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Abstract

The E-characteristic polynomial of an even order supersymmetric tensor is a useful tool in determining
the positive definiteness of an even degree multivariate form. In this paper, for an even order tensor, we
first establish the formula of its E-characteristic polynomial by using the classical Macaulay formula of
resultants, then give an upper bound for the degree of that E-characteristic polynomial. Examples illustrate
that this bound is attainable in some low order and dimensional cases.
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1. Introduction

An mth order tensor is an m-way array whose entries accessed via m indices. It arises in di-
verse fields such as signal and image processing, data analysis, nonlinear continuum mechanics,
higher-order statistics, as well as independent component analysis [5,7,8,12,15,16,19,22,29,31].
It is well known that supersymmetric tensors and homogeneous polynomials are bijectively as-
sociated [8,13], and when m is even, the positive definiteness of a homogeneous polynomial
plays an important role in the stability study of nonlinear autonomous systems via Lyapunov’s
direct method in automatic control [1–4,9,11,14,30]. Motivated by this issue, Qi [24] introduced
the concepts of eigenvalues and E-eigenvalues of a supersymmetric tensor, and established their
close relationship with the theory of resultants [6,10,28].

An mth degree homogeneous polynomial form of n variables f (x) can be represented as the
product of two tensors

f (x) ≡ Axm =
n∑

i1,...,im=1

ai1···imxi1 · · ·xim, (1.1)

where tensor A is a supersymmetric tensor, i.e., its entries ai1···im are invariant under any per-
mutation of their indices i1, . . . , im = 1, . . . , n, and xm is a supersymmetric tensor with entries
xi1xi2 · · ·xim .

A supersymmetric tensor A is called positive definite if it satisfies

Axm > 0, ∀x ∈ Rn, x �= 0.

For a vector x ∈ Cn, we denote its ith component by xi . By the tensor product [27], Axm−1

is a vector in Cn whose ith component is
n∑

i2,...,im=1

aii2···imxi2 · · ·xim.

In [24], Qi introduced eigenvalues, eigenvectors, E-eigenvalues, E-eigenvectors, characteristic
polynomials and E-characteristic polynomials for supersymmetric tensors. When m � 3, eigen-
values and E-eigenvalues may not be real. An eigenvalue (E-eigenvalue) with a real eigenvector
(E-eigenvector) is called an H-eigenvalue (Z-eigenvalue). An even order supersymmetric tensor
always has H-eigenvalues and Z-eigenvalues. It is positive (semi)definite if and only if all of
its H-eigenvalues or all of its Z-eigenvalues are positive (nonnegative). A complex number is an
eigenvalue of a supersymmetric tensor if and only if it is a root of the characteristic polynomial of
that tensor. Based upon these, an H-eigenvalue method for the positive definiteness identification
problem was developed in [21].

By [24], the degree of the characteristic polynomial of an mth order n-dimensional supersym-
metric tensor is

d = n(m − 1)n−1.

For example, if m = 4 and n = 3, then d = 27.
On the other hand, the degree of the E-characteristic polynomial is lower than this. In [26],

E-eigenvalues and E-characteristic polynomials were further discussed. The definitions of eigen-
values, eigenvectors, E-eigenvalues, E-eigenvectors, E-characteristic polynomials were gener-
alized to nonsymmetric tensors. It was shown in [26] that the degree of the E-characteristic
polynomial of an mth order n-dimensional tensor varies for different tensors. Sometimes there
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may be zero E-characteristic polynomials. The maximum of degrees of E-characteristic polyno-
mial of mth order n-dimensional tensors is denoted as d(m,n) when m is even. When m is odd,
the E-characteristic polynomial of an mth order n-dimensional tensor only contains even degree
terms. Thus, the maximum of degrees of E-characteristic polynomial of mth order n-dimensional
tensors is denoted as 2d(m,n) when m is odd. It was shown in [26], that d(1, n) ≡ 1, d(2, n) = n,
d(m,2) = m for m � 3 and

d(m,n) � mn−1 + mn−2 + · · · + m (1.2)

for m,n � 3. When m = 4 and n = 3, (1.2) gives an upper bound 20 for d(m,n). This shows that
the degree of the E-characteristic polynomial is much lower than the degree of the characteristic
polynomial, and a Z-eigenvalue method for the positive definiteness identification problem may
be better than the H-eigenvalue method.

The upper bound for d(m,n) given in (1.2) can be improved. In this paper, we do this when m

is even. In particular, we show that d(4,3) = 13, which is much smaller than 20, the upper bound
given in (1.2) and 27, the degree of the characteristic polynomial when m = 4 and n = 3. In [20],
using the result d(4,3) = 13 in this paper, a Z-eigenvalue method for the positive definiteness
identification problem for a quartic form of three variables is developed. Numerical results show
that this method is better than the existing global polynomial optimization methods [23], applied
to this problem.

In the following sections, for an even order tensor, we first establish the formula of its E-
characteristic polynomial by using the classical Macaulay formula of resultants, then give an
upper bound for the degree of that E-characteristic polynomial. Examples illustrate that this
bound is tough in some low order and dimensional cases.

In [25], geometric meanings of Z-eigenvalues are discussed. In [26], it was also shown that
E-eigenvalues are invariant under co-ordinate changes in the sense of tensor analysis used in
nonlinear mechanics [12,29]. This shows an additional merit of E-eigenvalues. Independently,
with a variational approach, Lim also defines eigenvalues of tensors in [17] in the real field.
The l2 eigenvalues of tensors defined in [17] are Z-eigenvalues in [24], while the lk eigenvalues
of tensors defined in [17] are H-eigenvalues in [24]. Notably, Lim [17] proposed a multilin-
ear generalization of the Perron–Frobenius theorem based upon the notion of lk eigenvalues
(H-eigenvalues) of tensors.

2. A formula of the E-characteristic polynomial

In this section, we will first review the definition of E-eigenvalues, E-characteristic polyno-
mials, and their properties. Then we will review the classical Macaulay formula of the resultant
for a polynomial system, stated in [6]. Finally, we will use the Macaulay formula to establish a
formula of the E-characteristic polynomial of an even order tensor A.

Definition 2.1. For a real tensor A, a number λ ∈ C is called an E-eigenvalue of A and a nonzero
vector x ∈ Cn is called an E-eigenvector of A associated with the E-eigenvalue λ, if they are
solutions of the following polynomial equation system:{

Axm−1 = λx,

xT x = 1.
(2.3)

If x is real, then λ is also real. In this case, λ and x are called a Z-eigenvalue of A and
a Z-eigenvector of A associated with the Z-eigenvalue λ, respectively.
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It was shown in [24] that Z-eigenvalues always exist for a real supersymmetric tensor A,
and when the order of A is even, A is positive definite if and only if all of its Z-eigenvalues
are positive. Thus, the smallest Z-eigenvalue of an even order supersymmetric tensor A is an
indicator of the positive definiteness of A.

Assume that m is even. Let A be an mth order tensor and

Fλ(x) = Axm−1 − λI (x)x = 0, (2.4)

where I (x) = (xT x)
m−2

2 . Then the resultant of Fλ(x), denoted by Res(Fλ(x)), is the E-
characteristic polynomial φ(λ) of A, i.e.,

φ(λ) = Res
(
Fλ(x)

)
.

The tensor A is called regular if there is no vector x �= 0 such that{
Axm−1 = 0,

xT x = 0.

The following theorem was shown in [26].

Theorem 2.1. Assume that m,n � 2. Let d(m,n) be the maximum of degrees of E-characteristic
polynomials of mth order n-dimensional tensors. Then the following statements hold:

(a) An E-eigenvalue of A is a root of the E-characteristic polynomial φ. If A is regular, then a
complex number is an E-eigenvalue of A if and only if it is a root of φ.

(b) d(2, n) = n. For m � 3, d(m,2) = m. For m,n � 3,

d(m,n) � mn−1 + · · · + m.

This theorem holds for all m,n � 2. But in this paper, we only discuss the case that m is even.
We denote by k[x1, . . . , xn] the collection of all polynomials in x1, . . . , xn with coefficients

in k, where k is a field. For homogeneous polynomials F1,F2, . . . ,Fn ∈ C[x1, x2, . . . , xn] of total
degrees d1, d2, . . . , dn, set

d̄ =
n∑

i=1

(di − 1) + 1 =
n∑

i=1

di − n + 1.

Let S be the set of the monomials xα = x
α1
1 · · ·xαn

n of total degree d̄ and divide it into the
following n sets:

S1 = {
xα: |α| = d̄, x

d1
1 divides xα

}
,

S2 = {
xα: |α| = d̄, x

d1
1 does not divide xα but x

d2
2 does

}
,

...

Sn = {
xα: |α| = d̄, x

d1
1 , . . . , x

dn−1
n−1 do not divide xα but xdn

n does
}
. (2.5)

Consider the system of homogeneous equations of degree d̄ :⎧⎪⎨
⎪⎩

xα/x
d1
1 · F1(x) = 0 for all xα ∈ S1,

· · ·
xα/x

dn
n · Fn(x) = 0 for all xα ∈ Sn.

(2.6)



Aut
ho

r's
   

pe
rs

on
al

   
co

py

1222 G. Ni et al. / J. Math. Anal. Appl. 329 (2007) 1218–1229

Since Fi has degree di , it follows that xα/x
di

i · Fi has total degree d̄ . Thus each polynomial
on the left side of (2.6) can be written as a linear combination of monomials of total degree d̄ .

Suppose that there are N such monomials, where N = (
d̄+n−1

n−1

)
. Then observe that the total

number of equations is the number of elements in S1 ∪ · · ·∪Sn, which is also N . Thus, regarding
the monomials of total degree d̄ as unknowns, we get a system of N linear equations in N

unknowns.
Denote the coefficient matrix of the N × N system of equations by M . A monomial xα of

total degree d̄ is called reduced if x
di

i divides xα for exactly one i, where i = 1, . . . , n. Denote
M ′ the submatrix of the coefficient matrix of (2.6) obtained by deleting all rows and columns
corresponding to reduced monomials xα .

Macaulay [18] gave the following formula for the resultant as a quotient of two determinants.

Theorem 2.2. When F1,F2, . . . ,Fn are universal polynomials, the resultant of {F1,F2, . . . ,Fn}
is given by

Res = ± det(M)

det(M ′)
. (2.7)

Furthermore, if k is a field and F1,F2, . . . ,Fn ∈ k[x1, x2, . . . , xn], then the formula for Res holds
whenever det(M ′) �= 0.

Now we discuss the resultant of Fλ(x) based on the above discussion. For convenience, we
denote (2.4) by

Fλ(x) =

⎛
⎜⎜⎝

F1(x)

F2(x)
...

Fn(x)

⎞
⎟⎟⎠ = 0 and F̄ (x) = Axm−1.

Obviously,

Fi(x) = F̄i(x) − λI (x)xi for i = 1, . . . , n. (2.8)

Let d1, . . . , dn = m − 1. Then we have

d̄ =
n∑

i=1

(m − 1 − 1) + 1 = n(m − 2) + 1.

Let S be the set of the monomials xα = x
α1
1 · · ·xαn

n of total degree d̄ and divide it into n sets
as (2.5), where d1 = d2 = · · · = dn = m − 1.

Consider the system of homogeneous equations of degree d̄ :

xα/xm−1
i · Fi(x) = 0 for all xα ∈ Si, (2.9)

for i = 1, . . . , n.
Regarding the monomials of total degree d̄ as unknowns. Then we get a system of N linear

equations in N unknowns, where N = (
n(m−1)

n−1

)
.

Denote by Mλ the coefficient matrix of the N ×N system of equations and M ′
λ the submatrix

of Mλ obtained by deleting all rows and columns corresponding to reduced monomials xα .
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Theorem 2.3. Assume that A is a universal mth order n-dimensional supersymmetric tensor and
m is even. Then the E-characteristic polynomial of A is given by

φ(λ) = ±det(Mλ)

det(M ′
λ)

. (2.10)

Furthermore, if A is a real tensor, then the above formula holds whenever det(M ′
λ) �= 0.

Proof. The conclusion follows from Theorems 2.1 and 2.2. �
3. An upper bound of the degree of φ(λ)

In this section, we consider the degree of the E-characteristic polynomial of A. Assume that
A is a universal even order tensor. We assume that m,n � 2. We rewrite φ(λ) as follows:

φ(λ) =
d∑

i=0

ciλ
i,

where d is the degree of φ(λ) with respect to λ, ci ’s are homogeneous polynomials in elements
of A.

Denote the degrees of det(Mλ) and det(M ′
λ) with respect to λ by dM and dM ′ , respectively.

Obviously, we have

d(m,n) � d = dM − dM ′ . (3.11)

Theorem 3.1.

dM =
(

(n − 1)(m − 1) + 1
n − 1

)
.

Proof. Consider the elements of Mλ that contains λ. We rewrite (2.9) as follows:(
xα/xm−1

i

)
F̄i − λ

(
xα/xm−2

i

)
I (x) = 0 for all xα ∈ Si, i = 1, . . . , n. (3.12)

If there exist α(i) ∈ Si and α(j) ∈ Sj for some 1 � i �= j � n such that

xα(i)

/xm−2
i = xα(j)

/xm−2
j ,

then the equation
(
xα(j)

/xm−1
j

)
F̄j − λ

(
xα(j)

/xm−2
j

)
I (x) = 0

can be replaced by
(
xα(j)

/xm−1
j

)
F̄j − (

xα(i)

/xm−1
i

)
F̄i = 0.

This procedure is equivalent to perform the elementary row operation on the corresponding row
of the matrix Mλ.

Repeat this process till it cannot be executed. Then we get a new system of “linear” equations
with a coefficient matrix, denoted by M̂ .

Denote by r the number of elements in S1

xm−2
1

∪· · ·∪ Sn

xm−2
n

. It is easy to observe that the number

of rows containing λ in M̂ is r and dM = r .
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We now compute r . Let S′ = ⋃n
i=1 S′

i , where

S′
i = {

xα: xαxm−2
i ∈ Si

}
, i = 1,2, . . . , n,

and

S′′ = {
xα: |α| = (n − 1)(m − 2) + 1

}
.

It is clear that Si

xm−2
i

= S′
i for all i = 1, . . . , n. Moreover, we claim that S′ = S′′. In fact, obvi-

ously, S′ ⊆ S′′. On the other hand, since S1, . . . , Sn constitute a partition of the set S, combining
this with the definition of these sets, we conclude that for any xα ∈ S′′, there exists at least one
index i such that 1 � i � n and xαxm−2

i ∈ Si , so xα ∈ S′. Hence, S′ = S′′. From the combinatory
theory, we can compute the cardinality of the set S′′ equals(

(n − 1) + (n − 1)(m − 2) + 1
n − 1

)
=

(
(n − 1)(m − 1) + 1

n − 1

)
.

This completes the proof. �
Now, we consider the degree of λ in det(M ′

λ). Denote by |B| the number of entries of the
set B .

Theorem 3.2. dM ′ = |Ŝ′′|, where Ŝ′′ is defined by (3.15).

Proof. By the definition of reduced monomials, we know that a monomial xα of total degree d̄

is not reduced if and only if there exist at least two distinct indices i, j � 1 such that αi � m − 1
and αj � m − 1. So all entries of Sn are reduced, and all nonreduced monomials can be divided
into n − 1 sets according to (2.5) as follows:

Ŝ1 = {
xα: xα ∈ S1, αi � m − 1 for some 2 � i � n

}
,

Ŝ2 = {
xα: xα ∈ S2, αi � m − 1 for some 3 � i � n

}
,

...

Ŝn−1 = {
xα: xα ∈ Sn−1, αn � m − 1

}
. (3.13)

Recall that the matrix M ′
λ is the submatrix of the coefficient matrix Mλ obtained by deleting all

rows and columns corresponding to reduced monomials xα , so the rows of M ′
λ correspond to the

following polynomial system:⎧⎨
⎩

(
xα/xm−1

1

)
F̂1 − λ

(
xα/xm−2

1

)
I (x) = 0 for all xα ∈ Ŝ1,

· · ·(
xα/xm−1

n−1

)
F̂n−1 − λ

(
xα/xm−2

n−1

)
I (x) = 0 for all xα ∈ Ŝn−1.

(3.14)

For each polynomial of (3.14), we consider its term whose monomial is

xα

xm−2
i

· xm−2
t for some xα ∈ Ŝi .

Denote it by x(i, t, α), where t is the first index of α such that αt � 1. It is clear that 1 � t � i,
and

x(i, t, α) ∈ Ŝt ,



Aut
ho

r's
   

pe
rs

on
al

   
co

py

G. Ni et al. / J. Math. Anal. Appl. 329 (2007) 1218–1229 1225

which implies that its coefficient is an element of M ′
λ and contains a linear term of λ. Hence,

there exists λ in each row of M ′
λ.

Perform the same row operation on the matrix M ′
λ as that on Mλ in the proof of Theorem 3.1,

we obtain a new matrix, denoted by M̄ ′.
Let Ŝ′ = ⋃n−1

i=1 Ŝ′
i , where

Ŝ′
i = {

xα: xαxm−2
i ∈ Ŝi

}
, i = 1,2, . . . , n − 1,

and

Ŝ′′ = {
xα: |α| = (n − 1)(m − 2) + 1, αi � 1, αj � m − 1 for some 1 � i < j � n

}
.

(3.15)

It is clear that

Ŝi

xm−2
i

= Ŝ′
i for all i = 1, . . . , n − 1.

Moreover, similarly to the proof of Theorem 3.1, we have that Ŝ′ = Ŝ′′. Denote by r ′ the number
of entries of the set Ŝ′′. Then, it is easy to observe that there are r ′ rows containing λ in M̄ ′ and
r ′ = dM ′ . This completes the proof. �

We now compute |Ŝ′′|.

Theorem 3.3.

|Ŝ′′| =
n−2∑
k=1

(−1)k−1
n−k∑
i=1

(
n − i

k

)
·
(

(n − 1 − k)(m − 1) + 1 − i

n − i

)
.

Proof. Denote

Pi = {
xα: |α| = (n − 1)(m − 2) + 1, α1 = · · · = αi−1 = 0,

αi � 1, αj � m − 1 for some i < j � n
}

for all i = 1,2, . . . , n − 1. Then

Ŝ′′ =
n−1⋃
i=1

Pi and Pi1 ∩ Pi2 = ∅ if i1 �= i2.

Hence,

|Ŝ′′| =
n−1∑
i=1

|Pi |. (3.16)

Denote

P
j
i = {

xα: |α| = (n − 1)(m − 2) + 1, α1 = · · · = αi−1 = 0, αi � 1, αj � m − 1
}

for all i = 1,2, . . . , n − 1, j = i + 1, . . . , n. Then
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|Pi | =
n∑

j=i+1

∣∣P j
i

∣∣ −
∑

i+1�j1<j2�n

∣∣P j1
i ∩ P

j2
i

∣∣ +
∑

i+1�j1<j2<j3�n

∣∣P j1
i ∩ P

j2
i ∩ P

j3
i

∣∣ − · · ·

=
n−i∑
k=1

(−1)k−1
∑

i+1�j1<j2<···<jk�n

∣∣P j1
i ∩ P

j2
i ∩ · · · ∩ P

jk

i

∣∣. (3.17)

From the combinatory theory, it is clear that

∣∣P j
i

∣∣ =
(

((n − 1)(m − 2) + 1) − m + n − i

n − i

)
=

(
(n − 2)(m − 1) + 1 − i

n − i

)

for j = i + 1, . . . , n, and

∣∣P j1
i ∩ · · · ∩ P

jk

i

∣∣ =
(

((n − 1)(m − 2) + 1) − (k(m − 1) + 1) + n − i

n − i

)

=
(

(n − 1 − k)(m − 1) + 1 − i

n − i

)
, (3.18)

where k = 1, . . . , n − i and i + 1 � j1 < · · · < jk � n.
By (3.16)–(3.18), we have that

|Ŝ′′| =
n−1∑
i=1

n−i∑
k=1

(−1)k−1
∑

i+1�j1<···<jk�n

∣∣P j1
i ∩ · · · ∩ P

jk

i

∣∣

=
n−1∑
i=1

n−i∑
k=1

(−1)k−1
∑

i+1�j1<···<jk�n

(
(n − 1 − k)(m − 1) + 1 − i

n − i

)

=
n−1∑
i=1

n−i∑
k=1

(−1)k−1
(

n − i

k

)
·
(

(n − 1 − k)(m − 1) + 1 − i

n − i

)

=
n−1∑
k=1

(−1)k−1
n−k∑
i=1

(
n − i

k

)
·
(

(n − 1 − k)(m − 1) + 1 − i

n − i

)
. (3.19)

Note that, if k = n − 1, then(
(n − 1 − k)(m − 1) + 1 − i

n − i

)
= 0. (3.20)

By (3.19) and (3.20), we have the desired result. �
Theorem 3.4. Assume that A is a universal even order tensor. Then the degree of φ(λ) is given
by

d =
n−1∑
k=0

(m − 1)k =
{

n, if m = 2,
(m−1)n−1

m−2 , otherwise.
(3.21)

Furthermore, if A is a real even order tensor, then the above number d is an upper bound of the
degree of φ(λ).
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Proof. By (3.11) and Theorems 3.1–3.3, the degree of φ(λ) is given by

d =
(

(n − 1)(m − 1) + 1
n − 1

)

−
n−2∑
k=1

(−1)k−1
n−k∑
i=1

(
n − i

k

)
·
(

(n − 1 − k)(m − 1) + 1 − i

n − i

)
.

By induction, we have (3.21). But for a real even order tensor A, the leading coefficient cd of
the E-characteristic polynomial φ(λ) may be zero. In this case, deg(φ) < d , which follows the
second statement. �

It is clear that the upper bound given by Theorem 3.4 is much smaller than that given by
Theorem 2.1 when m,n � 3 and m is even.

Corollary 3.1.

d(2, n) = n.

Proof. This follows from (3.21) directly. �
Corollary 3.2. Assume that m is even and m � 2. Then

d(m,2) � m.

Proof. This also follows from (3.21) directly. �
The above two corollaries are the same as the corresponding contents of Theorem 2.1. In fact,

we have d(m,2) = m for all m � 2. The following corollary is sharper than the corresponding
content of Theorem 2.1.

Corollary 3.3. Assume that m is even and m � 2. Then

d(m,3) � m2 − m + 1.

In particular, we have d(4,3) = 13.

Proof. The first statement also follows from (3.21) directly.
Let A be a 4th order 3-dimensional unit tensor, i.e., a1111 = a2222 = a3333 = 1 and other

entries are zero. We have

det(Mλ) = (1 − 3λ)4(−1 + λ)10(−1 + 2λ)7,

det
(
M ′

λ

) = (−1 + λ)7(−1 + 2λ).

Hence, its E-characteristic polynomial is given by

φ(λ) = ±det(M4)

det(M ′
4)

= ±(1 − 3λ)4(−1 + λ)3(−1 + 2λ)6.

Its E-eigenvalues are all Z-eigenvalues. They are λ = 1 (three multiple), 1/2 (six multiple) and
1/3 (four multiple). Totally, it has 13 Z-eigenvalues. Hence, when m = 4, the upper bound m2 −
m + 1 = 13 is attainable, i.e., d(4,3) = 13. �
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We conjecture that the upper bound given in Theorem 3.4 is attainable and thus gives the exact
value of d(m,n). We also conjecture that Theorem 3.4 also holds when m is odd.

The following is an example that the degree of the E-characteristic polynomial of a 4th order
3-dimensional supersymmetric tensor is strictly less than 13.

Example 3.1. Let A be a 4th order 3-dimensional supersymmetric tensor with a2222 = a3333 = 1,
a1122 = 1/6 and other entries are zero. We have

det(Mλ) = (1 − 2λ)2(−1 + λ)8λ8

16384
,

det
(
M ′

λ

) = (−1 + λ)2λ5

4
.

Hence, its E-characteristic polynomial is given by

φ(λ) = ± (1 − 2λ)2(−1 + λ)6λ3

4096
.

It is clear that the degree of φ(λ) is less than 13.
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