t)µN (t) for all bounded function h(t).

Then P xN

N converges weakly to P x̄.

The proof of Proposition 4 is in the Appendix.

Example 7 Consider the ψ-divergence approach to construction of the uncer-

tain sets. The concept of ψ-divergence is originated in Csiszár [14] and Mori-

moto [19], and was extensively discussed in Ben-Tal and Teboulle [2]. We also

can refer to Bayraksan and Love [1] for a recent survey of this approach. That

is, consider a convex lower semicontinuous function ψ : R → R+ ∪{+∞} such

that ψ(1) = 0. For x < 0 we set ψ(x) = +∞. For c > 0 consider

A :=
{
ζ ∈ D :

∫
Ξ
ψ(ζ(s))dP(s) ≤ c

}
, (63)

where D := {ζ ∈ Z∗ :
∫
ζdP = 1, ζ ⪰ 0} denotes the set of densities. If ζ

D∼ ζ ′,

then
∫
Ξ
ψ(ζ(s))dP(s) =

∫
Ξ
ψ(ζ ′(s))dP(s). Hence the set A and the correspond-

ing functional R are law invariant. Since ψ-divergence is a law invariant coher-

ent risk measure, it has Kusuoka representation (Note that the representation

is only for constructing the SAA and proving the weak convergence).

Proposition 5 [15, Proposition 5.6] A ψ-divergence risk measure can be writ-

ten in the form

R(Z) = sup
σ∈S

∫ 1

0

σ(t)H−1
Z (t)dt, (64)

where

S :=
{
σ : [0, 1] → [0,∞] : σ is non-decreasing,

∫ 1

0
σ(t)dt = 1,

∫ 1

0
ψ(σ(t))dt ≤ c

}
.
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Moreover, let µ(α) = (1−α)σ(α)+
∫ α

0
σ(t)dt (that is σ(t) =

∫ t

0
1

1−αdµ(α)).

By Kusuoka representation, we have

R(Z) = sup
µ∈V

∫ 1

0

AV@R1−α(Z)dµ(α) = sup
µ∈V

∫ 1

0

EP
{
τ(α)+(1−α)−1[Z−τ(α)]+

}
dµ(α),

(65)

where

V :=

{
µ : [0, 1) → [0,∞] :

∫ 1

0

dµ(α) = 1,

∫ 1

0

ψ

(∫ t

0

1

1− α
dµ(α)

)
dt ≤ c

}
.

Although the structure of V looks complicated, the discretization way is ex-

actly SAA and same as in the paper. Then with the conditions of Proposition

4, we can show that P xN

N converges weakly to P x̄.

By discussion above, we have shown that for law invariant coherent risk

measure and under mild conditions, P xN

N converges weakly to P x̄.

However, to prove the convergence between (22)-(23) and (42)-(40), we

need stronger convergence results between P xN

N and P x̄. To this end, we need

the following assumption.

Assumption 3 Let M and MN be nonempty and closed. Assume: (a) there

exists a weakly compact set M̂ such that M,MN ⊂ M̂ holds for N sufficiently

large; (b) supP∈M̂ EP [∥ξ∥] is bounded.

Note that the ambiguity set M is defined in Definition 1 and MN is the

corresponding set of discrete probability measures of AN in (40). One sufficient

condition for Assumption 3 is the compactness of support set Ξ. However, by

Prokhorov’s theorem, a closed ambiguity set of probability measures is compact

(under the weak topology) if it is tight, and the support set is not necessarily

compact. For more discussion on weak compactness, see [30] and section 5 in

[3]. Now we present the main convergence result.

Theorem 2 Let (x̂N , ζ̂N ) ∈ X × AN be a solution of the SAA variational

inequalities (42) - (40). Suppose: (a) Assumptions 1, 2 and 3 hold; (b) ϕ(x, ·)
is Lipschitz continuous on Ξ, Φ(·, ξ) and Φ(x, ·) are Lipschitz continuous with

Lipschitz modulus κ(ξ) and κ̄ over X and Ξ respectively, and supP∈M̂ EP [κ(ξ)] <

∞; (c) x̂N converges w.p.1 to a point x̄; (d) ∂R(ϕx̄) = {ζ̄} is a singleton; (e)

P x̄ is probability measure on (Ξ,B) with density ζ̄, and P x̂N

N is the empirical

measure associated with ζ̂N , and P x̂N

N weakly converges to P x̄. Then (x̄, ζ̄) is

a solution of the DRVI (22) - (23).
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The proof of Theorem 2 is in the Appendix. Note that the sufficient con-

ditions for assumption (e) are given in Proposition 4.

5 Numerical examples

In this section, we use a continuous version of Example 6 of the distributionally

robust generalized Nash equilibrium problem to illustrate the SAA approach

and its convergence, where fi and gi are quadratic convex functions, Mi is

constructed by modified χ2-distance, i = 1, 2. Particularly, let

fi(x, ξ) :=
1

2
x⊤i M̃i(ξ)xi + c̃i(ξ)

⊤xi, gi(x) :=
1

2
x⊤i Mixi + c⊤i xi + x⊤i Rix−i,

Xi = R2
+, b1 = b2 = (1, 1)⊤ and c = 10. Let P follow the uniform distribution

over [−1, 1], and ξ is a random variable with support set [−1, 1]. Then the

density function of P is a constant function with value 1
2 over [−1, 1] and the

ambiguity set

Mi :=

{
P ∈ P :

∫
ξ∈[−1,1]

2(p(ξ)− 1)2dξ ≤ 0.05

}
,

where P denotes all probability measures over [−1, 1], p(ξ) is the density

function of P , i = 1, 2. Note that this is a particular case of ψ-divergence. It is

obvious that Mi is a weakly compact subset in L2 over [−1, 1]. Let E be the

2× 2 matrix with all elements 1, Ri = E, M̃i(ξ) = 5I + ξI and Mi = I. Then

for any ξ1, ξ2 ∈ [0, 1],(
∇x1x1f1(x, ξ

i) +∇x1x1g1(x) ∇x1x2f1(x, ξ
i) +∇x1x2g1(x)

∇x2x1
f2(x, ξ

j) +∇x2x1
g2(x) ∇x2x2

f2(x, ξ
j) +∇x2x2

g2(x)

)
=

(
M̃1(ξ

1) +M1 R1

R2 M̃2(ξ
2) +M2

)
is positive definite and then for any ξ1, ξ2 ∈ [0, 1],

M̃1(ξ
1) +M1 R1 b1

R2 M̃2(ξ
2) +M2 b2

−b⊤1 −b⊤2 0


is positive semidefinite. Moreover, for any ξ1, ξ2 ∈ [0, 1], x̃⊤1

(
M̃1(ξ

1)x1 + c̃1(ξ
1)
)
−

Jx(f1(x, ξ
1))x̃ = 0, and x̃⊤2

(
M̃2(ξ

2)x2 + c̃2(ξ
2)
)
− Jx(f2(x, ξ

2))x̃ = 0. Let

z := (x, µ). Then by Proposition 3, the corresponding

G(z, ζ) :=

(∫
Ξ
ΦzζdP
−ϕz

)
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is monotone, where

Φz =


M̃1(ξ

1) +M1 R1 b1

R2 M̃2(ξ
2) +M2 b2

−b⊤1 −b⊤2 0



x1

x2

µ

+


c̃1(ξ

1)⊤ + c⊤1

c̃2(ξ
2)⊤ + c⊤2

0

 and ϕz =

(
f1(x, ·)
f2(x, ·)

)
.

Note also that fi and gi are strongly monotone, i = 1, 2. Similar as the analysis

in Example 6, it is easy to see G(x, µ, ζ) is weakly coercive. Then by Theo-

rem 1, the distributionally robust generalized Nash equilibrium problem has

a solution.

Since random variable ϕx(ξ) in (59) is f1(x, ξ) and f2(x, ξ) and P follows

the uniform distribution over [−1, 1], f1(x, ξ) and f2(x, ξ) follow continuous

distribution and their α-quantiles, denote by κ1α and κ2α, are unique for all α ∈
[0, 1] when x ̸= 0. In this case, P(f1(x, ξ) = κ1α) = 0 and P(f2(x, ξ) = κ2α) = 0

for all α ∈ [0, 1], and then ∂f1R(f1(x, ξ)) and ∂f2R(f2(x, ξ)) are singleton.

Let {ξ1, · · · , ξN} be the i.i.d. sample of ξ generated from P. Then we solve

0 ∈
N∑
j=1

pji∇xi
fi(x, ξ

j) +∇xi
gi(x) + biµ+NXi

(xi), i = 1, 2 (66)

0 ∈ c− b1x1 − b2x2 +NR+
(µ), (67)

where Pi = (p1i , · · · , pNi ) is from

Pi ∈ arg max
Qi∈MN

i

1

N

N∑
j=1

qjiϕi(x1, x2, ξ
j) (68)

with ϕi(x1, x2, ξ) = fi(x1, x2, ξ) + gi(x1, x2), Qi = (q1i , · · · , qNi ) and

MN
i :=

P ∈ RN
+ :

N∑
j=1

(pj − 1

N
)2 ≤ 0.05

N
,

N∑
j=1

pj = 1

 .

We consider sample size N = (50, 100, 300, 600, 1200). For each sample size,

we generate 20 group of samples and solve the corresponding DRVI (66) - (68)

by Algorithm 110 with τ = 0.2 and randomly generated z0 ∈ [0, 1]5 using the

uniform distribution in Matlab.

Since the two players are symmetric, then x1 = x2 and we only show x1

with x1 = (x11, x12)
⊤ in Figures 1-2. From the two figures, we can observe the

tendency of convergence as the sample size increases, which is consistent with

our convergence results.

10 In Step 4 of Algorithm 1, we do not specify how to solve the monotone VI: 0 ∈ Fk(z)+

NX1×X2×R+
(z). We can solve it by any suitable method, such as extragradient method.
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Algorithm 1 Projection method for solving DRVI.

1: Choose a parameter τ ∈ (0, 1) and an initial point z0 = ((x01)
⊤, (x02)

⊤, µ0)⊤. Set k ← 0.

2: Solve

Pk
i = arg max

Qi∈MN
i

EQi
[ϕi(x

k, ξ)], for i = 1, 2.

3: Set

Fk(z) =


∑N

j=1(p
j
1)

k∇x1f1(x, ξ
j) +∇x1g1(x) + b1µ∑N

j=1(p
j
2)

k∇x2f2(x, ξ
j) +∇x2g2(x) + b2µ

c− b1x1 − b2x2


where ((p1i )

k, · · · , (pNi )k) = Pk
i , i = 1, 2.

4: If ∥min(zk, Fk(zk))∥2 ≤ 10−8 (where ‘min’ is in the sense of element-wise), stop; oth-

erwise find zk+1 such that

∥zk+1 − (zk+1 − τFk(zk+1))+∥ ≤ 10−8.

5: k ← k + 1, go to Step 2.

50 100 300 600 1200
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x
1

1

Fig. 1 convergence of x11

50 100 300 600 1200
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1.04

x
1

2

Fig. 2 convergence of x12

6 Concluding remarks

To deal with uncertainties of probability distributions P in the SVI (1), we

propose a formulation of the DRVI in Definition 1. This formulation provides

a unified framework for the research of many important problems including

the optimality conditions for distributionally robust optimization and DRG.

We show the existence of solutions of the DRVI under the conditions that

the set X of decision variables is convex and bounded or the operator in the

DRVI is monotone and coercive. Moreover, under the condition that the set

of densities associated with the ambiguity set M is law invariant, we propose

an SAA approach to the DRVI by using the corresponding law invariant risk

measure R and establish its convergence properties as the sample size N goes
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to infinity. The formulation of the DRVI, solutions of the DRVI, the monotone

condition, the SAA approach and the convergence properties of the SAA are

illustrated by several examples. Within this new DRVI framework, some new

algorithms can be developed for finding robust solutions of optimization and

equilibrium problems under uncertain environment.

Acknowledgements We would like to thank the editor and referees for their helpful com-

ments and suggestions.
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17. Hadjisavvas, H., Komlósi, S., Schaible, S.: Handbook of Generalized Convexity and

Generalized Monotonicity, Springer, New York (2005)

18. Krebs, V., Schmidt, M.: Γ - Robust linear complementarity problems, Optim. Methods

Softw. online first (2020)

19. Morimoto, T.: Markov processes and the h-theorem, J. Phys. Soc. Japan. 18, 328 - 333

(1963)

20. Milz, J., Ulbrich, M.: An approximation scheme for distributionally robust nonlinear

optimization. SAIM J. Optim. 30, 1996–2025 (2020)

21. Morton, S.: Lagrange multipliers revisited, Cowles Commission Discussion Paper No.

403 (1950)

22. Pardo, L.: Statistical Inference Based on Divergence Measures. Chapman and

Hall/CRC, Boca Raton, FL (2005)

23. Römisch, W.: Stability of Stochastic Programming Problems, in Stochastic Program-
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In this appendix, we give some proofs and necessary results used in this paper.
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Example 8 Consider the Average Value-at-Risk,

AV@R1−α(Z) :=
1

1− α

∫ 1

α

H−1
Z (t)dt = inf

τ∈R

{
τ + (1− α)−1EP[Z − τ ]+

}
, α ∈ (0, 1).

(A1)

Here Z = L1(Ξ,B,P) and a minimizer in the right hand side of (A1) is

τ̄ = H−1
Z (α). The empirical estimate of AV@R1−α(ϕ

x) is then

ÂV@R(1−α)N (ϕx) = inf
τ∈R

τ + 1

(1− α)N

N∑
j=1

[
ϕx(ξj)− τ

]
+

 . (A2)

We have that ∂AV@R1−α(Z) is a singleton iff P{Z = κ} = 0, where κα :=

H−1
Z (α). Suppose that ∂AV@R1−α(Z) = {ζ̄} is a singleton. Then

ζ̄(s) =

{
(1− α)−1 if Z(s) > κ, s ∈ Ξ,

0 if Z(s) < κ, s ∈ Ξ,
(A3)

(cf. [27, eq. (6.80), p. 292]). For x ∈ X and Z := ϕx let {ζ̄x} be the correspond-

ing subdifferential. The subdifferential ζ̂x = (ζx1 , ..., ζ
x
N ) of the corresponding

empirical estimate is obtained by replacing κα with their empirical estimates.

That is ζxj = (1 − α)−1 if ϕx(ξj) > κα,N and ζxj = 0 if ϕx(ξj) < κα,N , where

κα,N is the empirical estimate of κα. Note that because of the assumption

P{Z = κ} = 0, the empirical estimate κα,N converges w.p.1 to κα.

Consider the probability distribution P x
N on {ξ1, ..., ξN} associated with

density ζ̂x, i.e., with ξj being assigned probability 1/((1 − α)N) if ϕx(ξj) >

κxα,N , and 0 otherwise. We view P x
N as the empirical counterpart of P x, where

P x is the probability measure absolutely continuous with respect to P and

having density ζ̄x, i.e.,

dP x = ζ̄xdP. (A4)

Consider a continuous bounded function g : Ξ → R. Since g(·) is bounded
and continuous, κxα,N → κxα w.p.1 and P{ϕx(ξ) = κxα} = 0, we have that∫

Ξ

g(s)dP x
N (s) =

1

(1− α)N

∑
ϕx(ξj)>κx

α,N

g(ξj)

converges w.p.1 to∫
Ξ

g(s)ζ̄x(s)dP(s) =
1

1− α

∫
ϕx(ξ)>κx

α

g(s)dP(s).
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That is P x
N converges weakly11 to P x. Moreover, by Proposition 6 in the Ap-

pendix, we have if {xN} is a sequence inX converging to x, then
∫
Ξ
g(s)dP xN

N (s)

converges to
∫
ϕx(ξ)>κ

g(s)dP(s) w.p.1, and hence P xN

N converges weakly to P x.

Proposition 6 Suppose (i) ϕ(·, ξ) is Lipschitz continuous in x ∈ X with a

uniform Lipschitz modules kϕ, (ii) the CDF of ϕx̄ is strictly monotone, and

(iii) {xN} is a sequence in X converging to x̄, (iv) |κx′

α | is bounded by a

constant number for all x′ ∈ B(x) ∩X. Then for any bounded and continuous

function g,
∫
Ξ
g(s)dP xN

N (s) converges to
∫
ϕx̄(ξ)>κx̄

α
g(s)dP(s).

Proof For any continuous and bounded function g(s),∣∣∣∣∣∣∣
1

αN

∑
ϕxN (ξj)>κ

xN
α,N

g(ξj)− 1

α

∫
ϕx̄(ξ)>κx̄

α

g(s)dP(s)

∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣
1

αN

∑
ϕxN (ξj)>κ

xN
α,N

g(ξj)− 1

αN

∑
ϕx̄(ξj)>κx̄

α

g(ξj)

∣∣∣∣∣∣∣+
∣∣∣∣∣∣ 1

αN

∑
ϕx̄(ξj)>κx̄

α

g(ξj)− 1

α

∫
ϕx̄(ξ)>κx̄

α

g(s)dP(s)

∣∣∣∣∣∣ .
(A5)

We first prove that κxN

α,N converges to κx̄α w.p.1. To see this, by condition

(ii), we have P{ϕx̄(ξ) = κx̄α} = 0, then

κx̄α = argmin
τ

τ +
1

1− α
EP[(ϕ

x̄ − τ)+]

and

κxN

α,N ∈ argmin
τ

τ +
1

(1− α)N

N∑
j=1

(ϕxN (ξj)− τ)+.

It is easy to observe that (ϕx̄(ξ) − τ)+ is continuous w.r.t. x and dominated

by an integrable function, then by uniform law of large numbers [27, Theorem

7.48] ∣∣∣∣∣∣EP[(ϕ
x̄ − τ)+]−

1

N

N∑
j=1

(ϕxN (ξj)− τ)+

∣∣∣∣∣∣→ 0

as N → ∞ w.p.1. Then by conditions (i)-(iv) and [5, Proposition 4.4], we have

that κxN

α,N converges to κx̄α w.p.1.

11 Recall that a sequence PN of probability measures converges weakly to a probability

measure P if
∫
gdPN →

∫
gdP for any bounded continuous function g : Ξ → R, see e.g.,

Billingsley [3] for a discussion of weak convergence of probability measures.
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Then we prove the convergence of first part in the right side of (A5). Let

A1
N = {ξ ∈ Ξ : ϕxN (ξ) > κxN

α,N , ϕ
x̄(ξ) ≤ κx̄α}, A2

N = {ξ ∈ Ξ : ϕxN (ξ) ≤ κxN

α,N , ϕ
x̄(ξ) > κx̄α}

A3
N = {ξ ∈ Ξ : ϕx̄(ξ) ≥ κxN

α,N − kϕ∥x̄− xN∥, ϕx̄(ξ) ≤ κx̄α},

and

A4
N = {ξ ∈ Ξ : ϕx̄(ξ) ≤ κxN

α,N + kϕ∥x̄− xN∥, ϕx̄(ξ) ≥ κx̄α}.

Then∣∣∣∣∣∣∣
1

αN

∑
ϕxN (ξj)>κ

xN
α,N

g(ξj)− 1

αN

∑
ϕx̄(ξj)>κx̄

α

g(ξj)

∣∣∣∣∣∣∣ ≤ 1
αPN (A1

N ∪A2
N )|maxs g(s)|

≤ 1
αPN (A3

N ∪A4
N )|maxs g(s)|,

where PN is an empirical estimation of P. Note that κxN

α,N → κx̄α and xN → x̄,

A1
N ⊂ A3

N and A2
N ⊂ A4

N , and A3
N and A4

N converge to singleton sets. Then

by condition (i) and (ii), PN (A1
N ∪ A2

N ) ≤ PN (A3
N ∪ A4

N ) → 0 as N → ∞
w.p.1, which implies∣∣∣∣∣∣∣

1

αN

∑
ϕxN (ξj)>κ

xN
α,N

g(ξj)− 1

αN

∑
ϕxN (ξj)>κx̄

α

g(ξj)

∣∣∣∣∣∣∣→ 0 (A6)

as N → ∞ w.p.1.

Then we consider the second part in the right side of (A5). Since g is

continuous and bounded, by classical law of large numbers, as N → ∞ w.p.1,∣∣∣∣∣∣ 1

αN

∑
ϕx̄(ξj)>κx̄

α

g(ξj)− 1

α

∫
ϕx̄(ξ)>κx̄

α

g(s)dP(s)

∣∣∣∣∣∣→ 0.

Combining discussion above, we have the conclusion. □

Then we derive a kind of uniform Glivenko-Cantelli theorem which we need

in the proof of Lemma 2. Let f(x, ξ) be a random function and {xN} → x

as N → ∞. Moreover, suppose f(x, ξ) is Lipschitz continuous w.r.t. x and

ξ, and the Lipschitz modules κ(ξ) of f(·, ξ) is integrable. We use HxN
(t) and

Hx(t) to denote the CDF of f(xN , ξ) and f(x, ξ) w.r.t. P and HN
xN

(t) and

HN
x (t) are used to denote the CDF of their empirical distributions i.i.d samples

{ξ1, · · · , ξN}.
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Lemma 3 Suppose f(x, ξ) is integrable and continuous w.r.t. x, and P is a

continuous distribution. Then for each ϵ > 0, there exists a finite partition

of the real line of the form −∞ = t0 < t1 < · · · < tk = ∞ such that for

0 ≤ j ≤ k − 1, H(xN , tj+1)−H(xN , tj) ≤ ϵ for all N sufficiently large.

Proof Since P is a continuous distribution, Hx(t) is a CDF of continuous dis-

tribution and then, for any ϵ > 0 there exists −∞ = t0 < t1 < · · · < tk = ∞
such that for 0 ≤ j ≤ k − 1, Hx(tj+1) −Hx(tj) ≤ ϵ

2 . Moreover, since f(x, ξ)

is integrable and continuous w.r.t. x, by Lebesgue’s dominated convergence

theorem, for any continuous and bounded function h,

lim
N→∞

E[h(f(x, ξ))− h(f(xN , ξ))] = E
[
lim

N→∞
(h(f(x, ξ))− h(f(xN , ξ)))

]
= 0.

Then f(x, ·) converges to f(xN , ·) weakly, which is equivalent to limn→∞ |HxN
(t)−

Hx(t)| = 0 for any t ∈ R. Then there exists sufficiently large n such that

supj∈{0,··· ,k} |HxN
(tj)−Hx(tj)| ≤ ϵ

4 . Then we have

|HxN
(tj+1)−HxN

(tj)| ≤ |HxN
(tj+1)−Hx(tj+1)|+ |Hx(tj+1)−Hx(tj)|+ |Hx(tj)−HxN

(tj)|
≤ ϵ

4 + ϵ
2 + ϵ

4 = ϵ. □

Theorem 3 Suppose f(x, ξ) is Lipschitz continuous w.r.t. x and ξ, and the

Lipschitz modules κ(ξ) of f(·, ξ) is integrable, f(x, ·) ∈ LP (Ξ,F ,P) and P is

a continuous distribution. Then w.p.1

lim
N→∞

sup
t∈R

|HN
xN

(t)−Hx(t)| = 0, (A7)

and (HN
xN

)−1 converges w.p.1 to H−1
x in the norm topology of Lp as N → ∞.

Proof Note that

|HN
xN

(t)−Hx(t)| ≤ |HN
xN

(t)−HxN
(t)|+ |HxN

(t)−Hx(t)|.

It is sufficient to show that for any ϵ > 0,

lim sup
N→∞

sup
t

|HN
xN

(t)−HxN
(t)| ≤ ϵ (A8)

and

lim sup
N→∞

sup
t

|HxN
(t)−Hx(t)| ≤ ϵ. (A9)
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We consider (A8) firstly. By Lemma 3, there exists −∞ = t0 < t1 < · · · < tk =

∞ such that for 0 ≤ j ≤ k − 1, HxN
(tj+1)−HxN

(tj) ≤ ϵ
2 for all n sufficiently

large. For any t, there exists j such that tj ≤ t ≤ tj+1. For such j,

HN
xN

(tj) ≤ HN
xN

(t) ≤ HN
xN

(tj+1) and HxN
(tj) ≤ HxN

(t) ≤ HxN
(tj+1),

which implies

HN
xN

(tj)−HxN
(tj+1) ≤ HN

xN
(t)−HxN

(t) ≤ HN
xN

(tj+1)−HxN
(tj).

Then we have

HN
xN

(tj)−HxN
(tj) +HxN

(tj)−HxN
(tj+1) ≤ HN

xN
(t)−HxN

(t)

and

HN
xN

(tj+1)−HxN
(tj+1) +HxN

(tj+1)−HxN
(tj) ≥ HN

xN
(t)−HxN

(t).

Note that by Lemma 3 and by uniform law of large numbers [27, Theorem 7.48],

HxN
(tj+1)−HxN

(tj) ≤ ϵ
2 and |HN

xN
(tj+1)−HxN

(tj)| ≤ ϵ
4 for all N sufficiently

large and j = 0, · · · , k, then we have (A8). Now we consider (A9). Similar as

the procedure above, For any t, there exists j such that tj ≤ t ≤ tj+1. For

such j,

Hx(tj) ≤ Hx(t) ≤ Hx(tj+1) and HxN
(tj) ≤ HxN

(t) ≤ H(xN , tj+1).

Then by continuous distribution of P, Lipschitz continuity of f(x, ξ) w.r.t. x

and Lemma 3, for any t ∈ R,

|HxN
(t)−Hx(t)| ≤ |Hx(t)−HxN

(tj)|+ |HxN
(tj)−Hx(tj)|+ |Hx(tj)−Hx(t)|

≤ |HxN
(tj+1)−HxN

(tj)|+ |HxN
(tj)−Hx(tj)|+ |Hx(tj)−Hx(tj+1)|

≤ ϵ.

Combining (A8) and (A9), we have (A7).

Moreover, (A7) implies that (HN
xN

)−1 pointwise converges to H−1
x on the

set [0, 1]. Then, if the sequence {|(HN
xN

)−1(s) − H−1
x (s)|p} is uniformly in-

tegrable, (HN
xN

)−1 converges w.p.1 to H−1
x in the norm topology of Lp as

N → ∞, that is w.p.1

lim
N→∞

∫ 1

0

|(HN
xN

)−1(s)−H−1
x (s)|pds =

∫ 1

0

lim
N→∞

|(HN
xN

)−1(s)−H−1
x (s)|pds = 0,

where the first equality comes from the Lebesgue’s dominated convergence

theorem.
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Let us show that the uniform integrability indeed holds. By triangle in-

equality,

|(HN
xN

)−1(s)−H−1
x (s)|p ≤ |(HN

xN
)−1(s)|p + |H−1

x (s)|p.

Then we only need to show the uniform integrability of |(HN
xN

)−1(s)|p. Note

that ∫ 1

0

|(HN
xN

)−1(s)|pds =
∫
Ξ

|f(xN , ξ)|pdHN
xN

=
1

N

N∑
i=1

|f(xN , ξi)|p.

Since the Lipschitz continuity of f(x, ξ) with Lipschitz modules κ(ξ),

| 1N
∑N

i=1 |f(xN , ξi)|p − EP[|f(x, ξ)|p]| ≤ | 1N
∑N

i=1 |f(xN , ξi)|p −
1
N

∑N
i=1 |f(x, ξi)|p|

+ | 1N
∑N

i=1 |f(x, ξi)|p − EP[|f(x, ξ)|p]|
≤ | 1N

∑N
i=1 κ(ξ)(x− xN )|p

+ | 1N
∑N

i=1 |f(x, ξi)|p − EP[|f(x, ξ)|p]|.

Moreover, by the Law of Large Numbers and xN → x, 1
N

∑N
i=1 κ(ξ) →

EP[κ(ξ)], | 1N
∑N

i=1 κ(ξ)(x−xN )|p → 0 and | 1N
∑N

i=1 |f(x, ξi)|p−EP[|f(x, ξ)|p]| →
0 as N → ∞ w.p.1. It follows that |(HN

xN
)−1(s)|p converges w.p.1 to a finite

limit, which implies that w.p.1 |(HN
xN

)−1(s)|p is uniformly integrable. □

Proof of Proposition 4. For any continuous and bounded function g : Ξ →
R, we have that∫
Ξ

g(s)ζ̄ x̄(s)dP(s) =
∫
[0,1)

∫
Ξ

g(s)ζ̄ x̄α(s)dP(s)dµ̄(α) =
∫
[0,1)

1

1− α

∫
ϕx̄(ξ)>κα

g(s)dP(s)dµ̄(α),

where µ̄ is corresponding to σ̄. Moreover,∫
Ξ

g(s)dP xN

N (s) =

∫
[0,1)

1

N

N∑
j=1

g(ξj)(ζxN
j )αdµN (α) =

∫
[0,1)

1

(1− α)N

∑
ϕxN (ξj)>κα

N,xN

g(ξj)dµN (α).

Then

|
∫
Ξ
g(s)dP xN

N (s)−
∫
Ξ
g(s)ζ̄ x̄(s)dP(s)|

≤

∣∣∣∣∣∣∣
∫
[0,1)

1

(1− α)N

∑
ϕxN (ξj)>κα

N,xN

g(ξj)dµN (α)−
∫
[0,1)

1

1− α

∫
ϕx̄(ξ)>κα

g(s)dP(s)dµN (α)

∣∣∣∣∣∣∣
+

∣∣∣∣∣
∫
[0,1)

1

1− α

∫
ϕx̄(ξ)>κα

g(s)dP(s)dµN (α)−
∫
[0,1)

1

1− α

∫
ϕx̄(ξ)>κα

g(s)dP(s)dµ̄(α)

∣∣∣∣∣.
(A10)
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We first prove

∣∣∣∣∣
∫
[0,1)

1

1− α

∫
ϕx̄(ξ)>κα

g(s)dP(s)dµN (α)−
∫
[0,1)

1

1− α

∫
ϕx̄(ξ)>κα

g(s)dP(s)dµ̄(α)

∣∣∣∣∣→ 0

(A11)

as N → ∞. From condition (iii), g(ξ) is continuous and bounded and ϕx̄(ξ) is

continuous w.r.t. ξ. Then for any α′ → α, α′, α ∈ [0, 1), we have

∣∣∣∣∣
∫
ϕx̄(ξ)>κα′

g(s)dP(s)−
∫
ϕx̄(ξ)>κα

g(s)dP(s)

∣∣∣∣∣ ≤ P((Aα′−Aα)∪(Aα−Aα′))max
s
g(s),

where Aα = {ξ : ϕx̄(ξ) > κα} and Aα′ = {ξ : ϕx̄(ξ) > κα′}. Note that a′ → a

and the CDF of ϕx̄ is strictly monotone, Aα′ → Aα and P((Aα′ − Aα) ∪
(Aα − Aα′)) → 0. Then we have that 1

1−α

∫
ϕx̄(ξ)>κα

g(s)dP(s) is continuous

and bounded w.r.t. α, and (A11) is from the fact that µN weak* converges

to µ. Indeed, by Lemma 2, σN weak* converges to σ̄, then for any continuous

and bounded function g(t),
∫
[0,1)

g(t)σN (t)dt →
∫
[0,1)

g(t)σ̄(t)dt as N → ∞.

Note that µ(α) = (1− α)σ(α) +
∫ α

0
σ(t)dt. Then

|
∫
[0,1)

g(α)µN (α)dα−
∫
[0,1)

g(α)µ̄(α)dα| = (1− α)|
∫
[0,1)

g(α)σN (α)dα−
∫
[0,1)

g(α)σ̄(α)dα|
+
∫
[0,1)

∫ α

0
g(α)(σN (t)− σ̄(t))dtdα→ 0

as N → ∞, which implies that µN weak* converges to µ̄.

Then we prove

∣∣∣∣∣∣∣
∫
[0,1)

1

(1− α)N

∑
ϕxN (ξj)>κα

N,xN

g(ξj)dµN (α)−
∫
[0,1)

1

1− α

∫
ϕx̄(ξ)>κα

g(s)dP(s)dµN (α)

∣∣∣∣∣∣∣→ 0.

Note that ϕx̄(ξ) is Lipschitz continuous w.r.t. x, the given g is continuous

and bounded function w.r.t. ξ and {ξj}Nj=1 is i.i.d. samples from P, both
1

(1−α)N

∑
ϕxN (ξj)>κα

N,xN

g(ξj) and 1
1−α

∫
ϕx̄(ξ)>κα

g(s)dP(s) are bounded by maxs∈[0,1] g(s)

and by Proposition 6

lim
N→∞

∣∣∣∣∣∣∣
1

(1− α)N

∑
ϕxN (ξj)>κα

N,xN

g(ξj)− 1

1− α

∫
ϕx̄(ξ)>κα

g(s)dP(s)

∣∣∣∣∣∣∣ = 0.
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We then have

lim
N→∞

∣∣∣∣∣∣∣
∫
[0,1)

1

(1− α)N

∑
ϕxN (ξj)>κα

N,xN

g(ξj)dµN (α)−
∫
[0,1)

1

1− α

∫
ϕx̄(ξ)>κα

g(s)dP(s)dµN (α)

∣∣∣∣∣∣∣
≤ lim

N→∞

∫
[0,1)

∣∣∣∣∣∣∣
1

αN

∑
ϕxN (ξj)>κα

N,xN

g(ξj)−
∫
[0,1)

1

α

∫
ϕx̄(ξ)>κα

g(s)dP(s)

∣∣∣∣∣∣∣ dµN (α)

≤ lim
N→∞

∫
[0,1)

∣∣∣∣∣∣∣
1

αN

∑
ϕxN (ξj)>κα

N,xN

g(ξj)−
∫
[0,1)

1

α

∫
ϕx̄(ξ)>κα

g(s)dP(s)

∣∣∣∣∣∣∣ dµ̂(α)
= 0,

where the second inequality is from condition (iii) and the third equality is

from Lebesgue’s dominated convergence theorem.

Combining the above analysis, we have (A10), that is P xN

N converges weakly

to P x̄. □

Proof of Theorem 2. By conditions (c) - (e),

P x̄ ∈ arg max
Q∈M

EQ[ϕ(x̄, ξ)].

Then we only need to prove that x̄ is a solution of (22), which is equivalent to

0 ∈ EP x̄ [Φ(x̄, ξ)] +NX(x̄). (A12)

Since x̂N → x̄,

lim sup
N→∞

NX(x̂N ) ⊂ NX(x̄). (A13)

Moreover,

∥E
P

x̂N
N

[Φ(x̂N , ξ)]− EP x̄ [Φ(x̄, ξ)]∥ ≤ ∥E
P

x̂N
N

[Φ(x̂N , ξ)]− EP x̄ [Φ(x̂N , ξ)]∥

+ ∥EP x̄ [Φ(x̂N , ξ)]− EP x̄ [Φ(x̄, ξ)]∥.

Note that since P x̂N

N → P x̄ weakly and by Assumption 3 (b), P x̂N

N → P x̄ under

Wasserstein metric [23]. Then by condition (b), we have for any N , Φ(x̂N , ·)
is Lipschitz continuous and

lim
N→∞

sup
z∈Z̄

∥E
P

x̂N
N

[Φ(z, ξ)]− EP x̄ [Φ(z, ξ)]∥ = 0, (A14)
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where Z̄ := {x̂N , N = 1, 2, · · · }. Moreover,

lim
N→∞

∥EP x̄ [Φ(x̄, ξ)]− EP x̄ [Φ(x̂N , ξ)]∥ ≤ lim
N→∞

EP x̄ [κ(ξ)]∥x̄− x̂N∥

≤ lim
N→∞

sup
P∈M̂

EP [κ(ξ)]∥x̄− x̂N∥

= 0.

(A15)

Combining (A14)-(A15), we have

lim
N→∞

∥E
P

x̂N
N

[Φ(x̂N , ξ)]− EP x̄ [Φ(x̄, ξ)]∥ = 0, (A16)

which implies (A12). □


