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1 Introduction

In recent years, the study of spectral hypergraph theory via tensors [1–8] has
attracted extensive attention and interest since the work of [1,4,8,9].

Aswas in [9], a real tensor T = (ti1,··· ,ik ) of order k and dimension n refers to amul-
tidimensional array (also called hypermatrix)with entries ti1,··· ,ik such that ti1,··· ,ik ∈ R

for all i j ∈ [n] := {1, · · · , n} and j ∈ [k]. Given a vector x ∈ R
n , T xk−1 is defined

as an n-dimensional vector such that its ith element is
∑

i2,··· ,ik∈[n] tii2···ik xi2 · · · xik
for i ∈ [n]. Let I be the identity tensor of appropriate dimension, e.g., ii1···ik = 1 if
and only if i1 = · · · = ik ∈ [n], and zero otherwise when the dimension is n. The
following definition was introduced by Qi [9].

Definition 1.1 Let T be a k-th order n-dimensional real tensor. For some λ ∈ R, if
polynomial system (λI − T )xk−1 = 0 has a solution x ∈ R

n\{0}, then λ is called an
H-eigenvalue and x an H-eigenvector.

Obviously, H-eigenvalues are real number. By [9,10], we have the number of H-
eigenvalues of a real tensor as finite. By [8], we have that all the tensors considered in
this paper have at least one H-eigenvalue. Hence, we can denote λ(T ) as the largest
H-eigenvalue of a real tensor T .

As was in [8], a hypergraph means an undirected simple k-uniform hypergraph G
with vertex set V, which is labeled as [n], and edge set E. By k-uniformity, we mean
that for every edge e ∈ E , the cardinality |e| of e is equal to k. Throughout this paper,
k � 3 and n � k. Moreover, since the trivial hypergraph (i.e., E = ∅) is of less
interest, we consider only hypergraphs to have at least one edge (i.e., nontrival) in this
paper. The following definition was introduced by Qi [8].

Definition 1.2 Let G = (V, E) be a k-uniform hypergraph. The adjacency tensor of
G is defined as the k-th order n-dimensional tensor A whose (i1, · · · , ik)-entry is

ai1,··· ,ik :=
{

1
(k−1)! , if {i1, · · · , ik} ∈ E,

0, otherwise.

Let D be a k-th order n-dimensional diagonal tensor with its diagonal element di,··· ,i
being di , the degree of vertex i, for all i ∈ [n]. Then L := D − A is the Laplacian
tensor of the hypergraph G, and Q := D + A is the signless Laplacian tensor of the
hypergraph G.

Zero is always the smallest H-eigenvalue of L [8] and we have d � λ(L) �
λ(Q) � 2d, where d is the maximum degree of G. By [1, Theorem 3.8], we have
d̄ � λ(A) � d, where d̄ is the average degree of G.

Recently, Hu et al. [2] introduced the class of cored hypergraphs and power
hypergraphs, and investigated the properties of their Laplacian H-eigenvalues. Power
hypergraphs are cored hypergraphs, but not vice versa. Sunflowers are power hyper-
graphs, while squids are cored hypergraphs, but not power hypergraphs in general.
They showed that the largest Laplacian H-eigenvalue of an even-uniform cored hyper-
graph is equal to its largest signless Laplacian H-eigenvalue and also computed the
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Laplacian H-spectra of sunflowers. Indeed, the results of [1,2,4,5,7,8] raised the inter-
ests to study the Laplacian H-eigenvalues of a k-uniform hypergraph. Actually, there
are still some changing problems which are worthy of being investigated. First, can we
describe the properties of adjacency and signless Laplacian H-eigenvalues of cored
hypergraphs and power hypergraphs in the similar way of [2]? Second, can we calcu-
late all adjacency and signless Laplacian H-eigenvalues for some special k-uniform
hypergraphs, such as sunflowers and squids? Motivated by these questions, we study
adjacency and signless Laplacian H-eigenvalues of the class of cored hypergraphs and
power hypergraphs in this paper.

Using the similar methods as in [2], we first investigate the properties of H-
eigenvectors of adjacency tensor and signless Laplacian tensors for cored hypergraphs.
Especially, we show that the largest adjacency H-eigenvalue of k-uniform squid is in
the interval (1, 2) and we can find it out. We also show that its largest signless Lapla-
cian H-eigenvalue is in the interval (2, 4). By [2, Proposition 3.2], it is clear that the
result in [2, Proposition 3.4] is a corollary of the above conclusion. We next investi-
gate the H-spectra of adjacency and signless Laplacian tensors of power hypergraphs.
Especially, we compute all H-spectra of adjacency and signless Laplacian tensors for
sunflowers.

The rest of this paper is organized as follows. We list some known results of cored
hypergraphs and power hypergraphs in the next section. In Sect. 3, we discuss some
properties of adjacency and signless Laplacian H-eigenvalues of cored hypergraphs.
Especially, we compute the largest adjacency H-eigenvalues and the largest signless
Laplacian H-eigenvalues of squids. In Sect. 4, we investigate some properties of adja-
cency and signless Laplacian H-eigenvalues of odd-uniform power hypergraphs and
even-uniform power hypergraphs. We especially investigate the H-spectra of sunflow-
ers. In Sect. 5, we compute all adjacency and signless Laplacian H-eigenvalues of
sunflowers. Moreover, some numerical results are reported to verify our conclusion.

2 Preliminaries

In this section, we list some essential notions of uniform hypergraphs which will
be used in the sequel. Please refer to [8,11–14] for comprehensive references. In this
paper, unless stated otherwise, a hypergraph means an undirected simple k-uniform
hypergraph G with vertex set V and edge set E. For a subset S ⊂ [n], we denote
by ES the set of edges {e ∈ E |S ∩ e �= ∅}. For a vertex i ∈ V , we simplify E{i}
as Ei . It is the set of edges containing the vertex i, i.e., Ei := {e ∈ E |i ∈ e}. The
cardinality |Ei | of the set Ei is defined as the degree of the vertex i, which is denoted
by di . Two different vertices i and j are connected to each other (or the pair i and j
is connected), if there is a sequence of edges (e1, · · · , em) such that i ∈ e1, j ∈ em ,
and er ∩ er+1 �= ∅ for all r ∈ [m − 1]. A hypergraph is called connected, if every
pair of different vertices of G is connected. In the sequel, unless stated otherwise, all
the notations introduced above are reserved for the specific meanings. For the sake
of simplicity, we mainly consider connected hypergraphs in the subsequent analysis.
By the techniques in [8,14], the conclusion on connected hypergraphs can be easily
generalized to general hypergraphs.
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In the following, we recall the definitions of cored hypergraphs and power hyper-
graphs introduced in [2]. We also list the definitions of sunflowers and squids
respectively introduced in [2,15].

Definition 2.1 Let G = (V, E) be a k-uniform hypergraph. If for every edge e ∈ E ,
there is a vertex ie ∈ e such that the degree of the vertex ie is one, then G is a cored
hypergraph. A vertex with degree one is a cored vertex, and a vertex with degree larger
than one is an intersectional vertex.

Definition 2.2 Let G = (V, E) be a k-uniform nontrivial hypergraph. If there is a
disjoint partition of the vertex set V as V = V0 ∪ V1 ∪ · · · ∪ Vd such that |V0| = 1 and
|V1| = · · · = |Vd | = k − 1, and E = {V0 ∪ Vi |i ∈ [d]}, then G is called a sunflower.
The degree d of the vertex in V0, which is called the heart, is the size of the sunflower.
The edges of G are leaves, and the vertices other than the heart are vertices of leaves.

Definition 2.3 LetG = (V, E) be a 2-uniform graph. For any k � 3, the kth power of
G,Gk := (V k, Ek) is defined as the k-uniform hypergraph with the set of edges Ek :=
{e∪{ie,1, · · · , ie,k−2} | e ∈ E}, and the set of vertices V k := V ∪{ie,1, · · · , ie,k−2, e ∈
E}.
Definition 2.4 Let G = (V, E) be a k-uniform hypergraph. If we can number the
vertex set V as V := {i1,1, · · · , i1,k, · · · , ik−1,1, · · · , ik−1,k, ik} such that the set of
edges E = {{i1,1, · · · , i1,k}, · · · , {ik−1,1, · · · , ik−1,k}, {i1,1, · · · , ik−1,1, ik}}, then G
is a squid.

It is easy to see that the class of power hypergraphs is a subclass of coredhypergraphs
and not all cored hypergraphs are power hypergraphs. It can be seen that the class of
sunflowers is a subclass of power hypergraphs. It is also easy to see that the class of
squids is a subclass of cored hypergraphs but is not contained in the class of power
hypergraphs. Recently, the properties of their Laplacian H-spectra were investigated
by Hu et al. [2]. For completeness, we list here some results given in [2], which will
be used in the sequel.

The following result was given in [2, Proposition 3.4].

Proposition 2.5 Let k be even and G = (V, E) be a k-uniform squid. Let L be the

Laplacian tensor of G. Then λ(L) = λ(Q) is the unique root of (μ−2)− ( 1
μ−1 )

1
k−1 −

( 1
μ−1 )

k−1 = 0 in the interval (2, 4).

The following proposition was proposed in [2, Proposition 3.5], but its proof is not
completed. Here, we complete the proof.

Proposition 2.6 Let k be odd and G = (V, E) be a k-uniform squid. Let L be the
Laplacian tensor of G. Then λ(L) = 2.

Proof Suppose that V := {i1,1, · · · , i1,k, · · · , ik−1,1, · · · , ik−1,k, ik} such that the
set of edges is E = {{i1,1, · · · , i1,k}, · · · , {ik−1,1, · · · , ik−1,k}, {i1,1, · · · , ik−1,1, ik}}.
Let ω ∈ R

n be an H-eigenvector of L corresponding to λ(L). Then we have

(λ(L) − 1) ωk−1
i j ,s

= −ωi j ,1

∏

t∈{2,··· ,k}\{s}
ωi j ,t , ∀ j ∈ [k − 1], s ∈ {2, · · · , k}.
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Thus,
(λ(L) − 1)ωk

i j ,s = −ωi j ,1

∏

t∈{2,··· ,k}
ωi j ,t .

Hence, ωi j ,2 = · · · = ωi j ,k =: z j for all j ∈ [k − 1], since λ(L) � 2.

Let x := ωik and y j := ωi j ,1 for all j ∈ [k − 1].
(1) If z j �= 0 for all j ∈ [k − 1], then we have y j = (1 − λ(L))z j . Moreover,

(λ(L) − 2)y j
k−1 = −x

∏

s∈[k−1]\{ j}
ys − z j

k−1, ∀ j ∈ [k − 1].

Consequently,

(λ(L) − 2)1 − λ(L)k−1z j
k−1 + z j

k−1 = −x
∏

s∈[k−1]\{ j}
ys, ∀ j ∈ [k − 1].

Then,

[(λ(L) − 2)1 − λ(L)k−1 + 1]z j k = −z j x
∏

s∈[k−1]\{ j}
ys = − 1

1 − λ(L)
x

∏

s∈[k−1]
ys .

So,

[(λ(L) − 2)(1 − λ(L))k + (1 − λ(L))]z j k = −x
∏

s∈[k−1]
ys, ∀ j ∈ [k − 1].

Now, it follows from the factλ(L) � 2 that (λ(L)−2)(1 − λ(L))k+(1−λ(L)) < 0. So
z1 = z2 = · · · = zk−1 =: z. If x ∏

s∈[k−1] ys = 0, then z1 = z2 = · · · = zk−1 = 0,
which is a contradiction. So z1 = z2 = · · · = zk−1 �= 0. And y1 = y2 = · · · =
yk−1 =: y �= 0. By Definition 1.1, we have 0 � (λ(L) − 1)xk−1 = −yk−1 � 0, then
x = y = 0. Thus, this situation can never happen.

(2) If z1 = · · · = z p = 0 and z p+1 �= 0, · · · , zk−1 �= 0, 1 � p � k − 2

(λ(L) − 1)z j
k−1 = −y j z j

k−2, ∀ j ∈ [k − 1]\[p]. (2.1)

(λ(L) − 2)y j
k−1 = −x

∏

s∈[k−1]\{ j}
ys, ∀ j ∈ [p]. (2.2)

(λ(L) − 2)y j
k−1 = −x

∏

s∈[k−1]\{ j}
ys − z j

k−1, ∀ j ∈ [k − 1]\[p]. (2.3)

(λ(L) − 1)xk−1 = −
∏

s∈[k−1]
ys . (2.4)

Case 1 If x = 0 and λ > 2, by (2.2) we know y j = 0,∀ j ∈ [p], and by (2.3), we have

(λ(L) − 2)y j
k−1 = −z j

k−1, ∀ j ∈ [k − 1]\[p].
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Here (λ(L) − 2)y j k−1 � 0 and −z j k−1 � 0. Thus, this situation can never happen.
Case 2 If x �= 0, p is even and λ > 2, then we have y1 = · · · = yp =: y�1 by (2.2).
By (2.3), we have

[(λ(L) − 2)(1 − λ(L))k + (1 − λ(L))]z j k = −x
∏

s∈[k−1]
ys, ∀ j ∈ [k − 1]\[p].

So, z p+1 = · · · = zk−1 and yp+1 = · · · = yk−1 =: y�2. By (2.4), we have

(λ(L) − 1)xk−1 = −y�1
p y�2

k−1−p.

Since p is even, y�1 p � 0 and y�2k−1−p < 0. This implies −y�1 p y�2k−1−p � 0,
which is a construction with the fact (λ(L) − 1)xk−1 > 0.
Case 3 If x �= 0, p is odd and λ > 2, then by (2.2) and (2.4), we have

(λ(L) − 2)y j
k = (λ(L) − 1)xk, ∀ j ∈ [p].

Thus, x and y j , ∀ j ∈ [p] are the same sign. By (2.3), we have (λ(L)−2)y j k−1 > 0
and −z j k−1 < 0. So,

x�s∈[k−1]\{ j}ys = x y1
p yk−1

k−p−2 < 0.

Because p is odd, k − p − 2 is even and yk−1
k−p−2 > 0, x and y1 are not the same

sign. This is a contradiction. Consequently, λ(L) = 2.
In the sequel, we investigate the adjacency tensor and signless Laplacian tensor of

sunflower and squid in the similar way of [2].

3 Spectral Structures of Cored Hypergraphs and Squids

Some facts about the H-eigenvalues and H-eigenvectors of the adjacency tensors
and signless Laplacian tensors of cored hypergraphs are established in this section.
Especially, we calculate the largest adjacency H-eigenvalue and the largest signless
Laplacian H-eigenvalue of a k-uniform squid.

The following lemma shows some structure exhibited by the H-eigenvectors of
cored hypergraphs.

Lemma 3.1 Let G = (V, E) be a k-uniform cored hypergraph and x ∈ R
n be an

H-eigenvector of its adjacency tensor A corresponding to an H-eigenvalue λ �= 0. If
there are two core vertices i, j in an edge e ∈ E, then |xi | = |x j |. Moreover, xi = x j
when k is an odd number.

Proof By the definition of H-eigenvalues and the fact that i and j are core vertices, we
have

λxk−1
i = (Axk−1)i = x j

∏

s∈e\{i, j}
xs, λxk−1

j = (Axk−1) j = xi
∏

s∈e\{i, j}
xs .
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Hence,
λxki = λxkj .

Since λ �= 0, we have that |xi | = |x j |. Moreover, when k is odd, we see that xi = x j .

Using the similar proof of the above lemma, we have the following lemma.

Lemma 3.2 Let G = (V, E) be a k-uniform cored hypergraph and x ∈ R
n be an

H-eigenvector of its signless Laplacian tensor Q corresponding to an H-eigenvalue
λ �= 1. I f there are two cored vertices i, j in an edge e ∈ E, then |xi | = |x j |. Moreover,
xi = x j when k is an odd number.

By the above lemmas, we calculate the largest H-eigenvalues of the signless Lapla-
cian tensor and the adjacency tensor of a k-uniform squid.

Proposition 3.3 Let G = (V, E) be a k-uniform squid. LetA be the adjacency tensor

of G. Then λ(A) is the unique root of μ− ( 1
μ
)

1
k−1 − ( 1

μ
)k−1 = 0 in the interval (1, 2).

Proof Suppose that V := {i1,1, · · · , i1,k, · · · , ik−1,1, · · · , ik−1,k, ik} such that the set
of edges is E = {{i1,1, · · · , i1,k}, · · · , {ik−1,1, · · · , ik−1,k}, {i1,1, · · · , ik−1,1, ik}}.

By [7, Lemma 3.1], [16, Theorem 4], and [17, Theorem 3.20], if we can find
a positive H-eigenvector x ∈ R

n of A corresponding to an H-eigenvalue μ, then
μ = λ(A).

Let xik = α, xi j,1 = 1, and xi j,2 = · · · = xi j,k = γ > 0 for all j ∈ [k−1]. Suppose
that x is an H-eigenvector of A corresponding to the H-eigenvalue μ = λ(A). By
Definition 1.1, we have

μαk−1 = 1, μ = α + γ k−1, and μγ k−1 = γ k−2.

By [1, Theorem 3.8], we have μ � 1. Thus, the first and the third equalities imply that
αk−1 = γ . Hence,

μ =
(
1

μ

) 1
k−1 +

(
1

μ

)k−1

.

Let f (μ) = μ−( 1
μ
)

1
k−1 −( 1

μ
)k−1.We have f (1) = −1 < 0 and f (2) = 2−( 12 )

1
k−1 −

1
2(k−1) > 0. So, f (μ) = 0 does have a root in the interval (1, 2). SinceA has a unique

positive H-eigenvector, the equation μ − ( 1
μ
)

1
k−1 − ( 1

μ
)k−1 = 0 has a unique positive

solution which is in interval (1, 2). Hence, the result follows.
Similarly, we can show the following proposition.

Proposition 3.4 Let G = (V, E) be a k-uniform squid. Let Q be the signless Lapla-

cian tensor of G. Then λ(Q) is the unique root of (μ−2)− ( 1
μ−1 )

1
k−1 − ( 1

μ−1 )
k−1 = 0

in the interval (2, 4).

Clearly, by Hu et al. [2, Proposition 3.2] and the above proposition, Proposition
2.5, i.e., [2, Proposition 3.4] is a direct corollary of Proposition 3.4.
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4 Spectral Structures of Power Hypergraphs and Sunflowers

Some facts about the H-eigenvalues and H-eigenvectors of the adjacency tensors
and signless Laplacian tensors of power hypergraphs are given in this section. Note
that the Laplacian H-spectra of even-uniform power hypergraphs are not given in
[2]. Here, we establish detailed H-spectra of such class. Moreover, we investigate the
largest adjacency H-eigenvalue and the largest signless Laplacian H-eigenvalues of a
k-uniform sunflower.

The following two lemmas are given for odd-uniform power hypergraphs.

Lemma 4.1 Let k be odd and G = (V, E) be a k-uniform power hypergraph and x ∈
R
n be an H-eigenvector of its adjacency tensor A corresponding to an H-eigenvalue

λ �= 0. Let e ∈ E be an arbitrary but fixed edge.

(i) If e has only one intersectional vertex i, and xs �= 0 for some cored vertex s ∈ e,
then λxs = xi .

(ii) If e has two intersectional vertices i and j, and xs �= 0 for some cored vertex s ∈ e,
then λxs2 = xi x j .

Proof For (i), by Definition 1.1 and Lemma 3.1, we have

λxk−1
s = xk−2

s xi .

Thus, xi = λxs . For (ii), by Definition 1.1 and Lemma 3.1, we have

λxk−1
s = xk−3

s xi x j .

Thus, xi x j = λx2s .

Similarly, we show the following lemma.

Lemma 4.2 Let k be odd and G = (V, E) be a k-uniform power hypergraph and
x ∈ R

n be an H-eigenvector of its signless Laplacian tensor Q corresponding to an
H-eigenvalue λ �= 1. Let e ∈ E be an arbitrary but fixed edge.

(i) If e has only one intersectional vertex i, and xs �= 0 for some cored vertex s ∈ e,
then (λ − 1)xs = xi .

(ii) If e has two intersectional vertices i and j, and xs �= 0 for some cored vertex s ∈ e,
then (λ − 1)xs2 = xi x j .

The following results are given for even-uniform power hypergraphs.

Lemma 4.3 Let k be even and G = (V, E) be a k-uniform power hypergraph and x ∈
R
n be an H-eigenvector of its adjacency tensor A corresponding to an H-eigenvalue

λ �= 0. Let e ∈ E be an arbitrary but fixed edge and e′ be the set of its intersectional
vertices. Let α be the cardinality of the set {i ∈ e\e′| xi < 0}.
(i) If e has only one intersectional vertex i, and xs �= 0 for some cored vertex s ∈ e,

then λxi > 0 when α is even and λxi < 0 when α is odd. Here, xs = xi
λ
or − xi

λ
.
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(ii) If e has two intersectional vertices i and j, and xs �= 0 for some cored vertex s ∈ e,

then λxi x j > 0 when α is even and λxi x j < 0 when α is odd. Here, xs = ±
√

xi x j
λ

or ±
√

− xi x j
λ

.

Proof Let x+ = |xs |. By Definition 1.1, we have

λxks =
∏

t∈e
xt . (4.1)

For (i), if α is even, then we have (4.1)⇔ λxk+ = xk−1+ xi ⇔ λx+ = xi . If α is odd,
we have (4.1)⇔ λxk+ = −xk−1+ xi ⇔ λx+ = −xi .

For (ii), if α is even, then (4.1)⇔ λxk+ = xk−2+ xi x j ⇔ λx2+ = xi x j . If α is odd,
we have (4.1)⇔ λxk+ = −xk−2+ xi x j ⇔ λx2+ = −xi x j . Thus, we obtain the desired
results.

Lemma 4.4 Let k be even and G = (V, E) be a k-uniform power hypergraph and x ∈
R
n be an H-eigenvector of its Laplacian tensor L corresponding to an H-eigenvalue

λ �= 1. Let e ∈ E be an arbitrary but fixed edge and e′ be the set of its intersectional
vertices. Let α be the cardinality of the set {i ∈ e\e′| xi < 0}.
(i) If e has only one intersectional vertex i, and xs �= 0 for some cored vertex s ∈ e,

then (1 − λ)xi > 0 when α is even and (1 − λ)xi < 0 when α is odd. Here,
xs = xi

1−λ
or xi

λ−1 .
(ii) If e has two intersectional vertices i and j, and xs �= 0 for some cored vertex s ∈ e,

then (1 − λ)xi x j > 0 when α is even and (1 − λ)xi x j < 0 when α is odd. Here,

xs = ±
√

xi x j
1−λ

or ±
√

xi x j
λ−1 .

Proof Let x+ = |xs |. By Definition 1.1, we have

(λ − 1)xks = −
∏

t∈e
xt . (4.2)

For (i), if α is even, then we have (4.2)⇔ (1−λ)xk+ = xk−1+ xi ⇔ (1−λ)x+ = xi .
If α is odd, we have (4.2)⇔ (1 − λ)xk+ = −xk−1+ xi ⇔ (1 − λ)x+ = −xi .

For (ii), if α is even, then (4.2)⇔ (1 − λ)xk+ = xk−2+ xi x j ⇔ (1 − λ)x2+ = xi x j .
If α is odd, we have (4.2)⇔ (1 − λ)xk+ = −xk−2+ xi x j ⇔ (1 − λ)x2+ = −xi x j . Thus,
we obtain the desired results.

The proof for the following lemma is similar.

Lemma 4.5 Let k be even and G = (V, E) be a k-uniform power hypergraph and
x ∈ R

n be an H-eigenvector of its signless Laplacian tensor Q corresponding to an
H-eigenvalue λ �= 1. Let e ∈ E be an arbitrary but fixed edge and e′ be the set of its
intersectional vertices. Let α be the cardinality of the set {i ∈ e\e′| xi < 0}.
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(i) If e has only one intersectional vertex i, and xs �= 0 for some cored vertex s ∈ e,
then (λ − 1)xi > 0 when α is even and (λ − 1)xi < 0 when α is odd. Here,
xs = xi

λ−1 or xi
1−λ

.
(ii) If e has two intersectional vertices i and j, and xs �= 0 for some cored vertex s ∈ e,

then (λ − 1)xi x j > 0 when α is even and (λ − 1)xi x j < 0 when α is odd. Here,

xs = ±
√

xi x j
λ−1 or ±

√
xi x j
1−λ

.

Sunflower is a special class of power hypergraphs.Now,wepay attention to establish
H-spectra for sunflowers. Let G = (V, E) be a k-uniform sunflower with k � 3 and
the size d � 2, where V = [n], E = {e1, · · · , ed}, and d1 = d (i.e., the vertex 1 is
the heart). Let e( j) denote the unique edge containing the vertex j for j � 2.

Lemma 4.6 Let G, k, and d be as above. Suppose that (λ, x) is an H-eigenpair of its
adjacency tensor A with λ �= 0. Then, x1 �= 0. Moreover, if i, j � 2 and xi , x j are
both nonzero, then xi = x j when k is odd, and |xi | = |x j | when k is even.

Proof If x1 = 0, we have

λxk−1
j = 0, ∀ j ∈ {2, 3, · · · , n},

which, together with λ �= 0, implies x j = 0, ∀ j ∈ {2, 3, · · · , n}. This is a contra-
diction with the fact that x is an H-eigenvector. So, x1 �= 0.

We next show the second conclusion in the following two cases.

Case 1 k is odd. If j � 2 and x j �= 0, by Lemma 4.1, we have x1 = λx j . Similarly,
for i � 2 and xi �= 0, we also have x1 = λxi . Thus, xi = x j .

Case 2 k is even. If j � 2 and x j �= 0, by Lemma 4.3, we have |x1| = |λx j |. Similarly,
for i � 2 and xi �= 0, we also have |x1| = |λxi |. Thus, |xi | = |x j |.
Lemma 4.7 Let G, k, d, and A be as above. Then we have:

(1) If x1 �= 0, (λ, x) is an H-eigenpair ofA with λ = 0 if and only if
∏

s∈e( j)\{ j} xs =
0,∀ j ∈ {2, · · · , n}.

(2) If x1 = 0, (λ, x) is an H-eigenpair of A with λ = 0 if and only if∑d
i=1

∏
s∈ei\{1} xs = 0.

Proof Necessity: It is easy to see that the eigenvalue equations (λI − A)xk−1 = 0
are equivalent to the following two relations:

0 =
d∑

i=1

∏

s∈ei\{1}
xs (4.3)

and ∏

s∈e( j)\{ j}
xs = 0, ∀ j ∈ {2, · · · , n}. (4.4)
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Case 1 If x1 �= 0, by (4.4) we know that at least two vertices except for 1-vertex in
every edge is equal to zero. So we must have

∑d
i=1

∏
s∈ei\{1} xs = 0.

Case 2 If x1 = 0, we must have
∏

s∈e( j)\{ j} xs = 0, ∀ j ∈ {2, · · · , n}.
Sufficiency: It is easy to verify these results by above conclusions and x �= 0.

Similarly, we have the following lemma for the signless Laplacian tensor of a k-
uniform sunflower.

Lemma 4.8 Let G, k, and d be as above. Suppose that (λ, x) is an H-eigenpair of the
signless Laplacian tensor Q with λ �= 1. Then, x1 �= 0. Moreover, if i, j � 2 and
xi , x j are both nonzero, then xi = x j when k is odd, and |xi | = |x j | when k is even.

Lemma 4.9 Let G, k, d, andQ be as above. Then (λ, x) is an H-eigenpair ofQ with
λ = 1 if and only if we have x1 = 0 and

∑d
i=1

∏
s∈ei\{1} xs = 0.

The following theorem gives the largest adjacency H-eigenvalue of a k-uniform
sunflower.

Theorem 4.10 Let G = (V, E) be a k-uniform sunflower of size d � 2. LetA be the

adjacency tensor of G. Then λ(A) = d
1
k .

Proof By [7, Lemma 3.1], [16, Theorem 4], and [17, Theorem 3.20], if we can find a
positive H-eigenvector x of A corresponding to an H-eigenvalue μ, then μ = λ(A).
Hence, we may assume that x with x1 = α > 0 and x j = 1 for j ∈ {2, · · · , n} is an
H-eigenvector of A corresponding to λ(A). By Definition 1.1, we have

λ(A) αk−1 = d, λ(A) = α.

Hence,
λ(A)k = d.

From the proof of the above theorem, we immediately obtain the following result.

Corollary 4.11 Let G = (V, E) be a sunflower of size d � 2. If x ∈ R
n is an H-

eigenvector of its adjacency tensor A corresponding to λ(A), then sup(x) = [n].
Hence, there is an H-eigenvector z ∈ R

n of A corresponding to λ(A) satisfying that
zi is a constant for all vertices other than the heart.

The following result shows the largest signless Laplacian H-eigenvalue of
sunflowers.

Theorem 4.12 Let G = (V, E) be a k-uniform hyperstar of size d � 2 and Q
be its signless Laplacian tensor. Then λ(Q) is the unique real root of the equations
(λ − 1)k−1(λ − d) − d = 0 in the interval (d, d + 1).

Proof By [7, Lemma 3.1], [16, Theorem 4], [17, Theorem 3.20] and (see also [14,
Lemmas 2.2 and 2.3]), if we can find a positive H-eigenvector x ∈ R

n of Q corre-
sponding to an H-eigenvalue μ, then μ = λ(Q).
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Let x1 = α > 0, x j = 1, j ∈ {2, · · · , n}. Suppose that x is an H-eigenvector of Q
corresponding to the H-eigenvalue μ = λ(Q). By Definition 1.1, we have

(μ − d) αk−1 = d, (μ − 1) = α.

Hence,
(μ − d)(μ − 1)k−1 − d = 0.

Let f (μ) = (μ−d)(μ−1)k−1 −d. We have f
′
(μ) = (μ−1)k−2(μk−dk+d −1).

So if μ > d, f (μ) is monotone increasing. Clearly, f (d) = −d < 0 and f (d + 1) =
dk−1 − d > 0. Thus, f (μ) = 0 does have a unique root in the interval (d, d + 1). The
desired result follows.

We immediately get the following result.

Corollary 4.13 Let G1 = (V1, E1) and G2 = (V2, E2) be two sunflowers of size d1
and d2 � 2, respectively. LetQ1 andQ2 be the signless Laplacian tensors of G1 and
G2, respectively. If d1 > d2, then λ(Q1) > λ(Q2).

By [2, Proposition 3.2], we also have the following corollary.

Corollary 4.14 Let k be even and G1 = (V1, E1) and G2 = (V2, E2) be two
sunflowers of size d1 and d2 � 2, respectively. Let L1,Q1 and L2,Q2 be the Lapla-
cian and signless Laplacian tensors of G1 and G2, respectively. If d1 > d2, then
λ(L1) = λ(Q1) > λ(L2) = λ(Q2).

5 H-spectra of Sunflowers

In this section, we compute all the adjacency H-eigenvalues and all the signless
Laplacian H-eigenvalues of sunflowers. From Lemma 4.6 we can obtain the set of all
distinct H-eigenvalues and all corresponding H-eigenvectors of the adjacency tensor
A of the sunflower G (except for the eigenvalue 0) in the following Proposition 5.1
(for the case when k is odd) and Proposition 5.2 (for the case when k is even). The
set of all eigenvectors corresponding to the eigenvalue 0 will be given in Proposition
5.3. From Lemma 4.8 we can construct the set of all distinct H-eigenvalues and all
corresponding H-eigenvectors of the signless Laplacian tensor Q of the hyperstar G
(except for the eigenvalue 1) in the following Proposition 5.4 (for the case when k
is odd) and Proposition 5.5 (for the case when k is even). The set of all eigenvectors
corresponding to the eigenvalue 1 will be given in Proposition 5.6. Their proofs are
similar to those of Propositions 5.1, 5.2, and 5.3 in [2], so we omit them here.

Proposition 5.1 Let G = (V, E) be a k-uniform sunflower with odd k � 3 and the
size d � 2, where V = [n], E = {e1, e2, · · · , ed}, and d1 = d (i.e., the vertex 1 is the
heart). Let A be the adjacency tensor of G. Let

fr (λ) = λk − r, r = 0, 1, · · · , d.

Then we have:
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(i) λ �= 0 is an H-eigenvalue of A if and only if it is a real root of the polynomial
fr (λ) for some r ∈ {0, 1, · · · , d}.

(ii) If λ �= 0 is a root of the polynomial fr (λ), then we can construct all the H-
eigenvectors ofA corresponding to λ (up to a constant multiple) by going through
the following procedure:
Step 1. Take x1 = λ.

Step 2. Choose any r edges of G. Take the x-values of all the pendant vertices of
these r edges to be 1.
Step 3. Take the x-values of all the other vertices of G to be zero.

Proposition 5.2 Let G = (V, E) be a k-uniform sunflower with even k � 4 and the
size d � 2, where V = [n], E = {e1, e2, · · · , ed}, and d1 = d (i.e., the vertex 1 is the
heart). Let A be the adjacency tensor of G. Let

fr (λ) = λk − r, r = 0, 1, · · · , d.

Then we have

(i) λ �= 0 is an H-eigenvalue of A if and only if it is a real root of the polynomial
fr (λ) for some r ∈ {0, 1, · · · , d}.

(ii) If λ �= 0 is a root of the polynomial fr (λ), then we can construct all the H-
eigenvectors ofA corresponding to λ (up to a constant multiple) by going through
the following procedure:

Step 1. Take x1 = λ.
Step 2. Choose any r edges of G. Take the x-values of all the pendant vertices of
these r edges to be ±1, where the number of −1 value in each edge is even.
Step 3. Take the x-values of all the other vertices of G to be zero.

Proposition 5.3 Let G = (V, E) be a k-uniform sunflower with k � 4 and the size
d � 2, where V = [n], E = {e1, e2, · · · , ed}, and d1 = d (i.e., the vertex 1 is the
heart). Let A be the adjacency tensor of G. Then we have

(i) If x1 �= 0, a nonzero vector x is an eigenvector corresponding to eigenvalue 0
if and only if the x-values of all the pendant vertices of G satisfy the following
relation: ∏

s∈e( j)\{ j}
xs = 0, ∀ j ∈ {2, · · · , n}.

(ii) If x1 = 0, a nonzero vector x is an eigenvector corresponding to eigenvalue 0
if and only if the x-values of all the pendant vertices of G satisfy the following
relation:

d∑

i=1

∏

s∈ei\{1}
xs = 0.

Proposition 5.4 Let G = (V, E) be a k-uniform sunflower with odd k � 3 and the
size d � 2, where V = [n], E = {e1, e2, · · · , ed}, and d1 = d(i.e., the vertex 1 is the
heart). Let Q be the signless Laplacian tensor of G. Let
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fr (λ) = (λ − d)(λ − 1)k−1 − r (r = 0, 1, · · · , d).

Then we have

(i) λ �= 1 is an H-eigenvalue of Q if and only if it is a real root of the polynomial
fr (λ) for some r ∈ {0, 1, · · · , d}.

(ii) If λ �= 1 is a root of the polynomial fr (λ), then we can construct all the H-
eigenvectors ofQ corresponding to λ (up to a constant multiple) by going through
the following procedure:

Step1. Take x1 = λ − 1.
Step2. Choose any r edges of G. Take the x-values of all the pendant vertices of
these r edges to be 1.
Step3. Take the x-values of all the other vertices of G to be zero.

Proposition 5.5 Let G = (V, E) be a k-uniform sunflower with even k � 4 and the
size d � 2, where V = [n], E = {e1, e2, · · · , ed}, and d1 = d(i.e., the vertex 1 is the
heart). Let Q be the signless Laplacian tensor of G. Let

fr (λ) = (λ − d)(λ − 1)k−1 − r, r = 0, 1, · · · , d.

Then we have

(i) λ �= 1 is an H-eigenvalue of Q if and only if it is a real root of the polynomial
fr (λ) for some r ∈ {0, 1, · · · , d}.

(ii) If λ �= 1 is a root of the polynomial fr (λ), then we can construct all the H-
eigenvectors ofQ corresponding to λ (up to a constant multiple) by going through
the following procedure:

Step1. Take x1 = λ − 1.
Step2. Choose any r edges of G. Take the x-values of all the pendant vertices of
these r edges to be ±1, where the number of −1 value in each edge is even.
Step3. Take the x-values of all the other vertices of G to be zero.

Proposition 5.6 Let G = (V, E) be a k-uniform sunflower with k � 4 and the size
d � 2, where V = [n], E = {e1, e2, · · · , ed}, and d1 = d (i.e., the vertex 1 is the
heart). Let Q be the signless Laplacian tensor of G. Then a nonzero vector x is an
eigenvector corresponding to eigenvalue 1 if and only if x1 = 0 and the x-values of
all the pendant vertices of G satisfy the following relation:

d∑

i=1

∏

s∈ei\{1}
xs = 0.

From the above propositions, we know that it is essential to solve the equation
fr (λ) = 0 in order to compute all H-eigenvalues. The following theorems fix the roots
of fr (λ).
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Theorem 5.7 Let k be oddandG = (V, E)be a k-uniform sunflower of size d � 2. Let
L be its Laplacian tensor. Consider the real roots of fr (λ) := (λ−d)(1−λ)k−1+r (r ∈
{0, 1, · · · , d}), we have the following statements.
Case 1 If r = 0, then fr (λ) has two real roots. 1 is a k − 1 multiples root and d is a
single root.
Case 2 If 0 < r � d, then there are three cases.

(i) If (1 − d)(1 − (k−1)d+1
k )k−1 + kr > 0, fr (λ) has only one real root and it falls

in [0, 1). In this case, 0 is the root if and only if r = d.
(ii) If (1−d)(1− (k−1)d+1

k )k−1+kr = 0, fr (λ) has two real roots, one falls in [0, 1)
and the other is λ = (k−1)d+1

k . In this case, 0 is the root if and only if r = d.

(iii) If (1 − d)(1 − (k−1)d+1
k )k−1 + kr < 0, fr (λ) has three real roots. The first falls

in [0, 1), the second falls in (1, (k−1)d+1
k ) and the third falls in (

(k−1)d+1
k , d). In

this case, 0 is the root if and only if r = d.

Proof We have

f ′
r (λ) = (1 − λ)k−2[−kλ + (k − 1)d + 1].

Let f ′
r (λ) = 0, then

λ = (k − 1)d + 1

k
� (k − 1)2 + 1

k
= 2 − 1

k
> 1.

Hence, f ′
r (λ) > 0 when λ < 1, f ′

r (λ) < 0 when 1 < λ <
(k−1)d+1

k and f ′
r (λ) > 0

when λ >
(k−1)d+1

k . We also have

fr (0) = −d + r, fr (1) = r,

fr

(
(k − 1)d + 1

k

)

= 1

k
(1 − d)

(

1 − (k − 1)d + 1

k

)k−1

+ kr.

Hence, the desired results hold.

Theorem 5.8 Let k be even and G = (V, E) be a k-uniform sunflower of size d � 2.
Let L be the Laplacian tensor of G. Consider the real roots of fr (λ) := (λ − d)(1 −
λ)k−1 + r (r ∈ {0, 1, · · · , d}), we obtain the following conclusions:
Case 1 If r = 0, then fr (λ) has two real roots. 1 is a k − 1 multiples root and d is a
single root.
Case 2 If 0 < r � d, then fr (λ) has two real roots. One falls in (0, 1) and the other
is in (d, d + 1). In this case, 0 is its root if and only if r = d.

Proof By straightforward computation, we have

f ′
r (λ) = (1 − λ)k−2[−kλ + (k − 1)d + 1].
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Let f ′
r (λ) = 0, then we get

λ = (k − 1)d + 1

k
� (k − 1)2 + 1

k
= 2 − 1

k
> 1.

So, f ′
r (λ) > 0 when λ <

(k−1)d+1
k and f ′

r (λ) < 0 when λ >
(k−1)d+1

k . We have
fr (0) = −d + r , fr (1) = r , fr (d) = r , and fr (d + 1) = (−d)k−1 + r < 0. Hence,
the proof is complete.

Theorem 5.9 Let k be odd and G = (V, E) be a k-uniform sunflower of size d � 2.
LetQ be its signless Laplacian tensor. Consider the real roots of fr (λ) := (λ−d)(λ−
1)k−1 − r (r ∈ {0, 1, · · · , d}), we obtain the following results.
Case 1 If r = 0, then fr (λ) has two real roots. 1 is a k − 1 multiples root and d is a
single root.
Case 2 If 0 < r � d, then fr (λ) has only one real root and it falls in (d, d + 1).

Proof By straightforward computation, we have

f ′
r (λ) = (λ − 1)k−2[kλ − (k − 1)d − 1].

Let f ′
r (λ) = 0, then we get

λ = (k − 1)d + 1

k
� (k − 1)2 + 1

k
= 2 − 1

k
> 1.

So, f ′
r (λ) > 0 when λ < 1, f ′

r (λ) < 0 when 1 < λ <
(k−1)d+1

k , and f ′
r (λ) > 0

when λ >
(k−1)d+1

k . We have fr (0) = −d − r < 0, fr (1) = −r , fr (d) = −r , and
fr (d + 1) = dk−1 − r > 0. These facts imply that the desired results hold.

ByTheorem5.9 and [2, Proposition3.2],we immediately get the following theorem:

Theorem 5.10 Let k be even and G = (V, E) be a k-uniform sunflower of size
d � 2. Let Q be the signless Laplacian tensor of G. Consider the real roots of
fr (λ) := (λ − d)(λ − 1)k−1 − r (r ∈ {0, 1, · · · , d}), we have the following results:
Case 1 If r = 0, then fr (λ) has two real roots. 1 is a k − 1 multiples root and d is a
single root.

Case 2 If 0 < r � d, then fr (λ) has two real roots. One falls in (0, 1) and the other
is in (d, d + 1). In this case, 0 is its root if and only if r = d.

We now give some numerical experiments to show the conclusions given in the
above theorems. We apply the bisection method to solve the real root of above poly-
nomials. When d is fixed, we investigate the changing trend of Laplacian and signless
Laplacian H-spectra of sunflower as k increasing.

Through a lot of experiments, we find some good rules for above problems. The
numerical results are reported in Fig. 1, which show that H-Eigenvalues of sunflowers
will tend to 0, 2, and d when k is increasing and d is fixed.
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Fig. 1 Distribution of H-spectra of sunflower when d is fixed and k is changed
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