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Abstract In this paper, the concepts of Pareto H -eigenvalue and Pareto Z -eigenvalue are
introduced for studying constrained minimization problem and the necessary and sufficient
conditions of such eigenvalues are given. It is proved that a symmetric tensor has at least one
Pareto H -eigenvalue (Pareto Z -eigenvalue). Furthermore, theminimumPareto H -eigenvalue
(or Pareto Z -eigenvalue) of a symmetric tensor is exactly equal to the minimum value of
constrained minimization problem of homogeneous polynomial deduced by such a tensor,
which gives an alternative methods for solving the minimum value of constrained minimiza-
tion problem. In particular, a symmetric tensor A is strictly copositive if and only if every
Pareto H -eigenvalue (Z -eigenvalue) ofA is positive, andA is copositive if and only if every
Pareto H -eigenvalue (Z -eigenvalue) of A is non-negative.
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1 Introduction and basic facts

Throughout this paper, let Rn+ = {x ∈ R
n; x ≥ 0}, and R

n− = {x ∈ R
n; x ≤ 0}, and

R
n++ = {x ∈ R

n; x > 0}, and e = (1, 1, . . . , 1)T , and x [m] = (xm1 , xm2 , . . . , xmn )T for
x = (x1, x2, . . . , xn)T , where xT is the transposition of a vector x and x ≥ 0 (x > 0) means
xi ≥ 0(xi > 0) for all i ∈ {1, 2, . . . , n}.

As a natural extension of the concept of matrices, a m-order n-dimensional tensor A
consists of nm entries in the real field R:

A = (ai1...im ), ai1...im ∈ R, i1, i2, . . . , im = 1, 2, . . . , n.

For a vector x = (x1, x2, . . . , xn)T ∈ R
n or Cn,Axm is defined by

Axm =
n∑

i1,i2,...,im=1

ai1i2...im xi1xi2 . . . xim ; (1.1)

Axm−1 is a vector in R
n (or Cn) with its ith component defined by

(Axm−1)
i =

n∑

i2,...,im=1

aii2...im xi2 · · · xim for i = 1, 2, . . . , n. (1.2)

A m-order n-dimensional tensor A is said to be symmetric if its entries ai1...im are invariant
for any permutation of the indices. Clearly, eachm-order n-dimensional symmetric tensorA
defines a homogeneous polynomial Axm of degree m with n variables and vice versa.

For a given m-order n-dimensional symmetric tensor A, we consider a constrained opti-
mization problem of the form:

min
1

m
Axm

s.t. xT x [m−1] = 1

x ∈ R
n+.

(1.3)

Then the Lagrange function of the problem (1.3) is given clearly by

L(x, λ, y) = 1

m
Axm + 1

m
λ

(
1 − xT x [m−1]) − xT y (1.4)

where x, y ∈ R
n+, λ

m ∈ R is the Lagrange multiplier of the equality constraint and y is
the Lagrange multiplier of non-negative constraint. So the solution x of the problem (1.3)
satisfies the following KKT conditions ([4,6]):

Axm−1 − λx [m−1] − y = 0 (1.5)

1 − xT x [m−1] = 0 (1.6)

xT y = 0 (1.7)

x, y ∈ R
n+. (1.8)

The Eq. (1.6) means that
n∑

i=1
xmi = 1. It follows from the Eqs. (1.5), (1.7) and (1.8) that

xT y = xTAxm−1 − λxT x [m−1] = 0

x ≥ 0,Axm−1 − λx [m−1] = y ≥ 0,
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and hence, ⎧
⎪⎨

⎪⎩

Axm = λxT x [m−1]

Axm−1 − λx [m−1] ≥ 0

x ≥ 0.

(1.9)

Following Qi [11] (H -eigenvalue of the tensor A) and Seeger [23] (Pareto eigenvalue of
the matrix A), for a m-order n-dimensional tensor A, a real number λ is called Pareto H -
eigenvalue of the tensor A if there exists a non-zero vector x ∈ R

n satisfying the system
(1.9). The non-zero vector x is called a Pareto H -eigenvector of A associated to λ.

Similarly, for a given m-order n-dimensional symmetric tensor A, we consider another
constrained optimization problem of the form (m ≥ 2):

min
1

m
Axm

s.t. xT x = 1

x ∈ R
n+.

(1.10)

Obviously, when x ∈ R
n, xT x = 1 if and only if (xT x)

m
2 = 1. The corresponding Lagrange

function may be written in the form

L(x, μ, y) = 1

m
Axm + 1

m
μ

(
1 − (xT x)

m
2

)
− xT y.

So the solution x of the problem (1.10) satisfies KKT conditions ([4,6]):

Axm−1 − μ(xT x)
m
2 −1x − y = 0, 1 − (xT x)

m
2 = 0, xT y = 0, x, y ∈ R

n+.

Then we have
∑n

i=1 x
2
i = 1 and

⎧
⎪⎨

⎪⎩

Axm = μ(xT x)
m
2

Axm−1 − μ(xT x)
m
2 −1x ≥ 0

x ≥ 0.

(1.11)

Following Qi [11] (Z -eigenvalue of the tensor A) and Seeger [23] (Pareto eigenvalue of the
matrix A), for an m-order n-dimensional tensor A, a real number μ is said to be Pareto Z -
eigenvalue of the tensor A if there is a non-zero vector x ∈ R

n satisfying the system (1.11).
The non-zero vector x is called a Pareto Z -eigenvector of A associated to μ.

So the constrained optimization problem (1.3) and (1.10) of homogeneous polynomialmay
be respectively solved by means of the Pareto H -eigenvalue (1.9) and Pareto Z -eigenvalue
(1.11) of the corresponding tensor. It will be an interesting work to compute the Pareto
H -eigenvalue (Z -eigenvalue) of a higher order tensor.

When m = 2, both Pareto H -eigenvalue and Pareto Z -eigenvalue of the m-order n-
dimensional tensor obviously changes into Pareto eigenvalue of the matrix. The concept of
Pareto eigenvalue is first introduced and used by Seeger [23] for studying the equilibrium
processes defined by linear complementarity conditions. For more details, also see Hiriart-
Urruty and Seeger [5].

Let A be a m-order n-dimensional symmetric tensor. A number λ ∈ C is called an
eigenvalue of A if there exists a nonzero vector x ∈ C

n satisfying

Axm−1 = λx [m−1], (1.12)

123



566 J Glob Optim (2016) 64:563–575

where x [m−1] = (xm−1
1 , . . . , xm−1

n )T , and call x an eigenvector of A associated with the
eigenvalue λ. We call such an eigenvalue H -eigenvalue if it is real and has a real eigenvector
x , and call such a real eigenvector x an H-eigenvector.

These concepts were first introduced by Qi [11] to the higher order symmetric tensor,
and the existence of the eigenvalues and its some application were studied also. Lim [9]
independently introduced these concept and obtained the existence results using the vari-
ational approach. Subsequently, this topics are attracted attention of many mathematicians
from different disciplines. For various studies and applications, see Chang [1], Chang et al.
[2,3], Chang et al. [7], Li et al. [8], Qi and Song [16], Song and Qi [18–22], Yang and Yang
[24,25] and references cited therein.

A numberμ ∈ C is said to be an E-eigenvalue ofA if there exists a nonzero vector x ∈ C
n

such that

Axm−1 = μx(xT x)
m−2
2 . (1.13)

Such a nonzero vector x ∈ C
n is called an E-eigenvector ofA associated with μ, If x is real,

then μ is also real. In this case, μ and x are called a Z -eigenvalue of A and a Z -eigenvector
of A (associated with μ), respectively. Qi [11–13] first introduced and used these concepts
and showed that a symmetric and real tensor has always Z -eigenvalue.

In homogeneous polynomial Axm defined by (1.1), if we let some (but not all) xi be
zero, then we have a homogeneous polynomial with fewer variables, which defines a lower
dimensional tensor. We call such a lower dimensional tensor a principal sub-tensor of A.
The concept were first introduced and used by Qi [11] to the higher order symmetric tensor.

Recently, Qi [14] introduced and used the following concepts for studying the properties
of hypergraph. An H -eigenvalue λ of A is said to be (i) H+-eigenvalue of A, if its H -
eigenvector x ∈ R

n+; (ii) H++-eigenvalue ofA, if its H -eigenvector x ∈ R
n++. Similarly, we

introduce the concepts of Z+-eigenvalue and Z++-eigenvalue. An Z -eigenvalue μ of A is
said to be (i) Z+-eigenvalue of A, if its Z -eigenvector x ∈ R

n+; (ii) Z++-eigenvalue of A, if
its Z -eigenvector x ∈ R

n++.
Obviously, the definition of H+-eigenvalue (Z+-eigenvalue) λ of A means that

Axm−1 − λx [m−1] = 0 (Axm−1 − λ(xT x)
m
2 −1x = 0, respectively)

for some non-zero vector x ≥ 0.However, Pareto H -eigenvalue (Z -eigenvalue) λ ofAmeans
that

Axm−1 − λx [m−1] ≥ 0 (Axm−1 − λ(xT x)
m
2 −1x ≥ 0, respectively)

for some non-zero vector x ≥ 0. So, the following conclusions are trivial.

Proposition 1.1 Let A be a m-order and n-dimensional tensor. Then each H+-eigenvalue
(Z+-eigenvalue) of A is its Pareto H-eigenvalue (Z-eigenvalue, respectively).

Remark 1 (1) A Pareto H -eigenvalue (Z -eigenvalue) of a tensor A may not be its H+
-eigenvalue (Z+-eigenvalue). Such an example may see Example 2.

(2) Pareto H -eigenvalue (Z -eigenvalue) of a tensor A must be H++-eigenvalue (Z++
-eigenvalue, respectively) of some principal sub-tensor of A. For detailed proof, see
Theorems 2.1 and 2.2.

In this paper, we mainly study the properties of the Pareto H -eigenvalue (Z -eigenvalue)
of a higher order tensor A.
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In Sect. 2, it will be proved that a real number λ is Pareto H -eigenvalue (Z -eigenvalue)
of A if and only if λ is H++-eigenvalue (Z++-eigenvalue) of some principal sub-tensor of
A with corresponding H -eigenvector (Z -eigenvector) w and

∑

i2,...,im∈N
aii2...imwi2wi3 . . . wim ≥ 0 for i ∈ {1, 2, . . . , n} \ N .

So we may calculate some Pareto H -eigenvalue (Z -eigenvalue) of a higher order tensor by
means of H++-eigenvalue (Z++-eigenvalue) of some lower dimensional tensors.

In Sect. 3, we will show that

min
x≥0

‖x‖m=1

Axm = min{μ;μ is Pareto H -eigenvalue of A} (1.14)

min
x≥0

‖x‖2=1

Axm = min{μ;μ is Pareto Z -eigenvalue of A}. (1.15)

Therefore, wemay solve the constrainedminimization problem for homogeneous polynomial
and test the (strict) copositivity of a symmetric tensorAwith the help of computing the Pareto
H -eigenvalue (or Pareto Z -eigenvalue) of a symmetric tensor. As a corollary, a symmetric
tensor A is copositive if and only if every Pareto H -eigenvalue (Z -eigenvalue) of A is non-
negative andA is strictly copositive if and only if every Pareto H -eigenvalue (Z -eigenvalue)
of A is positive.

2 Pareto H-eigenvalue and Pareto Z-eigenvalue

Let N be a subset of the index set {1, 2, . . . , n} and A be a tensor of order m and dimension
n. We denote the principal sub-tensor of A by AN which is obtained by homogeneous
polynomial Axm for all x = (x1, x2, . . . , xn)T with xi = 0 for i ∈ {1, 2, . . . , n} \ N . The
symbol |N | denotes the cardinality of N . So, AN is a tensor of order m and dimension |N |
and the principal sub-tensor AN is just A itself when N = {1, 2, . . . , n}.

Theorem 2.1 Let A be a m-order and n-dimensional tensor. A real number λ is Pareto H-
eigenvalue ofA if and only if there exists a nonempty subset N ⊆ {1, 2, . . . , n} and a vector
w ∈ R

|N | such that

ANwm−1 = λw[m−1], w ∈ R
|N |
++ (2.1)

∑

i2,...,im∈N
aii2...imwi2wi3 . . . wim ≥ 0 for i ∈ {1, 2, . . . , n} \ N (2.2)

In such a case, the vector y ∈ R
n+ defined by

yi =
{

wi , i ∈ N

0, i ∈ {1, 2, . . . , n} \ N
(2.3)

is a Pareto H-eigenvector of A associated to the real number λ.

Proof First we show the necessity. Let the real number λ be a Pareto H -eigenvalue of A
with a corresponding Pareto H -eigenvector y. Then by the definition (1.9) of the Pareto
H -eigenvalue, the Pareto H -eigenpairs (λ, y) may be rewritten in the form
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yT
(
Aym−1 − λy[m−1]) =0

Aym−1 − λy[m−1] ≥0

y ≥0

(2.4)

and hence
n∑

i=1

yi
(
Aym−1 − λy[m−1])

i
= 0 (2.5)

(
Aym−1 − λy[m−1])

i
≥ 0, for i = 1, 2, . . . , n (2.6)

yi ≥ 0, for i = 1, 2, . . . , n. (2.7)

Combining the Eqs. (2.5) with (2.6) and (2.7), we have

yi
(
Aym−1 − λy[m−1])

i
= 0, for all i ∈ {1, 2, . . . , n}. (2.8)

Take N = {i ∈ {1, 2, . . . , n}; yi > 0}. Let the vector w ∈ R
|N | be defined by

wi = yi for all i ∈ N .

Clearly, w ∈ R
|N |
++. Combining the Eq. (2.8) with the fact that yi > 0 for all i ∈ N , we have

(
Aym−1 − λy[m−1])

i
= 0, for all i ∈ N ,

and so

ANwm−1 = λw[m−1], w ∈ R
|N |
++.

It follows from the Eq. (2.6) and the fact that yi = 0 for all i ∈ {1, 2, . . . , n} \ N that

(Aym−1)i ≥ 0, for all i ∈ {1, 2, . . . , n} \ N .

By the definition (1.2) of Aym−1, the conclusion (2.2) holds.
Now we show the sufficiency. Suppose that there exists a nonempty subset N ⊆

{1, 2, . . . , n} and a vector w ∈ R
|N | satisfying (2.1) and (2.2). Then the vector y defined

by (2.3) is a non-zero vector in R
n+ such that (λ, y) satisfying (2.4). The desired conclusion

follows. ��
Using the same proof techniques as that of Theorem 2.1 with appropriate changes in the

inequalities or equalities (y[m−1] is replaced by (yT y)
m−2
2 y and so on). We can obtain the

following conclusions about the Pareto Z -eigenvalue of A.

Theorem 2.2 Let A be a m-order and n-dimensional tensor. A real number μ is Pareto
Z-eigenvalue of A if and only if there exists a nonempty subset N ⊆ {1, 2, . . . , n} and a
vector w ∈ R

|N | such that

ANwm−1 = μ(wTw)
m−2
2 w, w ∈ R

|N |
++ (2.9)

∑

i2,...,im∈N
aii2...imwi2wi3 . . . wim ≥ 0 for i ∈ {1, 2, . . . , n} \ N (2.10)

In such a case, the vector y ∈ R
n+ defined by

yi =
{

wi , i ∈ N

0, i ∈ {1, 2, . . . , n} \ N
(2.11)
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is a Pareto Z-eigenvector of A associated to the real number μ.

Following Theroems 2.1 and 2.2, the following results are obvious.

Corollary 2.3 LetA be a m-order and n-dimensional tensor. If a real number λ is Pareto H-
eigenvalue (Z-eigenvalue) of A, then λ is H++-eigenvalue (Z++-eigenvalue, respectively)
of some principal sub-tensor of A.

Corollary 2.4 LetA be am-order and n-dimensional tensor. Then the Pareto H-eigenvalues
(Z-eigenvalues) of a diagonal tensor A coincide with its diagonal entries. In particular, a
n-dimensional and diagonal tensor may have at most n distinct Pareto H-eigenvalues (Z-
eigenvalues).

It follows from the above results that some Pareto H -eigenvalue (Z -eigenvalue) of a higher
order tensor may be calculated bymeans of H++-eigenvalue (Z++-eigenvalue, respectively)
of the lower dimensional tensors.

Example 1 Let A be a 4-order and 2-dimensional tensor. Suppose that a1111 = 1, a2222 =
2, a1122 + a1212 + a1221 = −1, a2121 + a2112 + a2211 = −2, and other ai1i2i3i4 = 0. Then

Ax4 = x41 + 2x42 − 3x21 x
2
2

Ax3 =
(

x31−x1x
2
2

2x32−2x21 x2

)

When N = {1, 2}, the principal sub-tensorAN is justA itself.λ1 = 0 is a H++-eigenvalue
ofAwith a corresponding eigenvector x (1) = (

4√8
2 ,

4√8
2 )T , and so it follows fromTheorem2.1

that λ1 = 0 is a Pareto H -eigenvalue with Pareto H -eigenvector x (1) = (
4√8
2 ,

4√8
2 )T .

λ2 = 0 is a Z++-eigenvalue of A with a corresponding eigenvector x (2) = (
√
2
2 ,

√
2
2 )T ,

and so it follows from Theorem 2.2 that λ2 = 0 is a Pareto Z -eigenvalue of A with Pareto

Z -eigenvector x (2) = (
√
2
2 ,

√
2
2 )T .

When N = {1}, the 1-dimensional principal sub-tensor AN = 1. Obviously, λ3 = 1 is
both H++-eigenvalue and Z++-eigenvalue of AN with a corresponding eigenvector w = 1
and a2111w3 = 0, and hence it follows from Theorems 2.1 and 2.2 that λ3 = 1 is both Pareto
H -eigenvalue andPareto Z -eigenvalue ofAwith a corresponding eigenvector x (3) = (1, 0)T .

Similarly,when N = {2}, the 1-dimensional principal sub-tensorAN = 2.Clearly,λ4 = 2
is both H++-eigenvalue and Z++-eigenvalue ofAN with a corresponding eigenvectorw = 1
and a1222w3 = 0, and so λ4 = 2 is both Pareto H -eigenvalue and Pareto Z -eigenvalue of A
with a corresponding eigenvector x (4) = (0, 1)T .

Example 2 Let A be a 3-order and 2-dimensional tensor. Suppose that a111 = 1, a222 =
2, a122 = a212 = a221 = 1

3 , and a112 = a121 = a211 = − 2
3 . Then

Ax3 = x31 + x1x
2
2 − 2x21 x2 + 2x32

Ax2 =
(
x21 + 1

3 x
2
2 − 4

3 x1x2

2x22 + 2
3 x1x2 − 2

3 x
2
1

)

When N = {1}, the 1-dimensional principal sub-tensorAN = 1.Obviously,λ1 = 1 is both
H++-eigenvalue and Z++-eigenvalue of AN with a corresponding eigenvector w = 1 and
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a211w2 = − 2
3 < 0, and so λ1 = 1 is neither Pareto H -eigenvalue nor Pareto Z -eigenvalue

of A.
When N = {2}, the 1-dimensional principal sub-tensor AN = 2. Clearly, λ2 = 2 is both

H++-eigenvalue and Z++-eigenvalue of AN with a corresponding eigenvector w = 1 and
a122w2 = 1

3 > 0, and so λ2 = 2 is both Pareto H -eigenvalue and Pareto Z -eigenvalue of A
with a corresponding eigenvector x (2) = (0, 1)T . But λ = 2 is neither H+-eigenvalue nor
Z+-eigenvalue of A.

Remark 2 The Example 2 reveals that a Pareto H -eigenvalue (Z -eigenvalue) of a tensor A
may not be its H+-eigenvalue (Z+-eigenvalue) even when A is symmetric.

3 Constrained minimization and Pareto eigenvalue

LetA be a symmetric tensor of order m and dimension n and ‖x‖k = (|x1|k + |x2|k + · · · +
|xn |k) 1

k for k ≥ 1. Denote by e(i) = (e(i)
1 , e(i)

2 , . . . , e(i)
n )T the ith unit vector in R

n , i.e.,

e(i)
j =

{
1 if i = j

0 if i 
= j
for i, j ∈ {1, 2, . . . , n}.

We consider the constrained minimization problem

γ (A) = min{Axm; x ≥ 0 and ‖x‖m = 1}, (3.1)

Theorem 3.1 Let A be a m-order and n-dimensional symmetric tensor. If

λ(A) = min{λ; λ is Pareto H-eigenvalue of A},
then γ (A) = λ(A).

Proof Let λ be a Pareto H -eigenvalue ofA. Then there exists a non-zero vector y ∈ R
n such

that

Aym = λyT y[m−1], y ≥ 0,

and so

Aym = λ

n∑

i=1

ymi = λ‖y‖mm and ‖y‖m > 0. (3.2)

Then we have

λ = A
(

y

‖y‖m
)m

and

∥∥∥∥
y

‖y‖m
∥∥∥∥
m

= 1.

From (3.1), it follows that γ (A) ≤ λ. Since λ is arbitrary, we have

γ (A) ≤ λ(A).

Now we show γ (A) ≥ λ(A). Let S = {x ∈ R
n; x ≥ 0 and ‖x‖m = 1}. It follows from

the continuity of the homogeneous polynomial Axm and the compactness of the set S that
there exists a v ∈ S such that

γ (A) = Avm, v ≥ 0, ‖v‖m = 1. (3.3)
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Let g(x) = Axm − γ (A)xT x [m−1] for all x ∈ R
n . We claim that for all x ≥ 0, g(x) ≥ 0.

Suppose not, then there exists non-zero vector y ≥ 0 such that

g(y) = Aym − γ (A)

n∑

i=1

ymi < 0,

and hence γ (A) ≤ A(
y

‖y‖m )m < γ (A), a contradiction. Thus we have

g(x) = Axm − γ (A)xT x [m−1] ≥ 0 for all x ∈ R
n+. (3.4)

For each i ∈ {1, 2, . . . , n}, we define a one-variable function
f (t) = g(v + te(i)) for all t ∈ R

1.

Clearly, f (t) is continuous and v + te(i) ∈ R
n+ for all t ≥ 0. It follows from (3.3) and (3.4)

that

f (0) = g(v) = 0 and f (t) ≥ 0 for all t ≥ 0.

From the necessary conditions of extremum of one-variable function, it follows that the
right-hand derivative f ′+(0) ≥ 0, and hence

f ′+(0) = (e(i))T∇g(v) = m(e(i))T
(
Avm−1 − γ (A)v[m−1])

= m
(
Avm−1 − γ (A)v[m−1])

i
≥ 0.

So we have
(
Avm−1 − γ (A)v[m−1])

i
≥ 0, for i ∈ {1, 2, . . . , n}.

Therefore, we obtain

f (0) = g(v) = Avm − γ (A)vT v[m−1] = 0 (3.5)

Avm−1 − γ (A)v[m−1] ≥ 0

v ≥ 0 (3.6)

Namely, γ (A) is a Pareto H -eigenvalue of A, and hence γ (A) ≥ λ(A), as required. ��

It follows from the proof of the inquality γ (A) ≥ λ(A) in Theorem 3.1 that γ (A) is a
Pareto H -eigenvalue ofA, which implies the existence of Pareto H -eigenvalue of a symmetric
tensor A.

Theorem 3.2 If a m-order and n-dimensional tensor A is symmetric, then A has at least
one Pareto H-eigenvalue γ (A) = min

x≥0
‖x‖m=1

Axm.

Since (xT x)
m
2 = ‖x‖m2 when x ∈ R

n , using the same proof techniques as that of Theo-
rem 3.1 with appropriate changes in the inequalities or equalities (xT x [m−1] and y[m−1] are
respectively replaced by (xT x)

m
2 and (yT y)

m−2
2 y). We can obtain the following conclusions

about the Pareto Z -eigenvalue of a symmetric tensor A.
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Theorem 3.3 LetA be a m-order and n-dimensional symmetric tensor. ThenA has at least
one Pareto Z-eigenvalue μ(A) = min

x≥0
‖x‖2=1

Axm. What’s more,

μ(A) = min{μ;μ is Pareto Z-eigenvalue of A}. (3.7)

In 1952,Motzkin [10] introduced the concept of copositivematrices, which is an important
in appliedmathematics and graph theory.A real symmetricmatrix A is said to be (i) copositive
if x ≥ 0 implies xT Ax ≥ 0; (ii) strictly copositive if x ≥ 0 and x 
= 0 implies xT Ax > 0.
Recently, Qi [15] extended this concept to the higher order symmetric tensors and obtained
its some nice properties as ones of copositive matrices. Let A be a real symmetric tensor of
order m and dimension n.A is said to be

(i) copositive if Axm ≥ 0 for all x ∈ R
n+;

(ii) strictly copositive if Axm > 0 for all x ∈ R
n+ \ {0}.

Let ‖ · ‖ denote any norm on R
n . Now we give the equivalent definition of (strict) copos-

itivity of a symmetric tensor in the sense of any norm on R
n (also see the refereence [17]).

Lemma 3.4 Let A be a symmetric tensor of order m and dimension n. Then we have

(i) A is copositive if and only if Axm ≥ 0 for all x ∈ R
n+ with ‖x‖ = 1;

(ii) A is strictly copositive if and only if Axm > 0 for all x ∈ R
n+ with ‖x‖ = 1;

Proof (i) When A is copositive, the conclusion is obvious. Conversely, take x ∈ R
n+. If

‖x‖ = 0, then it follows that x = 0, and hence Axm = 0. If ‖x‖ > 0, then let y = x
‖x‖ . We

have ‖y‖ = 1 and x = ‖x‖y, and so
Axm = A(‖x‖y)m = ‖x‖mAym ≥ 0.

Therefore, Axm ≥ 0 for all x ∈ R
n+, as required.

Similarly, (ii) is easily proved. ��
As the immediate conclusions of the above consequences, it is easy to obtain the following

results about the copositive (strictly copositive) tensor A.

Corollary 3.5 Let A be a m-order and n-dimensional symmetric tensor. Then

(a) A always has Pareto H-eigenvalue.A is copositive (strictly copositive) if and only if all
of its Pareto H-eigenvalues are nonnegative (positive, respectively).

(b) A always has Pareto Z-eigenvalue.A is copositive (strictly copositive) if and only if all
of its Pareto Z-eigenvalues are nonnegative (positive, respectively).

Now we give an example for solving the constrained minimization problem for homoge-
neous polynomial and testing the (strict) copositivity of a symmetric tensor A with the help
of the above results.

Example 3 Let A be a 4-order and 2-dimensional tensor. Suppose that a1111 = a2222 =
1, a1112 = a1211 = a1121 = a2111 = t , and other ai1i2i3i4 = 0. Then

Ax4 = x41 + x42 + 4t x31 x2

Ax3 =
⎛

⎝
x31+3t x21 x2

x32+t x31

⎞

⎠
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When N = {1, 2}, the principal sub-tensor AN is just A itself. λ1 = 1 + 4
√
27t is H++-

eigenvalue of A with a corresponding eigenvector x (1) = ( 4
√

3
4 ,

4
√

1
4 )

T . Then it follows from

Theorem 2.1 and Proposition 2.4 that λ1 = 1 + 4
√
27t is Pareto H -eigenvalues with Pareto

H -eigenvector x (1) = ( 4
√

3
4 ,

4
√

1
4 )

T .

When N = {1}, the 1-dimensional principal sub-tensor AN = 1. Obviously, λ2 = 1 is
both H++-eigenvalue and Z++-eigenvalue of AN with a corresponding eigenvector w = 1
and a2111w3 = t . Then when t > 0, it follows from Theorems 2.1 and 2.2 that λ2 = 1 is
both Pareto H -eigenvalue and Pareto Z -eigenvalue of A with a corresponding eigenvector
x (2) = (1, 0)T ; when t < 0, λ2 = 1 is neither Pareto H -eigenvalue nor Pareto Z -eigenvalue
of A.

Similarly,when N = {2}, the 1-dimensional principal sub-tensorAN = 1. Clearly,λ3 = 1
is both H++-eigenvalue and Z++-eigenvalue ofAN with a corresponding eigenvectorw = 1
and a1222w3 = 0, and so λ3 = 1 is both Pareto H -eigenvalue and Pareto Z -eigenvalue of A
with a corresponding eigenvector x (3) = (0, 1)T .

So the following conclusions are easily obtained:

(i) Let t < − 1
4√27

. Then λ1 = 1 + 4
√
27t < 0 and λ3 = 1 are Pareto H -eigenvalues of

A with Pareto H -eigenvectors x (1) = ( 4
√

3
4 ,

4
√

1
4 )

T and x (3) = (0, 1)T , respectively. It
follows from Theorems 3.1 and 3.2 that

γ (A) = min
x≥0

‖x‖4=1

Ax4 = min{λ1, λ3} = 1 + 4
√
27t < 0.

The polynomialAx4 attains its minimum value at x (1) =
(

4
√

3
4 ,

4
√

1
4

)T

. It follows from

Corollary 3.5 that A is not copositive.
(ii) Let t = − 1

4√27
. Then λ1 = 1 + 4

√
27t = 0 and λ3 = 1 are Pareto H -eigenvalues of A

with Pareto H -eigenvectors x (1) =
(

4
√

3
4 ,

4
√

1
4

)T

and x (3) = (0, 1)T , respectively. It

follows from Theorems 3.1 and 3.2 that

γ (A) = min
x≥0

‖x‖4=1

Ax4 = min{λ1, λ3} = 0.

The polynomial Ax4 attains its minimum value at x (1) = ( 4
√

3
4 ,

4
√

1
4 )

T . It follows from
Corollary 3.5 that A is copositive.

(iii) Let 0 > t > − 1
4√27

. Clearly, 0 < 1+ 4
√
27t < 1. Then λ1 = 1+ 4

√
27t and λ3 = 1 are

Pareto H -eigenvalues of A. It follows from Theorems 3.1 and 3.2 that

γ (A) = min
x≥0

‖x‖4=1

Ax4 = min{λ1, λ3} = 1 + 4
√
27t > 0.

The polynomial Ax4 attains its minimum value at x (1) = ( 4
√

3
4 ,

4
√

1
4 )

T . It follows from
Corollary 3.5 that A is strictly copositive.

(iv) Let t = 0. Then λ1 = λ2 = λ3 = 1 are Pareto H -eigenvalues of A with Pareto

H -eigenvectors x (1) = (
4
√

τ , 4
√
1 − τ

)T
for all τ ∈ (0, 1) and x (2) = (1, 0)T and
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x (3) = (0, 1)T , respectively. It follows from Theorems 3.1 and 3.2 that

γ (A) = min
x≥0

‖x‖4=1

Ax4 = min{λ1, λ2, λ3} = 1 > 0.

The polynomial Ax4 attains its minimum value at x (1) = ( 4
√

τ , 4
√
1 − τ)T or x (2) =

(1, 0)T or x (3) = (0, 1)T . It follows from Corollary 3.5 that A is strictly copositive.
(v) Let t > 0. Then λ1 = 1 + 4

√
27t and λ2 = λ3 = 1 are Pareto H -eigenvalues of A

with Pareto H -eigenvectors x (1) = ( 4
√

3
4 ,

4
√

1
4 )

T and x (2) = (1, 0)T and x (3) = (0, 1)T ,
respectively. It follows from Theorems 3.1 and 3.2 that

γ (A) = min
x≥0

‖x‖4=1

Ax4 = min{λ1, λ2, λ3} = 1 > 0.

The polynomial Ax4 attains its minimum value at x (2) = (1, 0)T or x (3) = (0, 1)T . It
follows from Corollary 3.5 that A is strictly copositive.

Acknowledgments The authors would like to thank the anonymous referee for his valuable suggestions
which helped us to improve this manuscript.

References

1. Chang, K.C.: A nonlinear Krein Rutman theorem. J. Syst. Sci. Com. 22(4), 542–554 (2009)
2. Chang, K.C., Pearson, K., Zhang, K.: Perron–Frobenius theorem for nonnegative tensors. Commun.Math.

Sci. 6, 507–520 (2008)
3. Chang, K.C., Pearson, K., Zhang, K.: On eigenvalue problems of real symmetric tensors. J. Math. Anal.

Appl. 350, 416–422 (2009)
4. Facchinei, F., Pang, J.S.: Finite-Dimensional Variational Inequalities and Complementarity Problems:

vol. I. Springer, New York (2011)
5. Hiriart-Urruty, J.B., Seeger, A.: A variational approach to copositive matrices. SIAMRev. 52(4), 593–629

(2010)
6. Han, J.Y., Xiu, N.H., Qi, H.D.: Nonlinear Omplementary Theory and Algorithm. Shanghai Science and

Technology Press, Shanghai (2006). (in Chinese)
7. Ling, C., He, H., Qi, L.: On the cone eigenvalue complementarity problem for higher-order tensors.

Comput. Optim. Appl. (2015). doi:10.1007/s10589-015-9767-z
8. Li, C., Wang, F., Zhao, J., Zhu, Y., Li, Y.: Criterions for the positive definiteness of real supersymmetric

tensors. J. Comp. Appl. Math. 255, 1–14 (2014)
9. Lim, L.H.: Singular values and eigenvalues of tensors: A variational approach. In: Proc. 1st IEEE Inter-

national workshop on computational advances of multi-tensor adaptive processing, December 13–15, pp
129–132 (2005)

10. Motzkin, T.S.: Quadratic Forms. National Bureau of Standards Report 1818, pp. 11–12 (1952)
11. Qi, L.: Eigenvalues of a real supersymmetric tensor. J. Symb. Comput. 40, 1302–1324 (2005)
12. Qi, L.: Rank and eigenvalues of a supersymmetric tensor, the multivariate homogeneous polynomial and

the algebraic hypersurface it defines. J. Symb. Comput. 41, 1309–1327 (2006)
13. Qi, L.: Eigenvalues and invariants of tensors. J. Math. Anal. Appl. 325, 1363–1377 (2007)
14. Qi, L.: H+-eigenvalues of Laplacian and signless Laplacian tensors. Commun.Math. Sci. 12, 1045–1064

(2014)
15. Qi, L.: Symmetric nonnegative tensors and copositive tensors. Linear Algebra Appl. 439(1), 228–238

(2013)
16. Qi, L., Song, Y.: An even order symmetric B tensor is positive definite. Linear AlgebraAppl. 457, 303–312

(2014)
17. Song, Y., Qi, L.: Necessary and sufficient conditions for copositive tensors. Linear Multilinear Algebra

63(1), 120–131 (2015)
18. Song, Y., Qi, L.: Positive eigenvalue-eigenvector of nonlinear positive mappings. Front. Math. China 9(1),

181–199 (2014)

123

http://dx.doi.org/10.1007/s10589-015-9767-z


J Glob Optim (2016) 64:563–575 575

19. Song, Y., Qi, L.: The existence and uniqueness of eigenvalues for monotone homogeneous mapping pairs.
Nonlinear Anal. 75(13), 5283–5293 (2012)

20. Song, Y., Qi, L.: Spectral properties of positively homogeneous operators induced by higher order tensors.
SIAM J. Matrix Anal. Appl. 34, 1581–1595 (2013)

21. Song, Y., Qi, L.: Properties of some classes of structured tensors. J. Optim. Theory Appl. 165(3), 854–873
(2015)

22. Song, Y., Qi, L.: Infinite and finite dimensional Hilbert tensors. Linear Algebra Appl. 451, 1–14 (2014)
23. Seeger, A.: Eigenvalue analysis of equilibrium processes defined by linear complementarity conditions.

Linear Algebra Appl. 292, 1–14 (1999)
24. Yang, Y., Yang, Q.: Further results for Perron–Frobenius theorem for nonnegative tensors. SIAM J.Matrix

Anal. Appl. 31(5), 2517–2530 (2010)
25. Yang, Q., Yang, Y.: Further results for Perron–Frobenius theorem for nonnegative tensors II. SIAM J.

Matrix Anal. Appl. 32(4), 1236–1250 (2011)

123


	Eigenvalue analysis of constrained minimization problem for homogeneous polynomial
	Abstract
	1 Introduction and basic facts
	2 Pareto H-eigenvalue and Pareto Z-eigenvalue
	3 Constrained minimization and Pareto eigenvalue
	Acknowledgments
	References




