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Abstract In this paper, the concepts of Pareto H-eigenvalue and Pareto Z-eigenvalue are
introduced for studying constrained minimization problem and the necessary and sufficient
conditions of such eigenvalues are given. It is proved that a symmetric tensor has at least one
Pareto H-eigenvalue (Pareto Z-eigenvalue). Furthermore, the minimum Pareto H -eigenvalue
(or Pareto Z-eigenvalue) of a symmetric tensor is exactly equal to the minimum value of
constrained minimization problem of homogeneous polynomial deduced by such a tensor,
which gives an alternative methods for solving the minimum value of constrained minimiza-
tion problem. In particular, a symmetric tensor A is strictly copositive if and only if every
Pareto H-eigenvalue (Z-eigenvalue) of A is positive, and A is copositive if and only if every
Pareto H-eigenvalue (Z-eigenvalue) of .4 is non-negative.
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1 Introduction and basic facts

Throughout this paper, let R}, = {x € R";x > 0}, and R” = {x € R";x < 0}, and
R, = {x €e R%x > O}, ande = (1,1,..., D7, and x"1 = 1", x%", ..., x"T for
x = (x1,x2, ..., x) 7, where x7 is the transposition of a vector x and x > 0 (x > 0) means
x; > 0(x; >0)foralli € {1,2,...,n}.

As a natural extension of the concept of matrices, a m-order n-dimensional tensor A
consists of n™ entries in the real field R:

A=(ai.i,), i, €R, i1,i2,...,in=12,...,n.

For a vector x = (x1, X2, ..., Xx,)] € R" or C", Ax™ is defined by

Axm = Z Ajyiy...ipmXiy Xip + - .x,-m; (1.])
1202 eemrim=1
Ax"=1is a vector in R” (or C") with its ith component defined by

n

(.Ax'"_])i:' > iy Xiy o xi, fori =1,2,....n. (1.2)

A m-order n-dimensional tensor A is said to be symmetric if its entries a;, _;, are invariant
for any permutation of the indices. Clearly, each m-order n-dimensional symmetric tensor .4
defines a homogeneous polynomial .Ax™ of degree m with n variables and vice versa.

For a given m-order n-dimensional symmetric tensor .A, we consider a constrained opti-
mization problem of the form:

1
min — Ax™
m
st xTxm=11 = (1.3)
x eRY.

Then the Lagrange function of the problem (1.3) is given clearly by

1 1
LA y) = —Ax™ 4+ —4 (1 _ xTx“"—”) —xTy (1.4)
m m
where x,y € R/, % € R is the Lagrange multiplier of the equality constraint and y is
the Lagrange multiplier of non-negative constraint. So the solution x of the problem (1.3)
satisfies the following KKT conditions ([4,6]):

Ax™t —xm=l—y =0 (1.5)
1 —xTxm=1 =9 (1.6)
T
x'y=0 (1.7)
x,y € R, (1.8)

n
The Eq. (1.6) means that > xi’” = 1. It follows from the Egs. (1.5), (1.7) and (1.8) that
i=1

2Ty =xT Axm=1 = axTxlm=11 =g

x 20, A =l =y >0,
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and hence,
Ax™ = pxT xm=11
Axm=l — axIm=11 > o (1.9)
x > 0.

Following Qi [11] (H-eigenvalue of the tensor .4) and Seeger [23] (Pareto eigenvalue of
the matrix A), for a m-order n-dimensional tensor A, a real number X is called Pareto H-
eigenvalue of the tensor A if there exists a non-zero vector x € R” satisfying the system
(1.9). The non-zero vector x is called a Pareto H-eigenvector of A associated to A.

Similarly, for a given m-order n-dimensional symmetric tensor .4, we consider another
constrained optimization problem of the form (m > 2):

1
min —Ax™
m

T (1.10)

sit.x'x=1

n
x e RY.

Obviously, when x € R”, x” x = 1 if and only if (xTx)7 = 1. The corresponding Lagrange
function may be written in the form

1 1 m
Lo y) = — A+ (1= (T 0%) =Ty,
m m
So the solution x of the problem (1.10) satisfies KKT conditions ([4,6]):
A T T — y=0,1- xTx)? =0, xTy=0,xye RY.
Then we have 3", x? = 1 and

Ax™ = /L(XTX)%
A=t — p(xTx)T 1 > 0 (1.11)

x > 0.

Following Qi [11] (Z-eigenvalue of the tensor .4) and Seeger [23] (Pareto eigenvalue of the
matrix A), for an m-order n-dimensional tensor A, a real number y is said to be Pareto Z-
eigenvalue of the tensor A if there is a non-zero vector x € R” satisfying the system (1.11).
The non-zero vector x is called a Pareto Z-eigenvector of A associated to u.

So the constrained optimization problem (1.3) and (1.10) of homogeneous polynomial may
be respectively solved by means of the Pareto H-eigenvalue (1.9) and Pareto Z-eigenvalue
(1.11) of the corresponding tensor. It will be an interesting work to compute the Pareto
H -eigenvalue (Z-eigenvalue) of a higher order tensor.

When m = 2, both Pareto H-eigenvalue and Pareto Z-eigenvalue of the m-order n-
dimensional tensor obviously changes into Pareto eigenvalue of the matrix. The concept of
Pareto eigenvalue is first introduced and used by Seeger [23] for studying the equilibrium
processes defined by linear complementarity conditions. For more details, also see Hiriart-
Urruty and Seeger [5].

Let A be a m-order n-dimensional symmetric tensor. A number A € C is called an
eigenvalue of A if there exists a nonzero vector x € C" satisfying

Ax" 1 = plm =1, (1.12)
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where xm—11 = (x’ln_l, o, x,’l”’l)T, and call x an eigenvector of A associated with the

eigenvalue A. We call such an eigenvalue H-eigenvalue if it is real and has a real eigenvector
x, and call such a real eigenvector x an H-eigenvector.

These concepts were first introduced by Qi [11] to the higher order symmetric tensor,
and the existence of the eigenvalues and its some application were studied also. Lim [9]
independently introduced these concept and obtained the existence results using the vari-
ational approach. Subsequently, this topics are attracted attention of many mathematicians
from different disciplines. For various studies and applications, see Chang [1], Chang et al.
[2,3], Chang et al. [7], Li et al. [8], Qi and Song [16], Song and Qi [18-22], Yang and Yang
[24,25] and references cited therein.

A number . € Cis said to be an E-eigenvalue of Aif there exists a nonzero vector x € C”
such that

A = (2T )" (1.13)

Such a nonzero vector x € C" is called an E-eigenvector of A associated with u, If x is real,
then w is also real. In this case, i and x are called a Z-eigenvalue of A and a Z-eigenvector
of A (associated with ), respectively. Qi [11-13] first introduced and used these concepts
and showed that a symmetric and real tensor has always Z-eigenvalue.

In homogeneous polynomial Ax™ defined by (1.1), if we let some (but not all) x; be
zero, then we have a homogeneous polynomial with fewer variables, which defines a lower
dimensional tensor. We call such a lower dimensional tensor a principal sub-tensor of A.
The concept were first introduced and used by Qi [11] to the higher order symmetric tensor.

Recently, Qi [14] introduced and used the following concepts for studying the properties
of hypergraph. An H-eigenvalue A of A is said to be (i) H-eigenvalue of A, if its H-
eigenvector x € R’} ; (ii) H* T -eigenvalue of A, if its H-eigenvector x € R’} . Similarly, we
introduce the concepts of Z'-eigenvalue and Z*-eigenvalue. An Z-eigenvalue u of A is
said to be (i) Z*-eigenvalue of A, if its Z-eigenvector x € R} ; (ii) Z T -eigenvalue of A, if
its Z-eigenvector x € R’} .

Obviously, the definition of H-eigenvalue (Z*-eigenvalue) A of .4 means that

Ax™ L a1 — 0 (Ax™ ! — 2 (xTx) 2 1x = 0, respectively)

for some non-zero vector x > 0. However, Pareto H-eigenvalue (Z-eigenvalue) A of A means
that

A x> 0 (A = a T2 > 0, respectively)
for some non-zero vector x > 0. So, the following conclusions are trivial.

Proposition 1.1 Let A be a m-order and n-dimensional tensor. Then each H™-eigenvalue
(Z*-eigenvalue) of A is its Pareto H-eigenvalue (Z-eigenvalue, respectively).

Remark 1 (1) A Pareto H-eigenvalue (Z-eigenvalue) of a tensor A may not be its HT
-eigenvalue (Z T -eigenvalue). Such an example may see Example 2.

(2) Pareto H-eigenvalue (Z-eigenvalue) of a tensor .4 must be HF-eigenvalue (ZTF
-eigenvalue, respectively) of some principal sub-tensor of A. For detailed proof, see
Theorems 2.1 and 2.2.

In this paper, we mainly study the properties of the Pareto H-eigenvalue (Z-eigenvalue)
of a higher order tensor .A.
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In Sect. 2, it will be proved that a real number A is Pareto H-eigenvalue (Z-eigenvalue)
of A if and only if A is H 1 -eigenvalue (Z 1T -eigenvalue) of some principal sub-tensor of
A with corresponding H-eigenvector (Z-eigenvector) w and

> i i wiwi .. w;, = 0fori € {1,2,....n}\ N.
So we may calculate some Pareto H-eigenvalue (Z-eigenvalue) of a higher order tensor by

means of H+"-eigenvalue (Z"-eigenvalue) of some lower dimensional tensors.
In Sect. 3, we will show that

mig Ax™ = min{u; u is Pareto H-eigenvalue of A} (1.14)
x>
[Ixllm=1
mit(} Ax™ = min{u; u is Pareto Z-eigenvalue of A}. (1.15)
x>
lxll2=1

Therefore, we may solve the constrained minimization problem for homogeneous polynomial
and test the (strict) copositivity of a symmetric tensor .4 with the help of computing the Pareto
H -eigenvalue (or Pareto Z-eigenvalue) of a symmetric tensor. As a corollary, a symmetric
tensor A is copositive if and only if every Pareto H -eigenvalue (Z-eigenvalue) of A is non-
negative and A is strictly copositive if and only if every Pareto H-eigenvalue (Z-eigenvalue)
of A is positive.

2 Pareto H -eigenvalue and Pareto Z-eigenvalue

Let N be a subset of the index set {1, 2, ..., n} and A be a tensor of order m and dimension
n. We denote the principal sub-tensor of A by AN which is obtained by homogeneous
polynomial Ax™ for all x = (xp, x2, .. Lx)T withx; = 0fori € {1,2,...,n} \ N.The
symbol |N| denotes the cardinality of N. So, A" is a tensor of order m and dimension |N|
and the principal sub-tensor A" is just A itself when N = {1,2, ..., n}.

Theorem 2.1 Let A be a m-order and n-dimensional tensor. A real number A is Pareto H -
eigenvalue of A if and only if there exists a nonempty subset N C {1, 2, ..., n} and a vector
w € RV such that

—_ — N
AV =l = =11y e IV 2.1)

Z Uiy iy Wiy Wiy ... Wj, = 0fori e{l,2,...,n}\ N 2.2)

In such a case, the vector y € R'| defined by

w;, I €N
yi=1"". (2.3)
0, ief{l,2,....,n}\ N

is a Pareto H-eigenvector of A associated to the real number A.
Proof First we show the necessity. Let the real number A be a Pareto H-eigenvalue of A

with a corresponding Pareto H-eigenvector y. Then by the definition (1.9) of the Pareto
H -eigenvalue, the Pareto H-eigenpairs (X, y) may be rewritten in the form
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L O )

Aym—] _ )Ly[m—lj ZO (24)
y >0
and hence
n

Zyi (Aym—l _ )»y[m_”)' -0 2.5)

i=1 !
(Ay'"*l - )\ylm*”)' >0, fori=1,2,...,n (2.6)

1
yi >0, fori =1,2,...,n. 2.7

Combining the Egs. (2.5) with (2.6) and (2.7), we have

yi (Ay"’_l—ky[m_ll) —0, foralli €{1,2,...,n}. 2.8)

1

Take N = {i € {1,2,...,n}; y; > 0}. Let the vector w € RV be defined by
w; = y; foralli € N.

Clearly, w € R‘Jﬂ Combining the Eq. (2.8) with the fact that y; > O for alli € N, we have

(Aym—l _ Ay[m—ll) =0, foralli € N,

L

and so
N, m—1 -1 IN|
ANt = =1y eRL,.
It follows from the Eq. (2.6) and the fact that y; = 0 foralli € {1,2,...,n}\ N that
(Ay™1; >0, foralli € {1,2,...,n}\ N.

By the definition (1.2) of Ay™~!, the conclusion (2.2) holds.

Now we show the sufficiency. Suppose that there exists a nonempty subset N C
{1,2,...,n} and a vector w € RV satisfying (2.1) and (2.2). Then the vector y defined
by (2.3) is a non-zero vector in R’} such that (A, y) satisfying (2.4). The desired conclusion
follows. ]

Using the same proof techniques as that of Theorem 2.1 with appropriate changes in the

inequalities or equalities (y!""~!! is replaced by (y” y)% y and so on). We can obtain the
following conclusions about the Pareto Z-eigenvalue of A.

Theorem 2.2 Let A be a m-order and n-dimensional tensor. A real number w is Pareto
Z-eigenvalue of A if and only if there exists a nonempty subset N € {1,2,...,n} and a
vector w € RV such that

ANyl = ,u(wTw)%w, w e R‘Jﬂ (2.9)
> i i wiwis . w;, = 0fori € {1,2,....n}\ N (2.10)

i2 ,,,, imeN

In such a case, the vector y € R'| defined by

yi={ue ! €N 2.11)
0, ie{l,2,....,n}\ N
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is a Pareto Z-eigenvector of A associated to the real number L.
Following Theroems 2.1 and 2.2, the following results are obvious.

Corollary 2.3 Let A be a m-order and n-dimensional tensor. If a real number A is Pareto H -
eigenvalue (Z-eigenvalue) of A, then ) is H " -eigenvalue (Z " -eigenvalue, respectively)
of some principal sub-tensor of A.

Corollary 2.4 Let A be am-order and n-dimensional tensor. Then the Pareto H -eigenvalues
(Z-eigenvalues) of a diagonal tensor A coincide with its diagonal entries. In particular, a
n-dimensional and diagonal tensor may have at most n distinct Pareto H-eigenvalues (Z-
eigenvalues).

It follows from the above results that some Pareto H -eigenvalue (Z-eigenvalue) of a higher
order tensor may be calculated by means of H T -eigenvalue (Z-eigenvalue, respectively)
of the lower dimensional tensors.

Example 1 Let A be a 4-order and 2-dimensional tensor. Suppose that aj111 = 1, axn =
2,a1122 + a2 + a1 = —1, az121 + a2112 + ax11 = —2, and other a;,;,i5;, = 0. Then

Axt = xi‘ + 2)63 - 3x12x%
3 2
X]—x1x
A = lz 22
2x5 —2x7x2
When N = {1, 2}, the principal sub-tensor A" is just Aitself. A; = Oisa H+T-eigenvalue
4 4
of A with a corresponding eigenvector x (1) = (@, %)T, and so it follows from Theorem 2.1
4 4
that 1| = 0 is a Pareto H-eigenvalue with Pareto H-eigenvector x!) = (#, ?)T.

A2 = 0is a Z++-eigenvalue of A with a corresponding eigenvector x® = (%, g)T,
and so it follows from Theorem 2.2 that Ay = 0 is a Pareto Z-eigenvalue of .4 with Pareto
Z-eigenvector x@ = (%, g)T.

When N = {1}, the 1-dimensional principal sub-tensor A = 1. Obviously, A3 = 1 is
both H*+F-eigenvalue and Z*+*-eigenvalue of A" with a corresponding eigenvector w = 1
and @11 w3 = 0, and hence it follows from Theorems 2.1 and 2.2 that A3 = 1 is both Pareto
H-eigenvalue and Pareto Z-eigenvalue of A with a corresponding eigenvector x® = (1, 0)7.

Similarly, when N = {2}, the 1-dimensional principal sub-tensor AV = 2. Clearly, A4 = 2
is both H*+-eigenvalue and Z*+-eigenvalue of AY with a corresponding eigenvector w = 1

and a2 w? = 0, and so A4 = 2 is both Pareto H-eigenvalue and Pareto Z-eigenvalue of A
with a corresponding eigenvector x® = (0, 1)7.

Example 2 Let A be a 3-order and 2-dimensional tensor. Suppose that aj1; = 1, a0 =
1 2
2,a12 = az12 = axp1 = 3, and aji2 = ajz1 = az;1 = —5. Then

Axd = x13 + xlx% — 2x12x2 + 2xg

2 1.2 4
A = X{ +3xy — 3x1%2
S\ 2x2 +2xxp — 2x2
2 T3AA2 T 34

When N = {1}, the 1-dimensional principal sub-tensor A" = 1.Obviously, .| = 1 isboth
H**-eigenvalue and Z+*-eigenvalue of AV with a corresponding eigenvector w = 1 and
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aw? = —% < 0, and so A1 = 1 is neither Pareto H-eigenvalue nor Pareto Z-eigenvalue
of A. )

When N = {2}, the 1-dimensional principal sub-tensor AN = 2. Clearly, 1, = 2 is both
H**-eigenvalue and Z*+*-eigenvalue of A" with a corresponding eigenvector w = 1 and
aympw? = % > 0, and so Ay = 2 is both Pareto H-eigenvalue and Pareto Z-eigenvalue of A
with a corresponding eigenvector x® = (0, 1)7. But A = 2 is neither H-eigenvalue nor

Z*-eigenvalue of A.

Remark 2 The Example 2 reveals that a Pareto H-eigenvalue (Z-eigenvalue) of a tensor A
may not be its H T -eigenvalue (ZT-eigenvalue) even when A is symmetric.

3 Constrained minimization and Pareto eigenvalue

Let A be a symmetric tensor of order m and dimension n and || x|z = (|x; [ o LI
|x,|%)% for k > 1. Denote by e = (egl), eg), ..., eNT the ith unit vector in R, i.e.,

i 0 ifi#j

We consider the constrained minimization problem

‘ | ifi—
e(.l):[ e jfori,je{l,Z,...,n}.

y(A) = min{Ax"; x > 0and |x||, = 1}, 3.1
Theorem 3.1 Let A be a m-order and n-dimensional symmetric tensor. If
A(A) = min{A; A is Pareto H-eigenvalue of A},
then y (A) = A(A).

Proof Let A be a Pareto H-eigenvalue of .A. Then there exists a non-zero vector y € R” such
that

Ay™ = yTylm=1 1y >0,
and so

n
Ay™ =2y =Myl and [[y[lm > 0. 3.2)
i=1

m
A:A( 4 ) and ” Y
1311 131l

From (3.1), it follows that y (A) < A. Since X is arbitrary, we have

Then we have

m

Y (A) = A(A).

Now we show y(A) > A(A). Let S = {x € R"; x > 0 and ||x||,, = 1}. It follows from
the continuity of the homogeneous polynomial .Ax™ and the compactness of the set S that
there exists a v € § such that

y(A) = A", v >0, vl = 1. (3.3)
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Let g(x) = Ax™ — y(A)xTx"=1 for all x € R". We claim that for all x > 0, g(x) > 0.
Suppose not, then there exists non-zero vector y > 0 such that

n
g0 =Ay" —y () D " <0,
i=1
and hence y (A) < A(W)m < y(A), a contradiction. Thus we have
g(x) = Ax™ — y(A)x" x> 0 forall x € R”. (3.4)
Foreachi € {1, 2,...,n}, we define a one-variable function
f@t) =g +rte?)forallr € RL.

Clearly, f () is continuous and v + te® e R’} for all + > 0. It follows from (3.3) and (3.4)
that

£(0) = g(v) =0and £(r) = Oforallt > 0.

From the necessary conditions of extremum of one-variable function, it follows that the
right-hand derivative £ (0) > 0, and hence

F10) = )T Vg(w) =m(e™)7 (A"~ — y (1)
—m (Av'”—‘ - y(A)v[’"_I]). > 0.
So we have

(Au’”*l - y(A)v[mfl]) >0, fori €{1,2,...,n).
1

Therefore, we obtain

F(0) = gv) = A" — y (A v =0 3.5)
‘Avmfl _ y(A)v[mfl] >0
v>0 3.6)

Namely, y (A) is a Pareto H-eigenvalue of .4, and hence y (A) > L(A), as required. ]

It follows from the proof of the inquality y (A) > A(A) in Theorem 3.1 that y(A) is a
Pareto H-eigenvalue of A, which implies the existence of Pareto H -eigenvalue of a symmetric
tensor A.

Theorem 3.2 If a m-order and n-dimensional tensor A is symmetric, then A has at least
one Pareto H-eigenvalue y (A) = mig Ax™.
>

llxllm=1

Since (xTx)% = ||x|I3 when x € R", using the same proof techniques as that of Theo-
rem 3.1 with appropriate changes in the inequalities or equalities (x” x!"*~1 and yl"~1 are
respectively replaced by (x7 x) 7 and OTy) iyt v). We can obtain the following conclusions
about the Pareto Z-eigenvalue of a symmetric tensor A.
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Theorem 3.3 Let A be a m-order and n-dimensional symmetric tensor. Then A has at least
one Pareto Z-eigenvalue u(A) = mig Ax™. What’s more,
x>

llxli2=1

w(A) = min{u; u is Pareto Z-eigenvalue of A}. (3.7)

In 1952, Motzkin [10] introduced the concept of copositive matrices, which is an important
in applied mathematics and graph theory. A real symmetric matrix A is said to be (i) copositive
if x > 0 implies x” Ax > 0; (ii) strictly copositive if x > 0 and x # 0 implies x7 Ax > 0.
Recently, Qi [15] extended this concept to the higher order symmetric tensors and obtained
its some nice properties as ones of copositive matrices. Let A be a real symmetric tensor of
order m and dimension 7.4 is said to be

(i) copositive if Ax™ > 0 forall x € R} ;
(i) strictly copositive if Ax™ > 0 forall x € R} \ {0}.
Let || - || denote any norm on R". Now we give the equivalent definition of (strict) copos-

itivity of a symmetric tensor in the sense of any norm on R” (also see the refereence [17]).

Lemma 3.4 Let A be a symmetric tensor of order m and dimension n. Then we have

(i) Ais copositive if and only if Ax™ > 0 for all x € R, with ||x|| = 1;
(ii) Ais strictly copositive if and only if Ax™ > 0 for all x € R, with || x| = 1;

Proof (i) When A is copositive, the conclusion is obvious. Conversely, take x € R'}. If
x|l = 0, then it follows that x = 0, and hence Ax™ = 0. If ||x|| > O, then let y = ”“;—“ We
have ||y|| = 1 and x = ||x||y, and so

Ax™ = A(llx[I)™ = [lx]" Ay™ = 0.
Therefore, Ax™ > 0 for all x € R}, as required.

Similarly, (ii) is easily proved. O

As the immediate conclusions of the above consequences, it is easy to obtain the following
results about the copositive (strictly copositive) tensor .A.

Corollary 3.5 Let A be a m-order and n-dimensional symmetric tensor. Then

(a) Aalways has Pareto H-eigenvalue. A is copositive (strictly copositive) if and only if all
of its Pareto H-eigenvalues are nonnegative (positive, respectively).

(b) A always has Pareto Z-eigenvalue. A is copositive (strictly copositive) if and only if all
of its Pareto Z-eigenvalues are nonnegative (positive, respectively).

Now we give an example for solving the constrained minimization problem for homoge-
neous polynomial and testing the (strict) copositivity of a symmetric tensor A with the help
of the above results.

Example 3 Let A be a 4-order and 2-dimensional tensor. Suppose that ay11; = aznn =
I, ai112 = a1 = aji21 = az111 = t, and other a;,4,;3;, = 0. Then

Ax* = xi + x5 4 dtxix;

e X} 4+3txix0

x5’+tx13
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When N = {1, 2}, the principal sub-tensor AV is just A itself. Ay = 1 + /271 is H++-
eigenvalue of A with a corresponding eigenvector x () = (ﬁ , C/; )T Then it follows from
Theorem 2.1 and Proposition 2.4 that A; = 1 + +/27¢ is Pareto H-eigenvalues with Pareto

H-eigenvector x(V = ({4/% {/;)T.

When N = {1}, the 1-dimensional principal sub-tensor AN = 1. Obviously, A = 1 is
both H*+*-eigenvalue and Z*+*-eigenvalue of A" with a corresponding eigenvector w = 1
and asj11w> = t. Then when ¢t > 0, it follows from Theorems 2.1 and 2.2 that A, = 1 is
both Pareto H-eigenvalue and Pareto Z-eigenvalue of A with a corresponding eigenvector
x@ = (1,0)T; whent < 0, A, = 1 is neither Pareto H -eigenvalue nor Pareto Z-eigenvalue
of A.

Similarly, when N = {2}, the 1-dimensional principal sub-tensor AN =1, Clearly, 13 = 1
isboth H+*-eigenvalue and Z**-eigenvalue of A" with a corresponding eigenvector w = 1
and aj2w? = 0, and so A3 = 1 is both Pareto H -eigenvalue and Pareto Z-eigenvalue of A
with a corresponding eigenvector x® = (0, 1)7.

So the following conclusions are easily obtained:

(i) Lett < _3/%77' Then A1 = 1 4+ +/27t < 0 and A3 = 1 are Pareto H-eigenvalues of

A with Pareto H-eigenvectors x = ({4/§ , {4/; )T and x® = (0, I)T, respectively. It
follows from Theorems 3.1 and 3.2 that

y(A) = min Ax* =min(i, A3} = 1+ V27 <0.
x>

llxla=1

T
The polynomial Ax* attains its minimum value at x(1 = ((/g , (/}) . It follows from

Corollary 3.5 that 4 is not copositive.

(i1) Letr = _i‘/%' Then A =1+ 27t = 0 and A3 = 1 are Pareto H-eigenvalues of A

T
with Pareto H-eigenvectors x = (\‘/g , {4/;) and x® = (0, DT, respectively. It

follows from Theorems 3.1 and 3.2 that

y(A) = mig Ax* = min{r;, A3} = 0.

lIxlla=1

The polynomial Ax* attains its minimum value at x( = (\‘%g , C/; )T . Tt follows from
Corollary 3.5 that A is copositive.
(iii) LetO >t > _?/%77' Clearly, 0 < 1 + V27t < 1.ThenA; = 1 + ~/27t and A3 = 1 are
Pareto H-eigenvalues of A. It follows from Theorems 3.1 and 3.2 that
y(A) = min Ax* =min(i, A3} = 1 + V27 > 0.
x>

llxlla=1

The polynomial Ax* attains its minimum value at x(1 = (\‘/g , ﬁ )T It follows from
Corollary 3.5 that A is strictly copositive.
(iv) Lett = 0. Then .y = Ap = A3 = 1 are Pareto H-eigenvalues of .4 with Pareto

H -eigenvectors M = ({‘ﬁ, H1T= T)T for all t € (0,1) and x®@ = (1,007 and
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x® = (0, DT, respectively. It follows from Theorems 3.1 and 3.2 that

y(A) = min Axt = min{i;, Ao, A3} =1 > 0.

llxla=1

The polynomial Ax* attains its minimum value at x(V' = (¥/z, YT —1)7 or x® =
(1,07 or x® = (0, DT 1t follows from Corollary 3.5 that A is strictly copositive.
(v) Lett > 0. Then A; = 1 + ~/27¢ and Ay = A3z = 1 are Pareto H-eigenvalues of A

with Pareto H -eigenvectors x® = ({‘/g, ﬂ)T and x® = (1,07 and x® = (0, D7,
respectively. It follows from Theorems 3.1 and 3.2 that

y(A) = min Ax* = min{A;, A, A3} =1 > 0.
x>

llxla=1

The polynomial Ax* attains its minimum value at x® = (1, 0)” or x® = (0, D7 1t
follows from Corollary 3.5 that A is strictly copositive.
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