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1. Introduction

Hankel tensors have important applications in signal processing [2, 3, 7, 10],
automatic control [28], and geophysics [20, 30]. For example, the positive semi-
definiteness of Hankel tensor can be a condition for the multidimensional moment
problem is solvable or not [4, 16, 24].

In [23], two classes of positive semi-definite (PSD) Hankel tensors were identified:
even order strong Hankel tensors and even order complete Hankel tensors. It was
proved in [18] that complete Hankel tensors are strong Hankel tensors, and even
order strong Hankel tensors are SOS (sum-of-squares) tensors. In [17], generalized
anti-circulant tensors were studied, which are one special class of Hankel tensors.
The necessary and sufficient conditions for positive semi-definiteness of even order
generalized anti-circulant tensors in some cases were given, and the tensors are
strong Hankel tensors and SOS tensors in these cases. Inheritance property was
given in [11], which means that if a lower-order Hankel tensor is positive semi-
definite (or positive definite, or negative semi-definite, or negative definite, or
SOS), then its associated higher-order Hankel tensor with the same generating
vector, where the higher order is a multiple of the lower order, is also positive
semi-definite (or positive definite, or negative semi-definite, or negative definite,
or SOS, respectively). The SOS decomposition of strong Hankel tensors have
also been given in [11]. The inheritance property established in [23] about strong
Hankel tensor can be regarded as a special case of this inheritance property.
There are other results about PSD Hankel tensors, SOS Hankel tensors and PNS
non-SOS (short for PNS as in [8]) Hankel tensors and some regions which do not
exist PNS Hankel tensors were given [6]. A recent detailed study on general SOS
tensors can be found in [5].

Denote [n] := {1, · · · , n}. The tensor A is said to be a symmetric tensor if its
entries ai1···im is invariant under any index permutation. Denote the set of all the
real symmetric tensors of order m and dimension n by Sm,n.

Let v = (v0, · · · , v(n−1)m)
⊤. Define A = (ai1···im) ∈ Sm,n by

ai1···im = vi1+···+im−m, (1)

for i1, · · · , im ∈ [n]. Then A is a Hankel tensor [18, 21, 23] and v is called the
generating vector of A. An order m dimensional n Hilbert tensor H is a Hankel
tensor with v = (1, 1

2
, 1
3
, · · · , 1

nm
)⊤, and even order Hilbert tensors are positive

definite [29].

Let x ∈ ℜn. Then xm is a rank-one symmetric tensor with entries xi1 · · ·xim . For
A ∈ Sm,n and x ∈ ℜn, we have a homogeneous polynomial f(x) of n variables
and degree m,

f(x) = Ax⊗m ≡
∑

i1,··· ,im∈[n]

ai1···imxi1 · · ·xim . (2)

Note that there is a one to one relation between homogeneous polynomials and
symmetric tensors. If f(x) ≥ 0 for all x ∈ ℜn, then homogeneous polynomial
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f(x) and symmetric tensor A are called positive semi-definite(PSD). If f(x) > 0
for all x ∈ ℜn, x 6= 0, then f(x) and A are called positive definite (PD). The
concepts of positive semi-definite and positive definite symmetric tensors were
introduced in [22]. The problem for determining a given even order symmetric
tensor is positive semi-definite or not has important applications in engineering
and science [10, 15, 27]. If A is a Hankel tensor, then f(x) is called a Hankel
polynomial.

Let A = (aij) be an ⌈ (n−1)m+2
2

⌉ × ⌈ (n−1)m+2
2

⌉ matrix with aij ≡ vi+j−2, where
v
2⌈ (n−1)m

2
⌉
is an additional number when (n − 1)m is odd. Then A is a Hankel

matrix, associated with the Hankel tensor A. When (n − 1)m is even, such an
associated Hankel matrix is unique. Recall from [23] that A is called a strong
Hankel tensor if there exists an associated Hankel matrix A which is positive
semi-definite.

Let g(y) = y⊤Ay, where y = (y1, · · · , y (n−1)m+2
2

)⊤ and A is an associated Hankel

matrix of A. Then, A is a strong Hankel tensor if and only if g is PSD for at
least one associated Hankel matrix A of A.

Another class of Hankel tensors given by Qi in [23] are complete Hankel tensors.
A vector u = (1, γ, γ2, · · · , γn−1)⊤ for some γ ∈ ℜ is called a Vandermonde vector
[23]. If tensor A has the form

A =
∑

i∈[r]

αi(ui)
⊗m,

where ui for i = 1, · · · , r, are all Vandermonde vectors, then we say that A has
a Vandermonde decomposition. It was shown in [23] that a symmetric tensor
is a Hankel tensor if and only if it has a Vandermonde decomposition. If the
coefficients αi for i = 1, · · · , r, are all nonnegative, then A is called a complete
Hankel tensor [23]. It was proved in [23] that even order strong or complete
Hankel tensors are positive semi-definite.

Let m = 2k. If f(x) can be decomposed into a sum of squares of polynomials
of degree k, then f(x) is called a sum-of-squares (SOS) polynomial, which means
that there exist forms g1(x), · · · , gk(x) of degree k such that

f(x) =

k
∑

i=1

gi(x)
2, (3)

and the corresponding symmetric tensor A is called an SOS tensor [14] (for a
recent study see also [5]).

Clearly, an SOS polynomial (tensor) is a PSD polynomial (tensor), but not vice
versa. In 1888, young Hilbert [13] proved that for homogeneous polynomials, only
in the following three cases, a positive semi-definite form definitely is a sum-of-
squares polynomial: (1) m = 2; (2) n = 2; (3) m = 4 and n = 3, where m is the
degree of the polynomial and n is the number of variables. Hilbert proved that in
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all the other possible combinations of n and even m, there are PNS homogeneous
polynomials. The first PNS homogeneous polynomial is the Motzkin function
[19] with m = 6 and n = 3. Other examples of PNS homogeneous polynomials
was found in [1, 8, 9, 26].

Let A ∈ Sm,n. If there are positive integer r ∈ N and vectors xj ∈ ℜn for j ∈ [r]
such that

A =
∑

j∈[r]

x⊗m
j , (4)

then we say that A is a completely decomposable tensor. If A admits a decompo-
sition (4) with xj ∈ ℜn

+ for all j ∈ [r], then A is called a completely positive tensor
[25]. Clearly, a complete Hankel tensor is a completely decomposable tensor.

By [23], a necessary condition for A to be PSD is that

v(i−1)m ≥ 0 for i ∈ [n]. (5)

We know many properties of strong Hankel tensors. However, we know little
about PSD Hankel tensors but not strong Hankel tensors. In this paper, we
present some classes of Hankel tensors which are PSD but not strong Hankel
tensors, including truncated Hankel tensors and quasi-truncated Hankel tensors.
Then we show that strong Hankel tensors are always completely decomposable,
and give a class of SOS Hankel tensors which are not completely decomposable.

The remainder of this paper is organized as follows.

In the next section, we introduce truncated Hankel tensors which are of odd
dimension, i.e., n is odd, and whose generating vector v has only three nonzero
entries: v0, v (n−1)m

2

and v(n−1)m. Since we are only concerned about PSD Hankel

tensors, by (5), we assume that these three entries are all nonnegative. Under this
assumption, we show that a truncated Hankel tensor A is not a strong Hankel
tensor as long as v (n−1)m

2

is positive. Then we show that whenm is even, n = 3 and

v0 = v2m, there are two numbers d1 = d1(m) and d2 = d2(m) with 0 < d2 ≤ d1,
such that if v0 ≥ d1vm, A is an SOS tensor; and if v0 ≥ d2, A is an PSD tensor.
Then, for m = 6 and n = 3, we show that for a truncated Hankel tensor A,
the following three statements are equivalent: (1) A is PSD; (2) A is SOS; (3)
v0v12 ≥ v26d; and we give an explicit value of d.

In Section 3, we introduce quasi-truncated Hankel tensors which are of odd di-
mension, i.e., n is odd, and whose generating vector v has only five nonzero
entries: v0, v1, v (n−1)m

2
, v(n−1)m−1 and v(n−1)m. Again, since we are only concerned

about PSD Hankel tensors, by (5), we assume that v0, v (n−1)m
2

and v(n−1)m are

nonnegative. Under this assumption, we show that a quasi-truncated Hankel ten-
sor is not a strong Hankel tensor as long as v (n−1)m

2

is positive. Then we give a

necessary condition for a sixth order quasi-truncated Hankel tensor A to be PSD,
a sufficient condition for A to be SOS, respectively.
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In Section 4, we define completely decomposable tensors, show that strong Han-
kel tensors generated by absoluate integrable functions are always completely
decomposable, and give a class of SOS Hankel tensors which are not completely
decomposable.

2. Truncated Hankel Tensors

In this section, we consider the cases that the Hankel tensors A are generated by
v = (v0, 0, · · · , 0, v (n−1)m

2

, 0, · · · , 0, v(n−1)m)
⊤ where n is odd. We call such Hankel

tensors truncated Hankel tensors.

If v = (v0, 0, · · · , 0, v (n−1)m
2

, 0, · · · , 0, v(n−1)m)
⊤ where n is odd, (2) and g(y) have

the simple form

f(x) = v0x
m
1 + v(n−1)mx

m
n

+ v (n−1)m
2

∑

{

(

m

t1

)(

m−t1
t2

)

· · ·
(

m−t1−t2−···−tn−2

tn−1

)

xt1
1 x

t2
2 · · ·xm−t1−t2−···−tn−1

n

: (n− 1)t1 + (n− 2)t2 + · · ·+ tn−1 =
(n−1)m

2

}

. (6)

and

g(y) = v0y
2
1 + v(n−1)my

2
(n−1)m+2

2

+ v (n−1)m
2

(

y2(n−1)m
4

+1
+
∑

i 6=j

{

yiyj : i+ j = (n−1)m
2

+ 2
}

)

. (7)

Since we are only concerned about PSD Hankel tensors, we may assume that (5)
holds. From (6) and (7), we have the following proposition.

Proposition 2.1. Suppose that (5) holds. If v (n−1)m
2

= 0, then the truncated

Hankel tensor A is a strong Hankel tensor, and furthermore an SOS Hankel
tensor if m is even. If v (n−1)m

2

> 0, then A is not a strong Hankel tensor.

Proof. When v (n−1)m
2

= 0, from (6) and (7), we see that the truncated Hankel

tensor A is a strong Hankel tensor, and furthermore an SOS Hankel tensor if m
is even. If v (n−1)m

2
> 0, consider ȳ = ei − ej where i+ j = (n−1)m

2
+ 2 ,i 6= j and

i 6= 1 or (n−1)m+2
2

. We see that g(ȳ) = −2v (n−1)m
2

< 0. Hence A is not a strong

Hankel tensor in this case.

We consider the case that m ≥ 6 with m is even and n = 3. Assume that
v0 = v2m. We have the following theorem.
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Theorem 2.2. Suppose that A = (ai1···im) where m ≥ 6, m is even and n = 3
is a truncated Hankel tensor and (5) holds. Assume that v0 = v2m. Let v =
(v0, 0, · · · , 0, vm, 0, · · · , 0, v0)⊤ and

d1(m) = inf{d > 0 : A is an SOS tensor for all v such that v0 ≥ d vm},
d2(m) = inf{d > 0 : A is a PSD tensor for all v such that v0 ≥ d vm}.

Then (1) d2(m) = d1(m) = 0 if vm = 0; (2) 0 ≤ d2(m) ≤ d1(m) < +∞ if vm > 0.

Proof. If vm = 0, it is clear that f(x) = v0x
m
1 + v0x

m
3 is SOS (and in particular

PSD) because v0, v2m ≥ 0 and m is even. Thus, d1(m) = d2(m) = 0 in this case.
Now, let us consider the case where vm > 0. We rewrite (6) as

f(x) = f1(x) + f2(x) + f3(x),

where

f1(x) =
vm

2

m
2
∑

p=1

(

m

p

)(

m−p

m−2p

)

x
m−2p
2 (xp

1 + x
p
3)

2
,

f2(x) = v0x
m
1 +

vm

2
xm
2 − vm

2

m
2
∑

p=1

(

m

p

)(

m−p

m−2p

)

x
m−2p
2 x

2p
1

and

f3(x) = v0x
m
3 +

vm

2
xm
2 − vm

2

m
2
∑

p=1

(

m

p

)(

m−p

m−2p

)

x
m−2p
2 x

2p
3 .

Clearly, f1(x) is PSD and SOS. We now consider the terms in f2(x). For each
p = 1, . . . , m

2
, choose a positive constant δ(p) such that

1−
m
2
∑

p=1

m− 2p

m
δ(p) > 0.

For each p = 1, . . . , m
2
, let ∆(p) be another positive constant such that

∆(p)
2p
m δ(p)

m−2p
m =

(

m

p

)(

m−p

m−2p

)

.

Then, by the arithmetic-geometric inequality, for each p = 1, . . . , m
2
,

(

m

p

)(

m− p

m− 2p

)

x
m−2p
2 x

2p
1 =

(

δ(p)xm
2

)
m−2p

m
(

∆(p)xm
1

)
2p
m

≤ m− 2p

m

(

δ(p)xm
2

)

+
2p

m

(

∆(p)xm
1

)

.
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This shows that, for each p = 1, . . . , m
2
,

m− 2p

m

(

δ(p)xm
2

)

+
2p

m

(

∆(p)xm
1

)

−
(

m

p

)

(

m−p

m−2p

)

x
m−2p
2 x

2p
1

is a PSD diagonal minus tail form, and hence SOS [12]. Note that f2 can be
written as

f2(x) =
vm

2

(

1−
m
2
∑

p=1

m− 2p

m
δ(p)

)

xm
2

+
vm

2

m
2
∑

p=1

(

m− 2p

m
δ(p)xm

2 −
(

m

p

)(

m−p

m−2p

)

x
m−2p
2 x

2p
1 + 2p

m
∆(p)xm

1

)

+v0x
m
1 − vm

2

m
2
∑

p=1

2p

m
∆(p)xm

1 .

Therefore, if

v0 ≥
m
2
∑

p=1

p

m
∆(p)vm,

then f2 is PSD and SOS. Similarly, we may show that under the same condition,
f3 is also PSD and SOS. This, in particular, shows that

0 ≤ d2(m) ≤ d1(m) ≤
m
2
∑

p=1

p

m
∆(p) < +∞.

We consider the simple case that the tensors A are sixth order three dimensional
truncated Hankel tensors. Here we allow v0 6= v12. We give a necessary and suf-
ficient condition that the sixth order three dimensional truncated Hankel tensors
to be PSD, and show that such tensors are PSD if and only if they are SOS.

The sixth order three dimensional truncated Hankel tensor A is generated by
v = (v0, 0, 0, 0, 0, 0, v6, 0, 0, 0, 0, 0, v12)

⊤. Now, (6) and (7) have the simple form

f(x) = v0x
6
1 + v6(x

6
2 + 30x1x

4
2x3 + 90x2

1x
2
2x

2
3 + 20x3

1x
3
3) + v12x

6
3 (8)

and
g(y) = v0y

2
1 + v6(y

2
4 + 2y1y7 + 2y2y6 + 2y3y5) + v12y

2
7. (9)

Theorem 2.3. Suppose that A is a sixth order three dimensional truncated Han-
kel tensor, the following statements are equivalent:

(i) The truncated Hankel tensor A is a PSD Hankel tensor;

(ii) The truncated Hankel tensor A is an SOS Hankel tensor;

(iii) The relation (5) holds and

√
v0v12 ≥ (560 + 70

√
70) v6. (10)
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Furthermore, the truncated Hankel tensor A is positive definite if and only if
v0, v6, v12 > 0 and strict inequality holds in (10).

Proof. [(i) ⇒ (iii)] Suppose that A is PSD, then clearly v0, v6, v12 ≥ 0. To see
(iii), we only need to show (10) holds. Let t ≥ 0 and let x̄ = (x̄1, x̄2, x̄3)

⊤, where

x̄1 = v
1
6
12, x̄2 =

√
t(v0v12)

1
12 , x̄3 = −v

1
6
0 .

Substitute them to (8). If A is PSD, then f(x̄) ≥ 0. It follows from (8) that

v0v12 + v6(t
3 − 30t2 + 90t− 20)

√
v0v12 + v0v12 ≥ 0.

From this, we have

√
v0v12 ≥

−t3 + 30t2 − 90t+ 20

2
v6.

Substituting t = 10 +
√
70 to it, we have (10).

[(iii) ⇒ (ii)] We now assume that (5) and (10) hold. We will show that A is SOS.
If v6 = 0, then by Proposition 2.1, A is an SOS Hankel tensor. Assume that
v6 > 0. By (10), v0 > 0 and v12 > 0. We now have

f(x) = 10v6

(

(

v0

v12

)
1
4

x3
1 +

(

v12

v0

)
1
4

x3
3

)2

+v6





√

10−
√
70

2
x3
2 +

√

150 + 15
√
70x1x2x3





2

+ f1(x),

where

f1(x) =

(

v0 − 10v6

(

v0

v12

)
1
2

)

x6
1 +

√
70− 8

2
v6x

6
2

+

(

v12 − 10v6

(

v12

v0

) 1
2

)

x6
3 − (60 + 15

√
70)v6x

2
1x

2
2x

2
3. (11)

We see that f1(x) is a diagonal minus tail form [12]. By the arithmetic-geometric
inequality, we have

(

v0 − 10v6

(

v0

v12

)
1
2

)

x6
1 +

√
70− 8

2
v6x

6
2 +

(

v12 − 10v6

(

v12

v0

)
1
2

)

x6
3

≥ 3

(√
70− 8

2
v6(

√
v0v12 − 10v6)

2

)
1
3

x2
1x

2
2x

2
3.
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By (10),

3

(√
70− 8

2
v6(

√
v0v12 − 10v6)

2

)
1
3

x2
1x

2
2x

2
3 ≥ (60 + 15

√
70)v6x

2
1x

2
2x

2
3. (12)

Thus, f1 is a PSD diagonal minus tail form. By [12], f1 is an SOS polynomial.
Hence, f is also an SOS polynomial if (5) and (10) hold.

[(ii) ⇒ (i)] This implication follows direct from the definition.

We now prove the last conclusion of this theorem. First, we assume that A is
positive definite. Then, v6 = f(e2) > 0 as e2 6= 0. Similarly, v0 = f(e1) > 0 and
v12 = f(e3) > 0. Note that in the above [(i) ⇒ (iii)] part, f(x̄) > 0 as x̄ 6= 0.
Then strict inequality holds for the last two inequalities in the above [(i) ⇒ (iii)]
part. This implies that strict inequality holds in (10).

On the other hand, assume that v0, v6, v12 > 0 and strict inequality holds in (10).
Let x = (x1, x2, x3)

⊤ 6= 0. If x1 6= 0, x2 6= 0 and x3 6= 0, then strict inequality
holds in (12) as v6 > 0 and strict inequality holds in (10). Then f1(x) > 0. If
x2 6= 0 but x1x3 = 0, then from (11), we still have f1(x) > 0. If x2 = 0 and one
of x1 and x3 are nonzero, then we still have f1(x) > 0 by (11). Thus, we always
have f1(x) > 0 as long as x 6= 0. This implies f(x) > 0 as long as x 6= 0. Hence,
A is positive definite.

3. Quasi-Truncated Hankel Tensors

In this section, we consider the case that the Hankel tensor A is generated by
v = (v0, v1, 0, · · · , 0, v (n−1)m

2

, 0, · · · , 0, v(n−1)m−1, v(n−1)m)
⊤ where n is odd. Adding

v1 and v(n−1)m−1 to the case in the last section, we get this case. We call such a
Hankel tensor a quasi-truncated Hankel tensor. Hence, truncated Hankel tensors
are quasi-truncated Hankel tensors.

Since we are only concerned about PSD Hankel tensors, we may assume that (5)
holds. Now, (2) and g(y) have the simple form

f(x) = v0x
m
1 +mv1x

m−1
1 x2 +mv(n−1)m−1xn−1x

m−1
n + v(n−1)mx

m
n

+ v (n−1)m
2

∑

{

(

m

t1

)(

m−t1
t2

)

· · ·
(

m−t1−t2−···−tn−2

tn−1

)

xt1
1 x

t2
2 · · ·xm−t1−t2−···−tn−1

n

: (n− 1)t1 + (n− 2)t2 + · · ·+ tn−1 =
(n−1)m

2

}

. (13)

and

g(y) = v0y
2
1 + 2v1y1y2 + 2v(n−1)m−1y (n−1)m+2

2

y (n−1)m
2

+ v(n−1)my
2
(n−1)m+2

2

+ v (n−1)m
2

(

y2(n−1)m
4

+1
+
∑

i 6=j

{

yiyj : i+ j =
(n− 1)m

2
+ 2

}

)

. (14)

We first show that a result that Proposition 2.1 continues to hold in this case.
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Proposition 3.1. Suppose that (5) holds and m is even. If v (n−1)m
2

= 0, then the

quasi-truncated Hankel tensor A is PSD if and only if v1 = v(n−1)m−1 = 0. In
this case, A is a strong Hankel tensor and an SOS Hankel tensor. If v (n−1)m

2
> 0,

then A is not a strong Hankel tensor.

Proof. Suppose that v (n−1)m
2

= 0. Assume that v1 6= 0. If v0 = 0, consider

x̂ = (1,−v1, 0, · · · , 0)⊤. Then f(x̂) = −mv21 < 0. If v0 > 0, consider x̃ =
(1,−v0

v1
, 0, · · · , 0)⊤. Then f(x̃) = (1−m)v0 < 0. Thus, A is not PSD in these two

cases. Similar discussion holds for the case that v(n−1)m−1 = 0. Assume now that
v1 = v(n−1)m−1 = 0. By Proposition 2.1, we see that the quasi-truncated Hankel
tensor A is a strong Hankel tensor and an SOS Hankel tensor in this case. This
proves the first part of this proposition.

Suppose that v (n−1)m
2

> 0. Consider ȳ = ei − ej where i + j = (n−1)m
2

+ 2 ,i 6= j

and i 6= 1 or (n−1)m+2
2

. We see that g(ȳ) = −2v (n−1)m
2

< 0. Hence A is not a

strong Hankel tensor in this case.

We consider the simple case that the tensors A are sixth order three dimensional
quasi-truncated Hankel tensors. We give a necessary condition that the sixth or-
der three dimensional quasi-truncated Hankel tensors to be PSD, and a sufficient
condition that the sixth order three dimensional quasi-truncated Hankel tensors
to be SOS.

The sixth order three dimensional quasi-truncated Hankel tensor A is generated
by v = (v0, v1, 0, 0, 0, 0, v6, 0, 0, 0, 0, v11, v12)

⊤ ∈ ℜ13. (13) and (14) have the simple
form

f(x) = v0x
6
1 + 6v1x

5
1x2 + v6(x

6
2 + 30x1x

4
2x3 + 90x2

1x
2
2x

2
3 + 20x3

1x
3
3)

+ 6v11x2x
5
3 + v12x

6
3, (15)

and

g(y) = v0y
2
1 + 2v1y1y2 + v6(y

2
4 + 2y1y7 + 2y2y6 + 2y3y5)

+ 2v11y6y7 + v12y
2
7. (16)

To present a necessary condition for a sixth order three dimensional quasi-trun-
cated Hankel tensor to be PSD, we first prove the following lemma.

Lemma 3.2. Consider f̂(x1, x2) = v0x
6
1 + 6v1x

5
1x2 + v6x

6
2.

Then f̂ is PSD if and only if v0 ≥ 0, v6 ≥ 0 and

|v1| ≤
(v0

5

) 5
6
v

1
6
6 . (17)
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Proof. Suppose that v0 ≥ 0, v6 ≥ 0 and (17) holds. Then, by the arithmetic-
geometric inequality, one has

v0x
6
1 + v6x

6
2 =

1

5
v0x

6
1 +

1

5
v0x

6
1 +

1

5
v0x

6
1 +

1

5
v0x

6
1 +

1

5
v0x

6
1 + v6x

6
2

≥ 6

(

(v0

5

)5

x30
1 v6x

6
2

)
1
6

≥ 6|v1x5
1x2|.

This implies that f̂(x1, x2) ≥ 0 for any (x1, x2)
⊤ ∈ ℜ2, i.e., f̂(x1, x2) is PSD.

Suppose that f̂(x1, x2) is PSD. It is easy to see that v0 ≥ 0 and v6 ≥ 0. Assume
now that (17) does not hold, i.e.,

|v1| >
(v0

5

) 5
6
v

1
6
6 . (18)

If v0 = v6 = 0, let x1 = 1 and x2 = −v1. Then f̂(x1, x2) < 0. We get a

contradiction. If v0 = 0 and v6 6= 0, let x1 = v
1
5
6 and x2 = −v

1
5
1 . Again,

f̂(x1, x2) < 0. We get a contradiction. Similarly, if v0 6= 0 and v6 = 0, we may

get a contradiction. If v0 6= 0 and v6 6= 0, let x1 = (5v6)
1
6 and x2 = − v1

|v1|
v

1
6
0 . Then

by (18),

f̂(x1, x2) = 6v0v6 − 6|v1|(5v6)
5
6v

1
6
0 < 0.

We still get a contradiction. This completes the proof.

We now present a necessary condition for a sixth order three dimensional quasi-
truncated Hankel tensor to be PSD.

Proposition 3.3. Suppose that (5) holds. If A is a sixth order three dimensional
PSD quasi-truncated Hankel tensor, then (17) and the following inequalities

|v1| ≤
(v12

5

)
5
6
v

1
6
6 (19)

and √
v0v12 ≥ 10v6 (20)

hold. If furthermore

v1v
5
6
12 = v11v

5
6
0 , (21)

then (10) also holds.

Proof. Suppose that A is PSD. In (15), let x3 = 0. By Lemma 3.2, (17) holds.
In (15), let x1 = 0. By an argument similar to Lemma 3.2, (19) holds. In (15),
let x2 = 0. Since A is PSD, we may easily get (20).
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Suppose further that (21) holds. As in the part [(i) ⇒ (iii)] of the proof of

Theorem 2.3, we let t ≥ 0 and let x̄ = (x̄1, x̄2, x̄3)
⊤, where x̄1 = v

1
6
12, x̄2 =

√
t(v0v12)

1
12 , x̄3 = −v

1
6
0 . It follows from (21) that

6v1x̄
5
1x̄2 + 6v11x̄2x̄

5
3 = 0. (22)

This, together with (15) implies that

f(x̄) = v0v12 + v6(t
3 − 30t2 + 90t− 20)

√
v0v12 + v0v12 ≥ 0.

Proceed as in the part [(i) ⇒ (iii)] of the proof of Theorem 2.3: we see that (10)
holds in this case. This completes the proof.

We can also present a sufficient condition for a sixth order three dimensional
quasi-truncated Hankel tensor to be SOS.

Proposition 3.4. Let A be a sixth order three dimensional quasi-truncated Han-
kel tensor. Suppose that v0, v6, v12 > 0. If there exist t1, t2 > 0 such that

|v1| ≤
1

t1
− 10v6

t1
√
v0v12

(23)

|v11| ≤
1

t2
− 10v6

t2
√
v0v12

(24)

|v1|
(

5

t1v0

)5

+ |v11|
(

5

t2v12

)5

≤
√
70− 8

2
v6 (25)

and
(

v0 − 10v6

(

v0

v12

)
1
2

− |v1|t1v0
)(

v12 − 10v6

(

v12

v0

)
1
2

− |v11|t2v12
)

×
(√

70− 8

2
v6 − |v1|

(

5

t1v0

)5

− |v11|
(

5

t2v12

)5
)

≥ 1

27
v36(60 + 15

√
70)3 (26)

hold, then A is SOS.

Proof. We write f(x) =
∑5

i=1 fi(x), where

f1(x) =

(

v0 − 10v6

(

v0

v12

)
1
2

− |v1|t1v0
)

x6
1

+

(√
70− 8

2
v6 − |v1|

(

5

t1v0

)5

− |v11|
(

5

t2v12

)5
)

x6
2

−
(

v12 − 10v6

(

v12

v0

)
1
2

− |v11|t2v12
)

x6
3 − v6(60 + 15

√
70)x2

1x
2
2x

2
3 ,
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f2(x) = 10v6

(

(

v0

v12

) 1
4

x3
1 +

(

v12

v0

) 1
4

x3
3

)2

,

f3(x) = |v1|t1v0x6
1 + 6v1x

5
1x2 + |v1|

(

5

t1v0

)5

x6
2,

f4(x) = |v11|t2v12x6
3 + 6v11x

5
3x2 + |v11|

(

5

t2v12

)5

x6
2

and

f5(x) = v6





√

10−
√
70

2
x3
2 +

√

150 + 15
√
70x1x2x3





2

.

Clearly, f2 and f5 are squares. From Lemma 1, we deduce that f3 and f4 are
PSD. Since each of f3 and f4 has only two variables, they are SOS. If (23)–(26)
hold, by the arithmetic-geometric inequality, f1 is PSD. In this case, f1 is a PSD
diagonal minus tail form. By [12], f1 is SOS. Thus, if (23)–(26) hold, then f ,
hence A, is SOS.

4. A Class of SOS Hankel Tensors

In this section, we provide further classes for SOS Hanke tensors and examples
for SOS Hankel tensors which are not strong Hankel tensors.

We say that A is a strong Hankel tensor generated by an absolutely integrable
real valued function h : (−∞,+∞) → [0,+∞) if it is a Hankel tensor and its
generating vector v = (v0, v1, · · · , v(n−1)m)

⊤ satisfies

vk =

∫ ∞

−∞

tkh(t)dt, k = 0, 1, · · · , (n− 1)m. (27)

Such a real valued function h is called the generating function of the strong Hankel
tensor A. It has been shown in [23] that any strong Hankel tensor generated by an
absolutely integrable real valued nonnegative function is a strong Hankel tensor.

We now define the completely decomposable tensor.

Definition 4.1. Let A ∈ Sm,n. If there are positive integer r ∈ N and vectors
xj ∈ ℜn for j ∈ [r] such that

A =
∑

j∈[r]

x⊗m
j , (28)

then we say that A is a completely decomposable tensor.

Then in the following theorem, we will show that when the order is even, a strong
Hankel tensor generated by an absolutely integrable real valued nonnegative func-
tion is indeed a limiting point of complete Hankel tensors, which is a completely
decomposable tensor.
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Theorem 4.2. (Completely decomposability of strong Hankel tensors)
Let m,n ∈ N. Let A be an mth-order n-dimensional strong Hankel tensor gen-
erated by an absolutely integrable real valued nonnegative function. If the order
m is an even number, then A is a completely decomposable tensor and a limiting
point of complete Hankel tensors. If the order m is an odd number, then A is a
completely r-decomposable tensor with r = (n− 1)m+ 1.

Proof. Let h be the generating function of the strong Hankel tensor A. Then,
for any x ∈ ℜn,

f(x) := Ax⊗m =

n
∑

i1,i2,...,im=1

vi1+i2+...+im−mxi1xi2 . . . xim

=

n
∑

i1,i2,...,im=1

(
∫ +∞

−∞

ti1+i2+...+im−mh(t)dt

)

xi1xi2 . . . xim

=

∫ +∞

−∞

(

n
∑

i1,i2,...,im=1

ti1+i2+...+im−mxi1xi2 . . . xim

)

h(t) dt

=

∫ +∞

−∞

(

n
∑

i=1

ti−1xi

)m

h(t)dt = lim
l→+∞

fl(x), (29)

where

fl(x) =

∫ l

−l

(

n
∑

i=1

ti−1xi

)m

h(t)dt .

By the definition of Riemann integral, for each l ≥ 0, we have fl(x) = lim
k→∞

fk
l (x),

where fk
l (x) is a polynomial defined by

fk
l (x) :=

2kl
∑

j=0

(
∑n

i=1(
j

k
− l)i−1xi

)m
h( j

k
− l)

k
.

Fix any l ≥ 0 and k ∈ N. Note that

fk
l (x) : =

2kl
∑

j=0

(
∑n

i=1(
j

k
− l)i−1xi

)m
h( j

k
− l)

k

=
2kl
∑

j=0

(

n
∑

i=1

( j
k
− l)i−1h( j

k
− l)

1
m

k
1
m

xi

)m

=

2kl
∑

j=0

(〈uj ,x〉)m,

where uj =
h( j

k
−l)

1
m

k
1
m

(

1, j

k
− l, . . . , ( j

k
− l)n−1

)

. Here uj are always well-defined

as h takes nonnegative values [23]. Define Ak
l be a symmetric tensor such that
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fk
l (x) = Ak

l x
⊗m. Then, it is easy to see that each Al

k is a complete Hankel
tensor and thus a completely decomposable tensor. Note that the completely
decomposable tensor cone CDm,n is a closed convex cone when m is even. It then
follows that A = limk→∞ liml→∞Al

k is a completely decomposable tensor and a
limiting point of complete Hankel tensors.

To see the assertion in the odd order case, we use a similar argument as in [23].
Pick real numbers γ1, . . . , γr with r = (n−1)m+1 and γi 6= γj for i 6= j. Consider
the following linear equation in α = (α1, . . . , αr) with

vk =
r
∑

i=1

αiγ
k
i , k = 0, . . . , (n− 1)m.

Note that this linear equation always has a solution say ᾱ = (ᾱ1, . . . , ᾱr) because
the matrix in the above linear equation is a nonsingular Vandermonde matrix.
Then, we see that

Ai1,...,im = vi1+...+im−m =
r
∑

i=1

ᾱiγ
i1+...+im−m
i =

r
∑

i=1

ᾱi

(

(ui)
⊗m
)

i1,...,im
,

where ui ∈ ℜn is given by ui = (1, γi, . . . , γ
n−1
i )T . This shows that A =

∑

i∈[r] ᾱi(ui)
⊗m. Now, as m is an odd number, we have A =

∑r

i=1

(

ᾱ
1
m

i ui

)⊗m

.

Therefore, A is a completely decomposable tensor and the last conclusion fol-
lows.

In [23], the author has provided an example of positive semi-definite Hankel
tensors with order m = 4, which is not a strong Hankel tensor generated by
an absolutely integrable real valued nonnegative function. We now extend this
example to the general case where m = 2k for any integer k ≥ 2. We will
also further show that such tensors are indeed SOS tensors but not completely
decomposable (and so, are not strong Hankel tensors generated by an absolutely
integrable real valued nonnegative function by Theorem 4.2).

Let m = 2k, n = 2, k is an integer and k ≥ 2. Let v0 = vm = 1, v2l = vm−2l =
− 1

(m

2l )
, l = 1, . . . , k − 1, and vj = 0 for other j. Let A = (ai1···im) be defined

by ai1···im = vi1+···+im−m, for i1, · · · , im = 1, 2. Then A is an even order Hankel
tensor. For any x ∈ ℜ2, we have

Ax⊗m = xm
1 −

k−1
∑

j=1

x
m−2j
1 x

2j
2 + xm

2 =

k−2
∑

j=0

(

x
k−j
1 x

j
2 − x

k−j−2
1 x

j+2
2

)2

.

Thus, A is an SOS-Hankel tensor, hence a positive semi-definite Hankel tensor.
On the other hand, A is not a completely decomposable tensor. Assume that A
is a completely decomposable tensor. Then there are vectors uj = (aj, bj)

⊤ for
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j ∈ [r] such that A =
∑r

j=1 u
m
j . Then for any x ∈ ℜ2,

Ax⊗m =
r
∑

p=1

(apx1 + bpx2)
m =

m
∑

j=0

r
∑

p=1

(

m

j

)

am−j
p bjpx

m−j
1 x

j
2.

On the other hand,

Ax⊗m = xm
1 −

k−1
∑

j=1

x
m−2j
1 x

2j
2 + xm

2 .

Comparing the coefficients of xm−2
1 x2

2 in the above two expressions of Axm, we
have

r
∑

p=1

(m

2

)

am−2
p b2p = −1.

This is impossible. Thus, A is not completely decomposable (and so, is not a
strong Hankel tensor generated by an absolutely integrable real valued nonnega-
tive function).

We now have two further questions:

1. Is a completely decomposable Hankel tensor always a strong Hankel tensor?

2. Is a truncated Hankel tensor completely decomposable?

References

[1] A. A. Ahmadi, P. A. Parrilo: A convex polynomial that is not sos-convex, Math.
Programming 135 (2012) 275–292.

[2] R. Badeau, R. Boyer: Fast multilinear singular value decomposition for structured
tensors, SIAM J. Matrix Analysis Appl. 30 (2008) 1008–1021.

[3] R. Boyer, L. De Lathauwer, K. Abed-Meraim: Higher order tensor-based method
for delayed exponential fitting, IEEE Transactions Signal Processing 55 (2007)
2795–2809.

[4] C. Berg: The multidimensional moment problem and semigroups, moments in
Mathematics, Proc. Symposia Applied Mathematics 37 (1987) 110–124.

[5] H. Chen, G. Li, L. Qi: SOS tensor decomposition: theory and applications, to
appear in Comm. Math. Sciences (2016).

[6] Y. Chen, L. Qi, Q. Wang: Positive semi-definiteness and sum-of-squares property
of fourth order four dimensional Hankel tensors, J. Computational Appl. Math.
302 (2016) 356–368.

[7] Y. Chen, L. Qi, Q. Wang: Computing extreme eigenvalues of large scale Hankel
tensors, J. Scientific Computing 68 (2016) 716–738.

[8] G. Chesi: On the gap between positive polynomials and SOS of polynomials, IEEE
Transactions Autom. Control 52 (2007) 1066–1072.



Q. Wang, G. Li, L. Qi, Y. Xi / Positive Semi-Definite Hankel Tensors 17

[9] M. D. Choi, T. Y. Lam: Extremal positive semidefinite forms, Math. Annalen 231
(1977) 1–18.

[10] W. Ding, L. Qi, Y. Wei: Fast Hankel tensor-vector products and application to
exponential data fitting, Numerical Linear Algebra Appl. 22 (2015) 814–832.

[11] W. Ding, L. Qi, Y. Wei: Inheritance properties and sum-of-squares decomposition
of Hankel tensors: theory and algorithms, BIT Numerical Mathematics (2016),
DOI: 10.1007/s10543-016-0622-0.

[12] C. Fidalgo, A. Kovacec: Positive semidefinite diagonal minus tail forms are sums
of squares, Math. Zeitschrift 269 (2011) 629–645.
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