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and

3
(I’Vﬂ:a)i: Z I'ngkg:EjEkl‘g,
Jakyl=1
respectively, for ¢ = 1,2,3. In (16], Qi et. al introduced the following concept of D-

eigenvalues and D-eigenvectors of W, which is a generalization of Z-eigenvalues and Z-
eigenvectors presented in [11].

Definition 2.1. A real number A is said to be a D-eigenvalue of W, if there exists a real
vector x such that

Wa? = \Dz, ;
{ D=1 (2.3)

The real vector z is called the D-eigenvector of W associated with the D-eigenvalue A.

Based on this definition, a key formula for the tensor W is as follows:

M3

2
Drw;v

Kopp(z) =

Wz, (2.4)

where Kopp(z) is the AKC value at the direction x, and

3
Wzt = E Wiinitiz; o).
k=1

Denote the largest and the smallest AKC values as Kax and K, respectively. Then we
have the following theorems which were proved in [16]

Theorem 2.2. D-eigenvalues of W are real numbers and always exist. If x is a D-
ergenvector associated with a D-eigenvalue A, then

A=Wz

Denote the largest and the smallest D-eigenvalues of W as AP and AD. respectively. Then
the largest AKC value is

Kmax = ﬂf[,?j)\gax, (25)
and the smallest AKC value is
Koin =MD (2.6)

Theorem 2.3. The D-eigenvalues of W are invariant under rotations of co-ordinate sys-
tems.

By these two theorems, we know that Kmax and Koy, are also invariants of W. In the
rest of this section, we discuss some further properties of eigenvalues of W,

In [4], a 6 x 6 symmetric matrix is associated with a fourth order three dimensional
symmetric tensor. The eigenvalues of that matrix are also invariants of that tensor. This
theory can be traced back to Kelvin 150 years ago [17]. For tensor W, we call the six
eigenvalues of the 6 matrix associated with it Kelvin eigenvalues of W. Are there any
relations between D-eigenvalues and Kelvin eigenvalues? By the definitions of D-eigenvalues
and Kelvin eigenvalues [4], the following proposition holds.

Proposition 2.4. Let W be a fourth order three dimensional fully symmetric tensor, and
let o be a Kelvin eigenvalue of W, associated with a Keluin eigentensor X. If there exists a
vector ¢ € R* such that X = xzT, then o is a D-eigenvalue of W.
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Proposition 2.5. Let o1, 0a, -+, 0g be 6 Kelvin eigenvalues of W. Suppose D = 1. Then
we have

6 6
- Z (7o‘m-)+ < Arlriiu < Agax < Z (O-T-'?‘)Jr!
m=1

m=1
where (a)y = max{a, 0}.

Proof. Is is easy to verify that we have the spectral decomposition of W as follows

6
W=Y onE™®E™, (2.7)

m=1

where @ denotes the outer tensor product,

m 1 m _1 _.m
—=E £
e Ty Mo
E™=| #f: e 5 |,
1 _m 1 .m Efn
7213 /%23 33

" 2 G ! rraliz in eigenvector of W [4]. It
and €™ = (e}, €0}, €55, €75, 675, €53) " is t]:.LC mth .n01m.a]M.Cd Kelvin cigel e AL i_[[n]heg
is clear that for each m, E™ is a symmetric matrix satisfying trace(E™)* = » W 77:1(: plies
tlhaL w2 p2g + plg =1, where pim1 < pimz < fima are three eigenvalues of E™. By (2.7),

T TT:‘: s T
we have that for any z = (zy, 22, 3)

M«

Wzt = Wijkizi2; e
b, lik (2.8)
6
= T (2T E™z)?.
m=1
It is well known that pum < 27 E™2 < pims for any m = 1, , 6. Thl"e? unpllesl thag
0 < (@TE™z)? < max{p2,;, p2,5} < 1. Therefore, by (2.8), we obtain the desired result an

O
complete the proof.

Now we discuss the independence of eigenvalues of fourth order three dimensional tensor.
We first give the following definition.

Definition 2.6. A set S consisted of the functions
?}i:fi(ml,l"z»"' :Erb)a 7:112: y M, (29)

which are defined on the region  in R™, is said to be functionally dependerjat on £, if there
exist an index iy and a function ¢ defined on an appropriate region in R™~', such that

= 10 TARICICIN 4 ) ceey
Yi = (P(fl(:rlamz::"' :mn)a.fE(‘rluzZi 1Ln )y
’ fio—1(z1, @2, vwn)1fiu+l($1=$2= vy B )yt fm(®1, @2, 0 Bn))
holds for any (z1,%g, -+ ,z,) € . If for any sub-region €’ of {2, there are no ip and such

function ¢ that ‘
Wiy = (p('ylryZa s 7y‘ig—l!yio+lu gl ;y-m)

holds on ', then the function set S is said to be functionally independent on €.
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For the functional independence, we have the following theorem.

Theorem 2.7. Suppose thet m < n and there exists an mth order determinant |A| in the
Jacobian matriz of the functions set (2.9) such that |A| # 0 holds on Q. Then the function,
set 8 is functionally independent on 1,

It is important to note that the trace Ik of W in the sense of Kelvin is an important
invariant, which characterizes the average AKC value on a spherical surface and has physms_-
mgnlhcam‘e In addition, the largest D-eigenvalue AL, and the smallest D-eigenvalue A2, of
W play an important role in the diffusion analysis of the water molecule in biological tissue.
From Proposition 2.5, we see that the largest D-eigenvalue and the smallest D-eigenvalue of:
W can be estimated with an interval determined by the Kelvin eigenvalues of W. However
this result does not mean that there must be some functional dependence between the largest:
(smallest) D-eigenvalues and Kelvin elgenvalues of W. In fact, the following example shows:
that both {AZ,,, AR, Tk} and (A2, . A2, 01ax, Omin} are functlona,lly independent on a
considered region, where o.ax and omin denote the largest and smallest Kelvin eigenvalue
of W, respectively.

Example 2.1 Let W be a fourth order three dimensional fully symmetric tensor with
Wi = &1, Waaee = f2, Wasaz = ta, Wiiag = £4 and its other elements are zero, and le
D = 1. Consider the case where 0 < ¢ < £3 < 384 < f3, £ < t4 and t1ty < t2. By Definitio
2.1, it is easy to obtain that the D-eigenvalues of W are as follows
tils totz

1+ t3’ f2 + 3
Under the given conditions, it is easy to see that the largest and smallest D-eigenvalues of.
W are

Ar =11, Ag=tz, Aa=t3, A=

tits
= Fy(ty,to, ts, 1) == TR

respectively. On the other hand, it is clear that the trace IIx in sense of Kelvin

}‘gax = I (tl,tz, t3,t4) =ty and Agm
Uk = Fa(ti,ta, s, ta) =) + g + 15 + 2t4.

Moreover, by direct computation, we obtain that the set consisted of all Kelvin eigenvalues
of W is

2t41 DJ 0 B

t1+t2+\/(t1—t2)2+4t% 21 +t2*1/{t1—t2)2+4t2 .
2 ? 2 s 43,

which implies that the largest and smallest Kelvin eigenvalues of W are

1+ te + /(81 — t)? + 422
2

OTmax = F4(t1,t2,t3,t4} =

and

R GRS T

9 ;
respectively. Based on these ahove, it is easy to verify that the Jacohian matrices of F :
(F), Fy, Fy) and F = (I, Fy, Fy, F) are :

Omin = F5(t1, 2, t3,t4) :=

0 1 0 0
A - 3 4t
VF(tl, ta,ta, t4) - (tl'_’_ t3)2 (tl + t3)2

1 1 1 2
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and
VE(t1, 12, ta, ta)
0 1 0 4]
St 0 - 0
(t1+t3)? (t1+ta)?
-1 : £ty 1y ti—ty at,
2\ bt \/(tl—]tz)ﬂjult:f 2 o (b1 —t2)2+4£2 0 NN ’
1 t—t 1 ty—ty - Dby
z2 it \/(tl—ltg)i—}—éltg 2 (1T (b1 —t2)2 +4t2 0 (b —t3)2 4423

respectively. It is easy to sec that for F and F, the conditions required in Theorem 2.7
are satisfied. Hence, we know that both {AZ,.., )\gm,HK} and {AZ, AL Ok, Omin} are
functionally independent on € := {(t1,8, 83, t4) | 0 <ty <tz < 3tq <do, t1 <ty and fifp <

The ASC Values

As mentioned in Section 1, we may use ASC value to characterize the phase of the magnetic
resonance signal in biological tissnes. Let us write

P = (1g)* (A - %a) D®, (3.1)
which is a third order three dimensional fully symmetric tensor. Here, P has ten independent
elements because of symmetry. For those elements of P> which are equal to each other, we
use the element P;;;, with ¢ < j < k to represent them. That is, if we say that Pygg = 4, this
automatically implies that Py 2 = Pga; = 4. Then, the ten independent elements of F are
Pi11; Poga; Psas; Prio; Piaa; Paas; Praz; Pias; Paaa; Piaa- We call Prig; Pasg; Paas the diagonal
elements of P. We denote Sup,(x) the apparent skewness coefficient at the direction z as

follows
Pa?

W’ (3.2)

Sapp(z) =

where

3
3 _ § :
= Pijk.’L‘i.Tjﬂ':k.
0 k=1

We denote Pz? as a vector in R® with its éth component as

E P!._}k:r‘._,lmkj

Jak=1

(Pa:

for i = 1,2, 3. Denote the largest and the smallest ASC values as Syax and Spig respectively.
Then

Smex = max Pz 33
st fz]? =1, (3:3)
d B
o Smin = min - P2’ (3.4)
b el =1 :
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Theorem 4.1. {a) If Py = P11 = 0, then v = (£1,0,0)" are two Z-eigenvector of P

The critical points of (3.3) and (3.4) satisfy the following system for some A € R and z ¢ i with 1o Tt e A 21y, respoctively

{ Pz? =z, {3 (b) For any real root ¢ of the following equations:
. :

)2 = 1. ' Pourt® + (2Pag — Pra)t® + (Pagz — 2P113)t — Praa =0, (4.1)
A real number A satisfying (3.5) with a real vector z is called a Z-eigenvalue of P, aﬁ_ Pyt + 2Paat + Paaz = 0,

the real vector z is called the Z-eigenvector of P associated with the Z-eigenvalue A {11} 1 .

We have the following two theorems which can be proved by a similar way to that in [16] T =+—(t,1,0)" (4.2)

V2 +1

Theorem 3.1. Z-eigenvalues always exist. If x is a Z-eigenvector associated with 4 7. is o Zocigenvector of P with the Z-cigenvalue A — Pwd

eigenvalue A, then

— Py ¢) A= Pz® and -
A= Pa? © _ e T (4.3)
Denote the largest and the smallest Z-eigenvalues of P us M2, and AZ,, respectively. Th = Yol
the largest ASC value is S Az (36) constitute a Z-eigenpairs of P, where u and v are a real solution of the following polynomial
max — max? . : ’

equations:
and the smallest ASC walue is

' 2 B
Stain = Apin: (3.7 —Pa1u® — 2P510u%v — Pagouv?® + (P11y — 2Ps13)u? + 2(Piin P323)UU U

+ Progv? + (2P113 — Pazs)u+ 2P123’g + Pz =10, (4.4)
Poriu? — Pyuv — 2Paguv? + 2(Po1g — Paig)uv + 2FPpi3u — Pagov

+ (Paga — 2P3p3)v? + 2(Pagg — Pasa)v + Paza = 0.

Theorem 3.2 ([12]). The Z-cigenvalues of P are invariant under rotations of co-ordinate
systems.

Remark 3.3. By these two theorems, Shax and S, are also invariants of P, and can be
calculated by a similar method to that given in [16], which will be presented in Section 4.
On the other hand, from the definition of Z-eigenvalues and Z-eigenvectors, we know that X
is a Z-eigenvalue of P with its an eigenvector z if and only if — X is a Z-eigenvalue of P Wi.t_h:f

the associated eigenvector —z. Hence, Mo ==

All the Z-eigenpairs of tensor P are given by (a), (b) and (¢} if Po1y = Pan1 = 0, and by
(b) and (c) otherwise.

We regard the polynomial equation system (4.4) as equations of . We may write it as

Denote the unit sphere as

cou’ + aqu? + asu -+ ag = 0,
Bou? + fru+ F2 =0,

Bl e® s alt mtos =1} where ag, -+ 3,00, -, 2 are polynomials of v, which can be calculated by (4.4). It has

complex solutions if and only if its resultant vanishes {7]. By the Sylvester theorem [7}, its
resultant is equal to the determinant of the following 5 x 5 matrix:

Then the average ASC value over the Z is defied as

1 1 Pzd
[: = a A = - ¥ .
Mz E/./Espp(x)d 47rff5||g;”3d‘4 (3.8)

where the denominator = = 47 is the area of the surface =, Here, we slightly abuse the
symbol = for both the surface and its area.

Noting the fact that P is an odd order full symmetric tensor, it is obvious that for any':
closed surface A with symmetry about the origin, the average ASC value over A is equal to
zero. Specially, it holds that M= = 0, :

g (¢ Qe 3 0
¢ Qp G Qg &3

Bo B B2 0O 0 ],
0 B H B2 O
0 0 fBo Br D2

which is a one-dimensional polynomial of v. . - '
To find the approximate solutions of all the real roots of a one-dimensional polynomial,

we can use the following Sturm Theorem [10].

4| Computation of the ASC and AKC Values | |
) Theorem 4.2. Let ¢ be o nonconstant polynomial of degree I, with real coefficients and
let ¢ and ¢z be two real numbers such that ¢ < c2 end ¥{ci)y¥(ez) # 0. The sequence

?1!)031}&1)”' )Id)l deﬁREd b'y
¢Ui¢y 11[’1:1/)’, ¢i+1=—¢i_1 ﬂlOd'f,bj, 3:1,2,,l_1

and 41 = 0 is called a sequence of Sturm. Denote by v(x) the number of changes of signs
in the sequence Yo(z),¥1(x), -+ ,¥u(x)). Then the number of distinct real rools of 1 on the

interval {c1, eg) is equal to v(er) — v{ca).

In this section, we describe direct methods to find all Z-eigenvalues of P and D-eigenvalues
of W, respectively. Then Smaxs; Smins Kmax and Ko, can be calculated. :

The first method is used to find all the Z-cigenvalues of P. The key idea here is to
reduce the three variable system (3.5) to a system of two variables. Here, we regard A as a
parameter instead of a variable. Then, we may use the Sylvester formula of the resultant of:
a two variable system [7] to solve this system. ;

Based on the consideration above, we state the following theorem which generalizes
Theorem 3 in [15] and can be proved in a similar way to that used in (18]
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We may find the a i i ;
pproximate solutions of all the real root thi i
: - pro: | 5 of this one-d i
%?é)f&omlal suc_h that their differences with the exact solutions are within a given eil}rl?nsmnal
e cn Subst‘ltutc them to (4.4) to find the corresponding approximate e
DBt Jvoudeslgmdmgly, approxima,te values of all the Z-eigenvalues and Z-eigenvect
aTJEPe 6. as;d on} this, we can obtain the largest and smallest ASC vah;:ccs
> second method is used to find all the D-ej : s
he ‘ -cigenvalues of ich is similar .
and is based on the following theorem given in [16%. V> hichds similar

OIS can be
a-bOVe

Theorem 4.3. L / fous raer unr ) ] € T 7
et W be a fourth orde three dimensional tensor such that its entries satz’sfy
A igkl = d'i Vii ori,j =
L 17kl ‘g k ! 2 '
| 1 in W 1 Jor i, gk, 1,2,3, where dip 1s the ith row hih column e[emeni m
the inverse D1 OfD. Then we have

(a) If Warn1 = Wagqy, =0 o '
3111 , then A = Doy s a D-eigenvalue of W with a D-eigenvector

1
T = (£/—=,0,0)7T.
/500

(b) For any real root t of the following equations:

*W21|1t4—|-(ﬁ/“11‘.3ﬁ/ 3 T A

1 Wit Var12)t° + 3(Wii13 — Waygo )2
":(314/1522 — Wanaa )t + Wiazs =0, n 122)
Wai112* 4+ 3Wa119t2 + 3Wapant + Wagae = 0,

1
T
Dllt2 +2D12f+ D22 (t,l,(]) (4‘6)

is a D-eigenvector of W with the D-ei
ith the D-eigenvalue \ = Wt
(c) A\ =Wz* and e

==k

Hlw,w; 1T

=
%
Di1%? + 2D1uv + 2D13u + Dogu2 + 2D330 + Dss (4.7)

constitute a D-eigenpairs of W, wh ]
et f W, where u and v are a real solution of the following polynomial

r —I’Vg_]_u’t.ﬂ4 = 3?’[/'3112153’1] + (1’{/—1111 — 3[’?3113)’&3 L= BW -)'LLZ'Uz

+(3I’V1112 — 61’V§123)U2U -+ +(3I‘if71113 — 3W3133)u2 e

—3[’1@223’&1.!2 - I’V3222’[LU37+ 3I’T/1122'U.U2 -+ (61’V1123 — 315/3233)'11'1)

ﬁ(jgfwlﬁg ~ Waasa)u + Wisaav® + 3Wig230% + 3Wigsqv + Wiass =0

—Warmiu'v + ]’1/;2111’&3 = 3]/1/3112U2‘1)2 + (3W2112 = 3I/T/3 JUZ’U ’ , (48)
+31/V_2113u2 — %LV;;JQQU‘U:} + (3LV2122 — 65?3123)u'u2 e

+(6Wa193 — 3Wa1a3)uv + 3Wa1331 + 3Wanagv® — Wi

+(Wazaz — 3Wiz03)1 — 3Wanasv? + (8Waz3s — Wasss)v + Wagss = 0

All the D-eigenpairs of tensor W j
: : are given b nd (c) if W ¥
and by (b) and (c) otherwise. ik et Ui e

Numerical Examples

n 18 se y D
3 preb Ilt pl 1171 £ tl S
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1V, 92.8GHz) by running MatlabR2006a. A numerical example for DK tensor can be found
in [16]. That example is derived from data of MRI experiments on the white matter of rat
gpinal cord specimen fixed in formalin. The MRI experiments were conducted on a 7 Tesla
MRI scanner at Laboratory of Biomedical Imaging and Signal Processing af The University
of Hong Kong.

For the test examples below, we choose the parameters in (1.2) as follows

A=1, §=0.5 g=1; #w=L

3
Then the tensor P in (3.1) becomes P = 3—2D(‘5).
By Theorem 4.1, we can obtain all the Z-eigenvalues of I, and the associated eigenvectors.
As mentioned in Remark 3.3, —\ must be another Z-cigenvalue of it when A is a Z-cigenvalue
of P. Throughout this section, we present only the nonnegative Z-eigenvalues and the

corresponding Z-eigenvectors of P in the following tables.

Example 5.1 This example was taken from [8], conducted by Monte-Carlo simulations using
computer-synthesized phantoms with a Y-shape tube. The Y-shape tube is asymmetric and

the DTI technique fails to identify this structure.

For this example, the ten independent elements of D®) are Dg)l = _2.36,Dﬁ)2 =
479,08, = 0,08, = —0.773, D) = —0.575, D3 = 0.282, D), = -28.7,D5) =
0, Dég)a = 3.61, Dég)z = 0.488 in unit of 10~3mm?/s.

The numerical results for Example 5.1 are listed in the Table 1.

number T T2 T3 A x 107
(1) 0 -1.0000 0 0.2691

(2) | -0.0062 | -1.0000 | -0.0002 | 0.2691
(3) | -0.8514 | 0.5244 | 0.0097 | 0.4922
() 0.8480 | 0.5209 | -0.0108 | 0.4548
(5) | -0.0431 | 0.0557 | 0.9975 | 0.0044
(6) 0.0494 | -0.0684 | 0.9964 | 0.0049

Table 1: Z-eigenvalues and eigenvectors of P in Example 5.1

From Table 1, we can see that there are 12 Z-eigenvalues and corresponding Z-eigenvectors
for P, and the largest and smallest Z-eigenvalues of P are 0.4922 x 107 and —0.4922 x 1077,
which attained at (—0.8514,0.5244,0.0097)7 and (0.8514, —0.5244, —0.0097)", respectively.
This implies that Syax = 0.4922 x 107 and Smin = —0.4922 % 1077,

In order to illustrate the efficiency of our method, we also calculate the Z-eigenvalues
and corresponding Z-eigenvectors of ten third order three dimensional full symmetric tensors
which are constructed randomly in the following example.

Example 5.2 The elements of P are drawn by a normal distribution with mean zero and
standard deviation one.

Using the method provided in Section 4, we compute all the Z-cigenvalues of P, and
the associated eigenvectors. In Table 2, the largest Z-eigenvalue and the corresponding Z-
eigenvectors are listed for ten tensors. Moreover, in Table 3, all the nonnegative Z-eigenvalues
with corresponding Z-eigenvectors are presented for Tensor 1 in ten tensors.
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Tensor | Ty T3 AL e
1 -0.5784 | 0.7896 | 0.2050 | 2.1161

2 -0.8364 | -0.0495 | 0.5459 | 3.2879

3 -0.6272 | -0.2393 | -0.7411 | 2.6702

4 -0.0836 | -0.8832 | -0.5467 | 2.9957

5 0.7021 | -0.6410 | 0.3100 | 2.5146

6 -0.7327 | 0.6778 | 0.0612 | 4.1874

7 0.1531 | 0.5353 | 0.8307 | 3.5715

8 0.7981 | -0.5944 | 0.0991 | 4.2279

9 -0.6308 | -0.6893 | -0.3563 | 3.3815
10 -0.2657 | 0.7381 | -0.6201 | 3.4800

Table 2: The Largest Z-eigenvalues with Z-eigenvectors for ten tensors

number I T3 T3 A
(1) -0.3518 | -0.9140 | 0.2020 | 0.9434
(2) -0.5784 | 0.7896 | 0.2050 | 2.1161
(3) -0.4346 | -0.6970 | -0.5704 | 1.6851
(4) 0.9455 | 0.1980 | -0.2585 | 1.4644
(5) 0.0836 | -0.5452 | 0.8341 | 1.5940
(6) 0.8322 | -0.1726 | 0.5269 | 0.5171
(7) 0.3823 | -0.1797 | -0.9064 | 0.0165

Table 3: Nonnegative Z-eigenvalues and Z-eigenvectors of Tensor 1

Final Conclusion

In this paper, we introduced the concept of diffusion skewness in magnetic resonance imaging
and discussed the measure of the diffusion skewness and kurtosis. The diffusion skewness
and kurtosis provide two dimensionless values for characterizing the phase of the signal in
tissues and the degree of non-Gaussian of the diffusion displacement probability distribution,
respectively. For the water molecule with Gaussian distribution in biological structures,
the skewness and kurtosis are zero. But, for those non-Gaussian signal with asymmetry
about the origin, the skewness and the kurtosis have significant values. Based on the Z-
eigenvalues and D-eigenvalues of tensor, the methods for calculating the largest (smallest)
ASC values and largest (smallest) AKC values were presented. These ASC and AKC values
arc the principal invariants under rotations of co-ordinate systems and can be calculated in
any Cartesian co-ordinate system. For the fourth order three dimensional fully symmetric
tensor, we presented some properties of it and discussed the functionally independence for
the largest D-eigenvalue, the smallest D-eigenvalue and the trace in sense of Kelvin. We

hope that these quantities and properties can be useful for the diffusion analysis of the signal
in GDTI practice.
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