[1]
L. Qi, “Eigenvalues of a real
supersymmetric tensor”, Journal of Symbolic Computation
40 (2005) 1302-1324.
[2]
L. Qi, “Rank and eigenvalues of a
supersymmetric tensor, the multivariate homogeneous polynomial and the
algebraic hypersurface it defines”, Journal of Symbolic Computation
41 (2006) 1309-1327.
[3]
L. Qi, “Eigenvalues and invariants of
tensors”, Journal of Mathematical Analysis & Applications 325
(2007) 1363-1377.
[4]
G. Ni, L. Qi, F. Wang and Y. Wang, “The degree
of the E-characteristic polynomial of an even order tensor”,
Journal of Mathematical Analysis & Applications 329 (2007)
1218-1229.
[5]
Y. Wang and L. Qi, “On the successive
supersymmetric rank-1 decomposition of higher order supersymmetric
tensors”, Numerical Linear Algebra with Applications 14 (2007)
503-519.
[6]
L. Qi, W. Sun and Y. Wang, “Numerical multilinear algebra and its applications”,
Frontiers of Mathematics in China 2 (2007) 501-526.
[7] Q. Ni, L. Qi and F. Wang, “An eigenvalue method for the positive definiteness
identification problem”, IEEE Transactions on Automatic Control
53 (2008) 1096-1107.
[8] L. Qi, F. Wang and Y. Wang,
“Z-eigenvalue methods for a global polynomial
optimization problem”, Mathematical Programming 118 (2009) 301-316.
[9] Y.Wang, L. Qi and X. Zhang,
“A Practical method for computing the largest
M-eigenvalue of a fourth-order partially symmetric tensor”, to appear
in: Numerical Linear Algebra and Applications.
[10].
L. Qi, H.H. Dai and D. Han. “Conditions for strong
ellipticity and M-eigenvalues”, Frontiers of Mathematics in
China 4 (2009) 349-364.
B. Applications in Biomedical Engineering
[11]
L. Qi, Y. Wang and E.X. Wu, “D-eigenvalues of
diffusion kurtosis tensors”, Journal of Computational and Applied
Mathematics 221 (2008) 150-157.
[12] E.S. Hui, M.M. Cheung, L. Qi and
E.X. Wu, “Towards better MR characterization of neural
tissues using directional diffusion kurtosis analysis”, Neuroimage 42
(2008) 122-134.
[13] L. Qi, D. Han and E.X. Wu, “Principal invariants and inherent parameters of diffusion
kurtosis tensors”, Journal of Mathematical Analysis and Applications
349 (2009) 165-180.
[14] D. Han, L. Qi and E.X. Wu, “Extreme diffusion values for non-Gaussian diffusions”,
Optimization and Software, 23 (2008) 703-716.
[15] E.S. Hui, M.M. Cheung, L. Qi and
E.X. Wu, “Advanced MR diffusion characterization of
neural tissue using directional diffusion kurtosis analysis”, Conf. Proc. IEEE Eng. Med. Biol. Soc. 2008
(2008) 3941-3944.
[16] M.M. Cheung, E.S Hui, K.C Chan, J.A
Helpern, L. Qi and E.X Wu: “Does diffusion kurtosis
imaging lead to better neural tissue characterization? A rat brain
maturation study”, Neuroimage, 45 (2009) 386-392.
[17] X.
Zhang, C. Ling, L. Qi and E.X. Wu, “The measure of
diffusion skewness and kurtosis in magnetic resonance imaging”, to
appear in: Pacific Journal of Optimization.
[18] C.
Ling, J. Nie, L. Qi and Y. Ye, “Bi-quadratic optimization
over unit spheres and semidefinite programming relaxations”,
Department of Applied Mathematics, The Hong Kong Polytechnic University,
Revised in May 2009.
[T1] L. Qi, “Diffusion
tensor and diffusion kurtosis tensor in biomedical engineering”.
C. Computational Polynomial
Optimization
[W1] Workshop of Computational Polynomial
Optimization and Multilinear Algebra
D. Poems and Photo
[P1]
Poems –– 登东嶽泰山.
[P2]
Photo –– 一覽众山小.
|