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Abstract

A tensor is represented by a supermatrix under a co-ordinate system. In this paper, we define E-eigenval-
ues and E-eigenvectors for tensors and supermatrices. By the resultant theory, we define the E-characteristic
polynomial of a tensor. An E-eigenvalue of a tensor is a root of the E-characteristic polynomial. In the reg-
ular case, a complex number is an E-eigenvalue if and only if it is a root of the E-characteristic polynomial.
We convert the E-characteristic polynomial of a tensor to a monic polynomial and show that the coef-
ficients of that monic polynomial are invariants of that tensor, i.e., they are invariant under co-ordinate
system changes. We call them principal invariants of that tensor. The maximum number of principal invari-
ants of mth order n-dimensional tensors is a function of m and n. We denote it by d(m,n) and show that
d(1, n) = 1, d(2, n) = n, d(m,2) = m for m � 3 and d(m,n) � mn−1 + · · · + m for m,n � 3. We also
define the rank of a tensor. All real eigenvectors associated with nonzero E-eigenvalues are in a subspace
with dimension equal to its rank.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

The concept of tensors was introduced by Gauss, Riemann and Christoffel, etc., in the 19th
century in the study of differential geometry. In the very beginning of the 20th century, Ricci,
Levi-Civita, etc., further developed tensor analysis as a mathematical discipline. It was Einstein
who applied tensor analysis in his study of general relativity in 1916. This made tensor analysis
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an important tool in theoretical physics, continuum mechanics and many other areas of science
and engineering [7,10,16,23].

A tensor is a physical quantity which is independent from co-ordinate system changes. A zero
order tensor is a scalar. A first order tensor is a vector. The representation of a second order tensor
in a co-ordinate system is a square matrix. The representation matrices of a second order tensor
are square matrices similar to each other.

In applications, there are higher order tensors. For example, the elasticity tensor in continuum
mechanics is a fourth order tensor [7,10,16,23]. In this paper, in a co-ordinate system, we let an
mth order n-dimensional tensor T be represented by a supermatrix

T = (
T

·i2···im
i1

)
,

where i1, . . . , im = 1, . . . , n. Here, i1 is a subscript, while i2, . . . , im are superscript. We will
explain this in the next section. We use the word “supermatrix” to distinguish it from the tensor.

An important concept in tensor analysis is the invariant. An invariant of a tensor is a scalar
associated with that tensor. It does not vary under co-ordinate changes. For example, the magni-
tude of a vector is an invariant of that vector. For second order tensors, there is a well-developed
theory of eigenvalues and invariants. A real second order n-dimensional tensor has n eigenval-
ues. The product of these eigenvalues is equal to the determinant of the tensor. The sum of these
eigenvalues is equal to the trace of the tensor. A complex number is an eigenvalue of a real sec-
ond order tensor if and only if it is a root of the characteristic polynomial of that second order
tensor. The eigenvalues of a real symmetric second order tensor are all real. A real symmetric
second order tensor is positive definite (semidefinite) if and only if all of its eigenvalues are pos-
itive (nonnegative). The coefficients of the characteristic polynomial of a second order tensor
are invariants of that tensor. They are called the principal invariants of that tensor. There are n

principal invariants for that tensor.
Can these be extended to the higher order case?
In the recent few years, motivated by the study of signal processing, people [12,14,15,25]

studied the best rank-1 approximation of higher order “tensors.” Very recently, motivated by
the positive definiteness issue of multivariate forms arising in the stability study of nonlinear
autonomous systems via Liapunov’s direct method in automatic control [1–4,6,9,11,13,24], in
[19], Qi introduced the concept of eigenvalues of a supersymmetric “tensor,” and developed their
theory based upon the theory of resultants [5,8,22].

In [19], two kinds of eigenvalues are defined for real supersymmetric tensors: eigenvalues
and E-eigenvalues. For real square symmetric matrices, these two definitions are the same as
the classical definition of eigenvalues. An eigenvalue (E-eigenvalue) with a real eigenvector (E-
eigenvector) is called an H-eigenvalue (Z-eigenvalue). When the order is even, H-eigenvalues and
Z-eigenvalues always exist. An even order supersymmetric tensor is positive definite (semidefi-
nite) if and only if all of its H-eigenvalues or all of its Z-eigenvalues are positive (nonnegative).
In [18], an H-eigenvalue method for the positive definiteness identification problem is devel-
oped based upon this property. It works for m = 4 and n = 3. In [20], geometric meanings of
Z-eigenvalues are discussed.

Independently, with a variational approach, Lim also defines eigenvalues of tensors in [17]
in the real field. The l2 eigenvalues of tensors defined in [17] are Z-eigenvalues in [19], while
the lk eigenvalues of tensors defined in [17] are H-eigenvalues in [19]. Notably, Lim [17] pro-
posed a multilinear generalization of the Perron–Frobenius theorem based upon the notion of lk

eigenvalues (H-eigenvalues) of tensors.
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In general, eigenvalues and E-eigenvalues of tensors are very different. Many properties of
eigenvalues of square matrices can be extended to eigenvalues of higher order supersymmetric
tensors. In [19], the symmetric hyperdeterminant of a supersymmetric tensor is defined. Based
upon this, the characteristic polynomial of a supersymmetric tensor is defined. A complex num-
ber is an eigenvalue of a supersymmetric tensor if and only if it is a root of the characteristic
polynomial of that tensor. The product of all eigenvalues of a supersymmetric tensor is equal to
the symmetric hyperdeterminant of that tensor. The sum of all eigenvalues of an mth order n-
dimensional supersymmetric tensor is equal to the trace of that tensor multiplied with (m−1)n−1.
There are exactly n(m − 1)n−1 eigenvalues for that tensor. A Gerschgorin-type theorem also
holds for eigenvalues of supersymmetric tensors. These properties do not hold for E-eigenvalues
of higher order supersymmetric tensors.

However, on the other hand, the invariant property does not hold for eigenvalues of higher
order supersymmetric tensors. As we can see in this paper, the invariant property holds for E-
eigenvalues of higher order (not necessarily symmetric) tensors. This motivated us to extend
E-eigenvalues defined in [19] to the nonsymmetric case and to study their invariant property.

To do this, we need to distinguish tensor and supermatrices. The “tensors” studied in [12,14,
15,19,25] are fixed in a co-ordinate system. The tensors in theoretical physics and continuum
mechanics are physical quantities which are invariant under co-ordinate system changes [7,10,
16,23]. Hence, the “tensors” studied in [12,14,15,19,25] are actually supermatrices in this paper.

In the next section, we will review the notation of tensors and supermatrices, which will
be used in this paper. In Section 3, we will define E-eigenvalues and E-eigenvectors for (not
necessarily symmetric) tensors and supermatrices. The E-eigenvalues of a tensor are the same as
the E-eigenvalues of the representation supermatrix of that tensor in an orthonormal co-ordinate
system. We then define E-characteristic polynomial for a tensor in Section 4. An E-eigenvalue
of a tensor is a root of the E-characteristic polynomial. In the regular case, a complex number
is an E-eigenvalue of a tensor if and only if it is a root of the E-characteristic polynomial. If not
all the coefficients of the E-characteristic polynomial of a tensor are zero, then we may convert
the E-characteristic polynomial to a monic polynomial. We show that the coefficients of that
monic polynomial are invariants of that tensor, i.e., they are invariant under co-ordinate system
changes. We call them principal invariants of that tensor. The maximum number of principal
invariants of mth order n-dimensional tensors is a function of m and n. We denote it by d(m,n)

and show that d(1, n) = 1, d(2, n) = n, d(m,2) = m for m � 3 and d(m,n) � mn−1 +· · ·+m for
m,n � 3. In Section 5, we will define recession vectors for an mth order n-dimensional tensor.
All the recession vectors of a tensor form a linear subspace. We call it the recession space of that
tensor. Let its dimension be d . We call r = n − d the rank of that tensor. We will show that an
eigenvector of that tensor associated with a nonzero Z-eigenvalue is always perpendicular to a
recession vector. Thus, all Z-eigenvectors associated with nonzero eigenvalues are in a subspace
with dimension of r . Some final remarks will be given in Section 6.

2. Tensors and supermatrices

We use the Einstein summation convention and assume that n � 2 throughout this paper.
A part of our notation is similar to the notion used in [10,16,23].
Let E be a real n-dimensional Euclidean space. We use small bold letters x,y, z,u,v,w, . . .

to denote vectors in E. Let {g1, . . . ,gn} be a basis of E and {g1, . . . ,gn} be the reciprocal basis.
Then we have their scalar products as

gi · gj = δi
j ,
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where

δi
j = δij = δij =

{
1, if i = j,

0, otherwise,

is the Kronecker symbol.
For any x ∈ E, under the basis {g1, . . . ,gn}, x has covariant co-ordinates

xi = x · gi

and contravariant co-ordinates

xi = x · gi .

Then we have

x = xigi = xigi .

For any x,y ∈ E, their scalar product is

x · y = y · x = xiyi = xiy
i .

We use Ē to denote the complex vector space E + √−1E. For x ∈ Ē, there are u,v ∈ E such
that

x = u + √−1v.

We use capital bold letters, other than E,V,R and C to denote second order or higher order
tensors defined on E. An mth order tensor T defined on E is in fact an m-linear operator on E.
If the range of T is real, then T is a real tensor. We use Em to denote the set of all real mth order
tensors defined on E. For T ∈ Em, we regard the supermatrix

T = (
T

·i2···im
i1

)
as its representation supermatrix under the basis {g1, . . . ,gn}. Then

T = T
·i2···im
i1

gi1gi2 · · ·gim .

The representation matrix of the metric tensor G is always the unit matrix

I = (
δ
j
i

)
.

We use capital ordinary letters, other than E, to denote square matrices and higher order
supermatrices. Under an orthonormal co-ordinate system, we do not need to distinguish the co-
variant and contravariant indices of the entries of a supermatrix. Then we may denote an mth
order n-dimensional supermatrix A by

A = (Ai1···im).

We denote the set of all mth order n-dimensional real supermatrices by Em. Then E is the set of
all n-dimensional real “vectors”

x = (xi) =
⎛
⎝ x1

...

xn

⎞
⎠ .

“Vectors” in E are different from vectors in E. Vectors in E are first order tensors. They are
invariant under co-ordinate system changes. On the other hand, “vectors” in E are merely vectors
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in the sense of linear algebra, not tensor analysis [10,16,23]. But we will not distinguish these
two kinds of vectors strictly in the later discussion.

Thus, tensors discussed in [12,14,15,19,21,25] are actually supermatrices in this paper.
A supermatrix is called supersymmetric (completely symmetric) if its entries are invariant

under any permutation of their indices. A tensor is called supersymmetric if its representation
supermatrix is supersymmetric.

For A ∈ Em and x ∈ Ē, we denote

Axm−1 = (Ai1i2···imxi2 · · ·xim),

xA = (xi1Ai1i2···im)

and

Axm ≡ xAxm−1 = Ai1i2···imxi1xi2 · · ·xim.

Similarly, for T ∈ Em and x ∈ Ē, we denote

T · xm−1 = T
·i2···im
i1

xi2 · · ·ximgi1,

x · T = xi1T
·i2···im
i1

gi2 · · ·gim

and

T · xm ≡ x · T · xm−1 = xi1T
·i2···im
i1

xi2 · · ·xim.

An even order supersymmetric supermatrix A is called positive definite (semidefinite) if for
all x ∈ Ē, x �= 0, we have Axm > 0 (Axm � 0). An even order supersymmetric tensor T is
called positive definite (semidefinite) if for all x ∈ Ē,x �= 0, we have T · xm > 0 (T · xm � 0).
Suppose that we have a new basis {g1′ , . . . ,gn′ } for E with the corresponding reciprocal basis
{g1′

, . . . ,gn′ }. Then we have transformation matrices (βi
i′) and (βi′

i ) such that

(
βi

i′
)−1 = (

βi′
i

)
. (1)

For x ∈ Ē, we have

xi = βi′
i xi′ (2)

and

xi = βi
i′x

i′ . (3)

For T ∈ Em, we have

T
·i2′ ···im′
i1′ = T

·i2···im
i1

β
i1
i′1

β
i′2
i2

· · ·βi′m
im

. (4)

For the derivation of (3) and (4), please see [10,23].
It is not difficult to show that the scalar product x · x for x ∈ Ē is invariant under co-ordinate

system changes.
Note that in the discussion involving tensors, superscripts of small ordinary letters are used

for contravariant indices, while in the other occasions, superscripts are used for powers.
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3. E-eigenvalues of tensors and supermatrices

We use small Greek letters to denote real and complex numbers. We use R and C to denote
the set of all real numbers and the set of all complex numbers, respectively.

Suppose that T ∈ Em and m � 1. We say a complex number λ is an E-eigenvalue of the tensor
T if there exists x ∈ Ē such that{

T · xm−1 = λx,

x · x = 1.
(5)

In this case, we say that x is an E-eigenvector of the tensor T associated with the E-eigenvalue λ.
If an eigenvalue has a real eigenvector, then we say that it is a Z-eigenvalue.

Theorem 1.

(i) The E-eigenvalues of a tensor are invariants of that tensor.
(ii) If x is an E-eigenvector of T associated with an eigenvalue λ, then

λ = T · xm.

Proof. (i) As we said before, the second equation of (5) is invariant under co-ordinate system
changes. Hence, we only need to consider the first equation of (5).

Under the basis {g1, . . . ,gn}, the first equation of (5) has the form

T
·i2···im
i1

xi2 · · ·xim = λxi1 . (6)

By (2), under the new basis {g1′ , . . . ,gn′ }, (6) becomes

T
·i2···im
i1

β
i′2
i2

· · ·βi′m
im

xi2′ · · ·xim′ = λβ
i′1
i1

xi1′ .

By (1), we have

T
·i2···im
i1

β
i1
i′1

β
i′2
i2

· · ·βi′m
im

xi2′ · · ·xim′ = λxi1′ .

By (4), we have

T
·i2′ ···im′
i1′ xi2′ · · ·xim′ = λxi1′ .

This shows that the first equation of (5) is also invariant under co-ordinate system changes. This
completes the proof of (i).

(ii) This follows from (5) directly. �
Suppose that A ∈ Em and m � 1. We say a complex number λ is an E-eigenvalue of the

supermatrix A if there exists x ∈ Ē such that{
Axm−1 = λx,

xT x = 1.
(7)

In this case, we say that x is an E-eigenvector of the supermatrix A associated with the E-
eigenvalue λ. If an E-eigenvalue has a real E-eigenvector, then we say that it is a Z-eigenvalue.
These generalize the definitions of E-eigenvalues and Z-eigenvalues for supersymmetric super-
matrices in [19] to the nonsymmetric case.
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We may compare the definitions of eigenvalues and E-eigenvalues for a supermatrix. We
may first generalize the definition of eigenvalues of a supersymmetric supermatrix in [19] to
the nonsymmetric case. Let x ∈ Ē, we denote x[m−1] as a vector in Ē with its components as
xm−1
i . We say a complex number λ is an eigenvalue of the supermatrix A if there exists x ∈ Ē

such that

Axm−1 = λx[m−1]. (8)

In this case, we say that x is an eigenvector of the supermatrix A associated with the eigenvalue λ.
If an eigenvalue has a real eigenvector, then we say that it is an H-eigenvalue.

Note that (8) is homogeneous, but (7) is not. In fact, in a certain sense, eigenvalues of super-
matrices defined by (8) are genuine extensions of eigenvalues of square matrices, but (7) is not.
When m = 2 and A is nonsymmetric, the definition (7) misses such eigenvalues whose eigenvec-
tors satisfies xT x = 0 but x �= 0. For example,

x =
(

1√−1

)
.

Also, by [19], the number of eigenvalues of an mth order n-dimensional supersymmetric su-
permatrix only depends upon m and n. It is n(m − 1)n−1. We may easily extend that result to
the nonsymmetric case. But the number of E-eigenvalues of an mth order n-dimensional su-
persymmetric supermatrix varies for different supermatrices. As we see above, the number of
E-eigenvalues of an n-dimensional square matrix is n − 2k � 0, where k is an integer. When
m � 3, it is possible that all complex numbers are E-eigenvalues for a certain supermatrix. For
example, let m = 3 and n = 2. Let A111 = A221 = 1 and other Aijk ≡ 0. Then (7) becomes⎧⎪⎨

⎪⎩
x2

1 = λx1,

x1x2 = λx2,

x2
1 + x2

2 = 1.

(9)

For any complex number λ,

(x1, x2) = (
λ,

√
1 − λ2

)
is a nonzero solution of (9). Hence, all complex numbers are E-eigenvalues. We call such a case
the singular case.

Though E-eigenvalues are somewhat irregular, but they are invariants under co-ordinate sys-
tem changes, in the sense of Theorem 1. This is why we need to study them in this paper.

We call the basis {g1, . . . ,gn} orthonormal if

gi · gj = δij .

Comparing (5) and (7), we have the following theorem.

Theorem 2. The E-eigenvalues of a tensor are the same as the E-eigenvalues of its representation
supermatrix under an orthonormal basis.

By Theorem 2 and [19], we have the following theorem.

Theorem 3. A supersymmetric tensor/supermatrix always has Z-eigenvalues. An even order
supersymmetric tensor/supermatrix is positive definite (semidefinite) if and only if all of its Z-
eigenvalues are positive (nonnegative).
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4. The E-characteristic polynomial

Suppose that A ∈ Em and m � 3 throughout this section.
Suppose now that m is even and m = 2h. Let

F(x) = Axm−1 − λ
(
xT x

)h−1
x.

According to the resultant theory [5,8,22], the resultant of F(x) is an irreducible polynomial
of the coefficient of F(x), i.e., a one-dimensional polynomial of λ, which vanishes as long as
F(x) = 0 has a nonzero solution. We call this polynomial of λ as the E-characteristic polynomial
of A, and denote it by ψ(λ). This definition generalizes the definition of the E-characteristic
polynomial of an even order supersymmetric supermatrix, given in [19] to the nonsymmetric
case.

Suppose now that m is odd. Let

G(x0, x) =
{

Axm−1 − λxm−2
0 x,

x2
0 − xT x.

(10)

Again, according to the resultant theory [5,8,22], the resultant of G(x0, x) is an irreducible poly-
nomial of the coefficient of G(x0, x), i.e., a one-dimensional polynomial of λ, which vanishes as
long as G(x0, x) = 0 has a nonzero solution. We call this polynomial of λ as the E-characteristic
polynomial of A, and denote it by ψ(λ). This definition further generalizes the definition of the
E-characteristic polynomial of an even order supermatrix to the odd order case.

We say that A is irregular if there is an x ∈ Ē such that x �= 0, Axm−1 = 0 and xT x = 0.
Otherwise we say that A is regular.

Suppose that T ∈ Em. We call the E-characteristic polynomial of a representation supermatrix
of T as the E-characteristic polynomial of T. We say that T is irregular if there is an x ∈ Ē such
that x �= 0, T · xm−1 = 0 and x · x = 0. Otherwise we say that T is regular.

It is not difficult to prove that the regularity is also an invariant property of a tensor. A tensor
is regular if and only if its supermatrix is regular.

Theorem 4. Suppose that m � 3. Then an E-eigenvalue of an mth order tensor/supermatrix is a
root of the E-characteristic polynomial of that tensor/supermatrix. If that tensor/supermatrix is
regular, then a complex number is an E-eigenvalue of that tensor/supermatrix if and only if it is
root of the E-characteristic polynomial of that tensor/supermatrix.

Proof. Suppose that A ∈ Em and m � 3. Let λ be an E-eigenvalue of A and x is an E-eigenvector
of A associated with λ. By (7), when m is even, x is a nonzero solution of F(x) = 0 for that λ;
when m is odd, (x0 = √

xT x, x) is a nonzero solution of G(x0, x) = 0 for that λ. According to
the resultant theory and our definition, we have ψ(λ) = 0.

On the other hand, suppose that A is regular. Let λ be a root of ψ(λ) = 0. By the resultant
theory and our definition, when m is even, there is an x ∈ Ē, x �= 0 such that F(x) = 0; when
m is odd, there is an x ∈ Ē and an x0 ∈ C, x �= 0 such that G(x0, x) = 0. If xT x = 0, then
by F(x) = 0 or G(x0, x) = 0, we have Axm−1 = 0. This contradicts the assumption that A is
regular. Hence, xT x �= 0. Let
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x̂ = x√
xT x

.

We see that (7) is satisfied with λ and x̂. This implies that λ is an E-eigenvalue of A.
The case for a tensor follows this and the relation between tensors and supermatrices. �
Note that when m = 2, the E-characteristic polynomial is exactly the characteristic polynomial

in the classical sense. In that case, a root of ψ(λ) = 0 is an eigenvalue of the second order tensor
or the square matrix in the classical sense, though it may not satisfy (7) as its eigenvector x

may not satisfy xT x �= 0. Thus, in the regular case, the E-characteristic polynomial may inherit
properties of the characteristic polynomial in the classical sense.

By the definition, when m is odd, if λ is an E-eigenvalue of a tensor (supermatrix) with an
eigenvector x (x), then −λ is an E-eigenvalue of that tensor (supermatrix) with an eigenvector
−x (−x). Thus, when m is odd, the E-characteristic polynomial only contains even power terms
of λ.

Then we may denote the E-characteristic polynomial of a tensor T by

ψ(λ) =
{∑h

j=0 aj (T)λj , if m is even,∑h
j=0 aj (T)λ2j , if m is odd,

(11)

where ah(T) �= 0, h = h(T) depends upon T. For example, let m = 3 and n = 2. Let A111 =
A222 = 1 and other Aijk ≡ 0. Then (10) becomes

G(x0, x) =

⎧⎪⎨
⎪⎩

x2
1 − λx0x1,

x2
2 − λx0x2,

x2
0 − x2

1 − x2
2 .

It has nonzero roots if and only if λ2 = 1 or 2λ2 = 1. Hence, the E-characteristic polynomial of
the tensor T, whose representation supermatrix under an orthonormal basis is A, is

ψ(λ) = (
λ2 − 1

)(
2λ2 − 1

)
.

It is possible that for some T, it has a zero E-characteristic polynomial. In this case, we denote
h(T) = −1. Define

d(m,n) := max
{
h(T): T ∈ Em

}
. (12)

When h(T) = −1, by Theorem 4, if T is regular, then all complex numbers are E-eigenvalues
of T, i.e., T is singular. Hence, in the regular case, if T does not have a zero E-characteristic poly-
nomial, the number of E-eigenvalues is not greater than d(m,n) when m is even, and 2d(m,n)

when m is odd. Thus, we have the following corollary.

Corollary 1. In the regular case, a tensor/supermatrix has either only a finite number of E-
eigenvalues, or all complex numbers are its E-eigenvalues, i.e., it is singular.

Note that the singular example given in (9) is regular.
In the irregular case, when m � 3, for all complex values of λ, F(x) = 0 or G(x0, x) = 0 has

nonzero solutions. Thus, in the irregular case, we always have a zero E-characteristic polynomial.
But it is not necessarily singular in this case.

We then have two questions.
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Question 1. Is Corollary 1 also true in the irregular case?

Question 2. Is a regular completely symmetric supermatrix always nonsingular?

By Theorem 1 and the relations between roots and coefficients of a one-dimensional polyno-
mial, we now have the following theorem.

Theorem 5. Let T ∈ Em and m � 1. Suppose that h(T) � 1, where h(T) is defined in (11). Then

(−1)h−j aj (T)

ah(T)

for j = 0, . . . , h − 1, are invariants of that tensor T.

We call them principal invariants of that tensor T. It is also not difficult to show that h(T) is
also an invariant of T. When h(T) = 0 or −1, we regard that T has no principal invariants. Then,
the maximum number of principal variants of mth order n-dimensional tensors is d(m,n). We
have the following proposition.

Proposition 1. When m is even, d(m,n) is the maximum value of numbers of E-eigenvalues
of regular mth order n-dimensional tensors/supermatrices which have a finite number of E-
eigenvalues. When m is odd, 2d(m,n) is the maximum value of numbers of E-eigenvalues
of regular mth order n-dimensional tensors/supermatrices which have a finite number of E-
eigenvalues.

Proof. In the irregular case we always have zero E-characteristic polynomials. In the regular
case, by Corollary 1, if a tensor/supermatrix has infinitely many E-eigenvalues, then it also
has a zero E-characteristic polynomial. Hence, to find the value of d(m,n), we only need to
consider regular mth order n-dimensional tensors/supermatrices which have a finite number of
E-eigenvalues. The conclusions now follow from the structure of the E-characteristic polyno-
mial. �

We then have the following theorem.

Theorem 6.

(i) d(1, n) = 1. This is the vector case. Each vector has exactly two E-eigenvalues, which are
its magnitude and its magnitudes times −1.

(ii) d(2, n) = n. This is the case of second order tensors. An E-eigenvalue of a second order
tensor is an eigenvalue of that tensor in the classical sense. A second order tensor has n

eigenvalues in the classical sense. If the second order tensor is symmetric, then all of these
n eigenvalues are Z-eigenvalues.

(iii) If m � 3, then d(m,2) = m. Let A be the representation supermatrix of an mth order two-
dimensional tensor T in an orthonormal co-ordinate system. If

2∑
A2i2···imx1xi2 · · ·xim ≡

2∑
A1i2···imx2xi2 · · ·xim (13)
i2,...,im=1 i2,...,im=1
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does not hold, then the number of E-eigenvalues of an mth order two-dimensional tensor is
m − 2k when m is even, and 2(m − 2k) when m is odd. This implies that the singular case
occurs only if (13) holds.
Furthermore, when A is completely symmetric, (13) holds only when m is even and

Axm = c0
(
x2

1 + x2
2

)m
2 , (14)

where c0 is a constant. In this case, A has only one E-eigenvalue c0. Thus, a completely
symmetric two-dimensional tensor/supermatrix has only a finite number of E-eigenvalues.

(iv) Suppose that n,m � 3. Then

d(m,n) � mn−1 + · · · + m.

Proof. (i) This follows from the definition directly.
(ii) This is common knowledge of tensor analysis [10,16,23].
(iii) When n = 2, (7) can be written as⎧⎪⎪⎨

⎪⎪⎩
∑2

i2,...,im=1 A1i2···imxi2 · · ·xim = λx1,∑2
i2,...,im=1 A2i2···imxi2 · · ·xim = λx2,

x2
1 + x2

2 = 1,

(15)

which is equivalent to⎧⎪⎨
⎪⎩

∑2
i2,...,im=1 A2i2···imx1xi2 · · ·xim − ∑2

i2,...,im=1 A1i2···imx2xi2 · · ·xim = 0,

x2
1 + x2

2 = 1,

λ = Axm.

(16)

We now suppose that (13) does not hold. The first equation of (16) is a homogeneous poly-
nomial of x1 and x2. Its degree is m, as we have assumed that (13) does not hold. It can be
decomposed to m linear factors. Each linear factor corresponds to a solution of (16). If such a
solution satisfies

x2
1 + x2

2 �= 0,

then it corresponds to one solution of (7) when m is even, and two solutions of (7) when m is
odd. Then, the number of E-eigenvalues of an mth order two-dimensional tensor is m− 2k when
m is even, and 2(m − 2k) when m is odd. This implies that the singular case occurs only if (13)
holds.

Suppose now that (13) holds. Then there is a real homogeneous polynomial b(x1, x2) such
that {∑2

i2,...,im=1 A1i2···imxi2 · · ·xim = x1b(x1, x2),∑2
i2,...,im=1 A2i2···imxi2 · · ·xim = x2b(x1, x2).

(17)

If b(x1, x2) has a factor (x2
1 + x2

2), then by (17),⎧⎪⎪⎨
⎪⎪⎩

∑2
i2,...,im=1 A1i2···imxi2 · · ·xim = 0,∑2
i2,...,im=1 A2i2···imxi2 · · ·xim = 0,

x2
1 + x2

2 = 0,

(18)

has nonzero solutions. This means that A is irregular. Then h(T) = −1.
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If b(x1, x2) has no factor (x2
1 + x2

2), then (18), has no nonzero solutions. This means that A is
regular. By Corollary 1, A either has a finite number of E-eigenvalues, or it is singular. By (15),
we have{

λ = b(x1, x2),

x2
1 + x2

2 = 1.
(19)

Let x1 = cos θ, x2 = sin θ . Then for any θ ∈ C,

λ = b(cos θ, sin θ)

is a solution of (19). This says that λ is a continuous function of θ . Then λ cannot take more than
one isolated values. It is not difficult to see that λ takes one single value only when m is even and

b(x1, x2) = c1
(
x2

1 + x2
2

)m−2
2 ,

where c1 is a nonzero constant. Since we assume b(x1, x2) has no factor (x2
1 +x2

2), this case does
not occur when m � 3. Then it must be singular. This implies that h(T) = −1, whenever (13)
holds.

Combining the two cases that (13) holds and does not hold, by Proposition 1, we have
d(m,2) = m when m � 3.

Suppose now that A is completely symmetric and (13) holds. Then by (17),{
Axm−1 = b(x1, x2)x,

Axm = b(x1, x2)(x
2
1 + x2

2).
(20)

Let y = Axm. Then dy
dx

= mAxm−1. By (20), we have

1

y

dy

dx
= mx

x2
1 + x2

2

.

This implies that (14) holds and m is even. Thus, by (16), the E-eigenvalues of A only takes one
value. The last conclusion of (iii) follows now.

(iv) Let A be the representation supermatrix of an mth order n-dimensional tensor T in an
orthonormal co-ordinate system.

If x1 �= 0, then the solutions of (7) may be found by solving the system of polynomial equa-
tions {∑n

i2···im=1 Aii2···imx1xi2 · · ·xim = ∑n
i2···im=1 A1i2···imxixi2 · · ·xim, i = 2, . . . , n,∑n

i=1 x2
i = 1,

(21)

and calculating

λ = Axm. (22)

By the Bezout Theorem [5,8], (21) either has infinitely many solutions, or has at most 2mn−1

solutions.
If x1 = 0 but x2 �= 0, then the solutions of (7) may be found by solving the system of polyno-

mial equations{∑n
i2···im=2 Aii2···imx2xi2 · · ·xim = ∑n

i2···im=2 A2i2···imxixi2 · · ·xim, i = 3, . . . , n,∑n
x2 = 1,

(23)

i=2 i
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and calculating (22). By the Bezout Theorem, (23) either has infinitely many solutions, or has at
most 2mn−2 solutions.

Continue this process. The final case is that x1 = x2 = · · · = xn−2 = 0. Then the solutions of
(7) may be found by solving{∑n

i2···im=n−1 Ani2···imxn−1xi2 · · ·xim = ∑n
i2···im=2 An−1,i2···imxnxi2 · · ·xim,

x2
n−1 + x2

n = 1,
(24)

and calculating (22). By the Bezout Theorem, (24) either has infinitely many solutions, or has at
most 2m solutions.

Thus, (7) either has infinitely many solutions, or has at most 2(mn−1 + mn−2 + · · · + m)

solutions. Because of the structures of (21), (23), . . . , (24), if (7) has a finite number of solutions
then such solutions appear in pairs, i.e., if x is a solution, then −x is also a solution. By (22), if
m is even, this implies that A either has infinitely many E-eigenvalues, or has at most mn−1 +
mn−2 + · · · + m E-eigenvalues; if m is even, this implies that A either has infinitely many E-
eigenvalues, or has at most 2(mn−1 + mn−2 + · · · + m) E-eigenvalues.

Now, by Proposition 1 and (11), we have the conclusion of (iv). �
We have one more question.

Question 3. Is the last conclusion of Theorem 6(iii) also true in general? That is, does a com-
pletely symmetric tensor/supermatrix has only a finite number of E-eigenvalues?

5. Recession vectors and the rank of a tensor

Suppose that T ∈ Em. We call y ∈ E a recession vector of T if

y · T = 0.

Clearly, all recession vectors of T form a linear subspace VR of E. We call it the recession space
of T. Let

VB = {x ∈ E: y · x = 0 ∀y ∈ VR}.
Let the dimension of VB be r . We say that the rank of T is r . Clearly, 0 � r � n.

Theorem 7. If λ is a nonzero Z-eigenvalue of T and x ∈ E is an eigenvector of T, associated
with λ, then x ∈ VB .

Proof. For any y ∈ VB , we have

λy · x = y · (λx) = y · T · xm−1 = (y · T) · xm−1 = 0 · xm−1 = 0.

The conclusion follows. �
The rank of a supersymmetric supermatrix and its meaning were discussed in [20].

6. Final remarks

1. One may think to eliminate the irregularity of E-eigenvalues by using{
Axm−1 = λx,

T
x̄ x = 1,
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to replace (7). But such a definition has an indefinite factor, i.e., if λ is an eigenvalue of A defined
in this way, then any complex number which has the same modulus as λ will be an eigenvalue of
A in such a definition.

2. It is interesting to find answers to the three questions raised in Section 4.
3. Theorem 6(iv) states that when n,m � 3,

d(m,n) � mn−1 + · · · + m.

This bound seems a little big. In fact, the proof of Theorem 6(iv) also works for m = 2. When
m = 2, this bound is

2n−1 + · · · + 2 = 2n − 2.

This is much greater than the actually value n. So we believe that this bound can be improved.
This also implies that it is possible to use Z-eigenvalues to develop a better method for the
positive definiteness identification problem than the H-eigenvalue method developed in [18].

4. A further research topic is to investigate the meanings of eigenvalues of higher order tensors
in nonlinear continuum mechanics and physics [10,16,23].
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