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Abstract. We define a new fundamental constant associated with a P-matrix and show that this
constant has various useful properties for the P-matrix linear complementarity problems (LCP). In
particular, this constant is sharper than the Mathias-Pang constant in deriving perturbation bounds
for the P-matrix LCP. Moreover, this new constant defines a measure of sensitivity of the solution
of the P-matrix LCP. We examine how perturbations in the data affect the solution of the LCP and
efficiency of Newton-type methods for solving the LCP.
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1. Introduction. The linear complementarity problem is to find a vector x ∈ Rn
such that

Mx+ q ≥ 0, x ≥ 0, xT (Mx+ q) = 0,

or to show that no such vector exists, where M ∈ Rn×n and q ∈ Rn. We denote this
problem by LCP(M, q). A matrix M is called a P-matrix if its all principal minors
are positive, which is equivalent to

max
1≤i≤n

xi(Mx)i > 0 for all x 6= 0.

It is well-known that M is a P-matrix if and only if the LCP(M, q) has a unique
solution for any q ∈ Rn [3]. Moreover, ifM is a P-matrix, then there is a neighborhood
M of M , such that all matrices inM are P-matrices. Hence, we can define a solution
function x(A, b) : M× Rn → Rn+, where x(A, b) is the solution of LCP(A, b) and
Rn+ = {x ∈ Rn | x ≥ 0}.

In [12], Mathias and Pang introduced the following fundamental quantity associ-
ated with a P-matrix,

c(M) = min
kxk∞=1

max
1≤i≤n

{xi(Mx)i}.

This constant has often been used in error analysis of the LCP [2, 3]. In particular,
the following Lemma has been widely applied in perturbation bounds.

Lemma 1.1. [3] Let M ∈ Rn×n be a P-matrix. The following statements hold:
(i) for any two vectors q and p in Rn,

kx(M, q)− x(M,p)k∞ ≤
1

c(M)
kq − pk∞

(ii) for each vector q ∈ Rn, there exist a neighborhood U of the pair (M, q) and a
constant c0 > 0 such that for any (A, b), (B, p) ∈ U , A,B are P-matrices and

kx(A, b)− x(B, p)k∞ ≤ c0(kA−Bk∞ + kb− pk∞).
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Lemma 1.1 shows that when M is a P-matrix, for each q, x(A, b) is a locally
Lipschitzian function of (A, b) in a neighborhood of (M, q), and x(M, b) is a globally
Lipschitzian function of b. This property plays a very important role in the study
of the LCP and mathematical programs with LCP constraints [11]. However, the
constant c(M) is difficult to compute, and c0 is not specified. It is hard to use this
lemma for verifying accuracy of a computed solution of the LCP when the data (M, q)
contain errors.

In this paper, we introduce a new constant for a P-matrix,

βp(M) = max
d∈[0,1]n

k(I −D +DM)−1Dkp,

where D=diag(d) with 0 ≤ di ≤ 1, i = 1, 2, . . . , n and k·kp is the matrix norm induced
by the vector norm for p ≥ 1.

Using the constant βp(M), we give perturbation bounds for M being a P-matrix
as follows.

kx(M, q)− x(M,p)kp ≤ βp(M)kq − pkp,(1.1)

kx(A, b)− x(B, p)kp ≤
βp(M)

2

(1− η)2 k(−p)+kpkA−Bkp +
βp(M)

1− η kb− pkp,(1.2)

and

kx(M, q)− x(A, b)kp
kx(M, q)kp

≤ 2²

1− η βp(M)kMkp,(1.3)

where η ∈ [0, 1) and ² > 0 can be chosen, A,B ∈M := {A |βp(M)kM − Akp ≤ η},
and kq − bkp ≤ ²k(−q)+kp.

The constant βp(M) has the following interesting properties.

• If M is a P-matrix, then for k · k∞,

β∞(M) ≤
1

c(M)
.(1.4)

• If M is an H-matrix with positive diagonals, then for k · kp with any p ≥ 1,

βp(M) ≤ kM̃−1kp,(1.5)

where M̃ is the comparison matrix of M , that is,

M̃ii =Mii, M̃ij = −|Mij |, for i 6= j.

• If M is an M-matrix, then for k · kp with any p ≥ 1,

βp(M) = kM−1kp,(1.6)

• If M is a symmetric positive definite matrix, then for k · k2,

β2(M) = kM−1k2.(1.7)
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Inequalities (1.1) and (1.4) show that the constant β(M) derives a new perturba-
tion bound which is sharper than the bound in (i) of Lemma 1.1 in k·k∞. Furthermore,
Example 2.1 shows that β(M) can be much smaller than c(M)−1 in some case. In-
equality (1.3) indicates that the constant β(M)kMk is a measure of sensitivity of
the solution x(M, q) of the LCP(M, q). Moreover, from (1.3), (1.6) and (1.7), it is
interesting to see that the measure is expressed in the terms of the condition number
of M , that is,

κp(M) := kM−1kpkMkp = βp(M)kMkp
for M being an M-matrix with p ≥ 1 and a symmetric positive definite matrix with
p = 2. Hence, it makes connection between perturbation bounds of the LCP and
perturbation bounds of the systems of linear equations in the Newton-type methods
for solving the LCP. Using the connection, we investigate the efficiency of Newton-type
methods for solving the following two systems

r(x) := min(x,Mx+ q) = 0(1.8)

and

F (x, y) :=

µ
Mx+ q − y
min(x, y)

¶
= 0.(1.9)

It is known that for the P-matrix LCP, the system of linear equations in Newton-
type methods for solving (1.8) or (1.9) is mathematically well-defined, that is, the
generalized Jacobian matrices are nonsingular [5]. However, the matrices can be
computationally ill-conditioned. A matrix A is said to be an ill-conditioned (well-
conditioned) matrix if κp(A) is large (small) [8]. The condition number κp(A) is a
measure of sensitivity of the system of linear equations Ax = b when A is nonsin-
gular. Hence, a linear system is called ill-conditioned (well-conditioned) if κp(A) is
large(small) [4]. From (1.3), (1.6) and (1.7), we find that βp(M)kMkp is a measure of
sensitivety of the LCP(M, q) when M is a P-matrix, and βp(M)kMkp = κp(M) when
M is an M-matrix or a symmeteric positive definite matrix. Moreover, we show that
for the M-matrix LCP, the systems of linear equations in the Newton-type methods
for solving (1.8) are well-conditioned if and only if the condition number κp(M) is
small. However, the system of linear equations in Newton-type methods for solving
(1.9) can be ill-conditioned even when κp(M) is small.

A word about our notation. For a vector q ∈ Rn, q+ = max(0, q). Let N =
{1, 2, . . . , n}. Let e be the vector whose all elements are 1. A matrix A ∈ Rn×n is
called an M-matrix, if A−1 ≥ 0 and Aij ≤ 0 (i 6= j) for i, j ∈ N ; A is called an
H-matrix, if its comparison matrix is an M-matrix.

In the rest of this paper, we use β(·), k · k and κ(·) to present βp(·), k · kp and
κp(·) with any p ≥ 1, respectively.

2. A new constant for the P-matrix LCP . In this section we introduce a
new Lipschitz constant for the P-matrix LCP based on the observation that for any
x, x∗, y, y∗ ∈ Rn,

min(xi, yi)−min(x∗i , y∗i ) = (1− di)(xi − x∗i ) + di(yi − y∗i ), i ∈ N(2.1)

where

di =

⎧⎪⎪⎨⎪⎪⎩
0 if yi ≥ xi, y∗i ≥ x∗i
1 if yi ≤ xi, y∗i ≤ x∗i
min(xi, yi)−min(x∗i , y∗i ) + x∗i − xi

yi − y∗i + x∗i − xi
otherwise.
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It is easy to see di ∈ [0, 1]. Set x = x(A, q), x∗ = x(B, p), y = Ax(A, q) + q, y∗ =
Bx(B, p) + p in (2.1). We obtain

0 = (I −D)(x(A, q)− x(B, p)) +D(Ax(A, q) + q −Bx(B, p)− p)

which implies

(I −D +DA)(x(B, p)− x(A, q)) = D(A−B)x(B, p) +D(q − p).(2.2)

Here D is a diagonal matrix whose diagonal elements are d = (d1, d2, . . . , dn) ∈ [0, 1]n.
Lemma 2.1. (Gabriel and Moré[7]) A is a P-matrix if and only if I −D +DA

is nonsingular for any diagonal matrix D =diag(d) with 0 ≤ di ≤ 1.
For M being a P-matrix, we introduce the following constant

β(M) = max
d∈[0,1]n

k(I −D +DM)−1Dk.

From Lemma 2.1 and (2.2), we have

kx(B, p)− x(A, q)k ≤ β(A)k(A−B)x(B, p) + q − pk(2.3)

provided A is a P-matrix. In the following, we compare β(M) with c(M)−1 in k · k∞
and give a simple version of β(M) for M being an M-matrix, a symmetric positive
definite matrix, and positive definite matrix.

Theorem 2.2. Let M be a P-matrix. Then

β∞(M) := max
d∈[0,1]n

k(I −D +DM)−1Dk∞ ≤
1

c(M)
.

Proof. We first prove that for any nonsingular diagonal matrix D =diag(d) with
d ∈ (0, 1]n,

k(I −D +DM)−1Dk∞ ≤
1

c(M)
.

Let x ∈ Rn with kxk∞ = 1 such that k(I−D+DM)−1Dk∞ = k(I−D+DM)−1Dxk∞
and define y = (I−D+DM)−1Dx. Then Dx = (I−D+DM)y,My = x+y−D−1y.
By the definition of c(M), we have

0 < c(M)kyk2∞ ≤ max
i
yi(My)i = max

i
yi

µ
xi + yi −

yi
di

¶
.

Note that f(t) = a
³
b+ a− at

´
is monotonically increasing for t > 0, where a, b are

constants. Therefore, we deduce

yi

µ
xi + yi −

yi
di

¶
≤ yixi ≤ kyk∞kxk∞ = kyk∞,

which implies

0 < c(M)kyk2∞ ≤ kyk∞ and k(I −D +DM)−1Dk∞ = kyk∞ ≤
1

c(M)
.
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Now we consider d ∈ [0, 1]n. Let d² = min(d+ ²e, e), where ² ∈ (0, 1]. Then, we have

k(I −D +DM)−1Dk∞ = lim
²↓0
k(I −D² +D²M)−1D²k∞ ≤

1

c(M)
.

It is known that an H-matrix with positive diagonals is a P-matrix, and a positive
definite matrix is a P-matrix [3]. Now, we consider the two subclasses of P-matrix.

Lemma 2.3. ([3]) If M is an M-matrix, then I −D + DM is an M-matrix for
d ∈ [0, 1]n.

Lemma 2.4. Let A be an H-matrix with positive diagonals, and let Ã be the
comparison matrix of A. Then the following statements hold:
(i) |A−1| ≤ Ã−1.
(ii) For B ∈ Rn×n with kBk∞kÃ−1k∞ < 1, A + B is an H-matrix with positive

diagonals.
Proof. (i) See problem 31 in [10, page 131]
(ii) Let x = Ã−1e. Since Ã−1 ≥ 0, x > 0 and kxk∞ = kÃ−1k∞. Moreover, from

Ãx = e, we have

aiixi = 1 +
X
j 6=i

|aij |xj , for i ∈ N.

By kxk∞kBk∞ < 1 and kBk∞ = k|B|ek∞, we get kxk∞|B|e < e. Hence for all i ∈ N ,

aiixi >

nX
j=1

|bij |kxk∞ +
X
j 6=i

|aij |xj ≥
X
j 6=i
(|aij |+ |bij |)xj + |bii|xi,

and

(aii + bii)xi ≥ (aii − |bii|)xi >
X
j 6=i
(|aij |+ |bij |)xj .

By I27 of Theorem 2.3, Chap. 6 in [1], this implies that the comparison matrix of
A+B is an M-matrix. Hence A+B is an H-matrix with positive diagonals.

Theorem 2.5. Let M be an H-matrix with positive diagonals. Then

β(M) ≤ kM̃−1k,

where M̃ is the comparison matrix of M . In particular, if M is an M-matrix, then
the equality holds with M = M̃ .

Proof. First we will show that if M is an M-matrix, then

β(M) = kM−1k.

Since for any d ∈ (0, 1]n, by Lemma 2.3,

(DM)−1 − (I −D +DM)−1 = (DM)−1(I −D)(I −D +DM)−1 ≥ 0,

we have

(DM)−1D − (I −D +DM)−1D =M−1 − (I −D +DM)−1D ≥ 0.
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Note that for any matrices A and B, |A| ≤ B implies kAk ≤ kBk. Hence the following
inequalities hold

M−1 ≥ (I −D +DM)−1D ≥ 0, kM−1k ≥ k(I −D +DM)−1Dk.

Let d² = min(d+ ²e, e), where ² ∈ (0, 1]. Then, we have

β(M) = max
d∈[0,1]n

lim
²↓0
k(I −D² +D²M)−1D²k ≤ kM−1k.

It is obvious that β(M) ≥ kM−1k as e ∈ [0, 1]n. Therefore, we obtain β(M) = kM−1k.
For M being an H-matrix, M̃ is an M-matrix. From (i) of Lemma 2.4, we have

|(I −D +DM)−1| ≤ (I −D +DM̃)−1.

Hence, we obtain

β(M) = max
d∈[0,1]n

k(I −D +DM)−1Dk ≤ max
d∈[0,1]n

k(I −D +DM̃)−1Dk ≤ kM̃−1k.

Lemma 2.6. [9] Let A and B be symmetric positive definite matrices.
(i) B −A is positive semidefinite if and only if A−1 −B−1 is positive semidefinite.
(ii) If B − A is positive semidefinite, then λi(B) ≥ λi(A), where λ1(A) ≥ λ2(A) ≥

· · · ≥ λn(A) and λ1(B) ≥ λ2(B) ≥ · · · ≥ λn(B) are eigenvalues of A and B,
respectively.

Theorem 2.7. Let M be a symmetric positive definite matrix. Then

β2(M) := max
d∈[0,1]n

k(I −D +DM)−1Dk2 = kM−1k2.

Proof. It is obvious that β2(M) ≥ kM−1k2. Now we show β2(M) ≤ kM−1k2.
For any nonsingular diagonal matrix D =diag(d) with d ∈ (0, 1]n, M +D−1(I −D)
is positive definite. By (i) of Lemma 2.6, M−1 − (M + D−1(I − D))−1 is positive
semidefinite. By (ii) of Lemma 2.6, we have

k(M +D−1(I −D))−1k2 = k(I −D +DM)−1Dk2 ≤ kM−1k2.

Since the largest eigenvalue is a continuous function of elements of the matrix, we
have

β2(M) = max
d∈[0,1]n

lim
²↓0
k(I −D² +D²M)−1D²k2 ≤ kM−1k2,

where D² =diag(min(d+ ²e, e)).
In comparison to Lemma 1.1, the following theorem gives sharp perturbation error

estimates for the P-matrix LCP
Theorem 2.8. Let M ∈ Rn×n be a P-matrix. Then the following statements

hold:

(i) For any two vectors q and p in Rn,

kx(M, q)− x(M,p)k ≤ β(M)kq − pk.
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(ii) Every matrix A ∈M := {A | β(M)kM −Ak ≤ η < 1} is a P-matrix. Let

α(M) =
1

1− η β(M).

Then for any A,B ∈M and q, p ∈ Rn

kx(A, q)− x(B, p)k ≤ α(M)2k(−p)+kkA−Bk+ α(M)kq − pk.

Proof. (i) It follows directly from (2.3) by setting M = A = B.
(ii) For every A ∈M, since k(I−D+DM)−1D(A−M)k ≤ β(M)kM−Ak ≤ η < 1,

(I −D +DA) = (I −D +DM)(I + (I −D +DM)−1D(A−M))

is nonsingular for any diagonal matrix D =diag(d) with 0 ≤ di ≤ 1. By Lemma 2.1,
A is a P-matrix. Moreover, from

(I −D +DA)−1D = (I + (I −D +DM)−1D(A−M))−1(I −D +DM)−1D,

and

k(I + (I −D +DM)−1D(A−M))−1k ≤ 1

1− β(M)kA−Mk ≤
1

1− η ,

we find β(A) ≤ α(M).
Since matrices A,B ∈M are P-matrices, using (2.3) yields,

kx(A, q)− x(B, p)k ≤ β(A) (kA−Bkkx(B, p)k+ kq − pk) .(2.4)

Notice that 0 is the solution of LCP(B, p+). Using (2.3) again, we get

kx(B, p)k ≤ β(B)k(−p)+k.(2.5)

Applying β(A) ≤ α(M) and β(B) ≤ α(M) to (2.4) and (2.5), respectively, we obtain
the desired bounds in (ii).

From Theorem 2.5 and Theorem 2.7, the Lipschitz constants β(M) and α(M)
can be estimated by matrix norms, if M is an H-matrix with positive diagonals or a
symmetric positive definite matrix. In particular, from Lemma 2.4, Theorem 2.5 and
Theorem 2.7, we have the following two corollaries.

Corollary 2.9. Let M ∈ Rn×n be an H-matrix with positive diagonals. Then
the following statements hold:
(i) For any two vectors q and p in Rn,

kx(M, q)− x(M,p)k∞ ≤ kM̃−1k∞kq − pk∞

(ii) Every matrix A ∈M∞ := {A | kM̃−1k∞kM − Ak∞ ≤ η < 1} is an H-matrix
with positive diagonals. Let

α∞(M) =
1

1− η kM̃
−1k∞.

Then for any A,B ∈M∞ and q, p ∈ Rn

kx(A, q)− x(B, p)k∞ ≤ α∞(M)
2k(−p)+k∞kA−Bk∞ + α∞(M)kq − pk∞.
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Corollary 2.10. Let M ∈ Rn×n be a symmetric positive definite matrix. Then
the following statements hold:
(i) For any two vectors q and p in Rn,

kx(M, q)− x(M,p)k2 ≤ kM−1k2kq − pk2

(ii) Every matrix A ∈M2 := {A | kM−1k2kM −Ak2 ≤ η < 1} is a P-matrix. Let

α2(M) =
1

1− η kM
−1k2.

Then for any A,B ∈M2 and q, p ∈ Rn

kx(A, q)− x(B, p)k2 ≤ α2(M)
2k(−p)+k2kA−Bk2 + α2(M)kq − pk2.

A matrix A is called positive definite if

xTAx > 0, 0 6= x ∈ Rn.

Since xTAx = xT
A+AT

2
x, A is positive definite if and only if

A+AT

2
is symmetric

positive definite. Note that a positive definite matrix is not necessarily symmetric.
Such asymmetric matrices frequently appear in the context of the LCP.

Combining the ideas of Mathias and Pang [12] and Corollary 2.10, we present
perturbation bounds for the positive definite matrix LCP.

Theorem 2.11. Let M ∈ Rn×n be a positive definite matrix. Then the following
statements hold:
(i) For any two vectors q and p in Rn,

kx(M, q)− x(M,p)k2 ≤ k(
M +MT

2
)−1k2kq − pk2.

(ii) Every matrix A ∈ M2 := {A | k(M+MT

2 )−1k2kM − Ak2 ≤ η < 1} is positive
definite. Let

α2(M) =
1

1− η k(
M +MT

2
)−1k2.

Then for any A,B ∈M2 and q, p ∈ Rn

kx(A, q)− x(B, p)k2 ≤ α2(M)
2k(−p)+k2kA−Bk2 + α2(M)kq − pk2.

Proof. We first show that the following inequality holds

kx(A, q)− x(B, p)k2 ≤ k(
A+AT

2
)−1k2(kA−Bk2kx(B, p)k2 + kp− qk2),(2.6)

if A is a positive definite matrix and the LCP(B, p) has a solution x(B, p).
Since x(A, q) and x(B, p) are solutions of the LCP(A, q) and LCP(B, p), respec-

tively, we have

0 ≥ (x(A, q)− x(B, p))T (Ax(A, q) + q −Bx(B, p)− p)
= (x(A, q)− x(B, p))T (A(x(A, q)− x(B, p)) + (A−B)x(B, p) + q − p),
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which implies

(x(A, q)− x(B, p))T ((B −A)x(B, p) + p− q)
≥ (x(A, q)− x(B, p))TA(x(A, q)− x(B, p))

= (x(A, q)− x(B, p))T A+A
T

2
(x(A, q)− x(B, p))

≥ 1

k(A+AT

2 )−1k2
kx(A, q)− x(B, p)k22.

Using the Cauchy-Schwartz inequality, we get (2.6).
(i) Set A = B =M in (2.6), we get the desired bound.
(ii) Note that for any matrix C, kCk2 = kCT k2. For any x ∈ Rn with x 6= 0, we

have

xTAx = xT
M +MT

2
x+ xT (

A+AT

2
− M +MT

2
)x

≥ xTM +MT

2
x− (kA−M

2
k2 + k

AT −MT

2
k2)kxk22

≥
µ
k(M +MT

2
)−1k2

¶−1
kxk22 − kA−Mk2kxk22

≥
µ
k(M +MT

2
)−1k2

¶−1µ
1− k(M +MT

2
)−1k2kM −Ak2

¶
kxk22.

Hence for any A ∈M2, x
TAx > 0, and thus A is positive definite. Moreover, from

(
A+AT

2
)−1 = (I + (

M +MT

2
)−1(

A+AT

2
− M +MT

2
))−1(

M +MT

2
)−1

and

kA+A
T

2
− M +MT

2
k2 ≤

1

2
(kA−Mk2 + kAT −MT k2) = kM −Ak2

we have

k(A+A
T

2
)−1k2 ≤

1

1− k(M+MT

2 )−1k2kA+AT

2 − M+MT

2 k2
k(M +MT

2
)−1k2 ≤ α2(M).

Similarly, for B ∈ M2, k(B+B
T

2 )−1k2 ≤ α2(M). Notice that 0 is the solution of
LCP(B, p+). Setting A = B and q = p+ in (2.6), we get

kx(B, p)k2 ≤ k(
B +BT

2
)−1k2k(−p)+k2.

Using these inequalities with (2.6), we obtain the perturbation bound in (ii).
Example 2.1 Theorem 2.2 shows that for every P-matrix, β∞(M) ≤ c(M)−1. Now
we show that β∞(M) can be much smaller than c(M)−1 in some case. Consider

M =

µ
1 −t
0 t

¶
.

For t ≥ 1, M is an M-matrix. By Theorem 2.5, β∞(M) = kM−1k∞ = 2. For
x̄ = (1, t−1), we have

c(M) ≤ max
i∈N

x̄i(Mx̄)i =
1

t
.

Hence, c(M)−1 ≥ t→∞, as t→∞.
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3. Relative perturbation bounds for the LCP. Using the results in the last
section, we derive relative perturbation bounds expressed in the term of β(M)kMk.

Theorem 3.1. Suppose

min(x,Mx+ q) = 0 M ∈ Rn×n, 0 6= (−q)+ ∈ Rn
min(y, (M +4M)y + q +4q) = 0 4M ∈ Rn×n, 4q ∈ Rn

with

k4Mk ≤ ²kMk, k4qk ≤ ²k(−q)+k.
If M is a P-matrix and ²β(M)kMk = η < 1, then M +4M is a P-matrix and

ky − xk
kxk ≤ 2²

1− ηβ(M)kMk.

Proof. First we observe that x is a solution of LCP(M, q) and y is a solution of
LCP(M +4M, q +4q). Then following the proof of (ii) of Theorem 2.8, we obtain
that M +4M is a P-matrix and

β(M +4M) ≤ 1

1− η β(M),

which, together with (2.3), give

kx− yk ≤ 1

1− ηβ(M)(k4Mkkxk+ k4qk).(3.1)

From Mx + q ≥ 0, we deduce (−q)+ ≤ (Mx)+ ≤ |Mx|. This implies k(−q)+k ≤
kMxk ≤ kMkkxk. Hence, we have

kxk ≥ 1

kMkk(−q)+k > 0.(3.2)

Combining (3.1) and (3.2), we obtain the desired bounds

ky − xk
kxk ≤ 1

1− η β(M)(k4Mk+
k4qk
kxk ) ≤

2²

1− η β(M)kMk.

Theorem 3.1 indicates that β(M)kMk is a measure of sensitivity of the solution
of the LCP(M, q) forM being a P-matrix. Moreover, Theorem 3.1 with Corollary 2.9,
Corollary 2.10 and Theorem 2.11 gives β(M)kMk in the term of condition number
for the H-matrix LCP, symmetric positive definite LCP and positive definite LCP.

Corollary 3.2. Suppose

min(x,Mx+ q) = 0 M ∈ Rn×n, 0 6= (−q)+ ∈ Rn
min(y, (M +4M)y + q +4q) = 0 4M ∈ Rn×n, 4q ∈ Rn.

(i) If M is an H-matrix with positive diagonals, ²κ∞(M̃) = η < 1, and

k4Mk∞ ≤ ²kM̃k∞, k4qk∞ ≤ ²k(−q)+k∞
then M +4M is an H-matrix with positive diagonals and

ky − xk∞
kxk∞

≤ 2²

1− ηκ∞(M̃).
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(ii) If M is a symmetric positive definite matrix, ²κ2(M) = η < 1, and

k4Mk2 ≤ ²kMk2, k4qk2 ≤ ²k(−q)+k2,
then M +4M is a P-matrix and

ky − xk2
kxk2

≤ 2²

1− ηκ2(M).

(iii) If M is a positive definite matrix, ²κ2(
M+MT

2 ) = η < 1, and

k4Mk2 ≤ ²k
M +MT

2
k2, k4qk2 ≤ ²k(−q)+k2

kM +MT k2
2kMk2

,

then M +4M is a positive definite matrix, and

kx− yk2
kxk2

≤ 2²

1− ηκ2(
M +MT

2
).

Remark Note that k(−q)+k ≤ kqk. If Mx + q = 0, then (i) of Corollary 3.2 for M
being an M-matrix and (ii) of Corollary 3.2 reduce to the perturbation bounds for the
system of linear equations [8].

For the H-matrix LCP, componentwise perturbation bounds based on the Skeel
condition number k|M̃−1||M̃ |k∞ can be represented as follows.

Theorem 3.3. Suppose

min(x,Mx+ q) = 0 M ∈ Rn×n, 0 6= (−q)+ ∈ Rn
min(y, (M +4M)y + q +4q) = 0 4M ∈ Rn×n, 4q ∈ Rn

with

|4M | ≤ ²|M |, |4q| ≤ ²(−q)+(3.3)

If M is an H-matrix with positive diagonals and ²κ∞(M̃) = η < 1, then M +4M is
an H-matrix with positive diagonals and

ky − xk∞
kxk∞

≤ 2²

1− η kM̃
−1|M̃ |k∞.(3.4)

Proof. From (3.3), we have

k4Mk∞ ≤ ²kM̃k∞, and k4qk∞ ≤ ²k(−q)+k∞,≤ ²kMk∞kxk∞,
where the last inequality uses (−q)+ ≤ (Mx)+ ≤ |M |x.

According to Corollary 3.2, M + 4M is an H-matrix with positive diagonals.
Moreover, the equality (2.2) gives

(I −D +DM)(y − x) = D4My +D4q,(3.5)

for some diagonal matrix D =diag(d) with d ∈ [0, 1]n.
Following the proof of Theorem 2.5, by Lemma 2.4, we get

|y − x| ≤ |(I −D +DM)−1D|(|4M |y + |4q|)
≤ |(I −D +DM̃)−1D|(|4M |y + |4q|)
≤ M̃−1(|4M |y + |4q|)
≤ ²M̃−1(|M |y + |M |x).
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Therefore, we find

ky − xk∞ ≤ ²kM̃−1|M |k∞(kyk∞ + kxk∞).(3.6)

Furthermore, from (3.5), we obtain

y − ((I −D +DM)−1D4M)y = x+ (I −D +DM)−1D4q.

Hence, it holds

(1− ²kM̃−1k∞kMk∞)kyk∞ ≤ (1− k(I −D +DM)−1Dk∞k4Mk∞)kyk∞
≤ ky − (I −D +DM)−1D4Myk∞
≤ kxk∞ + kI −D +DM)−1Dk∞k4qk∞
≤ (1 + ²kM̃−1k∞kMk∞)kxk∞.

This implies

kyk∞ ≤
1 + η

1− η kxk∞.(3.7)

Combining (3.6) and (3.7), we obtain the desired bounds (3.4).

4. Newton-type methods. In the last two sections, we have given perturbation
bounds for the LCP in the term of β(M). In this section, we use the perturbation
bounds to analyze efficiency of Newton-type methods for solving the LCP based on
the systems (1.8) and (1.9).

Many semismooth Newton methods, smoothing Newton methods and path-following
interior point methods [5] solve a system of linear equations in their each iteration,

(I −Dk +DkM)(x− xk) = −r(xk),(4.1)

or µ
M −I

I −Dk Dk

¶µ
x− xk
y − yk

¶
= −F (xk, yk),(4.2)

where Dk is a diagonal matrix whose diagonal elements are in [0, 1].
Sensitivity of (4.1) and (4.2) will effect implementation of the methods and re-

liability of the computed solution. From the analysis of Dennis and Schnabel[4], if
the condition number of the coefficient matrix of the linear equations is larger than
(macheps)−1/2, the numerical solution may not be trustworthy. Here macheps is
computer precision. The linear systems (4.1) and (4.2) have the following relation
regarding to the condition numbers.

Proposition 4.1. For any diagonal matrix D=diag(d) with 0 ≤ di ≤ 1, i =
1, 2, . . . , n, the following inequalities hold

κ∞

µ
M −I

I −D D

¶
≥ κ∞(I −D +DM)(4.3)

and

κ

µ
M −I

I −D D

¶
≥ 1
2
κ(I −D +DM).(4.4)
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Proof. First we observe

k
µ

M −I
I −D D

¶
k∞ ≥ 1 + kMk∞ ≥ max(1, kMk∞) ≥ kI −D +DMk∞

and

k
µ

M −I
I −D D

¶
k ≥ max(1, kMk) ≥ max(1, kMk)

1 + kMk kI−D+DMk ≥ 1
2
kI−D+DMk.

Next, we consider the inverses. Fromµ
I 0
D I

¶µ
M −I

I −D D

¶
=

µ
M −I

I −D +DM 0

¶
and µ

M −I
I −D +DM 0

¶−1
=

µ
0 (I −D +DM)−1
−I M(I −D +DM)−1

¶
,

we find the inverseµ
M −I

I −D D

¶−1
=

µ
0 (I −D +DM)−1
−I M(I −D +DM)−1

¶µ
I 0
D I

¶
=

µ
(I −D +DM)−1D (I −D +DM)−1

M(I −D +DM)−1D − I M(I −D +DM)−1
¶
.

Therefore, we have

k
µ

M −I
I −D D

¶−1
k ≥ k(I −D +DM)−1k.

By the definition of the condition number, (4.3) and (4.4) hold.
Since Dk in the coefficient matrices of (4.1) and (4.2) changes at each step, we

consider the worst case

K(M) := max
d∈[0,1]n

k(I −D +DM)−1kkI −D +DMk

and

K̂(M) := max
d∈[0,1]n

k
µ
M −I
D I −D

¶−1
kk
µ
M −I
D I −D

¶
k.

From Proposition 4.1, we have

K̂∞(M) ≥ K∞(M),

which implies that if (4.2) is well-conditioned, then (4.1) is well-conditioned, and if
(4.1) is ill-conditioned, then (4.2) is ill-conditioned. The following example shows that
K̂∞(M) can be much larger than K∞(M).
Example 4.1 Let M = aI(a ≥ 1). Straightforward calculation gives

K̂∞(M) ≥ k
µ
aI −I
I 0

¶
k∞k

µ
aI −I
I 0

¶−1
k∞ = (1+a)k

µ
0 I
−I aI

¶
k∞ = (1+a)2
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and

K∞(M) = max
d∈[0,1]n

k(I−D+aD)−1k∞kI−D+aDk∞ ≤
max0≤ξ≤1 |(1 + aξ − ξ)|
min0≤ξ≤1 |(1 + aξ − ξ)| = a.

For large a, K̂∞(M)−K∞(M) (≥ a2 + a+ 1) is very large.
From Proposition 4.1 and Example 4.1, we may suggest Newton-type methods for

solving the nonlinear equations (1.8) have less perturbation error than the Newton-
type methods for (1.9). Now, we focus on Newton-type methods for (1.8). Obviously,
it holds

K(M) ≥ κ(M),

as e ∈ [0, 1]n. For M being an H-matrix with positive diagonals, by Theorem 2.1 and
Theorem 2.3 in [2], we have

K∞(M) ≤ max(1, kMk∞)kM̃−1max(Λ, I)k∞,(4.5)

where Λ is the diagonal parts of M .
For M being an M-matrix with kMk∞ ≥ 1, we have

κ∞(M) ≤ K∞(M) ≤ κ∞(M)kmax(Λ, I)k∞.(4.6)

Hence, the condition number κ∞(M) is a measure of sensitivity of the solution of the
system of linear equations for the worst case. Note that we have shown that κ∞(M) is
a measure of sensitivity of the solution of LCP. Hence we may suggest that if Λ is not
large, then the LCP is well-conditioned if and only if the system of linear equations
(4.1) at each step of the Newton method is well-conditioned. Furthermore, for an M
matrix, its diagonal elements are positive, and the LCP(Λ−1M,Λ−1q) and LCP(M, q)
are equivalent. The inequalities in (4.6) yield K∞(Λ−1M) = κ∞(Λ−1M).

5. Final remark. In [2], we provided the following error bound for the P-matrix
LCP

kx− x(M, q)k ≤ max
d∈[0,1]n

k(I −D +DM)−1kkr(x)k, for any x ∈ Rn(5.1)

and proved that (5.1) is sharper than the Mathias-Pang error bound [12]

kx− x(M, q)k∞ ≤
1 + kMk∞
c(M)

kr(x)k∞, for any x ∈ Rn

in k · k∞. Moreover, we showed that the error bound (5.1) can be computed easily for
some special matrix LCP. For instance, if M is an H-matrix with positive diagonals,
we have

µ(M) := max
d∈[0,1]n

k(I −D +DM)−1k ≤ kM̃−1max(Λ, I)k

where Λ is the diagonal parts of M .
In this paper, we study the behavior of the solution x(M, q) when there are some

perturbations 4M and 4q in M and q. In particular, we show

kx(M +4M, q +4q)− x(M, q)k ≤ β(M)k4Mx(M +4M, q +4q) +4qk.
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The constants µ(M) and β(M) play different roles, where the former is for computa-
tion of error bounds and the latter is for sensitivity analysis.

Theorem 2.2 proves that β(M) is smaller than the Mathias-Pang constant 1/c(M)
for sensitivity and stability analysis [3]. Theorem 2.5 and Theorem 2.7 provide various
interesting properties (1.5) -(1.7) of β(M) when M is an H-matrix with positive
diangonals, M-matrix or symmetric positive definite matrix. These results show that
the condition number κ(M) is a measure of the sensitivity of the LCP(M, q). This
means that if κ(M) is small(large), then small changes in M or q result in small
(large) changes in the solution x(M, q) of the LCP(M, q).

When the LCP(M, q) is used in the modelling of a practical application, the
matrix M and vector q often contain errors due to inaccurate data, uncertain fac-
tors, etc. Hence, to make x(M, q) useful in practical, it is very important to ob-
tain some sensitivity information of the solution. This is one reason why sensitiv-
ity analysis of the LCP(M, q) has been studied so extensively [3]. In the website
http://www.st.hirosaki-u.ac.jp/ ˜ chen/ExamplesLCP.pdf, we provide numerical ex-
amples including free boundary problems [14] and traffic equilibrium problems [3, 6]
to illustrate the practical value of the new pertubations bounds (1.1)-(1.7).

Acknowledgments. The authors are grateful to Prof. Z.Q. Luo and two anony-
mous referees for their helpful comments.
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[15] U. Schäfer, A linear complementarity problem with a P-matrix, SIAM Rev., 46(2004), pp.

189-201.


