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Neural Network for Nonsmooth, Nonconvex
Constrained Minimization Via Smooth
Approximation

Wei Bian and Xiaojun Chen

Abstract— A neural network based on smoothing approxi-
mation is presented for a class of nonsmooth, nonconvex con-
strained optimization problems, where the objective function is
nonsmooth and nonconvex, the equality constraint functions are
linear and the inequality constraint functions are nonsmooth,
convex. This approach can find a Clarke stationary point of the
optimization problem by following a continuous path defined
by a solution of an ordinary differential equation. The global
convergence is guaranteed if either the feasible set is bounded or
the objective function is level bounded. Specially, the proposed
network does not require: 1) the initial point to be feasible; 2)
a prior penalty parameter to be chosen exactly; 3) a differential
inclusion to be solved. Numerical experiments and comparisons
with some existing algorithms are presented to illustrate the
theoretical results and show the efficiency of the proposed
network.

Index Terms— Clarke stationary point, condition number,
neural network, nonsmooth nonconvex optimization, smoothing
approximation, variable selection.

I. INTRODUCTION

HE approach based on the use of analog neural net-

works for solving nonlinear programming problems and
their engineering applications has received a great deal of
attention in the last two decades. See [1]-[12], and so
forth, and references therein. The neural network method
is effective and particularly attractive in the applications
where it is of crucial importance to obtain the optimal
solutions in real time, as in some robotic control, signal
processing, and compressed sensing. Artificial neural net-
works can be used to model the dynamics of a system [13]
and implemented physically by designed hardware such as
specific integrated circuits where the computational proce-
dure is distributed and parallel. Some dynamical proper-
ties of differential equation or differential inclusion net-
works make remarkable contributions to their applications in
optimization [14]-[17].

Manuscript received November 1, 2012; accepted August 11, 2013. Date
of publication October 10, 2013; date of current version February 14,
2014. The work of W. Bian was supported in part by the Hong Kong
Polytechnic University Post-Doctoral Fellowship Scheme and in part by the
NSF Foundation of China under Grant 11101107, Grant 11126218, and Grant
11271099. The work of X. Chen was supported by the Hong Kong Research
Grant Council under Grant PolyU5003/10P.

W. Bian is with the Department of Mathematics, Harbin Institute of
Technology, Harbin 150001, China (e-mail: bianweilvse520@163.com).

X. Chen is with the Department of Applied Mathematics, The Hong Kong
Polytechnic University, Hong Kong (e-mail: maxjchen@polyu.edu.hk).

Digital Object Identifier 10.1109/TNNLS.2013.2278427

In this paper, we consider the following constrained non-
smooth nonconvex minimization problem:

fx)
Ax = b,

min

1
such that M

gx) =0
where x € R", f : R" — R is locally Lipschitz, but not
necessarily differentiable or convex, A € R™*" is of full row
rank, b € R", g : R" — R™, and g; is convex but not
necessarily differentiable, i = 1,2,...,m.

Nonsmooth and nonconvex optimization problem arises in a
variety of scientific and engineering applications. For example,
the constrained nonsmooth nonconvex optimization model

.
min [ Ax = blI3 + 2 > ¢(Id] x]) )

i=1

where 4 > 0, r is a positive integer, d; € R”, C is a closed
convex subset of R”, and ¢ is a given penalized function.
Problem (2) attracts great attention in variable selection and
sparse reconstruction [18]-[22]. In addition, the problem of
minimizing condition number is also an important class of
nonsmooth nonconvex optimization problems, which has been
widely used in the sensitivity analysis of interpolation and
approximations [23].

Recently, some discrete iterative algorithms, statistical algo-
rithms, and dynamic subgradient algorithms are proposed
for constrained nonsmooth nonconvex optimization prob-
lems. Among them, the smoothing projected gradient method
[24] is a discrete iterative method, which uses smoothing
approximations and has global convergence. The sequence
quadratic programming algorithm based on gradient sampling
(SQP-GS) [25] is a statistical method, which uses a process
of gradient sampling around each iterate x¥, and have global
convergence to find a Clarke stationary point with probability
one. The network in [7] uses exact penalty functions to find
a Clarke stationary point via a differential inclusion. To avoid
estimating an upper bound of the Lipschitz constant of the
inequality constrained functions over a compact set needed
in [7], Liu and Wang [9] proposed another network to solve
nonconvex optimization problem (1). A neural network via
smoothing techniques is proposed in [12] for solving a class
of non-Lipschitz optimization, where the objective function is
non-Lipschitz with specific structure and the constraint is so
simple such that its projection has a closed form. In addition,
the network in [12] is to find a scaled stationary point of the
considered problem, which may not be a Clarke stationary
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point of Lipschitz optimization. Although these methods can
efficiently solve some nonsmooth, nonconvex optimization
problems, some difficulties still remain. For instance, the
statistical gradient sampling methods relay on the number
of the individuals largely and require that the functions are
differentiable at all iterates for global convergence analysis;
the algorithms based on projection methods have difficulties in
handling complex constraints; the dynamic subgradient meth-
ods need exact penalty parameters and solutions of differential
inclusions.

The main contributions of this paper are as follows. First,
the proposed network can solve the nonconvex optimization
problem with general convex constraints without the need of
giving the exact penalty parameter in advance. To find an exact
penalty parameter, most existing results need the Lipschitz
constants of the objective and constraint functions and the
boundedness of the feasible region [4], [7], [9]. Estimating
these values is, however, usually very difficult. In addition,
too large penalty parameter may bring numerical overflow in
calculation and let the network ill conditioned. To overcome
these difficulties, smoothing method is introduced into the
network, which leads the differentiability of the approximated
objective and penalty functions. Then, the penalty parameter
can be updated online following some values, such as the
gradient information of the approximated functions and the
smoothing parameter. Second, by the smoothing methods, the
proposed network is modeled by a differential equation not
differential inclusion and can be implemented directly by
circuits and mathematical softwares. For the networks modeled
by a differential inclusion, we need to know the element in
the right hand set-valued map, which equals to u(¢) almost
everywhere. This is crucial for the implementation of networks
and relays on the geometry property of the set-valued map.
Third, the smoothing parameter in the proposed network is
updated continuously, which is different from the updating
rules in the previous iterative algorithms. Fourth, the proposed
network does not need large sampling for approximation,
which is used in the statistical optimization methods.

This paper is organized as follows. In Section II, we define
a class of smoothing functions and give some properties of
smoothing functions for the composition of two functions.
In Section III, the proposed neural network via smoothing
techniques is present. In Section IV, we study the existence
and limit behavior of solutions of the proposed network. In
Section V, some numerical results and comparisons show that
the proposed network is promising and performs well. Let
|| - || is the two norm of a vector and a matrix. For a subset
U C R, letint(U), bd(U), and U € be the interior, boundary,
and complementary sets of U, respectively.

II. SMOOTHING APPROXIMATION

Many smoothing approximations for nonsmooth optimiza-
tion problems have been developed in the past decades
[26]-[30]. The main feature of smoothing methods is
to approximate the nonsmooth functions by parameterized
smooth functions.

Definition 1: Let h : R" — R be locally Lipschitz. We call
h: R x (0, 00) — R a smoothing function of A, if h satisfies

the following conditions.

1) For any fixed u € (0,00), h(-, ) is continuously
differentiable in R", and for any fixed x € R", ﬁ(x, 2
is differentiable in (0, 00).

2) For any fixed x € R”, lim, o h(x, ) = h(x).

3) {limz—x, 440 Vzh(z, )} € 0h(x).

4) There is a positive constant x; > 0 such that
|V,ufl(x, W = xj, Yu € (0,00), x € R™.

From (iv) of Definition 1, for any ¢ > u > 0, we have

h(x, 1) = h(x, @) < r(u — i), VxeR"

placing # | O in the above inequality and from (ii) of
Definition 1, it gives

|h(x, 1) = h()| < wju, Y€ (0,00), xeR. (3
For any fixed z, x € R", from (3), we obtain

lh(z, 1) — h(x)| < |h(z, &) — h(@)] + [h(z) — h(x)|
K i+ 1h(2) — h(x)]

=
=

which implies
lim  h(z, 1) = h(x). 4)
z—x,u1l0

The following proposition gives four important properties

for the compositions of smoothing functions. The proof of
Proposition 1 can be found in the Appendix.

Proposition 1:

1) Let fl, o, fm be smoothing functions of fi,..., fu,
then D7 | &; fi is a smoothing function of 37| ; fi
with Ksm g = > ajk; when a; > 0 and f;
is regular f31] forany i =1,2,...,m.

2) Let ¢ : R" — R be locally Lipschitz and y : R — R be
continuously differentiable and globally Lipschitz with
a Lipschitz constant [,,. If ¢ is a smoothing function
of ¢, then w(¢) is a smoothing function of w(p) with
Ky() = lyks.

3) Let ¢ : R"™ — R be regular and y : R” — R™ be
continuously differentiable. If ¢ is a smoothing function
of ¢, then ¢(y) is a smoothing function of ¢ () with
Koy) = K-

4) Let ¢ : R" — R be locally Lipschitz and v : R — R
be globally Lipschitz with a Lipschitz constant /.. If ¢
and y are smoothing functions of ¢ and w, y (-, 1) and
@(-, u) are convex, and (-, 1) is nondecreasing, then
w(@) is a smoothing function of w(p) with Ko@) =
K, + l,/,Kq;.

Example 1: Four popular smoothing functions of ¢(s) =

max{0, s} are

By s 1
$1(s, 1) = s + pin(l+e ), Gals, p) = S (s + V24 4u?),

max{0, s} if|s| > u
b3(s, 1) = 2
@3(s, 1) (s + ) ifls] < .
4u
~ s—|—%e 7 ifs >0
¢4(S, :u) = u _s
—e u ifs <0



BIAN AND CHEN: NEURAL NETWORK FOR NONSMOOTH, NONCONVEX CONSTRAINED MINIMIZATION 547

It is easy to find that the four functions satisfy the four
conditions in Definition 2.1 with Ky = In2, Ky, = 1,
K, = 1/4, and k5 =1.Fori =1,2,3,4, &i(s, u) is convex
and nondecreasing for any fixed # > 0, and nondecreasing for
any fixed s € R. In addition, we note that the four smoothing
functions have a common property that

~ 1
Vs¢i(sr /u) = 5»

Because |s| = max{0,s} + max{0, —s}, then we can also
obtain some smoothing functions of |s| by the above smooth-
ing functions of max{0, s}, where one frequently used is

Vs € (0,00), u € (0,00). 5)

15| if|s] > %

OGs, ) =1 2 (6)
T E s < B
u 4 2

Note that (-, u) is convex for any fixed x4 > 0, O(s, -) is
nondecreasing for any fixed s € R and x5 = 1/4.

Among many existing smoothing methods, simple structure
is one of most important factors for the neural network
design. For example, ¢3(s, x) is a better choice for ¢ (s). High
order smoothness and maintaining the features of the original
nonsmooth function as much as possible are also crucial for the
produced smoothing function. See [26]-[30] for other smooth-
ing functions and relative analysis. In addition, the scheme on
updating the smoothing parameter will affect the convergence
rate. How to choose a better performance smoothing function
and scheme of updating smoothing parameter gives us a topic
for further research.

III. PROPOSED NEURAL NETWORK

Denote the feasible set of (1) by X = X; N X;, where
X) = {x| Ax = b} and X; = {x]| g(x) < 0}. We always
assume the following conditions hold in this paper.

(A1) There is X € X| Nint(Xy).
(A2) The feasible region X is bounded.

Let c = AT(AAT)"1b, P =1, — AT(AAT) 714, q(x) =
> max{0, gi(x)}. In what follows, we use a smooth-
ing function ¢ of max{0,s} given in Example 1. Because
maxi<j<a{x ¢~7i} < 1, we let k; = 1 in our following theoretical
analysis.

Let f : R" x (0,00) — R be a smoothing function of f
and the smoothing function of ¢ be given as follows:

G, ) =D @i(x, p), 1) (7)

i=1
where g; : R" x (0,00) — R is a smoothing function of g;,
i =1,2,...,m. Because g; is convex, g;(x, u2) > gi(x, u1)
for po > u1 > 0 in most smoothing functions, which implies
Vx e R", ne€(0,00), i=1,...,m.
®)

Thus, we suppose g;(-, u) is convex and g;(x,-) is nonde-
creasing and denote

gilx, 1) > gi(x),

x = max {x;.}.
lgigm{ g’}

From (c) of Proposition of 1, we obtain that g is a smoothing
function of g with

m m
kq=mx¢~)+ZK§i=m+ZKgi§m(1+1€). )
i=1 i=1
From condition (A1), we denote

max| <j<m & (X) _ —maXj<izm &i(X)

p=- 4 ’ 2% +4(m — 1)
Remark 1: 1f g1, ..., g are smooth, we can define yo = 1
for m = 1 and po = —maxi<i<m gi(x)/4(m — 1),
for m > 1.

The affine equality constraints are very difficult to handle
in optimization, especially in large dimensional problems.
One of the most important methods is the projection method.
When the matrix dimension m is, however, large and the
structure of A is not simple, it is difficult and expensive to
calculate P. We should state that the proposed network in
this paper is applicative for the problems where the matrix P
can be calculated effectively. Then, we consider the following
unconstrained optimization problem

min  f(Px+c¢)+oqgPx+c) (10)

where ¢ > 0 is a positive penalty parameter. It is known
that if f and g are smooth, there is a ¢ > 0 such that for
all ¢ > g, if x* € X is a stationary point of (10), then
Px* 4+ ¢ = x™* is a stationary point of (1) [32, Th. 17.4].
Choosing such ¢ is, however, very difficult. To overcome these
difficulties, we adopt a parametric penalty function defined as
follows:

((PVy f(x, 1), PVLG(x, 1))| + ABp)llx — £
max{f2, || PV,q(x, w)lI2|lx — %[} an

W) =

o(x,

where 1 is a positive parameter defined as
_2q(ug) +4m(1 +x)uo
B o '

The main goal of this paper is to present a stable and
continuous path u € C'(0, o0), which leads to the set X*
of the Clarke stationary points! of (1) from any starting point
X0 € R"™,

We consider the following network modeled by a class of
ordinary differential equations (ODEs)

(1) = =P (Y f(u(t), v(0) + o ), v(1) Vi u(t), v(1))),
u(0) = Pxo+c (12)

A

where xo € R" and v(t) = ppe".

To implement (12) by circuits, we can use the reformulated
form of (12) as following:
(1) = = P(Vu f (), v(0) + 0 (1), (1)) VuG (1), v(1)))
v(t) = —v(1)
u(0) = Pxg + ¢, v(0) = uo. (13)

Lx* s called a Clarke stationary point of (1) if x* € X and there is a

&* € 0f(x*) such that

(x —x*, &% >0, VxeX
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Fig. 1. Schematic block structure of a neural network described by (12).

Fig. 2. Circuit implementation of term ¢3(s, v) by circuits.

Fig. 3. Circuit implementation of term Vg3 (s, v) by circuits.

Fig. 4. Circuit implementation of term o (1, v) by circuits.

Equation (13) can be observed as a network with two input
and two output variables. A simple block structure of the
network (13) implemented by circuits is shown in Fig. 1.
The blocks PV, f and PV,q can be realized by matrix P,
V. f(u,v) and V,G(u,v) based on the adder and multiplier
components. Figs. 2 and 3 show the implementation methods
on ¢3(s,v) and Vi¢s(s,v), which give some hints on how
to implement Vuf(u, v) and V,q(u,v). o is a block with
scalar output based on the information of u, v, V, f (u,v), and
Vug(u,v). A detailed architecture flow structure of the block
o is shown in Fig. 4, where F; and Q; are the ith output of the
blocks PV, f and PV,q, respectively. From Figs. 1-4, we can
observe that network (12) can be implemented by the adder,
multiplier, divider, and comparator components in circuits.
Through the expression of o (1, v) looks complex, it can be
realized based on the existing blocks PV, f and PV,§, which
shows that it will not bring expensive components in circuit

implementation. Refer to [33] for the detailed techniques on
this topic.

IV. EXISTENCE AND LIMIT BEHAVIOR

In this section, we study the existence and limit behavior of
the solutions of (12). For readability, we put the proof of all
theoretical results in the Appendix.

Theorem 1: For any xo € R”, (12) has a solution u €
C'[0, o0). In addition, there is a p > 0 such that for any solu-
tion u of (12) in C'(0, 00), we have SUP; ¢ (0,00) U@ = p.

Remark 2: We know that a finite penalty parameter is very
important for implementation. From Theorem 1, o (u(¢), v(t))
is uniformly bounded on (0, c0).

Furthermore, locally Lipschitz property of the proposed
smoothing functions can guarantee the uniqueness of the
solution of (12).

Proposition 2: When V, f (-, ) and VG (-, u) are locally
Lipschitz for any fixed u € (0, xp), then (12) has a unique
solution.

The following theorem shows the feasibility and limit
behavior of u(t) as t — oo.

Theorem 2: Any solution u(r) of (12) in C'(0, oo) satisfies
{lim;— oo u(r)} € X.

Note that g is convex on R" and d¢(x) exists for all
x € R". From [31, Corollary 1 of Proposition 2.3.3 and
Theorem 2.3.9], we have the expression of d¢g(x), and
from [31, Corollary 1 and Cororllary 2 of Theorem 2.4.7],
the normal cones to the three sets can be expressed as
follows:

N, (x) = {AT¢ [ £ eR™), VreXy
Nx, (x) = U;>070q(x), Vx € Xp
Nx(x) = Nx, (x) + Nx, (x), VxeX

Theorem 3: Any solution u(t) of (12) in (0, 00)
satisfies

1) u(r) € L*(0, 00);

2) lim;— f(u(t)) exists and lim;—  [zz(?)|| = O;

3) {lim;—oou(r)} € X*, where X* is the set of Clarke

stationary points of (1).

Remark 3: If the objective function f is level bounded,?
there is R > 0 such that ||x — £||> < R holds for all x €
{x : f(x) < f(X)}. By adding constraint ||x — £||> < R to the
original optimization problem, the extension problem satisfies
assumption (A2) and has the same optimal solutions as the
original problem.

Remark 4: If f is pseudoconvex on X3, which may be
nonsmooth and nonconvex, from Theorems 2 and 3, any
solution of (12) converges to the optimal solution set of (1).
Some pseudoconvex functions in engineering and economic
problems are given in [11], [34].

2We call f is level bounded, if the level set {x € R" | f(x) < 5} is bounded
for any 5 > 0.
3We call f is pseudoconvex on X if for any x’, x” € X, we have

() €0p () (), x" = 2) = 0= f(T) = F(X).
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Network (12) reduces to

(1) ==V f (), v (1) =0 (), v (1) Vu G (u(), v(t))
uo = Xo

(14)
for a special case of (1), that is

min  f(x)

Similarly, we can obtain that the conclusion of Theorem 3
holds for (14) to solve (15).
In addition, when we consider the problem

min  f(x)

which is also a special form of (1), the feasible region X is
unbounded. When f is level bounded, we can use the analysis
in Remark 3 to solve it and we can obtain the results in
Theorems 1-3 with the simpler network

[ i(t) = —PVy f(u(t), v(©))

such that g(x) < 0. (15)

such that Ax = b (16)

(17)
ug = Pxg +c.

Corollary 1: For any xog € R”", if f is level bounded and
o < 1, the conclusion of Theorem 3 holds for (17) to
solve (16).

Remark 5: If we can find an exact parameter ¢ such that

the solutions of (10) are just the solutions of (1), then we can
define

ox,pu)=0

which brings (12) a simpler structure. All the results in this
paper can be obtained by similar proofs.

Remark 6: From the proof of the above results, it is not too
rigorous for the choose of xo and A. All the results hold with

— max|<j<m i (X) 1> 2q (o)

4m(1 + x).
kA1) Z T, Tamite

o =

V. NUMERICAL EXAMPLES

In this section, we use five numerical examples to illus-
trate the performance of network (12) and compare it with
the network in [9], Lasso, best subset (BS), and iterative
reweighted /1 norm (IRL1) methods in [36], and the SQP-
GS algorithm in [25]. The numerical testing was carried out
on a Lenovo PC (3.00 GHz, 2.00 GB of RAM) with the use
of MATLAB 7.4. In our report for numerical results, we use
the following notations.

1) smoothing neural network (SNN): Use codes for ODE
in MATLAB to implement (12). We use odelSs for
Examples 2—4, and ode23 for Examples 5.4-5.5.

2) uy: numerical solution of SNN at the kth iteration.

3) X: numerical solution obtained by the corresponding
algorithms.

4) time: CPU time in second.

5) fea-err(x): value of the infeasibility measure at x,
which is evaluated by fea-err(x)= ||Ax — b| +
>y max(0, g (x)).

6) (s, u): a smoothing function of 8(s) = |s| given in (6).

Fig. 5.
(right).

Convergence of the network in [9] (left) and convergence of the SNN

We choose v(t) = uoe™" in Examples 24 and v(t) =

toe~ ™ in Examples 5.4-5.5. It is trivial to obtain all results
in Section IV for v(¢) = uoe ' by resetting ¢ = a.

Example 2: [35] Find the minimizer of a nonsmooth
Rosenbrock function with constraints

81x7 — xa| + (x1 — 1)2
, (18)
such that  xj —v/2x2 =0, x7 + [x2] —4 < 0.

x* = (v/2/2,1/2)T is the unique optimal solution of (18)
and the objective function is nonsmooth at x* with the optimal
value f(x*) =3 — 24/2/2.

It is easy to observe X = (0, 0)7 e X; Nint(Xy). Let the
smoothing functions of f and g be

min

fe, 1) = 80(xf — x2, 1) + (1 — x1)°
G, 1) = g +0(xa, 1) — 4, )

where ¢~52 is defined in Example 1. In [35] Gurbuzbalaban
and Overton state that it is an interesting topic that whether
the solution obtained by their proposed algorithm is the
global minimizer, but not the other Clarke stationary points.
In addition to x*, (18) has another Clarke stationary point
(0,0)7. We test the SNN with the 491 different initial points
in [=5, 5] x [—5, 5], where 441 initial points are xo = (—5+
0.5{, =5+ O.Sj)T, i, j=0,1,...,20 and the other 50 initial
points are also in [—5, 5] x [—5, 5] and uniformly distributed
on the vertical centerline of x* and (0,0)7. Through this
numerical testing, we suggest for this example that

if Jlug — x*|| < |lxoll, then lim u(f) = x*
—00

otherwise  lim u(r) = (0,0)7.
—>00

We cannot, however, obtain this result by a theoretical proof.

Recently, Liu and Wang [9] proposed a one layer recurrent
neural network to solve nonsmooth nonconvex optimization
problems, which improves the network in [7]. We test the
network in [9] to solve (18), where we choose ¢ = 73 and
€ = 10~!. With initial point (+/2/4, 1/4)T, the left figure of
Fig. 5 shows the convergence of the solution of network in
[9], whereas the right figure of Fig. 5 shows the convergence
of the solutions of the SNN. From these two figures, we
can find that the SNN is more robust than the NN in [9]
for solving (18). We should, however, state that the network
in [9] can also find the minimizer of (18) with some initial
points.
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Fig. 6. |Ju(tr) — x*| with 40 given initial points (left); the solution of SNN
with the initial point xg = (—10, O)T(right).

Example 3: We consider a nonsmooth variant of Nesterov’s
problem [35]
min A4x2 = 20x1| + 1+ [1 — xq]

such that ~ 2x; —xo =1, x? 4 |x2| —4 < 0.

x* = (1, )7 is the unique optimal solution of (19) and
f(x*) = 0. The objective function and the inequality con-
strained function are nonsmooth.

From Example 2 of [35], x* and (0, —1)7 are two Clarke
stationary points of (19) without constraints. By simple calcu-
lation, the two points are also Clarke stationary points of (19).
We choose the smoothing function

O, ) =000 =200, 0)+ 1, 0) +0(1 — x1, w)

for f and g(x, u) for g(x) given in Example 2.

We choose £ = (0, —1)7 e X Nint(X,). The left figure of
Fig. 6 shows the convergence of |u; — x*| with 40 different
initial points, which are (10 cos(iz/20), 10sin(iz/20))T,i =
0,1,...,39. The SNN performs well for solving (19) from
any of the 40 initial points, which are on the boundary of the
circle with center (0,0)” and radius 10. The right figure of
Fig. 6 shows the solution of the SNN with xo = (—10,0)7,
which converges to x*.

Example 4: In this example, we consider

x(Q(x))

0<x<1, 1Tx=1

19)

min
(20)
such that

where 1 = (1,..., DT € R", Q(x) = X" x;Qi, Q; are
given matrices in S,/ ", the cone of symmetric positive definite
m X m matrices.

This example comes from an application of minimizing con-
dition number. It is difficult to evaluate the Lipschitz constant
of x(Q(x)) over the feasible region. From the constraints in
(20), when x € X, Q(x) € S . Then, the condition number
of Q(x) is defined by x(Q(x)) = 41(Q(x))/An(Q(x)),
where 11(Q(x)), ..., 4 (Q(x)) are the nonincreasing ordered
eigenvalues of Q(x). In this example, we want to find a matrix
in co{Q1,..., O} such that it has the smallest condition
number, where co is the convex hull.

For given I, u € Ry with [ < u, the following MATLAB
code is used to generate Q1,..., 0, € ST,

R =randn(m, n);

[U,D,V]=svd(R(:, 1 + m* (i — 1) :m % i));
forj=1:m

D(j, j) = median([l, u, D(j, j)1);

(00029685
Q)31 768 N
(00

—— Q10701 B,

o eigenvalues of Q) and (Q(u))=22320)

%) and QX )=1.0015

Fig. 7. Convergence of A1(Q(us)), A20(Q(u(1))), and x(Q(u(r)))(left);
2i(Q(ug)) and 4;(Q(x)),i=1,..., 20 (right).

TABLE I
NUMERICAL RESULTS OF THE SNN FOR EXAMPLE 5.3
Lu] | M(Q@)) | A20(Q(@)) | K(Quo)) | £(Q(Z))
[0.57 64] 31.6774 10.6844 26.5687 2.9648
[57 50} 29.5896 11.9007 8.2545 2.4864
20, 30 27.5574 20.556 1.4803 1.3406
24,26 25.2444 24.1842 1.0820 1.0438
end
O0=UxDxU.

We choose x € X Nint(X;) with X; = 1/n. We use the
smoothing function of the objective function given in [23],
specially

(3", 4 QM) /)

I, e AWy

fle,p) =

We define §(x, u) = 3., $3(gi(x), 1), where 3 is defined
in Example 1, gi(x) = —x; and g,+i(x) = x4 — 1,
i=1,2,...,n.

Table I lists the numerical results using the SNN to solve
(20) with n = 10, m = 20, and initial point xg =
(0.5,0.5,0,...,0)7. When [ = 0.5 and u = 64, the left figure
of Fig. 7 shows the convergence of 11(Q(u;)), 220(Qus)),
and x(Q(u;)) of the SNN with this initial point.

It is known that the condition number function x is
nonsmooth nonconvex. x is not differentiable at x when Q(x)
has multiple eigenvalues. To show the effectiveness of the
SNN, we consider a special case, in which we generate O
byl =u=30, Q; byl =5,and u =50 fori =2,...,10.
Then, the optimal solution of (20) is x* = (1,0, ...,0)7 and
k(Q(x*)) = 1. The right figure of Fig. 7 shows the eigenvalues
of Q(x) at initial point xo = uo = (0.1,...,0.1)7 and X
obtained by the SNN.

Example 5: In this example, we test our proposed network
into the Prostate cancer problem in [36]. The date is consisted
of the records of 97 men, which is divided into a training
set with 67 observations and a test set with 30 observations.
The predictors are eight clinical measures: lcavol, Iweight, age,
Ibph, svi, Icp, pleason, and pgg 45. In this example, we want to
find few main factors with smaller prediction error, where the
prediction error is the mean square error of the 30 observations
in the test set. Then, the considered optimization is modeled
as follows:

8
: 3|x;]
min [[Ax —b|P+ 21> ————
; 1+ 3x]
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TABLE 1T
VARIABLE SELECTION BY THE SNN, LAss0, BS, AND IR 1;
NORM METHODS

SNN LASSO BS IRL1
A 6.5 6.875 18.95
T 0.6524 | 0.6817 | 0.7641 0.533 0.740 | 0.619
Ta 0.2390 | 0.2797 | 0.1267 0.169 0.316 | 0.236
T3 0 0 0 0 0 0
T4 0.0878 0 0 0.002 0 0.100
s 0.1599 | 0.0957 0 0.094 0 0.186
Te 0 0 0 0 0 0
T7 0 0 0 0 0 0
g 0 0 0 0 0 0
N~ 4 3 2 4 2 4
Error || 0.4321 | 0.4389 | 0.4772 0.479 0.492 | 0.468

Fig. 8. Convergence of u(#;) and prediction error.
suchthat 0 <x; <1, i=1,2,...,8 21)

where A € R%>® and b € R®’. The objective function is
nonsmooth and nonconvex.

Choose £ = (0.5,...,0.5)7 and v(r) = uoe . With
initial point xo = (0, ..., 0)7, the numerical results of using
the SNN for solving (21) with different values of 1 are listed
in Table II, where N* is the number of nonzero elements in x.
The results with three famous methods LASSO, BS and IRL1
[36] are also listed in Table II. We can find that the SNN can
find the main factors with smaller prediction error. In addition,
the solution u(f;) of the SNN and the prediction error along
this solution with 1 = 6.5 are shown in Fig. 8.

We consider the following nonsmooth nonconvex optimiza-
tion:

n
min | Hx — p[* +0.002 > w(xi)
i=1

such that 17x =y, 0<x <1 (22)

where H = (Hjj)uxn,» P = (pPi)nx1 are defined as H;; =
e=20/32=2G/3% o — /i i j=1,2,...,n, v =17 p and
y : R — R is defined by w(s) = 0.5|s|/1 + 0.5]s].

Optimization problem (22) arises frequently in a number
of engineering and economic applications, including image
restoration, signal processing, system identification, filter
design, regression analysis, and robot control [18]-[23].

Choose £ = (y/n)e and v(r) = upe"'". We define the
smoothing functions v (x, 1) = w(@(x, u)) of w and G(x, u)
of ¢ with the format given in Example 2. Let

xé:(r,l,...,l)T¢X1UX2, x%:peX

TABLE III
SQP-GS AND THE SNN FOR EXAMPLE 5.5

x} SQP-GS SNN

n time f(Z) fea-err(Z) time f (@) fea-err(T)
16 | 136.3 | 0.2337 0 0.6045 | 0.2337 | 8.88E-16
32 | 6249 | 0.2642 8.88E-16 1.3795 | 0.2642 | 4.44E-15
64 | 665.0 | 0.2802 8.88E-16 | 59176 | 0.2803 1.77E-15
3 SQP-GS SNN

n time f(Z) fea-err(Z) time f (@) fea-err(T)
16 | 136.1 | 0.2337 0 0.6120 | 0.2337 0

32 | 623.8 | 0.2642 0 1.2501 | 0.2642 0

64 | 679.5 | 0.2801 8.88E-16 | 2.3482 | 0.2801 8.88E-16

TABLE IV

SNN FOR EXAMPLE 5.5 WITH x AND xj} IN (23)

g g
n time f(@) | fea-err(Z) n time [(@) fea-err(T)
16 | 0.9674 | 0.2337 0 256 7.545 | 0.2930 0
32 | 2.2694 | 0.2642 0 1024 | 82.17 | 0.2973 2.88E-16
64 | 8.7204 | 0.2802 | 2.66E-15 | 4096 | 387.1 | 0.3392 | 3.38E-14
x3 = (r0,...,007 e X; nX§. (23)

Table III lists numerical results of the SQP-GS [25] and
the SNN for solving (22) with initial points xé and xg. From
this table, we can observe that the SNN performs better than
the SQP-GS in the sense that the SNN can obtain almost
same values of f(x) and fea-err(x) with much less CPU
time. In [25], the SQP-GS needs the objective function to
be differentiable at the initial point. Table IV lists that the
SNN is effective with initial point xg, at which the objective
function is not differentiable. Table IV also shows that the
SNN performs well for solving (22) with high dimensions.

Because there is an affine equality constraint in (22), the
proposed network is very sensitive and the computation time
is long when the dimension n is large. To the best of our
knowledge, it is an open and interesting problem on how to
solve the large dimension nonsmooth nonconvex optimization
problem with affine equality constraints effectively and fast.

VI. CONCLUSION

In this paper, we propose a neural network described by
an ODE, to solve a class of nonsmooth nonconvex optimiza-
tion problems, which have wide applications in engineering,
sciences, and economics. With the closed form expression of
the project operator on the constraints defined by a class of
affine equalities, we choose the neural network with projection.
In addition, the penalty function method is also introduced
into our system to handle the convex inequality constraints.
To avoid solving the differential inclusion and overcome the
difficulty in choosing the exact penalty parameter, we make
use of the smoothing techniques to approximate the nonsmooth
functions and construct a continuous function to replace the
fixed parameter. Only with the initial point belonging to the
equality constraints, which can be calculated easily by the
project operator, we can prove theoretically that any solution
of the proposed network converges to the critical point set
of the optimization problem. Finally, to show the efficiency
and superiority of the proposed network, some numerical
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examples and comparisons are presented, including the Rosen-
brock function, the Nesterov’s problem, the minimization
of condition number, and a familiar optimization model in
image restoration, signal processing, and identification. By
the numerical experiments, it is as expected that the proposed
network in this paper performs better than the neural network
method in [9], the two famous iterative algorithms Lasso and
IRL1, and the well-known statistical optimization algorithms
BS and SQP-GS [25]. There are two possible reasons why
the proposed network can provide better numerical results
than these existing methods. The first is that the smoothing
parameter is updating continuously in the proposed network
and the global convergence can also be guaranteed. The second
reason is that the continuous penalty parameter o (u(t), v(t))
controls the proposed network and let it solve the constrained
optimization effectively. We cannot, however, prove these two
reasons in theory, which inspires us to explore the reasons in
further work.

APPENDIX

Proof of Proposition 1: It is easy to observe that these
compositions satisfy (i) and (ii) of Definition 1. We only need
to consider (iii) and (iv) of Definition 1. By the chain rules of
the subgradient in [31], (a) holds naturally.

(b) Condition (iii) of Definition 1 is derived as the following:

{Zjin;¢0 Vo(y (@(z, w)}

=V l//(S)s=¢(x){ lim V.¢(z, 1)}
z—x,ul0

c Vv l//(S)s=(,/1()c)a¢)(x) = a(l// o (p)(x)

where we use {lim,_y ,0V.0(z,u)} < Op(x) and
[31, Th. 2.3.9 (ii)].

Condition (iv) of Definition 1 follows from

IV (@(x, )| < |Vst//(s)s:¢3(x,/t)||v,u€5(x,ﬂ)| <lyk;.

Similar to the analysis in (a), we omit the proof of (c).

(d) Denote w o ¢(x, u) = w(@(x, 1), ). For any fixed
u > 0, vecause w (-, u) is convex and nondecreasing, and
@(-, w) is convex , we obtain that y o@(-, 1) is convex. Hence,
for any fixed 4 > 0, z,v € R"” and 7 > 0, we have

vopt+ro,p) —wop(u) _
; >

(V2(y 0 §)(z, 1), v).

Let z — x and x | 0O, and then passing 7 to O in the above
inequality, we have

w(p) (x;v) = ( lim  V.(yo@)(z, u),0), YoeR"
z—>x,ul0
By the definition of the subgradient, we obtain

lim V. (y o)z, 1) € oy (p(x))
—x, 10

Z

which proves that y o ¢ satisfies (iii) of Definition 1.
Condition (iv) of Definition 1 follows from

Vaw @, ), )] < x5+ 1yx;. 0

To give the proof of Theorem 1, we need the following
preliminary analysis.

For a given x € R”, denote
I (x) ={ilgi(x)>0,}, I°0) = {i | gi(x) =0}

We need the following lemmas to obtain our main results.
Lemma 1: The following inequality holds:

<)C _fa qu(xa /u)) = ﬁ’ Vx ¢ XZa M € (09 ﬂ()]
Proof: For any x & Xp, I (x) # . (8) implies

gGilx, 1) = gi(x) >0, Viel'(x). (24)
From (iv) of Definition 1, we have

gi(X, 1) < gi(X) +rgpu < —4f+xu, i=12,...,m
(25)
From the convexity of g;(-, ), (24) and (25), for any i €
IT(x), we have

(x =%, Vegi(x, ) = gi(x, w) — &i(X, 1) = 4 — k. (26)
For 4 < wo, (5) and (26) imply that for any x & X,, i €
I*(x)

~ 1
(x =%, Ve (&i(x, ), 1)) = 5(4/3 —KH). 27)

When u < po, g~,~(}2,,u)~ < 0, i = 1,2,...,m.
Because ¢(-, u) is convex and ¢(s, -) is nondecreasing, for all
i=1,2,...,m, we obtain

(X - xAlvxé(gi()ﬁ /,t), #2)
= p(@i(x, ), 1) — P(&i (X, 1), ) = —p.
Combining (27) and (28), when x ¢ X, and u < uo, we

obtain

1
(x =X, Vegq(x, n)) > 5(4[1’ —ku)—(m—1Du=p.

(28)

| ]

Lemma 2: For any xo € R”, thereis a T > 0 such that (12)

has a solution u € C'[0, T). In addition, any solution of (12)
in C'[0, T) satisfies u(r) € X; for all t € [0, T).

Proof: Because the right hand function in the system (12)
is continuous, there are a 7 > 0 and u € C![0, T) such that
u(r) satisfies (12) for all ¢ € [0, T), see [37]. Differentiating
1/2|Au(t) — b|? along this solution, from AP = 0, we
obtain

%%HAu(t) —b|> = (AT(Au(t) —b),u()) =0

which derives that ||Au(r) —b||> = ||Aug—b||>, Vi € [0, T).
Because ug = Pxg + ¢ € Xi, we obtain ||Aug — b||*> = 0.

Hence, ||Au(t) — b||> = 0 and u(r) € Xy, Vr € [0, T). [
Lemma 3: The level set {x € X||g(x, uo) < n} is bounded
for any > 0.
Proof:

First, we prove that for any # > 0, the level set I' =
{x € X1 | maxi<j<m &i(x, o) < n} is bounded. Because X
is bounded and I' is a subset of Xj, I' (] X; is bounded.
To prove the boundedness of I', we need to consider the
set TN ch . Assume on contradiction that there exist 7 > 0
and a sequence {x;} € X XZC such that

max g;i(xg, po) <7 and lim [xc] =00.  (29)
1<i<m k—00
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Denote wi(t) = maxj<j<m &((1 — 7)% + Xk, o), k =
1,2, ... Because g;(, uo) is convex, i = 1,2,...,m, wy is
convex on [0,00), k = 1,2, ... From (3) and uo < 2f/x, for
k=1,2,...

wr(0) = max g;(X, uo) < max g;(%) +xg uo < =24,
1<i<m 1<i<m

yi(1) = max g;(xg, no) = max g;(xx) > 0.
1<i<m 1<i<m

Then, for each k = 1,2, ..., there exists 7z € (0, 1) such
that

wi () = max &i((1 — 7)X + xk, o) = 0. (30)

Because wy is convex, Vi is nondecreasing, k = 1,2, ...
From the mean value theorem, for each k = 1,2, ..., there
exists 7 € [0, 7] such that

yi(me) — yi(©0) 28
Tk T

V(i) > Vi (ix) = (€)Y
Using the nondecreasing of g;(x,-) and (30), for all i =
1,2,...,m, we have

gi((1 — )X + mexe) < &i((1 — )X + g, peo) <0

which implies that (1 — z)x + xx € Xo, k = 1,2,...
Combining this with (1 — 7%)X + wxx € X1, k = 1,2,...,
we have

A-—mg)x+nuxeX, k=1,2,... (32)

Because X is bounded, there exists R > 0 such that
lx —x|| < R, Vx € X. Hence, (32) implies

I =108 + xe — X =l —xll <R, k=1,2,....

Because limy_. |[xk]| = oo, from the above inequal-
ity, we obtain limy,oo7x = 0. Owning to (31),
limg 00 V(i) = 0.

From the convex inequality of g, forall k =1,2,...

wi(1) = wi(t) + (1 — ) Vg (1) = (1 — 1) Ve (1)

which follows that limg_ oo maxi<i<m &i(Xk, #0) =
limg—oo k(1) = oo. This is a contradiction to (29).
Hence, the level set {x € X | maxi<j<m &i(x, o) < n} is
bounded for any 7 > 0.

From the definition of § and nondecreasing of @(s, -), we
obtain

m
G(x, po) = > max{0, g(x, uo)} = max gi(x, o). (33)
P 1<i<m
Thus, for any n > 0, {x € X;|qgx,uo) =<
nt € {x e Xy|maxi<i<m &(x,x0) =< n}. Because
{x € Xi|maxicizm&i(x, p0) < n) is bounded, {x €
X1 1g(x, o) < n} is bounded. [ |
Proof of Theorem 1: From Lemma 2, there is a T > 0 such
that (12) has a solution u(t) € c'o, T), where [0, T) is the
maximal existence interval of 7. We suppose 7' < oco.
Differentiating g(u(t), v(¢)) +x5v(t) along this solution of
(12), we have

d
Z(é(u(t), V(1) +xgv (1) = (Vuq(0), ) + (Vg (1) +x5)v.

From V,q(t) + kg >0, v(t) <0 and P2 = P, we have

@), o) +r00)

< (VuG(0), =P(Vu f (1) + 0 (1) VuG (1))
< {PVLG (@), PV f(0)) —a(OIPV.GOI*.  (34)
Because u(r) € X, we have P(u(t) —x) = u(t) — x, Vt €
[0, T). Meantime, if u(t) € X, HXZC for some ¢ € [0, T'), from
Lemma 1, we have

(u(®) = X, PVuq (), v(1)))
= (u(t) = X, Vuq(u(),v(1))) = B

which implies that ||PV,g(u(t), v(®))||lu@) — x| > B.
Thus, for any ¢ € [0, T) such that u(?) € X; ﬂxg, we have

max{$>, | PVuG (), v)Ilu() — £1*}
=[|PVug (u(0), v u(r) — £]%.
Because u(r) € Xy, Vt € [0, T), using the above result, the
definition of o (u, v) and (34), when u(t) € X;, we find

d
E(é(u(t),v(t)) + v (1) = —Apv(0). (35)

This implies that g(u(t),v(t)) + kzv(¢) is a nonincreasing
function of ¢ when u(t) € XZC . On the other hand, when
u(t) € Xa, Gu(t), v(0)) < xgv(t) < 0. Thus

qu(t),v(t)) < max{q(uo, 1o) + xg o, K510}
< q(uo) +2x5p0, YVt €]0,T).

From Definition 1, for all # € [0, T)

qu(t), po) < qu(r), v(r)) + x5lv(t) — uol.
Thus, for all r € [0, T)

qu(1), 1o) < q(uo) + 3z 0.

Form Lemma 3, u : [0, T) — R" is bounded. Then, this
solution of (12) can be extended. Therefore, this solution of
(12) exists globally.

Similarly, we can obtain qu(t), uo) =< q(uo) +
3xzu0, Vt € (0,00). Thus, u : (0,00) — R" is uniformly
bounded, which means that there is a p > 0 such that
lu®ll < p, ¥t = 0.

Proof of Proposition 2: Denote u,v € C'(0,00) two
solutions of (12) with an initial point u9p = Pxo + ¢ and if
there exists 7 such that 7 = inf;>0,u(1)0(r) ¢ From Theorem
1, there is a p > 0 such that u(?)]| < p, oIl < p, ¥V = 0.

Denote r(x, 1) = —P(Vxf(x, 1) + 0(x, 1) V2 (x, 1)),
When V, f(-, #) and V,g(-, u) are locally Lipschitz for any
1 € (0,00), o(-, ) is locally Lipschitz for any u € (0, 00).
Then r (-, ) is locally Lipschitz for any x4 € (0, 00).

Because u(t), v(t), and v(¢) are continuous and bounded
on (0, 00), there is an L such that for any 7 € 7,7+ 1]

I (@), v(@)) —r@@®), vO)Il = Llju@) — @]l

Differentiating 1/2|lu(r) — v(r)||> along the two solutions of
(12), we have

& ) ~ 0 @1 = L) ~ 0@, Vi € 7411,
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Applying Gronwall’s inequality into the integration of the
above inequality, it gives u(t) = v(t), Vt € [7,7 + 1], which
leads a contradiction.ll

Proof of Theorem 2: Let u € C'(0, 00) be a solution of (12)
with initial point xo. When u(r) ¢ X, from (35), we have

%(c}(t) +x5v(1)) < —ABv(t) = —ABuoe™", ¥t > 0. (36)
Integrating the above inequality from O to ¢, we obtain
qu(t),v(t)) +xzv(t) — quo, po) — k50

< —lﬂﬂo/ote_sds = —puo(l —e™).

Owning to g () + xzv(t) > q(u(?)) = 0, ¥t > 0, we obtain

0 < G(uo, o) + kg0 — ABuo(l —e™). (37
From (3) and (9), we have
q(uo) + 2m(1 +x)uo = q(uo, o) + x50
then
L 2q(uo) +4m(l +1)uo _ 2(q(uo, o) +Kqﬂo)' (38)

Buro - Bro

(37) and (38) lead to r < In2.
Therefore, u(r) hits the feasible region X, in finite time.
For 1 > In2 and u(r) ¢ X5. Denote 7 = SUPgy < ()X, 5-
Then, u(s) ¢ X, when s € (7, t]. Integrating (36) from 7 to ¢,
we obtain

q(u(r),v(1)) +xgv (1)
< G v O+ D)~ i [ s
< 20 () + 00 —v@).
Applying 1 > 2xz/ to (39), we obtain

q(r)) = qu),v()) +rzv (1)
< Zva(f) + 2K (v(t) — v(f)) = 2Kzv(1). (40)

(39)

In addition, combining (40) with ¢ (u(r)) < 0 when u(z) €
X5, we have that

q(u(1)) < 250 (1),

Passing to the suplimit of the above inequality, we obtain

Vt > In2.

0 <limsupg(u(r)) < lim 2xzv(t) = 0.
—00 —00

Therefore, we deduce that lim;—, ~ g (u(¢)) = 0, which means
{lim; oo u(r)} <€ X,. Combining this with u(r) € X,
vt € (0, 00), we have {lim;— u(f)} C X. H

To prove the global convergence of (12) to the Clarke
stationary point set of (1), we need a lemma on the relationship
between the normal cones and the subgradients.

Lemma 4: If limg_ oo i = 0 and limg_ oo xx = x* € X,
then

(Jim PV f (et 1) + 0 (ok, 1) Vi (e 110}
oS (M) + Nx (6,

Proof: From (iii) of Definition 1, we have
{lim Viq(x, ux)} S aq(x™).
k— 00

If x* € bd(X3), dg(x™) = zig,o(x*)[o, 116g;(x™). Because g;
is convex, for any 7 > 0

10g(x*) = Z [0, 7108 (x™).

iel0(x*)

Because limy_ o xx = x*, we have 0 < o(xk, ux) < o0,
k=1,2,... Thus,

{kllrgo P (Vi f (ks 1) + 0 (s 1) VG (s 1))}
C PO f(x")+ (0,00)0g(x™)).

For any fixed 7 > 0, Because AT(AAT) 'A(—af(x*) —
10q(x*)) € Nx, (x*), we have

PO f(x*) + taq(x*))
= af(x*) +1oq(x*) — AT(AAT)TA@ £ (x*) + 10 (x™))
Cof(x™) + Nx, (x™) + Nx, (™) = 0 f (x™) + Nx (x™).

|
Proof of Theorem 3: From Theorem 1, there is a p > 0
such that ||u(t)|| < p for all r > 0 which implies that there is
R > O such that |ju(t)—x| < R forall r > 0. Because f and ¢
are locally Lipschitz, there exist /s and [, such that ||S| <[y,
7]l <lq, ¥ € 0f (x), n € 0q(x), [lx|| < p. From (iii) of Def-
inition 1, we confirm that lim sup,_, IV f (@), v()l < Ly
and limsup,_, o, Vg (u(t),v(#))| < l;, which means that
there are /7 and [; such that IV f (@), v@)| < l]: and
Vg (u (), vl < 15, ¥t > 0.
(i) From (12) and P2 = P, we have

(Vi f (), v(0)) + o (t), v(1)) VuG u(t), v(1)), i (t))
= —|P(Vu fu(®),v(t)) + o w(t), v(t))VuG u(t), v(0))) |
= —llu()|? (41)

Calculating (d/dt)f(u(t), V(1)) + o), v(@)(d/dt)g(u(t),
v(t)) along this solution of (12), from (41), we obtain
d - d
Zf(u(t), V(1)) + o (u(), V(t))aé(u(t), V(1))
= — i + (Vo f () + o (OVoG())p (). (42)

On the other hand, we have

d - d
J7 @@, v(@) =0 @), v() - w0, v(0)
= —|PVu f (D)1 + a2 (0) | PG ()|
+ (Vu f(1) — s ()VuG(0)) (0).

Adding (42) and (43) gives

(43)

25 Futo), vie)

= — @I = 1PV, f ()

+ 2V, F ()0 (1) + a2 (D) | PVugG () |1 (44)
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From the definition of o (x, &) in (12), for all ¢ € (0, 00),
we obtain

7 (®), v PVugu®), vO)
_ WPV fx, 1), PVxg(x, 1))
B PVxq(x, p)ll
N ABv@)lu(t) = X171 PVug (@), v(0) ||
B ’
< IPYu f (@), v(e)Il + ov(1)
where o = /IRZZC; /B. Substituting (45) into (44) and using
|P|| = 1, we have

(45)

28 (Fute), o)) + k(1)

< —lla@I + 20l (@) + *v*(@). (46)

Let 0 = 2Ql];,uo + Qz,u%/Z. Integrating (46) from O to ¢, we
have

t
-2
/llusll ds
0

< 2f (o, o) = 2 (t), v(1)) + 2k 0 — 2 o (1) + 6
< 2f(up) —2 |min fx)+ 4Kf/l() + 0.

[xll<p
(ii) Let
w(t) = 2 f (u(t), v(1)) + 2 o (e) + 20l (1) + %szz(t).
From (46) and v (1) = uoe ™", we have
Lty = i) <0,

dt

In addition, we have w(t) > 2minj|<, f(x). Because w(t)
is bounded from below and nonincreasing on (0, 00), we have

(47)

lim w(t) exists and
—00

. d
Jim () = 0. (48)

From (3) and lim;— o v(¢) = 0, we have
lim f(u(r)) = lim f(u(r),v(r)) exists.
—>00 1—00

In addition, (47) and (48) imply that lim;_. || (?)| = O.

(iii) If x* € {lim; u(r)}, there exists a sequence {f}
such that limg_ o u(ty) = x* and limg_v(tx) = 0 as
limg_s 00 fx = 00. From Theorem 2, we know that x* € X.
From Lemma 4 and result (ii) of this theorem, we obtain 0 €
0 f(x™) + Nx(x*), which implies that there exists & € df (x™)
such that (£, x — x*) > 0, Vx € X. Thus, x* is a Clarke
stationary point of (1).H

Proof of Corollary 1: Denote u : [0,T) — R" a solution
of (17) with initial point xo, where [0, T) is the maximal
existence interval of t. From Theorems 1-3, we only need
to prove the boundedness of u(¢) on [0, T'). Differentiating
f (1), v(t)) along this solution of (17), from P2 = P, we
have

d - ~ - ~
@@, v(0) = (Vuf @), =PV f©) + (Vo [ (1), 5())
—IPV. fO)IP = x5 (1)

IA

which follows that d/dt(f(u(t),v(r)) + K];U(I)) < 0. Thus,

Fu@,v@) + xp@) < fluo,vo) + xpvo, Vi € [0,T).
Similar to the analysis in Theorem 1, when f is level bounded,
we obtain that u(¢) is bounded on [0, 7).H
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