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Abstract This paper considers the characterization and computation of sparse solu-
tions and least-p-norm (0 < p < 1) solutions of the linear complementarity problem
LCP(q, M).We show that the number of non-zero entries of any least-p-norm solution
of the LCP(q, M) is less than or equal to the rank of M for any arbitrary matrix M and
any number p ∈ (0, 1), and there is p̄ ∈ (0, 1) such that all least-p-norm solutions
for p ∈ (0, p̄) are sparse solutions. Moreover, we provide conditions on M such that
a sparse solution can be found by solving convex minimization. Applications to the
problem of portfolio selection within the Markowitz mean-variance framework are
discussed.
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1 Introduction

Given an n × n matrix M and an n-dimensional vector q, the linear complementarity
problem (LCP) is to find x ∈ Rn such that

Mx + q ≥ 0, x ≥ 0 and xT (Mx + q) = 0.

We denote the problem by LCP(q, M), its solution set by SOL(q, M) and its feasible
set by FEA(q, M) = {x | Mx + q ≥ 0, x ≥ 0}. The LCP has many applications in
engineering and economics.Moreover, the LCP plays a key role in optimization theory
and presents optimality conditions for constrained quadratic programs [11,14].

The solution set SOL(q, M) often has an infinite number of solutions when it is
nonempty. Finding a special solution in the solution set for different goals has a long
and rich history. Most readers are familiar with the least norm solution, which is
defined by

min ‖x‖22
s.t. x ∈ SOL(q, M).

(1.1)

For the monotone LCP where M is positive semi-definite, it is known that the solution
set SOL(q, M) is a convex polyhedra and has a unique least norm solution. Algorithms
for finding the least norm solution of the monotone LCP have been studied extensively
[11]. It is worth noting that some attractive interior point methods are developed to
find a maximal complementarity solution that has the number of positive components
in (x, s) with s = Mx + q is maximal [22].

In this paper, we consider the sparsity of solutions of the LCP. We call x̄ ∈
SOL(q, M) a sparse solution of the LCP(q, M) if x̄ is a solution of the following
optimization problem

min ‖x‖0
s.t. x ∈ SOL(q, M),

(1.2)

where ‖x‖0 = number of nonzero components of x .
Sparse solutions of the Z-matrix LCP(q, M) have been studied [8,11]. A square

matrix is called a Z-matrix if its off-diagonal entries are non-positive. A vector x̄ ∈
SOL(q, M) is called a least element solution of the LCP(q, M), if x̄ ≤ x for all
x ∈ SOL(q, M). If M is a Z-matrix, and SOL(q, M) �= ∅, then SOL(q, M) has a
unique least element solution which is the unique sparse solution of the LCP(q, M)

and is the unique solution of the following linear program [8,11]

min eT x
s.t. Mx + q ≥ 0, x ≥ 0,

(1.3)

where e is the vector whose all entries are one. In other words, if M is a Z-matrix, then
the unique least �1 norm solution in the feasible set FEA(q, M) is the unique sparse
solution in the solution set SOL(q, M). Moreover, if M is a positive semi-definite Z-
matrix, then the least element solution is the least norm solution of the LCP(q, M). The
least element solution and the least norm solution have been used in the time stepping
scheme to find stable solutions of dynamic linear complementarity systems in [9,17].
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Sparse solutions of linear complementarity problems 541

However, few theoretical results and algorithms are known for sparse solutions of the
LCP(q, M) when M is not a Z-matrix.

The function ‖x‖0 is discontinuous and brings difficulties to analyze the models
and algorithms. The �p (0 < p < 1) norm1

‖x‖p
p =

n∑

i=1

|xi |p

has been used as a continuous approximation function to ‖x‖0 in sparse approximation
and representation [7,10]. The concavity of ‖x‖p

p can provide desired sparsity (see the
proof of Lemma 2.1). Hence it is interesting to study the relation between the sparse
solutions of (1.2) and solutions of the following optimization problem

min ‖x‖p
p

s.t. x ∈ SOL(q, M).
(1.4)

We call a solution of (1.4) a least-p-norm solution.
It is known that finding a sparse solution of a system of linear equations is NP-hard

[2,4,5]. Recently, Ge et al. showed that finding a solution of

min ‖x‖p
p

s.t. Ax = b, x ≥ 0
(1.5)

for 0 < p < 1 is also NP-hard [16], where A ∈ Rm×n, b ∈ Rm . From [2,4,5,16], we
can say that finding a sparse solution and a least-p-norm solution of the LCP(q, M)

is NP-hard, since we can construct M, q such that

S := {x | Mx + q = 0, x ≥ 0} ⊆ SOL(q, M),

and solving minx∈S ‖x‖0 is NP-hard by using the argument in [16].
Sparse solutions of systems of linear equations have been studied extensively in

the last decades [2,4,5,15,16,20]. For example, sparse solutions are given by the
following minimization problem

min ‖x‖0
s.t. Ax = b.

(1.6)

Candes and Tao [5] introduced the restricted isometry property (RIP) and restricted
orthogonality (RO) and proved that under the RIP and RO on the coefficient matrix
A, a sparse solution of (1.6) can be found by the following �1 minimization problem

min ‖x‖1
s.t. Ax = b.

(1.7)

1 When p ∈ [0, 1), ‖x‖p is only a pseudo norm since it fails to satisfy the triangle inequality (and thus
convexity). For simplicity, without the confusion, we call ‖x‖p a norm.
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542 X. Chen, S. Xiang

It is known that in general problem (1.6) is NP-hard, but problem (1.7) is a convex
minimization problem and can be further recast as a linear program. The RIP and
RO classify a subclass of problem (1.6) which can be solved efficiently via linear
programs, and thus they attract remarkable attention in compressed sensing.

In contrast with the fast development in sparse solutions of optimization and linear
equations, sparse solutions of the LCP seem to lack theory and algorithms.

The aim of this paper is to present properties of the sparse solutions and least-p-
norm solutions of the LCP(q, M) and computation methods for finding the sparse
solutions. In particular, we show that the number of non-zero entries of any least-p-
norm solution of the LCP(q, M) is less than or equal to the rank ofM for anymatrixM
and any number p ∈ (0, 1), and there is p̄ ∈ (0, 1) such that all least-p-norm solutions
of (1.4) for p ∈ (0, p̄) are sparse solutions of (1.2). Moreover, we provide conditions
on M such that a sparse solution can be found by solving convex minimization.

This paper is related to the problem of finding sparse solutions to quadratic pro-
grams. Due to the optimality conditions, a solution of the LCP is a solution of the
convex constrained quadratic programwith Lagrangemultiplier which have important
applications in portfolio optimization. The classic Markowitz portfolio optimization
is formulated as the following quadratic program [19]

min 1/2 wTCw

s.t. eTw = 1, rTw = ρ,

w ≥ 0,
(1.8)

where C is the covariance matrix of the return on the assets in the portfolio, w is
the vector of portfolio weights that represent the amount of capital to be invested in
each asset, r is the vector of expected returns of the different assets and ρ is a given
total return. Sparsity is important for investors who often want to select a limited
number of assets for their investment. However, finding a sparse solution of (1.8) is a
challenging problem for which many approaches have been proposed such as penalty
regularized optimization, mixed integer quadratic programs, quadratic programs with
constraints ‖w‖0 ≤ k for a given integer k [3,6]. These approaches may find good
approximate sparse solutions but have some drawback. For example, a solution of a
penalty regularized optimization is not necessarily a solution of the original portfolio
optimization; how to choose k and how to deal with the discontinuous constraint
‖w‖0 ≤ k are difficult. In this paper, we show that the LCP approach has various
advantages for finding a sparse solution of (1.8).

Since C is a symmetric positive semi-definite matrix, problem (1.8) is equivalent
to the LCP(q, M) with

M =
(
C −BT

B 0

)
, B =

⎛

⎜⎜⎝

eT

rT

−eT

−rT

⎞

⎟⎟⎠ , q =

⎛

⎜⎜⎜⎜⎝

0
−1
−ρ

1
ρ

⎞

⎟⎟⎟⎟⎠
, x =

(
w

y

)
,

where y ∈ R4 is the Lagrange multiplier. Hence, if x̄ = (w̄, ȳ) is a sparse solution
of the LCP(q, M), then w̄ is a solution of the Markowitz mean-covariance portfolio
optimization (1.8) and ‖w̄‖0 ≤ ‖w∗‖0 + 4 for any solution w∗ of (1.8).
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Sparse solutions of linear complementarity problems 543

It is easy to see that q ≥ 0 if and only if x = 0 is the unique least-p-norm solution
and the unique sparse solution. To avoid the triviality, we assume that x = 0 is not
a solution of the LCP(q, M). Moreover, we assume the solution set SOL(q, M) is
nonempty.

In Sect. 2, we show the sparsity of solutions of (1.2) and (1.4) for an arbitrarymatrix
M . In Sect. 3, we study the sparsity of solutions of (1.2) and (1.4) for a column adequate
matrix M and a positive semi-definite matrix M . It is shown in [11] that a positive
semi-definite matrix may not be a column adequate matrix, although a symmetric
positive semi-definite matrix is a column adequate matrix. In Sect. 4, we show that
if M is column adequate and satisfies restricted orthogonality or M is positive semi-
definite and M+MT satisfies restricted orthogonality [5], then a sparse solution of the
LCP(q, M) can be found by using an arbitrary solution of the LCP(q, M) and solving
a linear program.We also extend such approach to the column sufficientmatrix LCP. In
Sect. 5, we propose a two-phasemethod for finding a sparse solution of the LCP(q, M)

by solving quadratic programs and linear programs.
For a solution x̃ ∈ SOL(q, M), we define the following index set:

J = {i : x̃i > 0}.

We define the diagonal matrix D whose diagonal elements are

Dii =
{
1, i ∈ J
0, otherwise.

(1.9)

Let J c denote the complementarity set of J and |J | the number of elements of
J . Let e denote the vector whose all entries are one. For x ∈ Rn , let |x | =
(|x1|, |x2|, . . . , |xn|)T . For simplicity, without the confusion, we use x = (w, y) to
denote x = (wT , yT )T .

2 Arbitrary matrix M

From [11, p. 98, 144], the solution set SOL(q, M) of an arbitrary LCP(q, M) is a union
of a finite number of convex polyhedra. Since a convex polyhedron has only finitely
many extreme points, there are only finitely many extreme points in the solution set
SOL(q, M). We say x is an extreme point of SOL(q, M) if x does not lie in any open
line segment joining two points of SOL(q, M). In general, SOL(q, M) is not a convex
set. If x is an extreme point of SOL(q, M), then x is an extreme point of a convex
polyhedron.

Lemma 2.1 All least-p-norm (0 < p < 1) solutions of the LCP(q, M) are extreme
points of SOL(q, M).

Proof Let x̃ be a least-p-norm solution. Suppose there exist y, z ∈ SOL(q, M) such
that x̃ = λy + (1 − λ)z for some 0 < λ < 1. Recall that t p is strictly concave for
t ≥ 0. Then it follows
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‖x̃‖p
p =

n∑

j=1

(λy j + (1 − λ)z j )
p ≥ λ

n∑

j=1

y pj + (1 − λ)

n∑

j=1

z pj = λ‖y‖p
p

+ (1 − λ)‖z‖p
p ≥ ‖x̃‖p

p,

where the last inequality uses that x̃ is a least-p-norm solution. Furthermore, the above
equalities hold if and only if y = z = x̃ , which indicates that x̃ is an extreme point of
SOL(q, M). 
�

Theorem 2.1 Let x̃ and x̄ be a least-p-norm solution and a sparse solution of the
LCP(q, M). Then ‖x̃‖0 ≤ rank(M) for p ∈ (0, 1). Moreover, there is a p̄ ∈ (0, 1)
such that ‖x̃‖0 = ‖x̄‖0 for all p ∈ (0, p̄).

Proof Note that we can choose a permutation matrix U ∈ Rn×n such that

UDUT =
(
IJ,J 0
0 0

)
and UMUT =

(
MJ,J MJ,J c

MJc,J MJc,J c

)
,

where the matrix D is defined in (1.9). Thus

U (I − D + DM)UT =
(
MJ,J MJ,J c

0 IJ c,J c

)
. (2.1)

Note that the LCP(Uq,UM) and the LCP(q, M) are equivalent in the sense that x
is a solution of the LCP(q, M) if and only if Ux is a solution of the LCP(Uq,UM).
Without loss of generality, we assume U = I in (2.1), J = { 1, 2, . . . , k } and

M =
(

MJ,J MJ,J c

MJc,J MJc,J c

)
, x̃ =

(
x̃ J
0

)
, q =

(
qJ
qJc

)
.

Note that x̃ J > 0. It follows MJ,J x̃ J + qJ = 0. If rank(M·,J ) < |J |, then there exists
a nonzero vector h ∈ R|J | such that M·,J h = 0, i.e., MJ,J h = 0 and MJc,J h = 0.
Furthermore, by x̃ J > 0, we can choose a sufficiently small real positive number δ0
such that for all |δ| ≤ δ0,

x̃ J + δh > 0,

MJ,J (̃xJ + δh) + qJ = MJ,J x̃ J + qJ = 0,

MJc,J (̃xJ + δh) + qJc = MJc,J x̃ J + qJc ≥ 0.

Hence ([̃xJ +δh]T , 0)T ∈ Rn+ is also a solution of the LCP(q, M) for |δ| ≤ δ0. Notice
that x̃ is a least-p-norm solution of the LCP(q, M). It leads to

‖x̃‖p
p = min

t∈(−δ0,δ0)
‖([̃xJ + th]T , 0)T ‖p

p =: f (t), 0 < p < 1.
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Sparse solutions of linear complementarity problems 545

It is impossible since

f ′′(t) = p(p − 1)
|J |∑

i=1

(̃xi + thi )
p−2h2i < 0, −δ0 < t < δ0.

Hence we have rank(M·,J ) ≥ |J |, which implies that ‖x̃‖0 ≤ rank(M).
Now we prove the second part of this theorem.
We show that there is a number p̄ ∈ (0, 1) such that any least-p-norm solution x̃

is a sparse solution for p ∈ (0, p̄).
By Lemma 2.1, all least-p-norm solutions of the LCP(q, M) are extreme points

of SOL(q, M) for p ∈ (0, 1). Let
{
x1, x2, . . . , xm

}
be the set of extreme points of

SOL(q, M). Then we have for all x̄

‖x̄‖p
p ≥ min

{
‖x1‖p

p, ‖x2‖p
p, . . . , ‖xm‖p

p

}
= ‖x̃‖p

p. (2.2)

If there is not a number p̄ ∈ (0, 1) such that any least-p-norm solution x̃ is a sparse
solution for p ∈ (0, p̄), then there are a sequence {pi }, pi > 0, pi → 0 as i → ∞
and a sequence {x ji } of extreme points of SOL(q, M) such that x ji is a least-p-norm
solution and

‖x ji ‖0 > ‖x̄‖0. (2.3)

Since there are only finitely many extreme points in SOL(q, M), without loss of
generality, we assume x ji = x j . However, we cannot have (2.3), since (2.2) implies

‖x̄‖0 = lim
pi↓0

‖x̄‖pi
pi ≥ lim

pi↓0
‖x j‖pi

pi = ‖x j‖0.

Hence, the second part of this theorem holds. Moreover, this together with ‖x̃‖0 ≤
rank(M) for p ∈ (0, 1) implies ‖x̄‖0 ≤ rank(M). We complete the proof. 
�

From Lemma 2.1 and Theorem 2.1, we can have the following corollary.

Corollary 2.1 There is an extreme point x̄ of SOL(q, M) such that x̄ is a sparse
solution of the LCP(q, M).

We use the following example to explain Theorem 2.1.

Example 2.1 Consider the LCP(q, M) with

M =
⎛

⎝
1 3 0
1 3 0
1 0 0

⎞

⎠ , q =
⎛

⎝
−4
−4
−1

⎞

⎠ .

The solution set is SOL(q, M) = S1
⋃

S2 where

S1=
{
(x1, x2, 0)

T : x1 + 3x2=4, x1 > 1, x2≥0
}

, S2=
{
(1, 1, x3)

T : x3≥0
}

.

The sparse solution is x̄ = (4, 0, 0)T .
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546 X. Chen, S. Xiang

The least-p-norm solutions are x̃ = (1, 1, 0)T for p > 1
2 ; x̃ = (1, 1, 0)T or

x̃ = (4, 0, 0)T for p = 1
2 ; and x̃ = (4, 0, 0)T for 0 < p < 1

2 .
The number of non-zero components in the sparse solution and all least-p-norm

solutions is one or two, which is less than or equal to rank(M) = 2. Moreover, ‖x̃‖0 =
‖x̄‖0 for all least-p-norm solutions with p ∈ (0, 1

2 ).
Let us consider other LCP(q, M) with

M =

⎛

⎜⎜⎜⎜⎝

1 3 0 0 1
1 3 0 0 1
1 0 0 0 1
0 1 0 0 1
3 3 0 0 1

⎞

⎟⎟⎟⎟⎠
, q =

⎛

⎜⎜⎜⎜⎝

−4
−4
−1
−1
−6

⎞

⎟⎟⎟⎟⎠
.

The solution set is SOL(q, M) = S1
⋃

S2
⋃

S3 where

S1 =
{
(1, 1, x3, x4, 0)

T : x3 ≥ 0, x4 ≥ 0
}

,

S2 =
{
(1, x2, 0, 0, 3 − 3x2)

T : 0 ≤ x2 ≤ 1
}

S3 =
{
(0, 0, x3, x4, 6)

T : x3 ≥ 0, x4 ≥ 0
}

.

The sparse solution is x̄ = (0, 0, 0, 0, 6)T .
Consider a threshold p̄ for 2 = 6 p̄. We find that the least-p-norm solutions are

x̃ = (1, 1, 0, 0, 0)T for p > 1
log2 6

; x̃ = (1, 1, 0, 0, 0)T or x̃ = (0, 0, 0, 0, 6)T for

p = 1
log2 6

; and x̃ = (0, 0, 0, 0, 6)T for 0 < p < 1
log2 6

.
The number of non-zero components in the sparse solution and all least-p-norm

solutions is less than rank(M) = 3. Moreover, ‖x̃‖0 = ‖x̄‖0 for all least-p-norm
solutions with p ∈ (0, 1

log26
).

Remark 2.1 From the proof of Theorem 2.1, we can see that if x∗ ∈ SOL(q, M)

and the column M·,J is linearly dependent, then there are a vector h ∈ RJ and a
permutation matrix U ∈ Rn×n such that M·,J h = 0,U (x∗

J , 0) = x∗ and U ([x∗
J ±

δh], 0) ∈ SOL(q, M) for all sufficiently small |δ|, which implies that x∗ + δh̄ and
x∗ − δh̄ ∈ SOL(q, M), and x∗ = 1

2 (x
∗ + δh̄) + 1

2 (x
∗ − δh̄) ∈ SOL(q, M) with

h̄ = U (h, 0). Hence if x∗ ∈ SOL(q, M) is an extreme point, then the column M·,J is
linearly independent, and thus ‖x∗‖0 ≤ rank(M).

Remark 2.2 The Lemke algorithm is a popular algorithm for solving the LCP, which
is a simplex-like vertex following algorithm [11]. Various schemes of the Lemke
algorithm have stimulated remarkable research on the class of matrices M for which
they can process the LCP(q, M). In [1], Adler andVerma present a sufficient condition
for the processability of the Lemke algorithm for the E0-matrix LCP which unifies
several sufficient conditions for a number of well known subclasses of the E0-matrix
LCPs. A matrix M is called an E0-matrix if for any non-zero x ≥ 0, there exists an
index k such that xk > 0 and (Mx)k ≥ 0. A matrix M is called a P0-matrix if for any
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non-zero x , there exists an index k such that xk �= 0 and xk(Mx)k ≥ 0 [11]. By the
definition, if M is a P0-matrix, then M is an E0-matrix. If M is an E0-matrix and the
solution set SOL(q, M) �= ∅, then the Lemke algorithm can find an extreme point x∗
of SOL(q, M) in a finitely many steps. By Remark 2.1, ‖x∗‖0 gives a sharper bound
for the sparsity of the solution than rank(M), that is, for any least-p-norm solution x̃
for sufficiently small p and any sparse solution x̄ , we havemax{‖x̃‖0, ‖x̄‖0} ≤ ‖x∗‖0.

3 Column adequate matrix M

A matrix M ∈ Rn×n is called column adequate if zi (Mz)i ≤ 0 for all i = 1, 2, . . . , n
implies Mz = 0 [11,18]. The LCP(q, M) is said to be w-unique if there is a unique
vector w such that Mx + q = w for any x ∈ SOL(q, M). Ingleton [18] proved that
the LCP(q, M) is w-unique for any q ∈ Rn if and only if M is column adequate.

Lemma 3.1 [11, Theorem 3.4.4] and [21, Theorem 2.7] The following statements are
equivalent.

(i) M is column adequate.
(ii) M is P0-matrix and for each index set α for which det Mα,α = 0, the columns of

M·,α are linearly dependent.
(iii) For all q ∈ FEA(q, M), if z1 and z2 are any two solutions of the LCP(q, M),

then Mz1 = Mz2.

From Theorem 3.1.7 [11], we see that if M is symmetric positive semi-definite,
then M is adequate.

Theorem 3.1 Suppose that M is column adequate. Let x̄ be a sparse solution of the
LCP(q, M). With the index set J and diagonal matrix D, the following statements
hold.

(i) MJ,J is nonsingular;
(ii) x̄ = −(I − D + DM)−1Dq;
(iii) ‖x̄‖1 ≤ L‖q‖1, where L = max{ ‖M−1

α,α‖1 : Mα,α is nonsingular for α ⊆
{1, . . . , n}};

(iv) there is no another solution x ∈ SOL(q, M) with α = {i : xi > 0} such that
α ⊆ J .

The statements also hold for any least-p-norm solution of the LCP(q, M).

Proof (i) Following the proof of Theorem 2.1, without loss of generality, we assume
U = I in (2.1), J = { 1, 2, . . . , k } and

M =
(

MJ,J MJ,J c

MJc,J MJc,J c

)
, x̄ =

(
x̄ J
0

)
, q =

(
qJ
qJc

)
.

Note that x̄ J > 0. It follows MJ,J x̄ J + qJ = 0. If MJ,J is singular, then from
Lemma 3.1, the columns of M·,J are linearly dependent, and there exists a nonzero
vector h ∈ R|J | such that M·,J h = 0. Define
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τ = min
hi �=0,1≤i≤|J |

x̄i
|hi | .

It is easy to verify that

x̄ J ± τh≥ x̄ J −τ |h|≥0, MJ,J (x̄ J ± τh) + qJ = 0, MJc,J (x̄ J ± τh) + qJc ≥ 0.

Hence ([x̄ J ± τh]T , 0)T ∈ Rn+ is also a solution of the LCP(q, M) but ‖x̄ J − τh‖0 <

‖x̄‖0 or ‖x̄ J + τh‖0 < ‖x̄‖0. Hence, these together imply that MJ,J is nonsingular.
(ii) From the nonsingularity of MJ,J , expression (2.1) with U = I implies that

I − D + DM is nonsingular and

(I − D + DM)−1D =
(
MJ,J MJ,J c

0 I

)−1

D =
(
M−1

J,J 0
0 0

)
. (3.1)

From (I − D)x̄ + D(Mx̄ + q) = 0 and (3.1), we obtain the desired result.
(iii) From (3.1), we have

‖(I−D+DM)−1D‖1≤max
{

‖M−1
α,α‖1 : Mα,α is nonsingular for α ⊆ {1, . . . , n}

}
,

which together with (ii) implies (iii).
(iv) Assume that there is another solution x̂ ∈ SOL(q, M) with α = {i : x̂i > 0}

such that α ⊆ J . From the proof of (i), without loss of generality, assume

M =
⎛

⎝
Mα,α Mα,β Mα,J c

Mα,β Mβ,β Mβ,J c

MJc,α MJc,β MJc,J c

⎞

⎠ , q =
⎛

⎝
qα

qβ

qJc

⎞

⎠ , J = α ∪ β.

It is easy to verify that both x̂ J and x̄ J are solutions of the LCP(qJ , MJ,J ). However
MJ,J is nonsingular and is a P-matrix, then the LCP(qJ , MJ,J ) has a unique solution.
This is a contradiction.

Using the same argument and the proof of Theorem 2.1, we can see the same
statements hold for any least-p-norm solution x̃ of SOL(q, M). 
�
Corollary 3.1 Suppose that M is column adequate. Then all sparse solutions of the
LCP(q, M) are extreme points of SOL(q, M).

Proof Let x̄ be a sparse solution. Assume that there exist y, z ∈ SOL(q, M) such that
x̄ = λy + (1 − λ)z for some 0 < λ < 1. Since x̄ is a sparse solution, this means
x̄, y, z have the same support sets. However, from (iv) of Theorem 3.1 the support sets
of x̄, y, z are same if and only if x̄ = y = z. This is a contradiction. Hence x̄ is an
extreme point of SOL(q, M). 
�
Corollary 3.2 Suppose that M is column adequate and x∗ ∈ SOL(q, M). Then x∗ is
an extreme point if and only if det MJ (x∗),J (x∗) �= 0.
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Proof The necessity is from Remark 2.1 together with (ii) of Lemma 3.1. For the suf-
ficiency, suppose there exist y, z ∈ SOL(q, M) such that x∗ = λy+(1−λ)z for some
0 < λ < 1. Then J (y), J (z) ⊆ J (x∗). From the proof of (iv) of Theorem 3.1, it is easy
to verify that x∗

J (x∗), yJ (x∗) and z J (x∗) are the solutions of LCP(qJ (x∗), MJ (x∗),J (x∗)).
However, LCP(qJ (x∗), MJ (x∗),J (x∗)) has a unique solution since MJ (x∗),J (x∗) is a P-
matrix. This is a contradiction. Hence x∗ is an extreme point. 
�

From Theorems 2.1 and 3.1, if M is column adequate, the number of non-zero
components of any sparse solution and least-p-norm solution of the LCP(q, M) is
less than or equal to max

{
rank(Mα,α) : α ⊆ {1, 2, . . . , n}}. We use the following

example to explain the sparsity.

Example 3.1 Consider the LCP(q, M) with

M =
(
1 1
1 1

)
, q =

(−1
−1

)
.

It is easy to see max
{
rank(Mα,α) : α ⊆ {1, 2}} = 1.

The solution set is SOL(q, M) = {(x1, x2)T : x1 + x2 = 1, x1, x2 ≥ 0}.
The sparse solution is x̄ = {(1, 0)T , (0, 1)T }.
The least-p-norm solution is x̃ = {(1, 0)T , (0, 1)T } for 0 < p < 1.
For p = 1, each solution in SOL(q, M) is the least �1 norm solution. For p >

1, ( 12 ,
1
2 )

T is the least �p norm solution.
Let us consider other LCP(q, M) with

M =
⎛

⎝
5 −1 1

−1 1 1
1 1 2

⎞

⎠ , q =
⎛

⎝
−4
0

−2

⎞

⎠ ,

and max
{
rank(Mα,α) : α ⊆ {1, 2, 3}} = 2.

The solution set is SOL(q, M) = {(x1, x2, x3)T : x1 = λ + (1 − λ) 23 , x2 = λ,

x3 = (1 − λ) 23 , 0 ≤ λ ≤ 1}.
The sparse solution is x̄ = {( 23 , 0, 2

3 )
T , (1, 1, 0)T }.

The least-p-norm solution is x̃ = {( 23 , 0, 2
3 )

T } for 0 < p < 1, which is also the
least �1 norm solution and the least �p norm solution for p ≥ 1.

It is worth noting that the least p-norm solution is unable to characterize all the
sparse solutions. This is not surprising, since ‖x‖p

p is also concerned with the value
of each component |xi | unlike ‖x‖0.
Remark 3.1 The sparsity of solutions of the LCP(q, M) is sensitive with the data
(q, M). Consider the following LCP(q, M) with a symmetric positive semi-definite
matrix

M =
⎛

⎝
2 1 3
1 1 0
3 0 9

⎞

⎠ , q =
⎛

⎝
−2
−1
−3

⎞

⎠.
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The sparse solution is x̄ = (1, 0, 0)T with ‖x̄‖0 = 1. However, for q + εe with
0 < ε < 3

2 , the sparse solution is x̄ = (1−2ε/3, 0, ε/9)T with ‖x̄‖0 = 2. It is known
that the solvability of the monotone LCP(q, M) is stable for nonnegative noise in q,
since the feasibility implies the solvability for themonotone LCP(q, M). However, the
sparsity of solutions of the monotone LCP(q, M) can change with any small positive
noise in q.

4 Computation of sparse solutions

In this section, we show that we can find a sparse solution of the LCP(q, M) by using
an arbitrary solution of the LCP(q, M) and solving a linear program if the matrix M is
column adequate and satisfies the s-restricted isometry property (RIP) for 1 ≤ s ≤ n
and s,s′-restricted orthogonality (RO) for s + s′ ≤ n [5] or M is positive semi-definite
and M + MT satisfies s-RIP for 1 ≤ s ≤ n and s,s′-RO for s + s′ ≤ n.

Anm×n matrix A is said to satisfy the s-RIP with a restricted isometry constant δs
if for every m × |
| submatrix A
 of A and for every vector z ∈ R|
| with |
| ≤ s,

(1 − δs)‖z‖22 ≤ ‖A
z‖22 ≤ (1 + δs)‖z‖22. (4.1)

Moreover, A is said to satisfy the s,s′-RO with a restricted orthogonality constant
θs,s′ for s + s′ ≤ n if for all submatrices A
 ∈ Rm×|
|, A
′ ∈ Rm×|
′| of A with
|
| ≤ s, |
′| ≤ s′ and for all vectors z ∈ R|
|, z′ ∈ R|
′|

|(A
z, A
′ z′)| ≤ θs,s′ ‖z‖2‖z′‖2 (4.2)

holds for all disjoint sets 
 and 
′.
The concepts of s-RIP and s,s′-RO were introduced by Candes and Tao [5] and are

used in many applications of sparse representations.
Using xT Mx = 1

2 x
T (M + MT )x , the LCP(q, M) can be equivalently written as a

quadratic program
min 1

2 x
T (M + MT )x + qT x

s.t. Mx + q ≥ 0, x ≥ 0
(4.3)

in the sense that x∗ is a solution of the LCP(q, M) if and only if x∗ is an optimal
solution of (4.3) with the optimal value of zero. If M is a positive semi-definite matrix
(need not be symmetric), then (4.3) is a convex quadratic program.

FromTheorem 3.1.7 in [11], the solution set SOL(q, M) for a positive semi-definite
matrix M equals to

SOL(q, M) =
{
x ∈ Rn+ | Mx + q ≥ 0, (M + MT )x = c, qT x = γ

}
, (4.4)

where c = (M+MT )x∗, γ = qT x∗ and x∗ is an arbitrary solution of the LCP(q, M).
We consider the following linear program

min eT x
s.t. Mx + q ≥ 0, x ≥ 0, (M + MT )x = c, qT x = γ.

(4.5)
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Theorem 4.1 Suppose that M is positive semi-definite. Let x̂ be a solution of the
linear program (4.5) with ‖x̂‖0 ≤ s.

(i) If (M + MT ) satisfies the RIP with a restricted isometry constant δ2s < 1, then
x̂ is the unique sparse solution of the LCP(q, M).

(ii) If (M + MT ) satisfies the RIP and RO with

δs + θs,s′ + θs,2s′ < 1, (4.6)

then x̂ is the unique solution of the linear program (4.5) and the unique sparse
solution of the LCP(q, M).

Proof (i) From (4.4), we know that x̂ is a solution of the LCP(q, M). Assume on
contradiction that there is a sparse solution of the LCP(q, M) such that x̄ �= x̂ . Then
‖x̄‖0 ≤ ‖x̂‖0 ≤ s and (M + MT )(x̂ − x̄) = 0. Let the support set of x̂ − x̄ be K .
Then |K | ≤ 2s. Hence ‖x̂ − x̄‖0 ≤ 2s, which together with the RIP, yields

(1 − δ2s)‖x̂ − x̄‖22 = (1 − δ2s)‖(x̂ − x̄)K ‖22
≤ ‖(M + MT )·,K (x̂ − x̄)K ‖22 = ‖(M + MT )(x̂ − x̄)‖22 = 0.

This is a contradiction to x̂ �= x̄ . Therefore x̂ is the unique sparse solution of the
LCP(q, M).

(ii) FromTheorem1.3 in [5], x̂ is the unique solution of the following linear program

min ‖x‖1
s.t. (M + MT )x = c.

(4.7)

Since the convex feasible set of (4.5) is contained in the convex set {x | (M +MT )x =
c}, x̂ is also the unique solution of the linear program (4.5).

From Lemma 1.1 in [5], the condition in (4.6) implies δ2s < 1. Hence, from (i) of
this theorem, x̄ is the unique sparse solution of the LCP(q, M). 
�
Theorem 4.2 Suppose that M is column adequate. Let x̂ with ‖x̂‖0 ≤ s be a solution
of the linear program

min eT x
s.t. x ≥ 0, Mx = c, qT x = γ,

(4.8)

where c = Mx∗, γ = qT x∗ and x∗ is an arbitrary solution of the LCP(q, M).

(i) If M satisfies the RIP with a restricted isometry constant δ2s < 1, then x̂ is the
unique sparse solution of the LCP(q, M).

(ii) If M satisfies the RIP and ROwith (4.6), then x̂ is the unique solution of the linear
program (4.8) and the unique sparse solution of the LCP(q, M).

Proof From Lemma 3.1, the LCP(q, M) is w-unique for a column adequate matrix
M . Hence the solution set SOL(q, M) for a column adequate matrix M is convex and
equals to

SOL(q, M) =
{
x ∈ Rn+ | Mx = c, qT x = γ

}
. (4.9)

Following the proof of Theorem 4.1, we can obtain the desired results. 
�
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A matrix M ∈ Rn×n is called column sufficient [11,12] if

xi (Mx)i ≤ 0 for i = 1, 2, . . . , n ⇒ xi (Mx)i = 0 for i = 1, 2, . . . , n. (4.10)

Obviously, ifM is column adequate orM is positive semi-definite, thenM is column
sufficient. In [12], Cottle et al. show that the solution set SOL(q, M) is convex for every
q ∈ Rn if and only if M is column sufficient. Moreover, there exist complementary
index set α and αc such that the solution set SOL(q, M) for a column sufficient matrix
equals to

SOL(q, M) =
{
x ∈ Rn+ | Mx + q ≥ 0, M̌x + q̌ = 0

}
, (4.11)

where

M̌ =
(
Mα,α 0
0 Iαc,αc

)
q̌ =

(
qα

0

)
,

and α = {i : (Mx∗ + q)i = 0} for some solution x∗ of the LCP(q, M).
Following the proof of Theorem 4.1, we can derive the following corollary.

Corollary 4.1 Suppose that M is column sufficient. Let x̂ with ‖x̂‖0 ≤ s be a solution
of the linear program

min eT x
s.t. x ≥ 0, Mx + q ≥ 0, M̌x + q̌ = 0.

(4.12)

(i) If M̌ satisfies the RIP with a restricted isometry constant δ2s < 1, then x̂ is the
unique sparse solution of the LCP(q, M).

(ii) If M̌ satisfies the RIP and ROwith (4.6), then x̂ is the unique solution of the linear
program (4.8) and the unique sparse solution of the LCP(q, M).

Example 4.1 Consider the LCP(q, M) with

M =
⎛

⎝
0.4 −0.3 0.1

−0.3 0.3 −0.3
0.1 −0.3 0.7

⎞

⎠ , q =
⎛

⎝
−0.4
0.3

−0.1

⎞

⎠.

The solution set is SOL(q, M) = {
(1, 0, 0)T + λ(2, 3, 1)T : λ ≥ 0

}
.

The restricted isometry constants are δ1 = 0.4901 and δ2 = 0.8421. From (i) of
Theorem 4.2, x̄ = (1, 0, 0)T is the unique sparse solution of the LCP(q, M).

Remark 4.1 For an m × n matrix A, the concept of Spark(A) is also often used in the
study of sparse solutions, which is defined as the smallest possible number such that
there exists a subgroup of columns from A that are linearly dependent [13].

Suppose that M is positive semi-definite. Let x̂ be a solution of the LCP(q, M)

with ‖x̂‖0 ≤ 1
2 Spark(M + MT ). Then x̂ is a sparse solution of the LCP(q, M). This

statement can be shown as follows.
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Suppose x ′ is another solution of the LCP(q, M), then from (4.4), (M + MT )(x̂ −
x ′) = 0, which implies ‖x̂ − x ′‖0 ≥ Spark(M + MT ) and

‖x ′‖0 ≥ Spark(M + MT ) − ‖x̂‖0 ≥ 1

2
Spark(M + MT ) ≥ ‖x̂‖0.

Similarly, if ‖x̂‖0 < 1
2Spark(M + MT ), then x̂ is the unique sparse solution of the

LCP(q, M).
For a column adequate matrix M , if x̂ is a solution of the LCP(q, M) with

‖x̂‖0 ≤ 1
2Spark(M) then x̂ is a sparse solution of the LCP(q, M). Moreover, the

strict inequality implies the uniqueness.

Example 4.2 Consider the LCP(q, M) with

M =
⎛

⎝
1 1 1
1 1 1
1 1 1

⎞

⎠ , q =
⎛

⎝
−1
−1
−1

⎞

⎠ .

The solution set: SOL(q, M) = {(x1, x2, x3)T : x1 + x2 + x3 = 1, x1 ≥ 0,
x2 ≥ 0, x3 ≥ 0}.

Spark(M) = 2, and (1, 0, 0)T , (0, 1, 0)T , (0, 0, 1)T are sparse solutions of the
LCP(q, M).

5 Numerical experiments

From Theorems 4.1–4.2 and Corollary 4.1, we propose a two-phase method to find a
sparse solution of the LCP(q, M), i.e. a solution of (1.2) as follows.

Phase 1: Find a solution x∗ of the LCP(q, M).
Phase 2: Solve a linear program (4.12) if M is column sufficient, or a linear
program (4.8) if M is column adequate, or a linear program (4.5) if M is positive
semi-definite.

To test the two-phase method, we apply Theorem 4.1 to sparse solutions of the
following quadratic program

min 1
2 z

T Hz + cT z
s.t. Az ≥ b

z ≥ 0
(5.1)

where H ∈ Rm×m is positive semi-definite, c ∈ Rm, A ∈ Rk×m, b ∈ Rk . This
quadratic program includes the Markowitz mean-covariance portfolio optimization
problem (1.8) as a special case. Let SQP be the solution set of (5.1). We say z̄ is a
sparse solution of the quadratic program (5.1) if

‖z̄‖0 = min{ ‖z‖0 : z ∈ SQP }.
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The quadratic program (5.1) is equivalent to the LCP(q, M) with

M =
(
H −AT

A 0

)
, q =

(
c

−b

)
, x =

(
z
y

)
,

where y ∈ Rk is the Lagrange multiplier. Note that M + MT =
(
H 0
0 0

)
. The solution

set SOL(q, M) equals to

SOL(q, M) =
{
x ∈ Rn+ | Mx + q ≥ 0, Hz = w, qT x = γ

}
,

where w = Hz∗, γ = qT x∗ and x∗ = (z∗, y∗) is an arbitrary solution of the
LCP(q, M).

We consider the following linear program

min eT z
s.t. Mx + q ≥ 0, x ≥ 0, Hz = w, qT x = γ.

(5.2)

Let x̂ = (ẑ, ŷ) be a solution of the linear program (5.2) with ‖ẑ‖0 ≤ s. According
to Theorem 4.1, we have the following statements.

(i) If H satisfies the RIP with a restricted isometry constant δ2s < 1, then ẑ is the
unique sparse solution of the quadratic program (5.1).

(ii) If H satisfies the RIP and RO with (4.6) then ẑ is the unique sparse solution of
the quadratic program (5.1) and all solutions x∗ = (z∗, y∗) of the linear program
(5.2) have the same component z∗ = ẑ.

Based on the statements above and (4.3), we propose the following procedure to
find a sparse solution of (5.1).

1. Find a solution x∗ of the LCP(q, M) by solving the following quadratic program

min zT Hz + cT z − bT y
s.t. Az ≥ b, Hz − AT y ≥ −c, z, y ≥ 0.

(5.3)

2. Find a solution of the linear program (5.2).

We use the following code in Matlab to generate a solution z ∈ Rm with ‖z‖0 = s
of (5.1), a positive semi-definite matrix H , a matrix A ∈ Rk×m , and vectors c ∈
Rm, b ∈ Rk .

k=fix(m/5); s=fix(m/3); z=zeros(m,1); P=randperm(m);
z(P(1:2*s+m/10))=abs(randn(2*s+m/10,1)); H=randn(m,m);
H=H*diag(z)*H’;
A=randn(k-1,m); A=[A;-ones(1,m)]; z=zeros(m,1);
z(P(1:s))=abs(randn(s,1)); b=A∗z; c=-H∗z.
For eachm, k, s, we generated 100 independent test problems by the code. The con-

vex quadratic program (5.3) and the linear program (5.2) are solved by theMatlab code
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Table 1 100 independent tests for each (m, k, s)

m 80 90 100 110 120 130 140 150

k 16 18 20 22 24 26 28 30

rank(H) 60 69 76 83 92 99 106 115

s 26 30 33 36 40 43 46 50

‖zLP‖0 25.9; 100 30; 100 33; 99 35.9; 100 40.2;98 42.9;100 46.2;99 50.3; 99

quadprog and linprog with initial iterate x0 = zeros(n, 1). Preliminary numeri-
cal results are reported in Table 1. In the last line of Table 1, we report ‖zLP‖0, n1; n2
where zLP is the numerical solution of the linear program (5.2), n1 is the average
of ‖zLP‖0 for the 100 test problems and n2 is the number of test problems with
‖zLP‖ ≤ s.

The numerical testing is performed usingMATLABR2011b on a Lenovo PC (Intel
Quad CPU Q9550, 2.83GHz, 4.00GB of RAM). The numerical results are encourag-
ing for the study of sparse solutions of the LCP, although the matrix H generated by
the Matlab code may not satisfy the RIP and RO conditions.
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