Tensor Computation

 

A.   Eigenvalues of Tensors:

 

[1]      L. Qi, “Eigenvalues of a real supersymmetric tensor”,  Journal of Symbolic Computation  40 (2005) 1302-1324.

 

[2]      L. Qi, “Rank and eigenvalues of a supersymmetric tensor, the multivariate homogeneous polynomial and the algebraic hypersurface it defines”, Journal of Symbolic Computation 41 (2006) 1309-1327.

 

[3]      L. Qi, “Eigenvalues and invariants of tensors”, Journal of Mathematical Analysis & Applications 325 (2007) 1363-1377.

 

[4]      G. Ni, L. Qi, F. Wang and Y. Wang, “The degree of the E-characteristic polynomial of an even order tensor”,   Journal of Mathematical Analysis & Applications  329 (2007) 1218-1229.

 

[5]      Y. Wang and L. Qi, “On the successive supersymmetric rank-1 decomposition of higher order supersymmetric tensors”, Numerical Linear Algebra with Applications 14 (2007) 503-519.

 

[6]        L. Qi, W. Sun and Y. Wang, “Numerical multilinear algebra and its applications”, Frontiers of Mathematics in China  2 (2007) 501-526.

 

[7]        Q. Ni, L. Qi and F. Wang, “An eigenvalue method for the positive definiteness identification problem”, IEEE Transactions on Automatic Control 53 (2008) 1096-1107.

 

[8]        L. Qi, F. Wang and Y. Wang, “Z-eigenvalue methods for a global polynomial optimization problem”, Mathematical Programming 118 (2009) 301-316.

 

[9]        Y.Wang, L. Qi and X. Zhang, “A Practical method for computing the largest M-eigenvalue of a fourth-order partially symmetric tensor”, to appear in: Numerical Linear Algebra and Applications.

 

[10]. L. Qi, H.H. Dai and D. Han. “Conditions for strong ellipticity and M-eigenvalues”, Frontiers of Mathematics in China  4 (2009) 349-364.

 

B.    Applications in Biomedical Engineering

 

[11]      L. Qi, Y. Wang and E.X. Wu, “D-eigenvalues of diffusion kurtosis tensors”, Journal of Computational and Applied Mathematics 221 (2008) 150-157.

 

[12]   E.S. Hui, M.M. Cheung, L. Qi and E.X. Wu, “Towards better MR characterization of neural tissues using directional diffusion kurtosis analysis”, Neuroimage 42 (2008) 122-134.

 

[13]   L. Qi, D. Han and E.X. Wu, “Principal invariants and inherent parameters of diffusion kurtosis tensors”, Journal of Mathematical Analysis and Applications 349 (2009) 165-180.

 

[14]   D. Han, L. Qi and E.X. Wu, “Extreme diffusion values for non-Gaussian diffusions”, Optimization and Software, 23 (2008) 703-716.

 

[15]   E.S. Hui, M.M. Cheung, L. Qi and E.X. Wu, “Advanced MR diffusion characterization of neural tissue using directional diffusion kurtosis analysis”,  Conf. Proc. IEEE Eng. Med. Biol. Soc. 2008 (2008) 3941-3944.

 

[16]  M.M. Cheung, E.S Hui, K.C Chan, J.A Helpern, L. Qi and E.X Wu: “Does diffusion kurtosis imaging lead to better neural tissue characterization? A rat brain maturation study”, Neuroimage, 45 (2009) 386-392.

 

[17]   X. Zhang, C. Ling, L. Qi and E.X. Wu, “The measure of diffusion skewness and kurtosis in magnetic resonance imaging”, to appear in: Pacific Journal of Optimization.

 

[18]   C. Ling, J. Nie, L. Qi and Y. Ye, “Bi-quadratic optimization over unit spheres and semidefinite programming relaxations”, Department of Applied Mathematics, The Hong Kong Polytechnic University, Revised in May 2009.

 

[T1]   L. Qi, “Diffusion tensor and diffusion kurtosis tensor in biomedical engineering”.

 

C.    Computational Polynomial Optimization

 

[W1] Workshop of Computational Polynomial Optimization and Multilinear Algebra

 

D.    Poems and Photo

 

[P1]      Poems –– 登东嶽泰山.

 

[P2]      Photo –– 一覽众山小.