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Abstract In this paper, we prove that a real tensor is strictly semi-positive if and only
if the corresponding tensor complementarity problem has a unique solution for any
nonnegative vector and that a real tensor is semi-positive if and only if the correspond-
ing tensor complementarity problem has a unique solution for any positive vector. It
is shown that a real symmetric tensor is a (strictly) semi-positive tensor if and only if
it is (strictly) copositive.
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1 Introduction

It is well known that the linear complementarity problem (LCP) is the first-order opti-
mality conditions of quadratic programming, which has wide applications in applied
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science and technology such as optimization and physical or economic equilibrium
problems. By means of the linear complementarity problem, properties of (strictly)
semi-monotone matrices were considered by Cottle and Dantzig [1], Eaves [2] and
Karamardian [3], see also Han et al. [4], Facchinei and Pang [5] and Cottle et al. [6].

Pang [7,8] and Gowda [9] presented some relations between the solution of the
LCP (q, A) and (strictly) semi-monotone. Cottle [10] showed that each completely
Q-matrix is a strictly semi-monotone matrix. Eaves [2] gave an equivalent definition
of strictly semi-monotone matrices using the linear complementarity problem. The
concept of (strictly) copositive matrices is one of the most important concepts in
applied mathematics and graph theory, which was introduced by Motzkin [11] in
1952. In the literature, there are extensive discussions on such matrices [12–14].

The nonlinear complementarity problemhas been systematically studied in themid-
1960s and has developed into a very fruitful discipline in the field of mathematical
programming, which included a multitude of interesting connections to numerous dis-
ciplines and awidely important applications in engineering and economics. The notion
of the tensor complementarity problem, a specially structured nonlinear complemen-
tarity problem, is used firstly by Song and Qi [15], and they studied the existence
of solution for the tensor complementarity problem with some classes of structured
tensors. In particular, they showed that the tensor complementarity problem with a
nonnegative tensor has a solution if and only if all principal diagonal entries of such a
tensor are positive. Che et al. [16] showed the existence of solution for the tensor com-
plementarity problem with symmetric positive definite tensors and copositive tensors.
Luo et al. [17] studied the sparsest solutions to Z -tensor complementarity problems.

In this paper, we will study some relationships between the unique solution of the
tensor complementarity problem and (strictly) semi-positive tensors. We will prove
that a symmetric m-order n-dimensional tensor is (strictly) semi-positive if and only
if it is (strictly) copositive.

In Sect. 2, we will give some definitions and basic conclusions. We will show that
all diagonal entries of a semi-positive tensor are nonnegative and all diagonal entries
of a strictly semi-positive tensor are positive.

In Sect. 3, we will prove that a real tensor is a semi-positive tensor if and only if
the corresponding tensor complementarity problem has no nonzero vector solution for
any positive vector and that a real tensor is a strictly semi-positive tensor if and only
if the corresponding tensor complementarity problem has no nonzero vector solution
for any nonnegative vector. We show that a symmetric real tensor is semi-positive if
and only if it is copositive and that a symmetric real tensor is a strictly semi-positive
if and only if it is strictly copositive.

2 Preliminaries

Throughout this paper, we use small letters x, y, v, α, . . ., for scalars, small bold
letters x, y, . . ., for vectors, capital letters A, B, . . ., for matrices, and calligraphic
lettersA,B, . . ., for tensors. All the tensors discussed in this paper are real. Let In :=
{1, 2, . . . , n}, and R

n := {(x1, x2, . . . , xn)�; xi ∈ R, i ∈ In}, Rn+ := {x ∈ R
n; x ≥

0}, Rn− := {x ∈ R
n; x ≤ 0}, Rn++ := {x ∈ R

n; x > 0}, where R is the set of real
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numbers, x� is the transposition of a vector x, and x ≥ 0 (x > 0) means xi ≥ 0
(xi > 0) for all i ∈ In .

Let A = (ai j ) be an n×n realmatrix. The linear complementarity problem, denoted
by LCP (q, A), is to find z ∈ R

n such that

z ≥ 0,q + Az ≥ 0, and z�(q + Az) = 0, (1)

or to show that no such vector exists. A real matrix A is said to be

(i) semi-monotone (or semi-positive) iff for each x ≥ 0 and x �= 0, there exists an
index k ∈ In such that xk > 0 and (Ax)k ≥ 0;

(ii) strictly semi-monotone (or strictly semi-positive) iff for each x ≥ 0 and x �= 0,
there exists an index k ∈ In such that xk > 0 and (Ax)k > 0;

(iii) copositive iff x�Ax ≥ 0 for all x ∈ R
n+;

(iv) strictly copositive iff x�Ax > 0 for all x ∈ R
n+ \ {0};

(v) Q-matrix iff LCP(A,q) has a solution for all q ∈ R
n ;

(vi) completely Q-matrix iff A and all its principal submatrices are Q-matrices.

In 2005, Qi [18] introduced the concept of positive (semi-)definite symmetric
tensors. A real mth-order n-dimensional tensor (hypermatrix) A = (ai1...im ) is a
multi-array of real entries ai1...im , where i j ∈ In for j ∈ Im . Denote the set of all
real mth-order n-dimensional tensors by Tm,n . Then Tm,n is a linear space of dimen-
sion nm . Let A = (ai1...im ) ∈ Tm,n . If the entries ai1...im are invariant under any
permutation of their indices, then A is called a symmetric tensor. Denote the set of
all real mth-order n-dimensional symmetric tensors by Sm,n . Then Sm,n is a linear
subspace of Tm,n . We denote the zero tensor in Tm,n by O. Let A = (ai1...im ) ∈ Tm,n

and x ∈ R
n . Then Axm−1 is a vector in Rn with its i th component as

(
Axm−1

)
i
:=

n∑
i2,...,im=1

aii2...im xi2 . . . xim

for i ∈ In . Then Axm is a homogeneous polynomial of degree m, defined by

Axm := x� (
Axm−1

)
=

n∑
i1,...,im=1

ai1...im xi1 . . . xim .

A tensorA ∈ Tm,n is called positive semi-definite if for any vector x ∈ R
n ,Axm ≥ 0,

and is called positive definite if for any nonzero vector x ∈ R
n , Axm > 0. Recently,

miscellaneous structured tensors are widely studied, for example, Zhang et al. [19] and
Ding et al. [20] forM-tensors, Song andQi [21] for P-(P0)tensors andB-(B0)tensors,Qi
and Song [22] for B-(B0)tensors, Song and Qi [23] for infinite- and finite-dimensional
Hilbert tensors and Song and Qi [24] for E-eigenvalues of weakly symmetric nonneg-
ative tensors.

Recently, Song and Qi [15] extended the concepts of (strictly) semi-positive matri-
ces and the linear complementarity problem to (strictly) semi-positive tensors and

123



1072 J Optim Theory Appl (2016) 169:1069–1078

the tensor complementarity problem, respectively. Moreover, some nice properties of
those concepts were obtained.

Definition 2.1 Let A = (ai1...im ) ∈ Tm,n . The tensor complementarity problem,
denoted by TCP (q,A), is to find x ∈ R

n such that

x ≥ 0,q + Axm−1 ≥ 0, and x� (
q + Axm−1

)
= 0, (2)

or to show that no such vector exists.

Clearly, the tensor complementarity problem is the first-order optimality conditions
of the homogeneous polynomial optimization problem, which may be referred to as a
direct and natural extension of the linear complementarity problem. The tensor com-
plementarity problem TCP (q,A) is a specially structured nonlinear complementarity
problem, and so the TCP (q,A) has its particular and nice properties other than ones
of the classical nonlinear complementarity problem.

Definition 2.2 Let A = (ai1...im ) ∈ Tm,n . A is said to be

(i) semi-positive iff for each x ≥ 0 and x �= 0, there exists an index k ∈ In such that

xk > 0 and
(
Axm−1

)
k

≥ 0;

(ii) strictly semi-positive iff for each x ≥ 0 and x �= 0, there exists an index k ∈ In
such that

xk > 0 and
(
Axm−1

)
k

> 0;

(iii) Q-tensor iff the TCP (q,A) has a solution for all q ∈ R
n .

Lemma 2.1 (Song and Qi [15, Corollary 3.3, Theorem 3.4]) Each strictly semi-
positive tensor must be a Q-tensor.

Proposition 2.1 Let A ∈ Tm,n. Then

(i) aii ...i ≥ 0 for all i ∈ In if A is semi-positive;
(ii) aii ...i > 0 for all i ∈ In if A is strictly semi-positive;

(iii) there exists k ∈ In such that
n∑

i2,...,im=1
aki2...im ≥ 0 if A is semi-positive;

(iv) there exists k ∈ In such that
n∑

i2,...,im=1
aki2...im > 0 if A is strictly semi-positive.

Proof It follows from Definition 2.2 that we can obtain (i) and (ii) by taking

x(i) = (0, . . . , 1, . . . , 0)�, i ∈ In

where 1 is the ith component xi . Similarly, choose x = e = (1, 1, . . . , 1)�, and then
we obtain (iii) and (vi) by Definition 2.2. ��
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Definition 2.3 Let A = (ai1...im ) ∈ Tm,n . A is said to be

(i) copositive if Axm ≥ 0 for all x ∈ R
n+;

(ii) strictly copositive if Axm > 0 for all x ∈ R
n+ \ {0}.

The concept of (strictly) copositive tensors was first introduced and used byQi [25].
Song and Qi [26] showed their equivalent definition and some special structures. The
following lemma is one of the structure conclusions of (strictly) copositive tensors in
[26].

Lemma 2.2 ([26, Proposition 3.1]) Let A be a symmetric tensor of order m and
dimension n. Then

(i) A is copositive if and only if Axm ≥ 0 for all x ∈ R
n+ with ‖x‖ = 1;

(ii) A is strictly copositive if and only if Axm > 0 for all x ∈ R
n+ with ‖x‖ = 1.

Definition 2.4 LetA = (ai1...im ) ∈ Tm,n . In homogeneous polynomialAxm , if we let
some (but not all) xi be zero, then we have a less variable homogeneous polynomial,
which defines a lower-dimensional tensor. We call such a lower-dimensional tensor a
principal subtensor of A, i.e., an m-order r -dimensional principal subtensor B of an
m-order n-dimensional tensor A consists of rm entries in A = (ai1...im ): for any set
N that composed of r elements in {1, 2, . . . , n},

B = (ai1...im ), for all i1, i2, . . . , im ∈ N .

The concept was first introduced and used by Qi [18] to the higher-order symmetric
tensor. It follows from Definition 2.2 that the following proposition is obvious.

Proposition 2.2 Let A = (ai1...im ) ∈ Tm,n. Then

(i) each principal subtensor of a semi-positive tensor is semi-positive;
(ii) each principal subtensor of a strictly semi-positive tensor is strictly semi-positive.

Let N ⊂ In = {1, 2, . . . , n}. We denote the principal subtensor of A by A|N |,
where |N | is the cardinality of N . So, A|N | is a tensor of order m and dimension |N |,
and the principal subtensor A|N | is just A itself when N = In = {1, 2, . . . , n}.

3 Main Results

In this section, we will prove that a real tensor A is a (strictly) semi-positive tensor
if and only if the tensor complementarity problem (q,A) has a unique solution for
q > 0 (q ≥ 0).

Theorem 3.1 Let A = (ai1...im ) ∈ Tm,n. The following statements are equivalent:

(i) A is semi-positive.
(ii) The TCP (q,A) has a unique solution for every q > 0.
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(iii) For every index set N ⊂ In, the system

A|N | (xN
)m−1

< 0, xN ≥ 0 (3)

has no solution, where xN ∈ R
|N |.

Proof (i)⇒ (ii). Since q > 0, it is obvious that 0 is a solution of TCP (q,A). Suppose
that there exists a vector q′ > 0 such that TCP (q′,A) has nonzero vector solution x.
Since A is semi-positive, there is an index k ∈ In such that

xk > 0 and
(
Axm−1

)
k

≥ 0.

Then q ′
k + (Axm−1

)
k > 0, and so

x� (
q′ + Axm−1

)
> 0.

This contradicts the assumption that x solves TCP (q′,A). So the TCP (q,A) has a
unique solution 0 for every q > 0.

(ii) ⇒ (iii). Suppose that there is an index set N such that the system (3) has a
solution x̄N . Clearly, x̄N �= 0. Let x̄ = (x̄1, x̄2, . . . , x̄n)� with

x̄i =
{
x̄Ni , i ∈ N

0, i ∈ In \ N .

Choose q = (q1, q2, . . . , qn)� with

{
qi = − (A|N |(x̄N )m−1

)
i = − (Ax̄m−1

)
i , i ∈ N

qi > max{0,− (Ax̄m−1
)
i } i ∈ In \ N .

So, q > 0 and x̄ �= 0. Then x̄ solves the TCP (q,A). This contradicts (ii).
(iii)⇒ (i). For each x ∈ R

n+ and x �= 0, we may assume that x = (x1, x2, . . . , xn)�
with for some N ⊂ In ,

{
xi > 0, i ∈ N

xi = 0, i ∈ In \ N .

Since the system (3) has no solution, there exists an index k ∈ N ⊂ In such that

xk > 0 and
(
Axm−1

)
k

≥ 0,

and hence A is semi-positive. ��
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Using the same proof as that of Theorem 3.1 with appropriate changes in the
inequalities, we can obtain the following conclusions about the strictly semi-positive
tensor.

Theorem 3.2 Let A = (ai1...im ) ∈ Tm,n. The following statements are equivalent:

(i) A is strictly semi-positive.
(ii) The TCP (q,A) has a unique solution for every q ≥ 0.
(iii) For every index set N ⊂ In, the system

A|N | (xN
)m−1 ≤ 0, xN ≥ 0, xN �= 0 (4)

has no solution.

Now we give the following main results by means of the concept of principal
subtensor.

Theorem 3.3 Let A be a symmetric tensor of order m and dimension n. Then A is
semi-positive if and only if it is copositive.

Proof If A is copositive, then

Axm = x�Axm−1 ≥ 0 for all x ∈ R
n+. (5)

So A must be semi-positive. In fact, suppose not. Then there is a vector x ∈ R
n such

that for all k ∈ In
(
Axm−1

)
k

< 0 when xk > 0.

Then we have

Axm = x�Axm−1 =
n∑

k=1

xk
(
Axm−1

)
k

< 0,

which contradicts (5).
Now we show the necessity. Let

S =
{
x ∈ R

n+;
n∑

i=1

xi = 1

}
and F(x) = Axm = x�Axm−1.

Obviously, F : S → R is continuous on the set S. Then there exists ỹ ∈ S such that

Aỹm = ỹ�Aỹm−1 = F(ỹ) = min
x∈S F(x) = min

x∈S x
�Axm−1 = min

x∈S Axm . (6)

Since ỹ ≥ 0 with ỹ �= 0, we may assume that

ỹ = (ỹ1, ỹ2, . . . , ỹl , 0, . . . , 0)
T (ỹi > 0 for i = 1, . . . , l, 1 ≤ l ≤ n) .
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Let w̃ = (ỹ1, ỹ2, . . . , ỹl)T and let B be a principal subtensor obtained from A by the
polynomial Axm for x = (x1, x2, . . . , xl , 0, . . . , 0)T. Then

w̃ ∈ R
l++,

l∑
i=1

ỹi = 1 and F(ỹ) = Aỹm = Bw̃m = min
x∈S Axm . (7)

Let x = (z1, z2, . . . , zl , 0, . . . , 0)T ∈ R
n+ for all z = (z1, z2, . . . , zl)T ∈ R

l+ with
l∑

i=1
zi = 1. Clearly, x ∈ S, and hence, by (7), we have

F(x) = Axm = Bzm ≥ F(ỹ) = Aỹm = Bw̃m .

Since w̃ ∈ R
l++, w̃ is a local minimizer of the following optimization problem

min
z∈Rl

Bzm s.t.
l∑

i=1

zi = 1.

So, the standard KKT conditions implies that there exists μ ∈ R such that

∇
(
Bzm − μ

(
l∑

i=1

zi − 1

))
|z=w̃ = mBw̃m−1 − μe = 0,

where e = (1, 1, . . . , 1)�, and hence

Bw̃m−1 = μ

m
e.

Let λ = μ
m . Then

Bw̃m−1 = (λ, λ, . . . , λ)� ∈ R
l ,

and so

Bw̃m = w̃�Bw̃m−1 = λ

l∑
i=1

ỹi = λ.

It follows from (7) that

Aỹm = ỹ�Aỹm−1 = Bw̃m = min
x∈S Axm = λ.

Thus, for all ỹk > 0, we have

(
Aỹm−1

)
k

=
(
Bw̃m−1

)
k

= λ.
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Since A is semi-positive, for ỹ ≥ 0 and ỹ �= 0, there exists an index k ∈ In such
that

ỹk > 0 and
(
Aỹm−1

)
k

≥ 0.

and hence, λ ≥ 0. Consequently, we have

min
x∈S Axm = Aỹm = λ ≥ 0.

It follows from Lemma 2.2 that A is copositive. The theorem is proved. ��
Using the same proof as that of Theorem 3.3 with appropriate changes in the

inequalities, we can obtain the following conclusions about the strictly copositive
tensor.

Theorem 3.4 Let A = (ai1...im ) ∈ Sm,n. Then A is strictly semi-positive if and only
if it is strictly copositive.

By Lemma 2.1 and Theorem 3.4, the following conclusion is obvious.

Corollary 3.1 Let A = (ai1...im ) ∈ Sm,n be strictly copositive. Then the tensor com-
plementarity problem TCP (q,A),

finding x ∈ R
n such that x ≥ 0,q + Axm−1 ≥ 0, and x�(q + Axm−1) = 0

has a solution for all q ∈ R
n.

4 Perspectives

There are more research topics on the tensor complementarity problem for further
research.

It is known that there are many efficient algorithms for computing a solution of
(non)linear complementarity problem. Then, whether or not may these algorithms
be applied to tensor complementarity problem? If not, can one construct an efficient
algorithm to compute the solution of the tensor complementarity problem with a
specially structured tensor?

A real m-order n-dimensional tensor is said to be completely Q-tensor iff it and all
its principal subtensors are Q-tensors. Clearly, each strictly semi-positive tensor must
be a completely Q-tensor. Naturally, we would like to ask whether each completely
Q-tensor is strictly semi-positive or not.

5 Conclusions

In this paper, we discuss some relationships between the unique solution of the tensor
complementarity problem and (strictly) semi-positive tensors. Furthermore, we estab-
lish the equivalence between (strictly) symmetric semi-positive tensors and (strictly)
copositive tensors.
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