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SUMMARY

In this paper, a successive supersymmetric rank-1 decomposition of a real higher-order supersymmetric
tensor is considered. To obtain such a decomposition, we design a greedy method based on iteratively
computing the best supersymmetric rank-1 approximation of the residual tensors. We further show that a
supersymmetric canonical decomposition could be obtained when the method is applied to an orthogonally
diagonalizable supersymmetric tensor, and in particular, when the order is 2, this method generates the
eigenvalue decomposition for symmetric matrices. Details of the algorithm designed and the numerical
results are reported in this paper. Copyright q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

A tensor of order m is an m-way array whose entries are addressed via m indices and it arises
more and more often in signal and image processing, data analysis, higher-order statistics, as well
as independent component analysis [1–5]. In particular, moments and cumulants of multivariate
stochastic processes are higher-order tensors [6].

It is well known that higher-order tensors have some analogies with matrices and hence some
concepts such as rank and lower-rank decomposition related to matrices have been extended to
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higher-order tensors, e.g. [7–10]. More recently, Qi [11] developed the concepts of H -eigenvalue
and symmetric hyperdeterminant of higher-order supersymmetric tensors and discussed their close
links which extended some interesting property of symmetric matrix to higher-order case.

The topic of this paper is closely related to the rank of tensors and the following is a brief
account on this issue. A tensor is said to be rank-1 if it can be expressed as an outer product of a
number of vectors, that is, an mth order rank-1 tensor T assumes the following form:

T= u(1) ◦ u(2) ◦ · · · ◦ u(m) �=
m∏
j=1

u( j)

in the sense that

Ti1,i2,...,im = u(1)
i1

u(2)
i2

. . . u(m)
im

where u( j) ∈ Rn j , j = 1, 2, . . . ,m. In particular, if these m vectors are all equal to vector u, then
their out product is denoted by um and it is called a supersymmetric rank-1 tensor [12].

Rank-1 tensors have many interesting properties and play an important role in tensor analysis
[13], and some researchers have payed more attention to finding the best rank-1 approximation to
higher-order tensors, e.g. [14].

For a higher-order tensor, its rank is defined as the minimal number of rank-1 tensors that yield
T in a linear combination [9, 10, 14, 15], and this decomposition is called canonical decomposition
[16] and is also called PARAFAC decomposition [17], which preserves the uniqueness under mild
conditions [9, 10, 18]. For an overview on the recent development on this kind of decomposition,
see [15] and papers therein.

In analogy to symmetric matrices, a real higher-order tensor is called supersymmetric if its entries
are invariant under any permutation of their indices [19]. It is well known that supersymmetric
tensors and homogeneous polynomials are bijectively associated [3, 20]. In the sequel of this paper,
we denote the set of mth order n-dimensional supersymmetric tensor by Sm,n . It can be verified
that the set Sm,n constitutes a linear space of dimension

(n+m−1
m

) [3]. Kofidis and Regalia [12],
discussed the best supersymmetric rank-1 approximation to higher-order supersymmetric tensors
in the least-squares sense. Besides the promising numerical experiments, they also stressed the
efficiency of the proposed method in theory.

Similarly, the symmetric rank of a tensorT∈Sm,n is defined as the minimum number of super-
symmetric rank-1 tensors that yield T in a linear combination [4]. The rank of a tensor T∈Sm,n
may be larger than the dimension n but it is upbounded by a polynomial of n and m [3, 4, 21].
That is, any tensor T∈Sm,n can be expressed as a combination of supersymmetric rank-1 tensors
with finitely many terms, and if the number of terms is minimal, then we call this decomposition
symmetric canonical decomposition or symmetric PARAFAC factors decomposition.

Low-rank decomposition of higher-order (not necessarily supersymmetric) tensor finds applica-
tions in the analysis of multiway data, as well as high-order statistics and independent component
analysis [2, 22]. Up to date, there is no really efficient way to establish a symmetric canonical
decomposition for a tensor in Sm,n except for cubic and binary cases [3]. So, in this paper, we
consider the decomposition of supersymmetric tensors into the sums of supersymmetric rank-1
tensors. Based on the bijective relation of supersymmetric tensors to homogeneous polynomials,
we know that this kind of decomposition is equivalent to expressing an m-degree homogeneous
polynomial as the sum of mth powers of linear forms.
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In the next section, we will propose a greedy method to decompose a higher-order super-
symmetric tensor into a successive supersymmetric rank-1 tensors. At each step of this method,
we need to compute the best supersymmetric rank-1 approximation of the residual tensor, and to
obtain such an approximation we will employ the projected gradient method for solving constrained
minimization problem [23]. The main contributions of this paper are as follows.

• We show that the greedy method really generates a successive supersymmetric rank-1 tensors
for any real supersymmetric tensor.

• We give an example to show that the proposed method could not generate a supersymmetric
canonical decomposition, in general, when it is applied to a tensor in Sm,n . However, we
show that this kind of decomposition could be obtained when the method is applied to an
orthogonally diagonalizable supersymmetric tensor.

• For the sequence {|�k |} generated by the method, we borrow an example from [24] to show
that this generated sequence may be non-monotone, and we further discuss the conditions
under which this generated sequence is monotone.

• We give some preliminary experiments to show the efficiency of our proposed method.

We end this section with some notations used in this paper. Throughout this paper, all variables
take values in the real field. Vectors will be denoted by lowercase letters (e.g. u), while matrices
will be denoted by uppercase letters (e.g. A), higher-order tensors will be denoted by bold,
calligraphic, uppercase letters (e.g. T). Superscripts with brackets of vectors or tensors are used to
denote different vectors or tensors. The element of tensor T with index (i1, i2, . . . , im) is denoted
by Ti1,i2,...,im . The vector ei denotes the unit vector in Rn such that the i th element is 1 and others
are zero. We use ‖ · ‖ to denote the 2-norm of vectors and call a vector to be unit if its 2-norm
is 1. For two different tensors, T(1) and T(2) of the same dimension and same order, their inner
product is defined as follows:

T(1) · T(2) = ∑
i1,i2,...,im

T
(1)
i1,i2,...,im

T
(2)
i1,i2,...,im

and the Frobenius norm of the tensor T is defined as follows:

‖T‖= (T · T)1/2 =
( ∑
i1,i2,...,im

T2
i1,i2,...,im

)1/2

For simplicity, we omit the dot when we express the inner product of two tensors.

2. DECOMPOSITION METHOD AND ITS EFFICIENCY

First, we formally state the problem considered in [12]: given a tensor T∈Sm,n , determine a
scalar � and a unit vector u ∈ Rn such that the supersymmetric rank-1 tensor T̄= �um minimizes
the function

f (T̄) = ‖T − T̄‖2
over the manifold of supersymmetric rank-1 tensors. If T̄= �um is the global minimizer of the
function, then it is said to be the best supersymmetric rank-1 approximation of the tensor T.

Using the optimality condition, we have the followings (also see Theorem 2 in [12]).
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Lemma 2.1
For unit-norm vector u ∈ Rn and � ∈ R, the tensor �um is the best supersymmetric rank-1 approx-
imation to the tensor T∈Sm,n if and only if the vector u globally maximizes the function

g(v) = |Tvm | =
∣∣∣∣∣ ∑
i1,i2,...,im

Ti1,i2,...,imvi1vi2 . . . vim

∣∣∣∣∣
over the unit sphere {v ∈ Rn : ‖v‖= 1} or the unit ball {v ∈ Rn : ‖v‖�1}, and

� =Tum, Tum−1 = �u

Remark 2.1
Since tensorT∈Sm,n corresponds to a symmetric matrix T ∈ Rn×n whenm = 2, from Lemma 2.1,
we know that if (�̂, û) is an eigenpair of T such that

�̂ = argmax {|�| : � is an eigenvalue of T }
then �̂(û)2 is the best supersymmetric rank-1 approximation to T and vice versa.

Form�2, suppose �um is the best supersymmetric rank-1 approximation of the tensorT∈Sm,n ,
from Lemma 2.1, we have

‖T − �um‖2 =‖T‖2 − 2�〈T, um〉 + �2 = ‖T‖2 − �2�‖T‖2

Obviously, T′ :=T − �um is also a supersymmetric tensor of the same order, and its Frobenius
norm is strictly less than that of T if and only if � 	= 0. Inspired by this fact, we can design the
following algorithm to express a supersymmetric tensor T as the sum of supersymmetric rank-1
tensors.

Algorithm 2.1

Initial step: Input a supersymmetric tensor T and ε�0, let k = 1 and T(k) =T.
Iterative step: If ‖T(k)‖��, stop. Otherwise, compute u(k) such that

u(k) = arg max
‖u‖=1

|Tum |

Let �k :=T · (u(k))m , T(k+1) :=T(k) − �k(u(k))m and k := k + 1.

For Algorithm 2.1, if ε = 0 and the algorithm terminates within finite number of steps, then we
can decompose tensor T∈Sm,n into a sum of finite supersymmetric rank-1 tensors. Certainly, if
‖T(k)‖>� and �k = 0 at a certain step, then the algorithm could not be further executed. However,
the following lemma implies that this case never happens. (The following result may be not new,
however, we include a compact stand-alone proof below, both for the sake of completeness and
because the proof is used in proving our next result.)

Lemma 2.2
For a non-zero tensor T∈Sm,n , it holds that

max{|Tum | : u ∈ Rn, ‖u‖= 1} 	= 0
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DOI: 10.1002/nla



DECOMPOSITION OF HIGHER-ORDER SUPERSYMMETRIC TENSORS 507

Proof
It suffices to show that there exists a unit vector u ∈ Rn such that Tum 	= 0 for any given non-zero
tensor T∈Sm,n .

Among all the non-zero entries of tensor T, we collect all the ones with the maximum index
repetition in the following sense:

(1) the index has t distinct numbers;
(2) any entry of T whose index has strictly less than t distinct numbers is zero.

SinceT 	= 0, this can always be done. Pick up one from these entries. Without loss of generality,
we suppose its index has the following t distinct numbers: 1, 2, . . . , t . Define the index set

S∗ := {i1i2 . . . im : i j is taken from {1, 2, . . . , t} for j = 1, 2, . . . ,m}
For the homogeneous multivariate polynomial Tum with respect to u, we arrange the non-zero
monomials of Tum whose index is taken from S∗ in the lexicographical order with respect to the
exponential of u

c1u
p11
1 u

p12
2 . . . u

P1
t

t , c2u
p21
1 u

p22
2 . . . u

P2
t

t , . . . , csu
ps1
1 u

ps2
2 . . . u

Ps
t

t

where (p j
1 , p

j
2 , . . . , p

j
t ) , j = 1, 2, . . . , s, are the exponentials of u, c j is the sum of coefficients of

the monomials which u has the same exponential, and s denotes the number of these monomials
whose coefficient c j is non-zero.

Note that (pi1, p
i
2, . . . , p

i
t ) 
 (p j

1 , p
j
2 , . . . , p

j
t ) for 1�i< j�s in the sense of lexicographical

order, and (pi1, p
i
2, . . . , p

i
t ) 	= (p j

1 , p
j
2 , . . . , p

j
t ) for 1�i 	= j�s. Furthermore, p j

1+p j
2+· · ·+p j

t =m
for j = 1, 2, . . . , s.

Denote �= max{max1�i�s−1 |ci+1|/|ci |, 1} and choose û ∈ Rn as follows: û1 = 1 and

ûi =
⎧⎨
⎩

ûi−1

2�
if i ∈ {2, . . . , t}

0 otherwise

From the choice of û, we know that

|c j+1û
p j+1
1

1 û
p j+1
2

2 . . . û
P j+1
t

t |� 1
2 |c j û

p j
1

1 û
p j
2

2 . . . û
P j
t

t | for j = 1, 2, . . . , s − 1

Thus,

|Tûm | =
∣∣∣∣∣

s∑
j=1

c j û
p j
1

1 û
p j
2

2 . . . û
P j
t

t

∣∣∣∣∣
� |c1û p11

1 û
p12
2 . . . û

P1
t

t | −
s∑

j=2
|c j û p j

1
1 û

p j
2

2 . . . û
P j
t

t |

� 1

2s−1
|c1û p11

1 û
p12
2 . . . û

P1
t

t |
� 1

2N−1
|c1û p11

1 û
p12
2 . . . û

P1
t

t |
> 0

where N = nm .

Copyright q 2007 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2007; 14:503–519
DOI: 10.1002/nla



508 Y. WANG AND L. QI

It is ready to verify that ‖û‖�2. Define ū = û/‖û‖, then

|Tūm | = 1

‖û‖m |Tûm |� 1

2m
|Tûm |>0

The desired result follows. �

This lemma, in conjunction with Lemma 2.1, implies that for any non-zero tensor T∈Sm,n ,
there exists a unit vector u ∈ Rn and � 	= 0 such that �um is the best rank-1 approximation to T
and

‖T − �um‖2 =‖T‖2 − �2<‖T‖2
Furthermore, the following conclusion tells us that |�| would not be sufficiently small unless
‖T‖ is.

Lemma 2.3
For a sequence {T(k)} ⊂Sm,n , suppose that �k(u(k))m is the best supersymmetric rank-1 approx-
imation of T(k). Then |�k | → 0 only if ‖T(k)‖→ 0.

Proof
Suppose the assertion does not holds, then there exists a sequence of tensors {T(k)} ⊂Sm,n such
that limk→∞ ‖T(k)‖>0 and limk→∞ |�k | = 0, where �k(u(k))m is the best supersymmetric rank-1
approximation to tensor T(k). Without loss of generality, we assume that the sequence {T(k)}
converges to T̂.

The following arguments are based on the proof of Lemma 2.2.
Denote

I= {(i1, i2, . . . , im) : T̂i1,i2,...,im 	= 0}
� =min{|T̂i1,i2,...,im | : (i1, i2, . . . , im) ∈I}

Since T̂ 	= 0, so �>0. By hypothesis �k → 0 as k →∞, we know that there exists sufficiently
large K>0 such that for any k�K , it holds that

‖T(k)‖�2‖T̂‖, |�k | <
�

2N+m+1

(
�

4N‖T̂‖
)mn

and

|T(k)
i1,i2,...,im

| =

⎧⎪⎨
⎪⎩

<
�

M
if (i1, i2, . . . , im) /∈I

>
�

2
otherwise

where M = N2N+1((4N‖T̂‖)/�)mn and N = nm .

Let T̂
(k) ∈Sm,n be such that

T̂
(k)
i1,i2,...,im =

{
0 if (i1, i2, . . . , im) /∈I

T
(k)
i1,i2,...,im

otherwise
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We take T̂
(k)

as the tensor considered in Lemma 2.2, and adopt the convention used in the
proof of Lemma 2.2, then

� = max

{
max

1�i�s−1

|ci+1|
|ci | , 1

}
�N‖T̂‖

�/2
= 2N‖T̂‖

�

It is easy to verify that 1�ûi�(1/2�)n for i = 1, 2, . . . , t . Thus,

|T̂(k)
ûm |� 1

2s−1
|c1û p11

1 û
p12
2 . . . û

P1
t

t |� �

2N

(
1

2�

)mn

and hence

|T(k)ûm | =
∣∣∣∣∣T̂(k)

ûm + ∑
(ii ,i2,...,im)/∈I

T
(k)
ii ,i2,...,im

û
p11
1 û

p12
2 . . . û

P1
t

t

∣∣∣∣∣
� |T̂(k)

ûm | − ∑
(ii ,i2,...,im)/∈I

|T(k)
ii ,i2,...,im

û
p11
1 û

p12
2 . . . û

P1
t

t |

� 1

2s−1
|c1û p11

1 û
p12
2 . . . û

P1
t

t | − ∑
(ii ,i2,...,im)/∈I

|T(k)
ii ,i2,...,im

|

� �

2N

(
1

2�

)mn

− N
�

M

� �

2N

(
�

4N‖T̂‖
)mn

− N
�

M

� �

2N+1

(
�

4N‖T̂‖
)mn

where the last inequality follows from the definition of M .
Since ‖û‖�2, if we let ū = û/‖û‖, then for k�K

max
u∈Rn

‖u‖=1

|T(k)um |�|T(k)ūm |� �

2N+m+1

(
�

4N‖T̂‖
)mn

Recalling that

|�k |< �

2N+m+1

(
�

4N‖T̂‖
)mn

for sufficiently large k, from Lemma 2.1, we obtain a contradiction and we are done. �

Based on the previous lemmas, we can establish our first main result in this section.
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Theorem 2.1
Suppose ε = 0. When Algorithm 2.1 is applied to a tensor T∈Sm,n , if it generates an infinite
sequence of supersymmetric rank-1 tensors {�k(u(k))m}, then

T=
∞∑
k=1

�k(u
(k))m, ‖T‖2 =

∞∑
k=1

�2k

Proof
From Lemma 2.2, we know that if ‖T(k)‖ 	= 0, Algorithm 2.1 generates a unit vector u(k) ∈ Rn and a
non-zero scalar �k such that �k(u(k))m is the best rank-1 approximation ofT(k). Using Lemma 2.1,
one has

∥∥∥∥T −
k∑

i=1
�i (u

(i))m
∥∥∥∥
2

=
∥∥∥∥∥T −

k−1∑
i=1

�i (u
(i))m

∥∥∥∥∥
2

− �2k

= ‖T‖2 −
k∑

i=1
�2i

Letting k → ∞, we get ∥∥∥∥T −
∞∑
i=1

�i (u
(i))m

∥∥∥∥
2

= ‖T‖2 −
∞∑
i=1

�2i

Using Lemma 2.3, we know that

T=
∞∑
i=1

�i (u
(i))m �

This conclusion shows that we can get a successive supersymmetric rank-1 decomposition of
tensors in Sm,n by Algorithm 2.1. Certainly, it would be very excellent if the algorithm could
generate the supersymmetric canonical decomposition when it is applied to a tensor in Sm,n .
However, this is not the case in general as seen from the following example.

Let u(1), . . . , u(s) be s (s�2) linearly independent but non-orthogonal vectors in Rn , and T be
a third-order supersymmetric tensor

T=
s∑

j=1
(u( j))3

which is known to be the unique supersymmetric canonical decomposition of tensor T [9]. Let
u(1), u(2) be normal vectors in R2 such that 〈u(1), u(2)〉 = 1

2 . In this case, T= (u(1))3 + (u(2))3.

For any unit vector v ∈ R2, there exist numbers �1 and �2 such that v = �1u(1) + �2u(2). Now,
we consider the tensor product of T and vector v3

Tv3 = ((u(1))3 + (u(2))3)(�1u
(1) + �2u

(2))3

= (�1 + 1
2�2)

3 + (�2 + 1
2�1)

3

= �31 + 3
2�

2
1�2 + 3

4�1�
2
2 + 1

8�
3
2 + �32 + 3

2�
2
2�1 + 3

4�2�
2
1 + 1

8�
3
1
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= 9
8 (�

3
1 + �32) + 9

4�1�2(�1 + �2)

= 9
8 (�1 + �2)(�

2
1 + �22 − �1�2) + 9

4�1�2(�1 + �2)

= 9
8 (�1 + �2)

where the last equality uses the following equality on �1 and �2, deduced from the fact that v is
a unit vector:

�21 + �22 + 2�1�2〈u(1), u(2)〉 = 1

i.e.

�21 + �22 + �1�2 = 1

Obviously, �1 + �2>1 for any positive numbers �1 and �2 satisfying the equality above, and
consequently,

max
v∈R2,‖v‖=1

|Tv3| =
2∑
j=1

|(u( j))3v3|>
2∑
j=1

(u( j))3(u(i))3, i = 1, 2

Recalling Lemma 2.1, we deduce that neither of (u(i))3, i = 1, 2, is the best supersymmetric rank-1
approximation to tensor T.

This says that Algorithm 2.1 may not terminate within finite steps or generate the supersymmetric
canonical decomposition for tensors in Sm,n in general. In the following, we consider a special
case in which Algorithm 2.1 generates the supersymmetric canonical decomposition. To this end,
the following definition is needed.

For a tensor T∈Sm,n , the elements Ti,i,...,i , for i = 1, 2, . . . , n, are said to be the diagonal
elements ofT, and the other elements inT are said to be off-diagonal elements. A supersymmetric
higher-order tensor T is said to be diagonal if all the off-diagonal elements in T are zero, and a
supersymmetric higher-order tensor T is said to be orthogonally diagonalizable if there exists an
orthogonal matrix A∈ Rn×n such that AmT is diagonal, where AmT is defined as

(AmT)i1,i2,...,im =
∑

j1, j2,..., jm

T j1, j2,..., jm Ai1, j1 Ai2, j2 . . . Aim , jm for i1, i2, . . . , im = 1, 2, . . . , n

This kind of transformation can be taken as an orthogonal transformation to tensors as seen from
the following result.

Proposition 2.1
For T∈Sm,n , v ∈ Rn and orthogonal matrix A∈ Rn×n , the followings hold.

(1) ‖AmT‖=‖T‖,
(2) (A�)m(AmT) =T,

(3) Amvm = (Av)m,

(4) (AmT)vm =T(A�v)m .

Proof
Here, we only prove the first statement, as the others can similarly be proved.
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Since

(AmT) · (AmT) = ∑
i1,...,im

( ∑
j1,..., jm

T j1,..., jm Ai1, j1 . . . Aim , jm
∑

j ′1,..., j ′m
T j ′1,..., j ′m Ai1, j ′1 . . . Aim , j ′m

)

= ∑
j1,..., jm

∑
j ′1,..., j ′m

T j1,..., jmT j ′1,..., j ′m

⎛
⎝ ∑

i1,...,im

Ai1, j1 . . . Aim , jm Ai1, j ′1 . . . Aim , j ′m

⎞
⎠

= ∑
j1,..., jm

∑
j ′1,..., j ′m

T j1,..., jmT j ′1,..., j ′m

(∑
i1

Ai1, j1 Ai1, j ′1

)
· · ·
(∑

im

Aim , jm Aim , j ′m

)

= ∑
j1,..., jm

T j1,..., jmT j1,..., jm = ‖T‖2

where the next to the last equality follows from the orthogonality of A, we conclude that (1) holds.
�

To discuss the finite step termination of Algorithm 2.1 when it is applied to an orthogonally
diagonalizable tensor in Sm,n , we need the following conclusion.

Lemma 2.4
For T∈Sm,n and orthogonal matrix A∈ Rn×n , if �um is the best supersymmetric rank-1 approx-
imation to the tensor T, then �(Au)m is the best supersymmetric rank-1 approximation to the
tensor AmT.

Proof
First, we note that any global maximizer u ∈ Rn of the optimization problem

max{|Tvm | | ‖v‖= 1, v ∈ Rn}
corresponds to the the best supersymmetric rank-1 approximation to the tensor T with � =Tum

from Lemma 2.1. On the other hand, from (4) in Proposition 2.1, we know that any global
maximizer u ∈ Rn of the optimization problem stated above corresponds to the global maximizer
Au of the optimization problem

max{|(AmT)vm | | ‖v‖= 1, v ∈ Rn}
Hence, �(Au)m is the best supersymmetric rank-1 approximation to the tensor AmT. �

Theorem 2.2
Suppose ε = 0. If Algorithm 2.1 is applied to an orthogonally diagonalizable tensor T∈Sm,n ,
then it terminates at most n steps.

Proof
For orthogonally diagonalizable tensorT∈Sm,n , there exists orthogonal matrix A such that AmT
is diagonal tensor in Sm,n with non-zero diagonal element �1, �2, . . . , �r , and r�n. Certainly,

AmT=
r∑

i=r
�i e

m
i
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From Proposition 2.1, one has

T=
r∑

i=1
�i (A

�ei )m

Without loss of generality, we assume that {|�i |} is non-increasing. From Lemma 2.1, it is easy to see
that �i+1e

m
i+1 is the best supersymmetric rank-1 approximation to the tensor AmT−∑i

j=1 � j e
m
j , for

i = 0, 1, 2, . . . , r − 1. From Lemma 2.4, we know that �i+1(A
�ei+1)

m is the best supersymmetric
rank-1 approximation to the tensor T −∑i

j=1 � j (A
�e j )m . The desired result follows from the

fact that Algorithm 2.1 generates the best supersymmetric rank-1 approximation to the tensor
T −∑r

i = 1 �i (A
�ei )m at each step. �

From the proof above, we know that for any orthogonally diagonalizable tensor T∈Sm,n ,
Algorithm 2.1 generates a non-increasing finite sequence {|�k |}. Obviously, any second-order
supersymmetric tensor, i.e. symmetric matrix is always orthogonally diagonalizable, so if Algo-
rithm 2.1 is applied to a second-order supersymmetric tensor, then it generates the eigenvalue
decomposition and the generated sequence {|�k |} is non-increasing in this case. Now, an interest-
ing question is whether the monotonicity of the generated sequence {|�k |} can be kept in general.
In the rest of this section, we will focus on this issue.

First, consider three-order three-dimensional supersymmetric tensor

T= x ◦ y ◦ z + y ◦ z ◦ x + z ◦ x ◦ y

where x, y, z are orthonormal vectors in R3. As shown in [24], the best supersymmetric rank-1
approximation of this tensor is �u3 with u = �1x + �2y + �3z such that �21 = �22 = �23 = 1

3 and

|�| = 3|�1�2�3| =
√
3/3.

Obviously, there are many choices of �i ’s, and without loss of generality, we let �1 = �2 = �3 =√
3/3, then � = √

3/3 and �u3 is the best supersymmetric rank-1 approximation to T.
Now, consider the best supersymmetric rank-1 approximation to the residue tensor T̄=T−�u3.

To this end, we let v = �1x + �2y + �3z with �21 + �22 + �23 = 1. Then

T̄v3 = (x ◦ y ◦ z + y ◦ z ◦ x + z ◦ x ◦ y − 1
9 (x + y + z)3)v3

= 3�1�2�3 − 1

9
(�1 + �2 + �3)

3

and if we let �1 = −�2 =−�3 =√
3/3, then

T̄v3 =
√
3

3
+ 1

9

(√
3

3

)3

Combining this with Lemma 2.1, we conclude that |�1|<|�2| when we apply Algorithm 2.1 to
tensor T.

The following result shows that the sequence {|�k |} is monotone under certain conditions.
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Proposition 2.2
For the sequence {�k} generated by applying Algorithm 2.1 to a non-zero tensor T∈Sm,n , it
holds that

|�k+1|<2|�k | for all k such that �k 	= 0

Furthermore, |�k |�|�k+1| in one of the following cases:

(1) if m is an even number, �k and �k+1 have the same sign;
(2) the vectors corresponding to �k and �k+1 for the best rank-1 approximation are orthogonal.

To prove this proposition, we need the following lemma.

Lemma 2.5
Suppose u and v are two unit vectors in Rn . Then |um · vm |�1 and equality holds iff u = ±v.

Proof
Suppose that u = (u1, u2, . . . , un)� and v = (v1, v2, . . . , vn)

�. Using Cauchy–Schwarz inequality,
we obtain that

|um · vm | =
∣∣∣∣∣

n∑
i1,i2,...,im

ui1vi1ui2vi2, . . . , uimvim

∣∣∣∣∣
=
∣∣∣∣∣

n∑
i1=1

ui1vi1
n∑

i2=1
ui2vi2, . . . ,

n∑
im=1

uimvim

∣∣∣∣∣
= |(u�v)m |
� ‖u‖m · ‖v‖m

= 1

Certainly, the equality holds if and only if u = ±v. �

Proof of Proposition 2.2
Suppose �1(u(1))m and �2(u(2))m are the best supersymmetric rank-1 approximation to T and
T − �1(u(1))m , respectively. To prove the first statement of the assertion, we only need consider
the following two cases for vectors u(1) and u(2):

(a) If u(1) and u(2) are linearly dependent, i.e. u(1) = ± u(2), then

‖T‖2 − �21 − �22 = ‖T − �1(u
(1))m − �2(u

(2))m‖2

=
{‖T − (�1 + �2)(u

(1))m‖2 if u(1) = u(2) or m is even

‖T − (�1 − �2)(u
(1))m‖2 if u(1) = −u(2) and m is odd

= ‖T‖2 − �21 + �22

which implies that �2 = 0, the desired result follows from the fact that �1 	= 0.
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(b) If u(1) and u(2) are linearly independent. From Lemma 2.1, we know that

|�1| = |T(u(1))m |�|T(u(2))m |, �2 = (T − �1(u
(1))m)(u(2))m

Using Lemma 2.5, one has

|�2|<2|�1|
Combining these two cases and using the induction method, we obtain the first statement of the

conclusion.
For the second statement, since

‖T − �2(u
(2))m‖2�‖T − �1(u

(1))m‖2

it follows that

‖T‖2 − �21 − �22 = ‖T − �1(u
(1))m − �2(u

(2))m‖2

= ‖T − �2(u
(2))m‖2 − 2〈T − �2(u

(2))m, �1(u
(1))m〉 + �21

� ‖T − �1(u
(1))m‖2 − �21 + 2�1�2(u

(1))m(u(2))m

= ‖T‖2 − 2�21 + 2�1�2(u
(1))m(u(2))m

i.e.

�21 − �22�2�1�2(u
(1))m(u(2))m

The desired result follows from the facts that �1�2(u(1))m(u(2))m�0 for cases (1) and (2). �

3. NUMERICAL EXPERIMENTS

When we apply Algorithm 2.1 to tensors in Sm,n to get its successive supersymmetric rank-1
decomposition, the best supersymmetric rank-1 approximation to a supersymmetric tensor is needed
at each step, in other words, we should find the global minimizer of the following constrained
optimization problem:

min f (u) =−|Tum |
s.t. ‖u‖2�1

Kofidis and Regalia [25] proposed a supersymmetric higher-order power method (S-HOPM) to
accomplish this job. In the following, we will employ the projected gradient method to do this job
due to that the projection from Rn onto the unit ball can easily be obtained [23].

To shed light on the projected gradient method for solving the constrained optimization problem,
we give the definition of projection operator below.

Denote �= {v ∈ Rn : ‖v‖�1}. The projection from Rn onto the set � is defined as

P(u) = argmin{‖u − v‖ | v ∈ �} ∀u ∈ Rn
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Obviously, for u ∈ Rn,

P(u) =
⎧⎨
⎩
u if ‖u‖�1
u

‖u‖ otherwise

Hence u(k) in Algorithm 2.1 can be obtained by applying the following algorithm to the tensor:

T(k) =T −
k−1∑
i=1

�i (u
(i))m

Algorithm 3.1

Step 1: Choose �>0, �, 	 ∈ (0, 1), ε�0, and v(0) ∈ Rn such that ‖v(0)‖= 1 and T(k)(v(0))m 	= 0.
If T(k)(v(0))m>0, then let f (v)= −T(k)vm , otherwise, f (v) =T(k)vm . Let t = 0.

Step 2: Compute vector v(t)(1) := P(v(t) − ∇ f (v(t))). If ‖v(t) − v(t)(1)‖�ε, stop and output
u(k) = v(t).

Step 3: Compute the stepsize �t = �	mt , where mt is the smallest non-negative integer m such
that

f (P(v(t) − �	m∇ f (v(t))))� f (v(t)) + �〈∇ f (v(t)), P(v(t) − �	m∇ f (v(t))) − v(t)〉
Step 4: Let v(t+1) = P(v(t) − �t∇ f (v(t))), t := t + 1 and go to Step 2.

Remark 3.1
The algorithm consists of an initialization stage (Step 1) in which we set the algorithm parameters,
of verification stage (Step 2), and of a recursive stage which consists of two steps: Steps 3 and
4. Step 2 is used to verify if the current iterative point is an approximate stationary point of the
problem which sometimes can be taken as a solution point [23], Steps 3 and 4 generate the next
iterate via the Armijo stepsize rule which guarantees that the generated sequence of objective value
is monotonically decreasing.

Remark 3.2
At each step of Algorithm 2.1, to find the best supersymmetric rank-1 approximation to a tensor
T(k) ∈Sm,n , i.e. to find the global minimizer of the constrained optimization problem

min f (u) = −|T(k)um |
s.t. ‖u‖2�1

we would combine Algorithm 3.1 with the uniform grid method of higher-order accuracy.
In our following numerical experiments, we will alternatively use Algorithms 2.1 and 3.1 to test

the efficiency of our method. The following first two examples are taken from [12]. Obviously,
computing the best supersymmetric rank-1 approximation to a tensor T∈Sm,n , i.e. computing
the global minimizer of the constrained optimization problem, is much more expensive, and may
be impossible sometimes. In fact, a local minimizer of the problem suffices. Suppose u ∈ Rn is a
local minimizer of the problem. Certainly, ‖u‖ = 1. If we take � =Tum , then

‖T − �um‖2 = ‖T‖2 − �2
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Figure 1. Numerical result of Example 3.1.

Thus, if Tum 	= 0, then ‖T − �um‖<‖T‖, which shows that the sequence {‖T(k)‖} strictly
decreases even if u(k) ∈ Rn is a local and non-global minimizer. Based on this fact, in the following
numerical experiments, we would use the uniform grid method with lower-order accuracy to choose
the initial point v(0) in Algorithm 3.1. The numerical results of the following examples can be
seen from Figures 1–3.

Example 3.1
Consider the tensor T∈S4,3 with entries:

T1111 = 0.2883, T1112=−0.0031, T1113=0.1973, T1122=−0.2485, T1123=−0.2939

T1133 = 0.3847, T1222 = 0.2972, T1223 = 0.1862, T1233 = 0.0919, T1333 =−0.3619

T2222 = 0.1241, T2223=−0.3420, T2233=0.2127, T2333=0.2727, T3333=−0.3054

Example 3.2
Consider the normalized supersymmetric tensor T∈T4,3 in Example 2 in [12].
Example 3.3
Consider the supersymmetric tensorT∈T4,3 whose entries are generated from [−1, 1] randomly:

T1111 = 0.2137, T1112=−0.0280, T1113=0.7826, T1122=0.5242, T1123=−0.0871

T1133 = −0.9630, T1222=0.6428, T1223=−0.1106, T1233=0.2309, T1333=0.8436

T2222 = 0.4764, T2223=−0.6475, T2233=−0.1886, T2333=0.8709, T3333=0.8338
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Figure 2. Numerical result of Example 3.2.
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Figure 3. Numerical result of Example 3.3.

In the end of this section, we give a theoretical analysis on the S-HOPM method and Algo-
rithm 3.1 for computing the best rank-1 approximation of a tensor in Sm,n . It is well known that
these two methods both converges (at most) linearly, and they all need lower capacity during the
computing. The reason why we adopt the projected gradient method here is that this method always
converges to a stationary point of the concerned problem and it can be easily combined with the
uniform grid method to compute an approximate global optimal solution. As for the computation
time of our method, it mainly depends on the accuracy order we choose when we use the uniform
grid method to select the initial point v(0) in Algorithm 3.1.
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